RU2013122847A - Формирование дифференциальных фазово-контрастных изображений - Google Patents
Формирование дифференциальных фазово-контрастных изображений Download PDFInfo
- Publication number
- RU2013122847A RU2013122847A RU2013122847/28A RU2013122847A RU2013122847A RU 2013122847 A RU2013122847 A RU 2013122847A RU 2013122847/28 A RU2013122847/28 A RU 2013122847/28A RU 2013122847 A RU2013122847 A RU 2013122847A RU 2013122847 A RU2013122847 A RU 2013122847A
- Authority
- RU
- Russia
- Prior art keywords
- grating
- phase
- lattice
- analyzer
- ray
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title claims 4
- 230000005855 radiation Effects 0.000 claims abstract 8
- 238000000034 method Methods 0.000 claims 4
- 230000001154 acute effect Effects 0.000 claims 2
- 230000001427 coherent effect Effects 0.000 claims 2
- 238000002083 X-ray spectrum Methods 0.000 claims 1
- 238000004590 computer program Methods 0.000 claims 1
- 238000001228 spectrum Methods 0.000 claims 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/484—Diagnostic techniques involving phase contrast X-ray imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4035—Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4291—Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/20075—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring interferences of X-rays, e.g. Borrmann effect
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
- G21K1/067—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators using surface reflection, e.g. grazing incidence mirrors, gratings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/06—Diaphragms
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- High Energy & Nuclear Physics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Theoretical Computer Science (AREA)
- Pulmonology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
1. Дифракционная решетка (14, 15) для формирования рентгеновских дифференциальных фазово-контрастных изображений, содержащая первую подобласть (23) с- по меньшей мере, одним участком (24) первой решеточной структуры (26); и- по меньшей мере, одним участком (28) второй решеточной структуры (30);при этом первая решеточная структура содержит множество полос (34) и промежутков (36) с первой решеточной ориентацией G(37), которые расположены периодически; при этом полосы расположены так, что они изменяют фазу и/или амплитуду рентгеновского излучения и при этом промежутки являются прозрачными для рентгеновских лучей;при этом вторая решеточная структура содержит множество полос (40) и промежутков (42) со второй решеточной ориентацией G(44), которые расположены периодически; при этом полосы расположены так, что они изменяют фазу и/или амплитуду рентгеновского излучения и при этом промежутки являются прозрачными для рентгеновских лучей; ипри этом первая решеточная ориентация Gотличается от второй решеточной ориентации G.2. Дифракционная решетка по п.1, в которой первая решеточная ориентация Gрасположена поперечно ко второй решеточной ориентации G.3. Дифракционная решетка по п.1 или 2, в которой участки первой и второй решеточных структур расположены по области дифракционной решетки в шахматном порядке (56).4. Дифракционная решетка по п.1 или 2, в которой обеспечен, по меньшей мере, один участок (202) второй подобласти (204); при этом вторая подобласть является прозрачной для рентгеновских лучей, и при этом упомянутый, по меньшей мере, один участок второй подобласти обеспечивает прозрачную для рентгеновских лучей апертуру (206) в решетке; ипри этом учас�
Claims (13)
1. Дифракционная решетка (14, 15) для формирования рентгеновских дифференциальных фазово-контрастных изображений, содержащая первую подобласть (23) с
- по меньшей мере, одним участком (24) первой решеточной структуры (26); и
- по меньшей мере, одним участком (28) второй решеточной структуры (30);
при этом первая решеточная структура содержит множество полос (34) и промежутков (36) с первой решеточной ориентацией G01 (37), которые расположены периодически; при этом полосы расположены так, что они изменяют фазу и/или амплитуду рентгеновского излучения и при этом промежутки являются прозрачными для рентгеновских лучей;
при этом вторая решеточная структура содержит множество полос (40) и промежутков (42) со второй решеточной ориентацией G02 (44), которые расположены периодически; при этом полосы расположены так, что они изменяют фазу и/или амплитуду рентгеновского излучения и при этом промежутки являются прозрачными для рентгеновских лучей; и
при этом первая решеточная ориентация G01 отличается от второй решеточной ориентации G02.
2. Дифракционная решетка по п.1, в которой первая решеточная ориентация G01 расположена поперечно ко второй решеточной ориентации G02.
