RU2050339C1 - Способ получения гибких длинномерных волокон сверхпроводника - Google Patents

Способ получения гибких длинномерных волокон сверхпроводника Download PDF

Info

Publication number
RU2050339C1
RU2050339C1 SU884355627A SU4355627A RU2050339C1 RU 2050339 C1 RU2050339 C1 RU 2050339C1 SU 884355627 A SU884355627 A SU 884355627A SU 4355627 A SU4355627 A SU 4355627A RU 2050339 C1 RU2050339 C1 RU 2050339C1
Authority
RU
Russia
Prior art keywords
ceramic
glass
superconductor
powder
filaments
Prior art date
Application number
SU884355627A
Other languages
English (en)
Inventor
Урано Акира
Такахаси Кенити
Оматсу Казуя
Ониси Масами
Original Assignee
Сумитомо Электрик Индастриз Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP63088746A external-priority patent/JPS6471019A/ja
Application filed by Сумитомо Электрик Индастриз Лтд. filed Critical Сумитомо Электрик Индастриз Лтд.
Application granted granted Critical
Publication of RU2050339C1 publication Critical patent/RU2050339C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/026Drawing fibres reinforced with a metal wire or with other non-glass material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/028Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/739Molding, coating, shaping, or casting of superconducting material
    • Y10S505/74To form wire or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Fibers (AREA)

Abstract

Изобретение относится к способу получения керамических сверхпроводящих нитей и может быть использовано при получении датчиков магнитного поля, сверхпроводящих проводников и т.д. Сущность изобретения: порошок предварительно синтезированного сверхпроводника, заданного состава (преимущественно Y0,3BaCu0,7O3, BiSrCaCu2O, LaB2CuO4, где B= Sr или Ba или Ca) размещают в трубке из кварцевого или кремнеземистого стекла, герметизируют, нагревают до расплавления и производят совместное вытягивание с использованием локального нагрева при подаче кислородсодержащего газа с парциальным давлением 200-760 мм рт.ст. и температуре 1100-200°С, причем для получения многоканальной жилы полученные нити собирают в пучок, размещают в трубку из указанного стекла и подвергают совместному вытягиванию при тех же температурах, после чего с поверхности слой стекла удаляют травлением. Возможно вытягивание размещенных в стеклянной трубке нитей сверхпроводника, объединенных с медными волокнами, покрытыми слоем указанного стекла. Получают медную матрицу с размещенными в ней нитями сверхпроводника. 3 з. п. ф-лы, 4 ил.

