RU2128668C1 - Способ получения полимеров винилиденфторида - Google Patents

Способ получения полимеров винилиденфторида Download PDF

Info

Publication number
RU2128668C1
RU2128668C1 RU94041702A RU94041702A RU2128668C1 RU 2128668 C1 RU2128668 C1 RU 2128668C1 RU 94041702 A RU94041702 A RU 94041702A RU 94041702 A RU94041702 A RU 94041702A RU 2128668 C1 RU2128668 C1 RU 2128668C1
Authority
RU
Russia
Prior art keywords
polymerization
vdf
chain transfer
transfer agent
vinylidene fluoride
Prior art date
Application number
RU94041702A
Other languages
English (en)
Other versions
RU94041702A (ru
Inventor
Арчелла Винченцо
Кент Брэдли
Макконе Патриция
Бринати Джулио
Original Assignee
Аусимонт С.п.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Аусимонт С.п.А. filed Critical Аусимонт С.п.А.
Publication of RU94041702A publication Critical patent/RU94041702A/ru
Application granted granted Critical
Publication of RU2128668C1 publication Critical patent/RU2128668C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/01Atom Transfer Radical Polymerization [ATRP] or reverse ATRP

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Описывается способ получения полимеров винилиденфторида (VDF), который включает полимеризацию VDF возможно в сочетании с другими фторсодержащими олефинами в водной среде в присутствии инициатора радикалов и 1,1,1-трифтор-2,2-дихлорэтана (НСFС-123) в качеств агента передачи цепи. Технический результат заключается в том, что получают конечный продукт с очень хорошими характеристиками по цвету (внешний вид), по существу свободный от явлений пожелтения при повышенных температурах. 3 з.п.ф-лы, 2 табл.