3. Дифракционная решетка по п.1 или 2, в которой участки первой и второй решеточных структур расположены по области дифракционной решетки в шахматном порядке (56).
4. Дифракционная решетка по п.1 или 2, в которой обеспечен, по меньшей мере, один участок (202) второй подобласти (204); при этом вторая подобласть является прозрачной для рентгеновских лучей, и при этом упомянутый, по меньшей мере, один участок второй подобласти обеспечивает прозрачную для рентгеновских лучей апертуру (206) в решетке; и
при этом участки первой и второй подобластей расположены чередующимся образом в, по меньшей мере, одном направлении.
5. Дифракционная решетка по п.4, в которой участки первой и второй подобластей расположены по области дифракционной решетки в шахматной конфигурации (207).
6. Детекторная компоновка (10) рентгенографической системы для генерирования фазово-контрастных изображений объекта, содержащая:
- первую дифракционную решетку (15);
- вторую дифракционную решетку (14); и
- детектор (12) с датчиком;
при этом датчик содержит, по меньшей мере, один пиксель (16) датчика первой подгруппы (18) пикселей и, по меньшей мере, один пиксель (20) датчика второй подгруппы пикселей (22);
при этом первая дифракционная решетка является фазовой решеткой (15);
при этом вторая дифракционная решетка является решеткой (14) анализатора;
при этом фазовая решетка и решетка анализатора обеспечены как дифракционная решетка для формирования рентгеновских дифференциальных фазово-контрастных изображений согласно одному из предшествующих пунктов;
при этом решетка анализатора или фазовая решетка выполнена с возможностью пошагового размещения в предварительно определенном отношении к решетке анализатора;
при этом первая и вторая дифракционные решетки, каждая, выполнены с возможностью переноса по отношению к датчику из первого положения (Р1) в, по меньшей мере, второе положение (Р2) с первым шагом PT1 переноса;
при этом шаг PT1 переноса адаптирован для участков первой и/или второй решеточных структур дифракционных решеток; и
при этом в первом и втором положении, разные части датчика расположены за участками первой и второй решеточных структур.
7. Детекторная компоновка по п.6, в которой вторая дифракционная решетка выполнена с возможностью фазового пошагового размещения под острым углом (92) к первой или второй решеточной структуре.
8. Устройство (510) получения рентгеновских изображений для генерирования фазово-контрастных изображений объекта, с
- источником (512) рентгеновских лучей;
- решеткой (518) источника;
- фазовой решеткой (520);
- решеткой (522) анализатора; и
- детектором (514);
при этом источник рентгеновских лучей генерирует пучок рентгеновских лучей (536) полихроматического спектра рентгеновских лучей;
при этом решетка источника выполнена с возможностью расщепления пучка рентгеновских лучей полихроматического спектра рентгеновских лучей на расщепленный пучок (538);
при этом фазовая решетка выполнена с возможностью рекомбинирования расщепленного пучка в плоскости анализатора; и
при этом фазовая решетка, решетка анализатора и детектор обеспечены как детекторная компоновка согласно одному из п.п.6 или 7.
9. Медицинская система (500) формирования рентгеновских изображений для формирования дифференциальных фазово-контрастных изображений, с:
- устройством (510) получения рентгеновских изображений для генерирования фазово-контрастных изображений объекта по п.8;
- блоком (526) обработки;
- блоком (528) интерфейса; и
- устройством (524) приема объекта;
при этом блок обработки выполнен с возможностью управления источником рентгеновских лучей, а также фазовым пошаговым размещением решетки анализатора и переносом фазовой решетки и решетки анализатора;
при этом блок интерфейса выполнен с возможностью обеспечивать записанные первые и вторые исходные данные изображения в блок обработки; и
при этом устройство приема объекта выполнено с возможностью принимать объект интереса для получения фазово-контрастного изображения.