Description

Изобретение относится к способу получения сверхпроводящей керамической элементарной нити.
Известен способ получения сверхпроводящей нити путем размещения сверхпроводника в металлической трубке с последующим нагревом и волочением [1] однако этот способ не позволяет почить тонкие волокна.
Известен также способ получения элементарной нити путем размещения материала в стеклянной оболочке, совместного нагрева до расплавления материала и дополнительного локального разогрева оболочки с последующим непрерывным вытягиванием [2]
Недостатком данного способа, являющегося наиболее близким к изобретению, является то, что он не позволяет получать тонкие элементарные нити из керамического сверхпроводящего оксидного материала.
Целью изобретения является получение нитей керамического сверхпроводника, а также многоканальной жилы.
Для этого предлагаемый способ предусматривает осуществление по меньшей мере одного процесса, заключающегося в смешении компонентов сырья керамического сверхпроводника, последующее формование смешанного керамического сверхпроводника в виде керамической сверхпроводящей массы заданной формы и предварительном ее спекании с измельчением спеченной керамической сверхпроводящей массы и превращением ее в керамический сверхпроводящий порошок, заполнение стеклянной трубки керамическим сверхпроводящим порошком; нагревание стеклянной трубки совместно с керамическим сверхпроводящим порошком, так что керамический сверхпроводящий порошок расплавляется; и вытягивание стеклянной трубки с заключенным в ней керамическим сверхпроводящим материалом.
Согласно изобретению поскольку по меньшей мере один раз совершается такая последовательность технологических приемов, заключающаяся в смешении сырьевых компонентов керамического сверхпроводника, формовании смеси керамического сверхпроводника в керамическую сверхпроводящую массу заданной формы и предварительном ее спекании, с последующим измельчением спеченной керамической сверхпроводящей массы и превращением ее в керамический сверхпроводящий порошок, то даже при использовании керамического сверхпроводящего материала с высокой температурой плавления за счет твердофазной реакции можно получить керамические смеси или составные окислы с низкой температурой плавления. Т. е. в основном керамический сверхпроводящий материал имеет высокую температуру плавления, поэтому керамический сверхпроводящий материал необходимо подвергать спеканию в течение длительного времени при высокой температуре.
Кроме того, даже если керамический сверхпроводник подвергают спеканию в течение продолжительного времени при высокой температуре, то нельзя быть уверенным в том, что подвергнутый спеканию материал обладает одинаковым качеством по отношению к поверхности и сердцевине керамических материалов. В соответствии с изобретением поскольку упомянутые последовательности технологических приемов осуществляют по меньшей мере один раз, то имеется возможность получить керамические материалы, которые обладают одинаковым качеством внутри и на наружной поверхности керамических материалов.
Керамический порошок, полученный с помощью указанных способов, засыпают в стеклянную трубку и нагревают, в результате чего керамический порошок расплавляется. В результате нагревания стеклянной трубки расплавленный керамический порошок, вязкость которого является низкой, может быть покрыт стеклом, обладающим высокой вязкостью и пластичностью в расплавленном состоянии, в результате чего можно легко осуществлять вытягивание керамического сверхпроводящего материала.
Нить или нити из керамического сверхпроводящего материала, полученные таким образом путем вытягивания, покрыты стеклом, при этом могут быть повышены механическая прочность и эластичность.
На фиг. 1 представлен образец стеклянной трубки, используемой в способе получения керамической сверхпроводящей нити (жилы) в соответствии с изобретением; на фиг. 2 нагревательное и плавильное устройство, используемое в способе получения керамической сверхпроводящей нити в соответствии с изобретением; на фиг. 3 керамическая сверхпроводящая нить, вытянутая при помощи устройства, изображенного на фиг.2, поперечное сечение; на фиг.4 графики, иллюстрирующие электрическое свойство керамической сверхпроводящей нити из примера 1 и свойство керамического сверхпроводящего листа из сравнительного примера.
Предпочтительно использовать материал, который содержит по меньшей мере один элемент, выбранный из числа элементов групп Ia, IIa, IIIa и Vb Периодической таблицы элементов, по меньшей мере один элемент, выбранный из числа элементов групп Ib, IIb, IIIb Периодической таблицы элементов и по меньшей мере один элемент, выбранный из группы, состоящей из кислорода, бора, углерода, азота, фтора и серы.
Примерами элементов группы Ia являются Li, Na, K, Rb, Cs и Fr, а примерами элементов группы Ib элементы Cu, Ag и Au.
Примерами элементов группы IIa являются Be, Mg, Ca, Sr, Ba и Ra, а примерами элементов группы IIb Zn, Cd и т.д.
Примерами элементов группы IIIа являются Se, V и лантаноиды (например, La, Ce, Gd и Lu) и актиноиды (например, Ac, Th, Ra и Cf), а примерами элементов группы IIIb Al, Ga, In и Tl.
Среди приведенных в качестве примеров элементов элементы, выбранные из группы элементов Ib, элементы группы IIa, элементы группы IIIа, кислород являются предпочтительными. Среди элементов группы Ib наиболее предпочтительным Cu и Ag и в частности наиболее предпочтительна Cu, среди элементов группы IIa Sr, Ba и Ca, а среди элементов группы IIIa Sc, V и La.
В качестве сырья используют материалы одного или более видов, в порошкообразном состоянии, в качестве порошкообразного материала соединения различных компонентов, такое как оксид, карбонат, фторид, сульфид, карбид и нитрид, содержащие упомянутый компонент (более предпочтителен оксид).
Для получения составного окисного вещества с низкой точкой плавления с использованием сырья сырьевые материалы смешивают с определенной скоростью и после этого смеси придают определенную форму и подвергают предварительному спеканию. Кроме того, подвергнутый спеканию материал измельчают на мелкие частицы.
Предварительное спекание можно проводить в различной атмосфере для предотвращения восстановления и разложения вещества с целью получения окисного вещества однородного качества, предпочтительно предварительное спекание может быть осуществлено в присутствии подходящего количества кислорода, например, в атмосфере, содержащей газообразный кислород с парциальным давлением 150-760 мм ртутного столба. В зависимости от типа используемого сырья могут быть выбраны и другие условия, такие как продолжительность и температура предварительного спекания.