Description

Изобретение относится к способу получения полимеров винилиденфторида (VDF) путем полимеризации в водной среде в присутствии радикальных инициаторов и подходящего агента передачи цепи.
Известно, что поливинилиденфторид (PVDF) и сополимеры VDF с другими фторсодержащими олефинами (например, с гексафтопропеном или с тетрафторэтиленом) могут быть получены путем полимеризации в водной среде с использованием в качестве инициаторов органических или неорганических пероксидов. Наиболее широко применяют ди-трет-бутилпероксид (DTBP) (см. патент США 3193539) и диизопропилпероксидикарбонат (IPP) (см. патент США 3475396). Чтобы эффективно регулировать молекулярно-массовое распределение и таким способом улучшать механические свойства и перерабатываемость конечного продукта, предлагается применять в ходе реакции полимеризации подходящие агенты передачи цепи. Например, в патенте США 3475396 используют ацетон, который действует и как агент передачи цепи, и как транспортирующая среда для пероксида (IPP). Кроме того, когда в качестве инициатора используют IPP, в качестве агента передачи цепи используют изопропиловый спирт, как описано в патенте США 4360652. И наконец, в Европейском патенте EP-387938 PVDF получают, используя в качестве инициатора пероксидисульфат и в качестве регулятора молекулярной массы алкилацетат. Однако применение таких полярных соединений в качестве агентов передачи цепи имеет неудобство, заключающееся в образовании концевых полярных групп, которые вызывают явление пожелтения продукта, в частности, на стадии формования из расплава.
В Европейском патенте EP-169328 для уменьшения явления пожелтения описывается применение в качестве агента передачи цепи при полимеризации VDF трихлорфторметана. Однако трихлорфторметан является продуктом, загрязняющим окружающую среду, так как он представляет собой полностью галогенированное хлорсодержащее соединение, и, следовательно, имеет высокий истощающий озон потенциал.
Заявитель обнаружил, что 1,1,1-трифтор-2,2-дихлорэтан (HCFC-123) является агентом передачи цепи, особенно эффективным при полимеризации VDF в водной среде, и позволяет получить конечный продукт с очень хорошим внешним видом, по существу свободный от эффектов пожелтения при повышенных температурах и имеющий потенциал, истощающий озон, в основном равный нулю.
Целью настоящего изобретения, следовательно, является способ получения полимеров винилиденфторида (VDF) путем полимеризации VDF или VDF в сочетании с другими фторсодержащими олефинами в водной среде в присутствии радикального инициатора и агента передачи цепи, отличающийся тем, что в качестве агента передачи цепи используют 1,1,1-трифтор-2,2-дихлорэтан (HCFC-123).
Как известно, HCFC-123 представляет собой продукт, заменяющий обычные хлорфторуглеводороды, и он может быть получен гидрофторированием тетрахлорэтилена, как описано, например, в патенте США 4967023.
Количество HCFC-123, которое добавляют в реакционную среду, может изменяться в широких пределах, в зависимости от молекулярной массы, которую получают. Например, чтобы получить PVDF с индексом расплава (MF1) от 1 до 25 г в 10' (измеряют при 230oC при нагрузке 5 кг в соответствии со стандартом ASTM D-1238), HCFC-123 вводят в реактор в количестве от 0,1 до 6 вес.%, предпочтительно от 0,3 до 3,0 вес.% по отношению к общему количеству мономера, загружаемого в реактор.
Агент передачи цепи в ходе полимеризации загружают в реактор длительно, отдельными порциями. Однако возможно добавлять агент передачи цепи весь целиком в начале полимеризации. Особенно предпочтительным способом загрузки HCFC-123 является способ, описанный в заявке на Европейский патент N 94107588.9, зарегистрированный на имя заявителей 17 мая 1994.
Реакция полимеризации может быть осуществлена, как правило, при температуре от 20o до 160oC, предпочтительно от 30o до 130oC. Давление при осуществлении реакции может изменяться, как правило, от 30 до 100 бар, предпочтительно от 40 до 90 бар.
В качестве инициатора может быть использовано любое соединение, способное генерировать активные радикалы при выбранной температуре (со)полимеризации. Оно может быть выбрано из числа, например, пероксидных неорганических солей, таких как, например, пероксидисульфаты натрия, калия или аммония; диалкилпероксидов, таких как, например, ди-трет-бутилпероксид (DTBP); диалкилпероксидикарбонатов, таких как, например, диэтил- и ди-изопропил-пероксидикарбонат (IPP), бис-(4-трет-бутилциклогексил)-пероксидикарбонат; трет-алкилпероксибензоатов; трет-алкилпероксицивалатов, таких как, например, трет-бутил- и трет-амилперпивалат; ацетилциклогексансульфонилпероксида, дибензоилпероксида, дикумилпрероксида.
Количество инициатора, которое используют, не является критическим и составляет обычно от 0,1 до 10 г на 1 л H2O, предпочтительно от 0,5 до 5 г/л H2O.
Реакцию обычно осуществляют в присутствии подходящего поверхностно-активного вещества (см., например, вещества, описанные в патентах США 4360652 и 4025709), чтобы получить устойчивую эмульсию. Как правило, такие вещества являются фторсодержащими поверхностно-активными веществами, выбираемыми среди продуктов общей формулы Rf-X-M+, где Rf представляет собой (перо)фторалкильную цепь C5-C16 или (пер)фторполиоксиалкиленовую цепь, X- представляет собой -COO- или -SO - 3 , M+ выбирают среди H+, NH + 4 и иона щелочного металла. Из числа наиболее широко применяемых соединений можно назвать перфтороктаноат аммония: (пер)фторполиоксиалкилены, блокированные по концам одной или несколькими карбоксильными группами; соли сульфоновых кислот формулы Rf-C2H4SO3H, где Rf представляет собой перфторалкил C4-C10 (см. патент США 4025709), и т.п.
Когда высокая молекулярная масса не требуется, например при составлении лакокрасочных материалов, полимеризация может осуществляться без поверхностно-активных веществ, как описано в патенте США 5095081, или в суспензии в присутствии подходящего суспендирующего агента, например поливинилового спирта или водорастворимых производных целлюлозы, как описано в патенте США 4524194.