10. Способ (400) для формирования дифференциальных фазово-контрастных изображений, содержащий этапы:
- аа1) применения (410) когерентного рентгеновского излучения к интерферометру с двумя дифракционными решетками в первом положении (Р1); причем упомянутые дифракционные решетки, каждая, содержат, по меньшей мере, две части с разными решеточными ориентациями; при этом первая дифракционная решетка является фазовой решеткой и вторая дифракционная решетка является решеткой анализатора;
аа2) фазового пошагового размещения (412) решетки анализатора; и
аа3) записи (414) первых исходных данных (416) изображения с помощью датчика с, по меньшей мере, двумя частями; при этом первая и вторая часть записывают информацию фазово-контрастного изображения, относящуюся к первой и второй решеточным ориентациям;
- b) переноса (420) решетки анализатора и фазовой решетки во второе положение (Р2); и
сс1) применения (422) когерентного рентгеновского излучения к интерферометру во втором положении;
сс2) фазового пошагового размещения (424) решетки анализатора; и
cc3) записи (426) вторых исходных данных (428) изображения с помощью датчика; при этом первая и вторая часть записывают информацию фазово-контрастного изображения, относящуюся ко второй и первой решеточным ориентациям; и
- d) обеспечения (432) записанных первых и вторых исходных данных изображения в качестве исходных данных (434) изображения.
11. Способ по п.10, в котором дифракционные решетки, каждая, содержат, по меньшей мере, один участок первой решеточной структуры и, по меньшей мере, один участок второй решеточной структуры; при этом первая решеточная структура содержит множество полос и промежутков с первой решеточной ориентацией G01, которые расположены периодически; при этом полосы расположены так, что они изменяют фазу и/или амплитуду рентгеновского излучения и при этом промежутки являются прозрачными для рентгеновских лучей; при этом вторая решеточная структура содержит множество полос и промежутков со второй решеточной ориентацией G02, которые расположены периодически; при этом полосы расположены так, что они изменяют фазу и/или амплитуду рентгеновского излучения, и при этом промежутки являются прозрачными для рентгеновских лучей; и при этом первая решеточная ориентация G01 отличается от второй решеточной ориентации G02.
12. Способ по п.10 или 11, в котором решетку анализатора фазово пошагово размещают под острым углом (92) к первой или второй решеточной структуре.
13. Машиночитаемый носитель, имеющий сохраненный компьютерный программный элемент для управления устройством по одному из пп.1-9, который, когда исполняется блоком обработки, выполнен с возможностью выполнять этапы способа одного из пп.10-12.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10187975.7 | 2010-10-19 | ||
EP10187975 | 2010-10-19 | ||
PCT/IB2011/054580 WO2012052900A1 (en) | 2010-10-19 | 2011-10-17 | Differential phase-contrast imaging |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013122847A true RU2013122847A (ru) | 2014-11-27 |
RU2572644C2 RU2572644C2 (ru) | 2016-01-20 |
Family
ID=44898112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013122847/28A RU2572644C2 (ru) | 2010-10-19 | 2011-10-17 | Формирование дифференциальных фазово-контрастных изображений |
Country Status (7)
Country | Link |
---|---|
US (1) | US9861330B2 (ru) |
EP (1) | EP2630476B1 (ru) |
JP (1) | JP6060082B2 (ru) |
CN (1) | CN103168228B (ru) |
BR (1) | BR112013009253A2 (ru) |
RU (1) | RU2572644C2 (ru) |
WO (1) | WO2012052900A1 (ru) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2573114C2 (ru) * | 2010-10-19 | 2016-01-20 | Конинклейке Филипс Электроникс Н.В. | Формирование изображений методом дифференциального фазового контраста |