С помощью упомянутого способа может быть получена окисная композиция однородной структуры с низкой температурой плавления. В случае получения керамики V0,3BaCu0,7О3 с использованием сырьевого материала V2O3, BaCO3 и CuO, который представляет собой материал с высокой температурой плавления от 1200 до 2700оС, который трудно расплавить, поэтому этот сырьевой материал необходимо подвергать спеканию в течение продолжительного времени при высокой температуре. Поскольку точки плавления соответствующих сырьевых материалов отличаются одна от другой, необходимо обеспечить условия предварительного спекания, соответствующие сырьевому материалу, отличающемуся высокой температурой плавления. Хотя предварительное спекание осуществляют при подходящих условиях, трудно получить керамические материалы однородного качества. Однако в результате осуществления последовательности процессов смешения, формования предварительного спекания и измельчения с помощью твердофазной реакции в процессе предварительного спекания можно получить окисную композицию с низкой температурой плавления, т.е. окисная композиция, полученная посредством последовательности процессов, имеет температуру плавления от 900 до 1400оС, которая является значительно ниже точек плавления соответствующих сырьевых материалов с узким температурным интервалом плавления. Таким образом, имеется возможность получить керамический порошок однородного качества с низкой температурой плавления.
Ряд этих процессов можно осуществить, по меньшей мере, один раз.
Этими процессами можно управлять в зависимости от того, получена или не получена необходимая окисная композиция с помощью способа рентгеновской дифракции. Следовательно, число повторений последовательности процессов определяется благодаря управлению состоянием производства окисной композиции.
Измельчение композиции с превращением ее в порошок может быть осуществлено с помощью кольцевой центробежной мельницы или т.п. устройства.
Керамический порошок, полученный с помощью упомянутых процессов, предпочтительно имеет структуру, характеризуемую следующим уравнением:
Aa Bb Cc где A обозначает, по меньшей мере, один тип элемента, выбранного из группы Ia, группы IIa, группы IIIa и группы Vb Периодической таблицы элементов; B один тип элемента, выбранного из группы Ib, группы IIb и группы IIIb Периодической таблицы элементов, а С один тип элемента, выбранного из группы, состоящей из кислорода, фтора, азота, углерода и серы.
Предпочтительно может быть использован керамический порошок из числа порошков, выбранных из
V0,3BaCu0,7O3
(LaBa)2CuO4
(LaSr)2CuO4 и
(LaCa)2CuO4.
В качестве примера материала, в котором используется группа Vb Периодической таблицы элементов, можно использовать композицию Bi1Sr1Ca1Cu2O.
Керамический порошок засыпают в стеклянную трубку, которую вместе с керамическим порошком нагревают и приводят в расплавленное состояние. Помимо этого стеклянную трубку дополнительно нагревают для вытягивания.
Керамический порошок 1 засыпают в стеклянную трубку 2, один конец которой закрыт, а затем ее помещают в нагревательное и плавильное устройство 3, содержащее нагреватель 4. Стеклянную трубку вместе с керамическим порошком нагревают при помощи нагревателя.
Для того чтобы избежать загрязнения керамического порошка в результате реакции керамического порошка со стеклянной трубкой керамический порошок нагревают при помощи нагревателя 5 с использованием газообразного кислорода, подводимого к нагревательному и плавильному устройству 3 через подающую трубку 6. Так как керамический порошок имеет низкую температуру плавления, его можно расплавить с помощью температуры более низкой чем точка плавления стеклянной трубки. После расплавления керамического порошка вытягивают стеклянную трубку через отверстие 7, образованное на концевом участке конической части нагревательного и плавильного устройства 3, получая нить 8, в которой керамическое сверхпроводящее вещество 9 покрыто стеклянной оболочкой 10. Поскольку нить вытягивают таким образом, что керамическое сверхпроводящее вещество, обладающее низкой вязкостью, покрывают стеклянной оболочкой, обладающей высокой вязкостью и большим коэффициентом расширения, можно легко изготовить керамическую сверхпроводящую нить однородного качества.
В качестве стекломатериала для стеклянной трубки можно использовать стекло различных типов, обладающее различными температурами размягчения, оптическими свойствами и электрическими свойствами, такие как натриево-кальциевое стекло, боросиликатное стекло и алюмосиликатное стекло. Однако для предотвращения загрязнения керамического сверхпроводящего вещества стеклом в результате смешивания керамического сверхпроводящего вещества и стекла в качестве стекломатериала может служить стекло, температура плавления которого выше температуры плавления керамического порошка сверхпроводящего вещества, такого как кварцевое стекло.
Процесс заполнения керамическим сверхпроводящим порошком стеклянной трубки и процесс нагревания и вытягивания могут проводиться в различной атмосфере, предпочтительно эти процессы осуществляют в атмосфере кислорода, такой как окружающая среда, или т.п. атмосфера для предотвращения реакции между керамическим сверхпроводником и стеклянной трубкой.
В процессе нагрева и в процессе вытягивания количество кислорода является достаточным, если предотвращается реакция между керамическим сверхпроводящим веществом и стеклом. Таким образом, является предпочтительно осуществлять процесс нагрева и вытягивания путем подачи газовой смеси, содержащей газообразный кислород, парциальное давление которого выше парциального давления газообразного кислорода в атмосферном воздухе. Например, парциальное давление газообразного кислорода в подаваемой газовой смеси может составлять 200-760 мм рт.ст.
Соотношение между керамическим сверхпроводящим веществом и стеклом можно выбрать в зависимости от механической прочности керамического сверхпроводника.
В качестве нагревателей 3 для нагрева и плавления керамического порошка и нагревателя 5 могут быть использованы индукционный (е) нагреватель или нагреватели, или нагреватель (и) сопротивления.