В предпочтительном варианте осуществления изобретения HCFC-123 используют в качестве агента передачи цепи в процессе полимеризации VDF в водной среде при температуре от 95o до 120oC, предпочтительно от 100 до 115oC, как в упомянутой выше заявке на Европейский патент N 94107588.9. В упомянутом процессе предпочтительно использовать в качестве инициаторов органические пероксиды, имеющие температуру самоускоряющегося разложения (SADT) выше 50oC, такие как, например, ди-трет-бутилпероксид, ди-трет-бутилпероксиизопропилкарбонат, трет-бутил(2-этилгексил)пероксикарбонат, трет- бутилперокси-3, 5,5-триметилгексаноат. По этому способу можно получить, используя безопасные пероксидные инициаторы, PVDF-ы, обладающие превосходными механическими характеристиками как при комнатной температуре, так и при повышенных температурах, с очень хорошей перерабатываемостью и высокой термохимической устойчивостью к дегидрофторированию.
В настоящем изобретении полимеризация VDF означает как реакцию гомополимеризации VDF, так и сополимеризацию смеси мономеров, в которой содержание VDF является превалирующим, с тем, чтобы получить сополимеры, содержащие по крайней мере 50 мол.% VDF, сополимеризованного с по крайней мере еще одним фторсодержащим олефином C2-C6. Из числа фторированных олефинов, которые могут вступать в сополимеризацию с VDF, могут быть использованы, в частности, следующие: тетрафторэтилен (TFE), трифторэтилен, хлортрифторэтилен, гексафторпропен (HFP), винилфторид, пентафторпропен и т.п. Особенно предпочтительными являются сополимеры, состоящие на 70 - 99 мол.% из VDF и на 1 - 30 мол% из TFE и/или HFP.
Способ, являющийся целью настоящего изобретения, может быть осуществлен в присутствии эмульсии или, что предпочтительно, микроэмульсии перфторполиоксиалкиленов, как описано в патентах США 4789717 и 4864006, которые включены в настоящее в качестве ссылок, или, кроме того, в присутствии микроэмульсии фторполиоксиалкиленов, имеющих водородсодержащие концевые группы и/или водородсодержащие повторяющиеся звенья, как описано в заявке на Европейский патент N 94107042.7, зарегистрированной 5 мая 1994 на имя заявителя.
Для подавления коагуляции полимера и предотвращения его прилипания к стенкам реактора в реакционную смесь может быть добавлено минеральное масло или парафин, являющийся жидким при температуре полимеризации.
Далее приводятся некоторые рабочие примеры изобретения, целью которых является иллюстрация изобретения, но не ограничение объема самого изобретения.
Пример 1.
В 10 л вертикальный реактор, снабженный мешалкой, работающей со скоростью 480 об/мин, загружают 6,5 л воды и 35 г парафина (продукт AGIP® 122 - 126 с температурой плавления 50 - 52oC). Реактор затем доводят до рабочей температуры 115oC, и при относительном давлении 4 бар загружают газообразный VDF. Затем добавляют 500 мл 1,820 вес.% водного раствора калиевой соли перфтороктановой кислоты и 22,7 г ди-трет-бутилпероксида. В процессе полимеризации VDF подают непрерывно, чтобы поддерживать постоянное давление. В ходе полимеризации в реактор загружают 0,120 молей HCFC-123 как агента передачи цепи, разделенные на 10 порций.
Устанавливая общее количество полимера, которое получают, равным 1000 г, что соответствует конечной концентрации полимера в воде, равной 143,0 г/л H2O, HCFC-123 загружают 10-ю порциями с интервалом, составляющим увеличение на 10% концентрации полимера по отношению к конечной концентрации, в соответствии со схемой, представленной в таблице 1.
Концентрацию полимера в реакционной среде контролируют, измеряя количество газообразного мономера, подаваемого в реактор после стадии начальной загрузки.
Через 200 минут достигают нужной концентрации полимера (143 г/л H2O), загрузку VDF с этого момента прекращают и латекс выгружают из реактора. Полимер коагулируют, промывают умягченной водой и сушат при 75oC в течение 24 часов. Полученный таким образом продукт затем путем экструзии переводят в форму таблеток и определяют его характеристики.
MFI измеряют при 230oC и нагрузке 5 кг в соответствии со стандартом ASTM D-1238. С помощью дифференциальной сканирующей калориметрии (DSC) определяют вторую энтальпию плавления (ΔHm') и вторую температуру плавления (Tm').
Термостабильность полимера оценивают как на таблетированном продукте, так и на пластинах (33х33х2 мм), полученных прессованием порошкообразного продукта после предварительного прогрева в течение 4 минут, при 200oC в течение 2 мин. Чтобы лучше проявить возможные эффекты пожелтения, оценивают окраску пластин после обработки в печи при 250oC в течение 2 часов. Шкала визуальной оценки окраски фиксируется от 0 (белый) до 5 (черный). Данные представлены в таблице 2.
Пример 2 (сравнительный).
Повторяют пример 1 в тех же условиях, используя в качестве агента передачи цепи метил-трет-бутиловый эфир, общее количество которого составляет 0,07 молей, подразделенное на 10 порций, которые вводят в реактор по той же схеме, которая дана в примере 1.
Полученный продукт характеризуют так же, как описано выше. Результаты приводятся в таблице 2.
Пример 3.
Полимеризацию VDF осуществляют в 7,5 л горизонтальном реакторе, снабженном механической мешалкой. Загружают 5,5 л воды, 4 г парафина и 115 мл2 вес.% водного раствора фторсодержащего поверхностно-активного вещества Surflon ® S111S (производство Asahi Glass Co). Реактор доводят до рабочей температуры 115oC и до абсолютного давления 50 бар путем подачи газообразного VDF. Затем добавляют 15,1 г ди-трет-бутилпероксида, и в процессе полимеризации VDF подают непрерывно, чтобы поддерживать давление постоянным. В начале полимеризации в качестве агента передачи цепи загружают 0,279 молей HCFC-123. Полимеризацию выполняют в течение 269 мин до получения 2291 г полимера, что соответствует концентрации 417 г/л H2O.
Полученный продукт характеризуют так, как описано в примере 1. Данные приводятся в таблице 2.