US20120307970A1 (en) * | 2011-05-31 | 2012-12-06 | General Electric Company | Multispot x-ray phase-contrast imaging system |
US20150117599A1 (en) | 2013-10-31 | 2015-04-30 | Sigray, Inc. | X-ray interferometric imaging system |
JP6265914B2 (ja) * | 2012-01-24 | 2018-01-24 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 多方向位相コントラストx線撮像 |
EP2827339A1 (en) * | 2013-07-16 | 2015-01-21 | Canon Kabushiki Kaisha | Source grating, interferometer, and object information acquisition system |
US10295485B2 (en) | 2013-12-05 | 2019-05-21 | Sigray, Inc. | X-ray transmission spectrometer system |
RU2663176C2 (ru) * | 2013-09-30 | 2018-08-01 | Конинклейке Филипс Н.В. | Устройство получения дифференциального фазоконтрастного изображения с подвижной решеткой(ами) |
DE102013221818A1 (de) * | 2013-10-28 | 2015-04-30 | Siemens Aktiengesellschaft | Bildgebendes System und Verfahren zur Bildgebung |
USRE48612E1 (en) | 2013-10-31 | 2021-06-29 | Sigray, Inc. | X-ray interferometric imaging system |
JP6495943B2 (ja) * | 2014-05-09 | 2019-04-03 | ザ・ジョンズ・ホプキンス・ユニバーシティー | 位相コントラストx線イメージングのためのシステム及び方法 |
US10401309B2 (en) | 2014-05-15 | 2019-09-03 | Sigray, Inc. | X-ray techniques using structured illumination |
US10368815B2 (en) * | 2014-07-17 | 2019-08-06 | Koninklijke Philips N.V. | X-ray imaging device |
JP6451400B2 (ja) * | 2015-02-26 | 2019-01-16 | コニカミノルタ株式会社 | 画像処理システム及び画像処理装置 |
CN106033133B (zh) * | 2015-03-11 | 2019-09-17 | 同方威视技术股份有限公司 | 一种光栅、制造方法和辐射成像装置 |
US10404908B2 (en) | 2015-07-13 | 2019-09-03 | Rambus Inc. | Optical systems and methods supporting diverse optical and computational functions |
JP6602630B2 (ja) * | 2015-10-05 | 2019-11-06 | 株式会社日立ハイテクサイエンス | X線検査装置及びx線検査方法 |
US11035989B2 (en) * | 2015-11-30 | 2021-06-15 | Rambus Inc. | Systems and methods for improving resolution in lensless imaging |
US10247683B2 (en) | 2016-12-03 | 2019-04-02 | Sigray, Inc. | Material measurement techniques using multiple X-ray micro-beams |
CN108174059B (zh) * | 2016-12-08 | 2021-04-13 | 松下知识产权经营株式会社 | 摄像装置 |
JP6753342B2 (ja) * | 2017-03-15 | 2020-09-09 | 株式会社島津製作所 | 放射線格子検出器およびx線検査装置 |
WO2018175570A1 (en) | 2017-03-22 | 2018-09-27 | Sigray, Inc. | Method of performing x-ray spectroscopy and x-ray absorption spectrometer system |
EP3498171A1 (en) * | 2017-12-15 | 2019-06-19 | Koninklijke Philips N.V. | Single shot x-ray phase-contrast and dark field imaging |
NL2020619B1 (en) * | 2018-01-16 | 2019-07-25 | Illumina Inc | Dual optical grating slide structured illumination imaging |
US10578566B2 (en) | 2018-04-03 | 2020-03-03 | Sigray, Inc. | X-ray emission spectrometer system |
US10845491B2 (en) | 2018-06-04 | 2020-11-24 | Sigray, Inc. | Energy-resolving x-ray detection system |
GB2591630B (en) | 2018-07-26 | 2023-05-24 | Sigray Inc | High brightness x-ray reflection source |
US10656105B2 (en) | 2018-08-06 | 2020-05-19 | Sigray, Inc. | Talbot-lau x-ray source and interferometric system |
CN112638261A (zh) | 2018-09-04 | 2021-04-09 | 斯格瑞公司 | 利用滤波的x射线荧光的系统和方法 |
US11056308B2 (en) | 2018-09-07 | 2021-07-06 | Sigray, Inc. | System and method for depth-selectable x-ray analysis |
JP6969691B2 (ja) * | 2018-11-06 | 2021-11-24 | 株式会社島津製作所 | X線位相撮像システム |
CN114729907B (zh) | 2019-09-03 | 2023-05-23 | 斯格瑞公司 | 用于计算机层析x射线荧光成像的系统和方法 |
US11175243B1 (en) | 2020-02-06 | 2021-11-16 | Sigray, Inc. | X-ray dark-field in-line inspection for semiconductor samples |
CN115667896B (zh) | 2020-05-18 | 2024-06-21 | 斯格瑞公司 | 使用晶体分析器和多个检测元件的x射线吸收光谱的系统和方法 |