Диаметр керамической сверхпроводящей нити можно контролировать путем регулирования волочильной скорости нити и подающей скорости пучка в процессе вытягивания (формования). Форму поперечного сечения нити можно выбрать, например, круглой или прямоугольной формы путем выбора формы отверстия нагревательного и плавильного устройства. Керамическая сверхпроводящая нить, изготовленная с помощью вышеупомянутых процессов, обладает высокой механической прочностью и демонстрирует превосходные изгибающие свойства и эластичность поскольку керамический сверхпроводник покрыт стеклянной трубкой.
Способ получения керамических сверхпроводящих нитей в соответствии с изобретением может быть применен к процессам получения датчиков магнитного потока и сверхпроводящих электрических проводников, которые могут быть использованы в полях различных типов.
Множество керамических сверхпроводящих нитей, полученных с помощью производственных процессов, сводят в пучок и этот пучок из керамических сверхпроводящих нитей в виде стренг (прядей) многожильной проводящей нити снова подвергают воздействию дополнительных процессов нагрева и плавления и дополнительно подвергают дальнейшему процессу вытягивания.
Керамические сверхпроводящие нити, полученные с помощью упомянутого процесса, сводят в виде пучка и помещают в стеклянную трубку таким образом, что каждая нить соосна с направлением цилиндрической оси стеклянной трубки, а стеклянная трубка приспособлена в нагревательное и плавильное устройством таким образом, что коническая головка стеклянной трубки расположена вблизи отверстия нагревательного и плавильного устройства.
Нагревательное и плавильное устройство нагревают нагревателем, предусмотренным вокруг наружной цилиндрической поверхности нагревательного и плавильного устройства.
Диаметр керамической сверхпроводящей нити можно контролировать регулированием волочильной скорости нити и подающей скорости пучка в процессе вытягивания. Форму поперечного сечения нити можно выбрать при желании круглой или прямоугольной благодаря выбору формы отверстия нагревательного и плавильного устройства.
Керамическая сверхпроводящая нить, изготовленная с помощью упомянутых процессов, обладает высокой механической прочностью и демонстрирует превосходные изгибающие свойства и эластичность, поскольку керамический проводник покрыт заполнительным стеклом и стеклянной оболочкой.
При связывании в пучок керамических сверхпроводящих нитей можно смешать множество металлических нитей, таких как, например, нити Cu или Al, покрытые стеклом в керамических сверхпроводящих нитях и смешанные нити подвергают процессу нагрева для плавления стеклянных слоев и вытягивания связанных в виде пучка нитей, содержащих керамические сверхпроводящие нити и металлические нити. В дальнейшем стеклянные слои связанных в виде пучка нитей удаляют при помощи химических реагентов. Далее сведенные в пучок нити подвергают процессу нагрева с помощью такой температуры, которая выше 1500оС, так что формование и спекание керамического сверхпроводящего вещества может производиться одновременно. Операция вытягивания может производиться легко частично потому, что керамические сверхпроводящие нити, покрытые стеклом, сводят в пучок, и легко можно получать тонкую керамическую сверхпроводящую нить (жилу).
Керамические сверхпроводящие нити с металлической матрицей позволяют предотвращать сгорание нитей в случае, если керамический сверхпроводящий материал теряет свойство сверхпроводника.
Помимо этого требуемую кабельную структуру можно при желании сохранить, потому что металлическую матричную структуру можно сохранить после соединения керамических сверхпроводящих нитей в кабельную структуру.
П р и м е р 1. Были смешаны соответствующие заданные массы порошка V2O3, порошка BaCO3 и порошка CuO. Порошковую смесь подвергли прессованию и формованию при комнатной температуре в воздухе с помощью давления 100 атм. Формованная керамическая сверхпроводящая масса предварительно была подвергнута спеканию в атмосфере газовой смеси кислорода с азотом, при парциальном давлении кислорода 200 мм рт.ст. и температуре 940оС в течение 24 ч. Предварительно подвергнутая спеканию керамическая сверхпроводящая масса была измельчена до порошка с помощью кольцевой центробежной мельницы. Упомянутые процессы были повторены до тех пор, пока составное окисное вещество V0,3BaCu0,7O3 не было определено с помощью рентгеновской дифракции.
Керамический порошок составного окисного вещества был засыпан и загерметизирован в кварцевой стеклянной трубке. Стеклянную трубку поместили в нагревательное и плавильное устройство (фиг.2). Керамический сверхпроводящий порошок был нагрет и расплавлен при температуре 1300оС с помощью подачи кислородсодержащего газа с парциальным давлением кислорода 200-760 мм рт.ст. Трубку из кварцевого стекла нагрели при температуре 1700-2200оС для вытягивания керамического сверхпроводящего материала совместно со стеклянной трубкой, в результате чего была получена керамическая сверхпроводящая элементарная нить, покрытая трубкой из кварцевого стекла наружным диаметром 200 и внутренним диаметром 120 мкм.
Сравнительный пример
В качестве сравнительного примера керамический сверхпроводящий порошок, полученный упомянутым образом, превратили в лист, который подвергли предварительному спеканию при тех же самых условиях спекания, что и в примере 1, с целью получения спеченного керамического сверхпроводящего листа.
Для изделий из примера 1 и из сравнительного примера была определена критическая температура путем измерения электрического сопротивления соответствующей керамической сверхпроводящей элементарной нити из примера 1 и из сравнительного примера.
Результат измерения приведен на фиг. 4, из которой можно видеть, что критическая температура керамической сверхпроводящей элементарной нити из примера 1 незначительно превышает критическую температуру сверхпроводящего листа из сравнительного примера, и механическая прочность и изгибающие свойства керамической сверхпроводящей нити из примера 1 являются более высоким по сравнению с керамическим сверхпроводящим листом из сравнительного примера.
П р и м е р 2. Керамическую сверхпроводящую нить получили таким же способом, как и в примере 1, за исключением того, что вытягивание осуществляли путем нагрева ограниченного местного участка трубки из кварцевого стекла и получили керамическую сверхпроводящую нить, выполненную из керамического сверхпроводящего вещества, покрытого трубкой из кварцевого стекла наружным диаметром 2 мм и внутренним диаметром 1 мм.