Claims (4)

1. Способ получения поливинилиденфторида полимеризацией винилиденфторида или в сочетании с другими фторсодержащими олефинами в водной среде в присутствии радикального инициатора и агента передачи цепи, отличающийся тем, что в качестве агента передачи цепи используют 11,1-трифтор-2,2-дихлорэтан.
2. Способ по п. 1, отличающийся тем, что 1,1,1-трифтор-2,2-дихлорэтан используют в количестве 0,1 - 6,0% от массы загружаемого мономера.
3. Способ по пп.1 и 2, отличающийся тем, что полимеризацию осуществляют при 20 - 160oC.
4. Способ по п. 3, отличающийся тем, что полимеризацию осуществляют в водной эмульсии при 95 - 120oC, используя в качестве инициатора органический пероксид, имеющий температуру самоускоряющегося разложения выше 50oC.
RU94041702A 1993-11-25 1994-11-23 Способ получения полимеров винилиденфторида RU2128668C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI93A002491 1993-11-25
IT93MI002491A IT1265223B1 (it) 1993-11-25 1993-11-25 Processo per la preparazione di polimeri del vinilidenfluoruro
ITM193A002491 1993-11-25

Publications (2)

Publication Number Publication Date
RU94041702A RU94041702A (ru) 1996-10-10
RU2128668C1 true RU2128668C1 (ru) 1999-04-10

Family

ID=11367250

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94041702A RU2128668C1 (ru) 1993-11-25 1994-11-23 Способ получения полимеров винилиденфторида

Country Status (11)