Выражение "местный" означает такой участок, который находится близко от отверстия нагревательного и плавильного устройства 4, но со стороны тонкой стеклянной трубки 8.
Результат измерения аналогичен результатам, полученным в примере 1 и сравнительном примере (фиг.4).
П р и м е р 3. Были смешаны соответствующие заданные массовые количества порошка V2O3, порошка BaCO3 и порошка CuO. Порошковую смесь подвергли прессованию и формованию при комнатной температуре на воздухе с помощью давления 100 атм. Отформованная сверхпроводящая масса была подвергнута предварительному спеканию в атмосфере смеси газообразных кислорода и азота, при парциальном давлении кислорода 200 мм рт.ст. и температуре 940оС в течение 24 ч. Керамическая сверхпроводящая масса, подвергнутая предварительному спеканию, была измельчена в порошок с помощью кольцевой центробежной мельницы. Упомянутые процессы были повторены до тех пор, пока с помощью рентгеновской дифракции не было обнаружено составное окисное вещество V0,3BaCu0,7O3.
Керамический порошок из составного окисного вещества был засыпан и герметизирован в трубке из кварцевого стекла, которую поместили в нагревательное и плавильное устройство, как показано на фиг.2. Керамический сверхпроводящий порошок нагрели и расплавили при температуре 1300оС с помощью подачи кислородсодержащего газа с парциальным давлением кислорода 200-760 мм рт.ст. Трубку из кварцевого стекла нагрели при 1700-2200оС для вытягивания керамического сверхпроводящего материала совместно со стеклянной трубкой, в результате чего была получена керамическая сверхпроводящая элементарная нить, покрытая трубкой из кварцевого стекла наружным диаметром 200 мкм и внутренним диаметром 120 мкм. Таким же образом были получены керамические сверхпроводящие элементарные нити.
100 керамических сверхпроводящих элементарных нитей были собраны в пучок, заключены в трубку из кварцевого стекла и подвергнуты местному нагреву при температуре 1700-2200оС и вытягиванию, в результате чего смогли получить керамическую сверхпроводящую жилу многожильного типа, в которой были сведены в пучок множество керамических сверхпроводящих стренг.
Критическую температуру измерили для изделий из примера 3 и сравнительного примера путем измерения электрического сопротивления керамической элементарной нити из примера 3 и сравнительного примера.
Критическая температура керамических сверхпроводящих стренг незначительно превышает критическую температуру керамического сверхпроводящего листа из сравнительного примера, а механическая прочность и изгибающие свойства керамической сверхпроводящей элементарной нити выше, чем аналогичные показатели керамического сверхпроводящего листа из сравнительного примера.
П р и м е р 4. Керамические сверхпроводящие частицы, состоящие из окисных веществ соответствующих элементов Cu, Ba и Sc, были засыпаны в трубку из смешанного кварцевого стекла, которую поместили в печь сопротивления, нагретую до температуры 2100оС, в результате чего керамический сверхпроводник вместе с трубкой из кварцевого стекла были вытянуты в элементарную нить наружным диаметром 300 мкм. 1000 элементарных нитей, полученных указанным способом, были заключены в кварцевую трубку внутренним диаметром 17 мм, расплавлены и соединены при температуре 1800оС, в результате чего была вытянута жила наружным диаметром 1 мм. После этого кварцевое стекло было удалено с помощью водной плавиковой кислоты, в результате чего можно было получить керамическую сверхпроводящую жилу наружным диаметром 18 мм однородного качества.
П р и м е р 5. Керамические сверхпроводящие частицы, аналогичные используемым в примере 4, были засыпаны в трубку из викорного (викор стекло с высоким содержанием кремнезема) стекла наружным диаметром 22 мм и внутренним диаметром 10 мм и помещены в печь сопротивления, нагретую до 1800оС, затем были вытянуты с целью получения керамической сверхпроводящей элементарной нити диаметром 150 мкм. 5000 элементарных нитей, вытянутых описанным способом, были объединены в пучок вместе с 2000 медных жил, покрытых викорным стеклом (толщиной) 600 мкм, и соединенные в пучок элементарные нити (жилы) были помещены в трубку из викорного стекла таким образом, что керамические сверхпроводящие элементарные нити и медные жилы заключены в матричной форме. Стекольные слои соединенных в пучок элементарных нитей были расплавлены и соединены при 1800оС, в результате чего была вытянута жила наружным диаметром 1 мм. Затем слои викорного стекла были удалены с помощью водного раствора гидроокиси натрия, в результате чего медные жилы были расплавлены и соединены в инертной атмосфере при температуре 1200оС, таким образом можно было получить жилу сверхпроводящего проводника, в которой стренги сверхпроводника были расположены в медной матрице.
Различные свойства керамических сверхпроводящих нитей из примеров 4 и 5 были следующими:
Критическая температура, Тк: 35 К
Критическая плотность
тока, τк: 107 А/см2.
П р и м е р 6. В качестве материала керамического сверхпроводника была приготовлена смесь из соответствующих заданных массовых количеств порошка Bi2O3, порошка SrCO3, порошка CaCO3 и порошка CuO. После этого порошковую смесь подвергли прессованию и формованию в воздушной атмосфере при нормальной комнатной температуре под давлением 100 атм.
Подвергнутое прессованию вещество подвергли предварительному спеканию в газовой атмосфере из смеси газообразного кислорода и газообразного азота (при парциальном давлении кислорода 200 мм рт.ст.) при температуре 845оС в течение 24 ч. Подвергнутую спеканию керамическую массу измельчили в порошок с помощью цилиндрической центробежной мельницы. Описанный процесс повторяли до тех пор, пока с помощью рентгеновской дифракции не была зафиксирована Bi1Sr1Ca1Cu2O.
Керамический порошок засыпали в трубку из стекла пирекс, т.е. трубку из боросиликатного стекла, и эту трубку поместили в нагревательное и плавильное устройство, как показано на фиг.2, в результате чего керамический порошок был расплавлен при температуре 1100оС за счет подачи кислородсодержащего газа с парциальным давлением кислорода 200-760 мм рт.ст. затем трубку из стекла пирекс подвергли местному нагреву при температуре 1200-1300оС и вытянули. При этом может быть получена элементарная нить (мононить, жила) керамического сверхпроводника, покрытая трубкой из стекла пирекс, наружным диаметром 2 мм и внутренним диаметром 1 мм.