Country Link
US (1) US5473030A (ru)
EP (1) EP0655468B1 (ru)
JP (1) JP3547182B2 (ru)
KR (1) KR100332261B1 (ru)
CN (1) CN1107164A (ru)
AT (1) ATE151781T1 (ru)
CA (1) CA2136462A1 (ru)
DE (1) DE69402670T2 (ru)
ES (1) ES2102124T3 (ru)
IT (1) IT1265223B1 (ru)
RU (1) RU2128668C1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696215A (en) * 1996-02-28 1997-12-09 Central Glass Company, Limited Elastic fluorohydrocarbon resin and method of producing same
IT1295535B1 (it) * 1996-07-01 1999-05-12 Ausimont Spa Processo di polimerizzazione di vinilidenfluoruro (vdf)
CA2268301A1 (en) * 1996-10-11 1998-04-23 Nippon Carbide Kogyo Kabushiki Kaisha Polymer obtained by emulsion polymerization method
IT1296968B1 (it) 1997-12-15 1999-08-03 Ausimont Spa Elastomeri termoplastici fluorurati
IT1307756B1 (it) 1999-02-05 2001-11-19 Ausimont Spa Polimeri elettroliti per batterie ricaricabili al litio.
US6649720B2 (en) 2001-02-14 2003-11-18 Atofina Chemicals, Inc. Ethane as a chain transfer agent for vinylidene fluoride polymerization
DE60203307T3 (de) * 2001-05-02 2015-01-29 3M Innovative Properties Co. Wässrige emulsionspolymerisation in gegenwart von ethern als kettenübertragungsmitteln zur herstellung von fluorpolymeren
FR2842203A1 (fr) * 2002-07-12 2004-01-16 Atofina Procede de fabrication du polymere du fluorure de vinylidene
FR2850387B1 (fr) * 2003-01-23 2005-03-04 Atofina Procede de fabrication de pvdf
US7122610B2 (en) * 2004-04-27 2006-10-17 Arkema Inc. Method of producing thermoplastic fluoropolymers using alkyl sulfonate surfactants
ITMI20050007A1 (it) * 2005-01-05 2006-07-06 Solvay Solexis Spa Uso di dispersioni acquose di polimeri a base di vdf nella preparazione di vernici per rivestimenti di substrati architettonici
JP5338667B2 (ja) * 2007-08-07 2013-11-13 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法
US20090281261A1 (en) * 2008-05-09 2009-11-12 E. I. Du Pont De Nemours And Company Abatement of Fluoroether Carboxylic Acids or Salts Employed in Fluoropolymer Resin Manufacture
WO2015048697A1 (en) * 2013-09-30 2015-04-02 Arkema Inc. Heat stabilized polyvinylidene fluoride polymer composition
CN103739756B (zh) * 2013-12-04 2016-08-17 中昊晨光化工研究院有限公司 一种改善热稳定性的聚偏氟乙烯聚合物制备方法
CN104448077B (zh) * 2014-12-06 2017-01-04 常熟丽源膜科技有限公司 聚偏氟乙烯的生产工艺

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193539A (en) * 1960-05-31 1965-07-06 Pennsalt Chemicals Corp Process for polymerizing vinylidene fluoride
US3235537A (en) * 1961-06-23 1966-02-15 Du Pont Fluorine containing terpolymer of a perfluorovinyl ether, vinylidene fluoride and a monomer of the structure cfx=cfy
GB1057088A (en) * 1964-12-29 1967-02-01 Kali Chemie Ag Process for the preparation of high molecular weight vinyl fluoride and vinylidene fluoride polymers and copolymers
US3475396A (en) * 1966-07-06 1969-10-28 Diamond Shamrock Corp Process for polymerizing vinylidene fluoride
DE2229607A1 (de) * 1972-06-19 1974-01-17 Dynamit Nobel Ag Verfahren zur herstellung von thermoplastisch verarbeitbaren fluorolefin-polymerisaten
US4000356A (en) * 1972-06-19 1976-12-28 Dynamit Nobel Aktiengesellschaft Process for the preparation of thermoplastically workable fluoro-olefin polymers
JPS5224557B2 (ru) * 1973-12-13 1977-07-01
FR2286153A1 (fr) * 1974-09-24 1976-04-23 Ugine Kuhlmann Procede de polymerisation ou de copolymerisation en emulsion du fluorure de vinylidene
JPS5141085A (ja) * 1974-10-05 1976-04-06 Daikin Ind Ltd Tetorafuruoruechirenwatsukusuno seizoho
JPS5525412A (en) * 1978-08-11 1980-02-23 Asahi Glass Co Ltd Preparation of fluorine-containing copolymer
US4360652A (en) * 1981-08-31 1982-11-23 Pennwalt Corporation Method of preparing high quality vinylidene fluoride polymer in aqueous emulsion
FR2542319B1 (fr) * 1983-03-10 1985-07-19 Solvay Procede pour la polymerisation dans un milieu aqueux de mise en suspension du fluorure de vinylidene
US4569978A (en) * 1984-07-25 1986-02-11 Pennwalt Corporation Emulsion polymerization of vinylidene fluoride polymers in the presence of trichlorofluoromethane as chain transfer agent
US4569973A (en) * 1984-08-24 1986-02-11 General Electric Company Copolyetheresters from caprolactone
IT1189092B (it) * 1986-04-29 1988-01-28 Ausimont Spa Processo di polimerizzazione in dispersione acquosa di monomeri fluorurati
IT1204903B (it) * 1986-06-26 1989-03-10 Ausimont Spa Processo di polimerizzazione in dispersione acquosa di monomeri florati
IT1202652B (it) * 1987-03-09 1989-02-09 Ausimont Spa Processo per la preparazione di 1,1,1-trifluoro-2,2-dicloroetano mediante idrofluorurazione in presenza di catalizzatori
IT1230650B (it) * 1988-11-17 1991-10-28 Ausimont Srl Procedimento per la preparazione di copolimeri tetrafluoroetilene etilene
FR2644466B1 (fr) * 1989-03-15 1992-08-14 Solvay Procede pour la fabrication de polymeres du fluorure de vinylidene et utilisation des polymeres du fluorure de vinylidene pour la formulation de peintures
JPH059169A (ja) * 1991-06-28 1993-01-19 Kyowa Hakko Kogyo Co Ltd ベンゼンスルホンアミド誘導体
DE4139665A1 (de) * 1991-12-02 1993-06-03 Hoechst Ag Verfahren zur herstellung von polymerisaten des tetrafluorethylens
IT1265067B1 (it) * 1993-05-18 1996-10-30 Ausimont Spa Processo di (co)polimerizzazione in emulsione acquosa di monomeri olefinici fluorurati