Claims (4)

1. СПОСОБ ПОЛУЧЕНИЯ ГИБКИХ ДЛИННОМЕРНЫХ ВОЛОКОН СВЕРХПРОВОДНИКА, включающий размещение порошка заданного состава в трубке из кварцевого или кремнеземистого стекла, нагрев до расплавления порошка и последующее совместное вытягивание с использованием локального нагрева, отличающийся тем, что, с целью получения нитей из керамического сверхпроводника, в трубку засыпают порошок предварительно синтезированного керамического сверхпроводника, герметизируют, плавление и вытягивание ведут при подаче кислородсодержащего газа с парциальным давлением 200 760 мм.рт.ст. и температуре 1100 2200oС.
2. Способ по п.1, отличающийся тем, что, с целью получения многоканальной жилы, полученные нити собирают в пучок, размещают в трубку из указанного стекла и подвергают совместному вытягиванию при той же температуре с последующим удалением с поверхности стекла травлением.
3. Способ по п.2, отличающийся тем, что совместному вытягиванию подвергают размещенный в стеклянной трубке пучок элементарных нитей, которые предварительно объединены с медными нитями, покрытыми слоем указанного стекла, с получением медной матрицы с размещенными в ней нитями керамического сверхпроводника.
4. Способ по п.1, отличающийся тем, что в качестве сверхпроводящего материала используют материал из группы Y0 , 3BaCu0 , 7O3; BiSrCaCu2O, [LaBa] 2CuO4, где Ba стронций, барий или кальций.
Приоритет по пунктам:
14.04.87 по пп. 1, 2, 4;
30.05.87 и 11.04.88 по п.3.
SU884355627A 1987-04-14 1988-04-14 Способ получения гибких длинномерных волокон сверхпроводника RU2050339C1 (ru)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP91120/87 1987-04-14
JP9112287 1987-04-14
JP9112187 1987-04-14
JP9112087 1987-04-14
JP91121/87 1987-04-14
JP91122/87 1987-04-14
JP137333/87 1987-05-30
JP13733387 1987-05-30
JP63088746A JPS6471019A (en) 1987-04-14 1988-04-11 Manufacture of superconductive ceramics linear substance
JP88746/88 1988-04-11

Publications (1)

Publication Number Publication Date
RU2050339C1 true RU2050339C1 (ru) 1995-12-20

Family

ID=27525374

Family Applications (1)

Application Number Title Priority Date Filing Date
SU884355627A RU2050339C1 (ru) 1987-04-14 1988-04-14 Способ получения гибких длинномерных волокон сверхпроводника

Country Status (11)

Country Link
US (1) US4968662A (ru)
EP (1) EP0292684B1 (ru)
KR (1) KR910001507B1 (ru)
CN (1) CN1029886C (ru)
AU (1) AU596289B2 (ru)
CA (1) CA1312202C (ru)
DE (1) DE3884856T2 (ru)
DK (1) DK170912B1 (ru)
FI (1) FI881701A (ru)
NO (1) NO179364C (ru)
RU (1) RU2050339C1 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU615014B2 (en) * 1987-02-17 1991-09-19 Sumitomo Electric Industries, Ltd. Superconducting thin film and wire and a process for producing the same
FR2613867B1 (fr) * 1987-04-11 1994-02-04 Yamaha Corp Procede pour fabriquer un fil supraconducteur en matiere ceramique
US5215565A (en) * 1987-04-14 1993-06-01 Sumitomo Electric Industries, Ltd. Method for making superconductor filaments
GB8710113D0 (en) * 1987-04-29 1987-06-03 Evetts J E Superconducting composite
EP0299788B1 (en) * 1987-07-17 1994-10-12 Fujikura Ltd. Method of producing a superconducting wire including an oxide superconductor
US4912087A (en) * 1988-04-15 1990-03-27 Ford Motor Company Rapid thermal annealing of superconducting oxide precursor films on Si and SiO2 substrates
US4943558A (en) * 1988-04-15 1990-07-24 Ford Motor Company Preparation of superconducting oxide films using a pre-oxygen nitrogen anneal
US5158588A (en) * 1988-05-31 1992-10-27 Superbio, Inc. Method of drawing dissolved superconductor
US4980964A (en) * 1988-08-19 1991-01-01 Jan Boeke Superconducting wire
US5506198A (en) * 1990-08-24 1996-04-09 Sumitomo Electric Industries, Ltd. High-temperature superconductive conductor winding
US5219832A (en) * 1991-06-18 1993-06-15 Dawei Zhou High-tc superconducting ceramic oxide products and macroscopic and microscopic methods of making the same
DE69224064T2 (de) * 1991-07-01 1998-06-18 Univ Houston Verfahren zur herstellung von formkörpern aus hochtemperatursupraleitern mit hohen kritischen stromdichten
US5308800A (en) * 1992-03-23 1994-05-03 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method for forming textured bulk high temperature superconducting materials
US5811376A (en) * 1995-12-12 1998-09-22 Owens Corning Fiberglas Technology Inc. Method for making superconducting fibers
US7071417B2 (en) * 2004-10-25 2006-07-04 Demodulation, Inc. Optically encoded glass-coated microwire
CN100371111C (zh) * 2006-01-17 2008-02-27 浙江大学 利用毛细管制备微细金属丝的方法
KR100741726B1 (ko) * 2006-02-16 2007-08-10 한국기계연구원 습식화학공정을 이용한 초전도 선재 제조 장치 및 그 방법
JP2008140769A (ja) * 2006-11-06 2008-06-19 Sumitomo Electric Ind Ltd Bi2223超電導線材の製造方法
IL188559A0 (en) * 2008-01-03 2008-11-03 D T N R Ltd Method of production of glass coated metal wires and metal microwires
CN103058668B (zh) * 2012-12-28 2014-12-03 北京英纳超导技术有限公司 氧化物超导粉棒的烧结方法以及使用该方法烧结后的粉棒制备超导线材的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0045584B1 (en) * 1980-08-04 1984-02-08 The BOC Group, Inc. Methods of making multifilament superconductors
US4411959A (en) * 1981-08-17 1983-10-25 Westinghouse Electric Corp. Submicron-particle ductile superconductor
JPS61227307A (ja) * 1985-04-02 1986-10-09 名古屋工業大学長 ガラス被覆溶融紡糸法による超伝導合金繊維及びその製造法
US4762754A (en) * 1986-12-04 1988-08-09 The United States Of America As Represented By The United States Department Of Energy Dynamic high pressure process for fabricating superconducting and permanent magnetic materials
FR2613867B1 (fr) * 1987-04-11 1994-02-04 Yamaha Corp Procede pour fabriquer un fil supraconducteur en matiere ceramique
EP0292385B1 (en) * 1987-05-18 1994-08-24 Sumitomo Electric Industries Limited Method of making oxide ceramic superconducting wires