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Паншин Ю.А. и др. Фторопласты. - Химия, Ленинградское отделение, 1978, с.80 - 82, 127, 128. *

Also Published As

Publication number Publication date
ITMI932491A1 (it) 1995-05-25
ES2102124T3 (es) 1997-07-16
IT1265223B1 (it) 1996-10-31
JP3547182B2 (ja) 2004-07-28
EP0655468B1 (en) 1997-04-16
US5473030A (en) 1995-12-05
RU94041702A (ru) 1996-10-10
KR100332261B1 (ko) 2002-08-08
KR950014151A (ko) 1995-06-15
CA2136462A1 (en) 1995-05-26
JPH07196735A (ja) 1995-08-01
ATE151781T1 (de) 1997-05-15
CN1107164A (zh) 1995-08-23
ITMI932491A0 (it) 1993-11-25
DE69402670T2 (de) 1997-07-31
EP0655468A1 (en) 1995-05-31
DE69402670D1 (de) 1997-05-22

Similar Documents

Publication Publication Date Title
RU2128668C1 (ru) Способ получения полимеров винилиденфторида
US4025709A (en) Process for the polymerization of vinylidene fluoride
KR101298057B1 (ko) 비불소화 계면활성제를 사용하는 플루오로중합체의 중합
KR100441071B1 (ko) 과산화물로가교결합이가능한플루오르고무,그의제조방법및용도
JP5112303B2 (ja) フルオロポリマーの水性製造方法
US9434837B2 (en) Method of producing fluoropolymers using acid-functionalized monomers
JP3383064B2 (ja) 水性エマルション中におけるフッ素化オレフィンモノマーの重合方法
RU2128667C1 (ru) Способ (со)полимеризации фторированных олефиновых мономеров
EP2274345B1 (en) Polymerization of fluoropolymers using polycaprolactone
JP2016532002A (ja) ヨウ素移動重合によるクロロトリフルオロエチレンベースのブロックコポリマーの合成
US9447256B2 (en) Method of producing fluoropolymers using alkyl sulfate surfactants
JP3631295B2 (ja) 水素含有フルオロポリマーの懸濁(共)重合による製造法
RU2327705C2 (ru) Регулятор степени полимеризации
RU2193043C2 (ru) Винилиденфторидные термопластические сополимеры и способ их получения
US6649720B2 (en) Ethane as a chain transfer agent for vinylidene fluoride polymerization
WO2021229081A1 (en) Method for making highly crystalline and thermally stable vinylidene fluoride-based polymers

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091124