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Phisika, 1987, BC 148, N 1 - 3, 429-431. *
2. Авторское свидетельство СССР N 172003, кл. C 03B 23/04, 1964. *

Also Published As

Publication number Publication date
DK205088A (da) 1988-10-15
NO179364C (no) 1996-09-25
AU596289B2 (en) 1990-04-26
DK170912B1 (da) 1996-03-11
EP0292684A2 (en) 1988-11-30
DE3884856T2 (de) 1994-04-14
EP0292684B1 (en) 1993-10-13
KR910001507B1 (ko) 1991-03-09
FI881701A0 (fi) 1988-04-13
EP0292684A3 (en) 1989-07-19
CA1312202C (en) 1993-01-05
KR880013189A (ko) 1988-11-30
NO881602L (no) 1988-10-17
AU1450888A (en) 1988-10-20
DK205088D0 (da) 1988-04-14
US4968662A (en) 1990-11-06
NO881602D0 (no) 1988-04-13
DE3884856D1 (de) 1993-11-18
NO179364B (no) 1996-06-17
FI881701A (fi) 1988-10-15
CN1029886C (zh) 1995-09-27
CN1030159A (zh) 1989-01-04

Similar Documents

Publication Publication Date Title
RU2050339C1 (ru) Способ получения гибких длинномерных волокон сверхпроводника
CN1027776C (zh) 制造超导陶瓷线的方法
US4973574A (en) Superconducting wire and method of manufacturing the same
US5215565A (en) Method for making superconductor filaments
Komatsu et al. High-Tc superconducting glass-ceramics
US5304534A (en) Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates
US5550102A (en) Superconductor and method of manufacturing the same
JP2642128B2 (ja) 絶縁ワイヤの製造方法
US5814122A (en) Method of making hollow high temperature ceramic superconducting fibers
US5811376A (en) Method for making superconducting fibers
JP2822451B2 (ja) 超電導体の製造方法
US5037800A (en) Method of drawing glass encased superconductive oxide core
US5229357A (en) Method of producing superconducting ceramic wire and product
US4937228A (en) Method of producing composite oxide superconducting wires using a powder bath
JPH027309A (ja) 酸化物系超電導線条体の製造方法
JPS63274031A (ja) 超伝導電線の製造方法
Strnad et al. On continuous oxide superconductor wire preparation by melt fast solidification and glass formation
JPH0328141A (ja) 酸化物超電導線材の製造方法
EP0638054B1 (en) Method for dispersion spinning of sheathed rod-in-tube superconducting composites
Goto et al. Zone melting of suspension spun Bi2Sr2Ca1Cu2Ox filament
JPH01134809A (ja) 超電導線材
RU2051210C1 (ru) Высокотемпературный сверхпроводящий материал и способ его получения
Poeppel et al. Recent improvements in bulk properties of ceramic superconductors
JPS63299017A (ja) 光−電気複合伝送線の製造方法
JPH01221814A (ja) 酸化物系超電導線材の製造方法