JP2023542674A (ja) | 2020-09-17 | 2023-10-11 | シグレイ、インコーポレイテッド | X線を用いた深さ分解計測および分析のためのシステムおよび方法 |
US11686692B2 (en) | 2020-12-07 | 2023-06-27 | Sigray, Inc. | High throughput 3D x-ray imaging system using a transmission x-ray source |
US11992350B2 (en) | 2022-03-15 | 2024-05-28 | Sigray, Inc. | System and method for compact laminography utilizing microfocus transmission x-ray source and variable magnification x-ray detector |
US11885755B2 (en) | 2022-05-02 | 2024-01-30 | Sigray, Inc. | X-ray sequential array wavelength dispersive spectrometer |
US12055737B2 (en) * | 2022-05-18 | 2024-08-06 | GE Precision Healthcare LLC | Aligned and stacked high-aspect ratio metallized structures |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69622406D1 (de) * | 1995-04-28 | 2002-08-22 | Forskningsct Riso Roskilde | Phasenkontrastbilderzeugung |
JPH09187455A (ja) * | 1996-01-10 | 1997-07-22 | Hitachi Ltd | 位相型x線ct装置 |
RU2115943C1 (ru) * | 1997-01-16 | 1998-07-20 | Виктор Натанович Ингал | Способ фазовой рентгенографии объектов и устройство для его осуществления (варианты) |
US5812629A (en) * | 1997-04-30 | 1998-09-22 | Clauser; John F. | Ultrahigh resolution interferometric x-ray imaging |
US6366643B1 (en) * | 1998-10-29 | 2002-04-02 | Direct Radiography Corp. | Anti scatter radiation grid for a detector having discreet sensing elements |
US7515264B2 (en) | 1999-06-15 | 2009-04-07 | Tokyo Electron Limited | Particle-measuring system and particle-measuring method |
JP4549583B2 (ja) * | 2000-07-07 | 2010-09-22 | パナソニック株式会社 | 光ピックアップ、光ディスク装置、及び情報処理装置 |
JP4445397B2 (ja) * | 2002-12-26 | 2010-04-07 | 敦 百生 | X線撮像装置および撮像方法 |
DE10305106B4 (de) * | 2003-02-07 | 2006-04-13 | Siemens Ag | Streustrahlenraster oder Kollimator sowie Anordnung mit Strahlungsdetektor und Streustrahlenraster oder Kollimator |
JP4676244B2 (ja) * | 2005-05-13 | 2011-04-27 | 株式会社日立製作所 | X線撮像装置 |
EP1731099A1 (en) * | 2005-06-06 | 2006-12-13 | Paul Scherrer Institut | Interferometer for quantitative phase contrast imaging and tomography with an incoherent polychromatic x-ray source |
ATE473685T1 (de) * | 2005-12-27 | 2010-07-15 | Siemens Ag | Fokus-detektor-anordnung zur erzeugung von phasenkontrast-röntgenaufnahmen und verfahren hierzu |
DE102006037255A1 (de) * | 2006-02-01 | 2007-08-02 | Siemens Ag | Fokus-Detektor-Anordnung einer Röntgenapparatur zur Erzeugung projektiver oder tomographischer Phasenkontrastaufnahmen |
DE102006017291B4 (de) * | 2006-02-01 | 2017-05-24 | Paul Scherer Institut | Fokus/Detektor-System einer Röntgenapparatur zur Erzeugung von Phasenkontrastaufnahmen, Röntgensystem mit einem solchen Fokus/Detektor-System sowie zugehöriges Speichermedium und Verfahren |
DE102006037281A1 (de) * | 2006-02-01 | 2007-08-09 | Siemens Ag | Röntgenoptisches Durchstrahlungsgitter einer Fokus-Detektor-Anordnung einer Röntgenapparatur zur Erzeugung projektiver oder tomographischer Phasenkontrastaufnahmen von einem Untersuchungsobjekt |
DE102006037256B4 (de) | 2006-02-01 | 2017-03-30 | Paul Scherer Institut | Fokus-Detektor-Anordnung einer Röntgenapparatur zur Erzeugung projektiver oder tomographischer Phasenkontrastaufnahmen sowie Röntgensystem, Röntgen-C-Bogen-System und Röntgen-CT-System |
DE102006035677A1 (de) * | 2006-02-01 | 2007-08-16 | Siemens Ag | Verfahren und CT-System zur Erkennung und Differenzierung von Plaque in Gefäßstrukturen eines Patienten |
DE102006015358B4 (de) * | 2006-02-01 | 2019-08-22 | Paul Scherer Institut | Fokus/Detektor-System einer Röntgenapparatur zur Erzeugung von Phasenkontrastaufnahmen, zugehöriges Röntgen-System sowie Speichermedium und Verfahren zur Erzeugung tomographischer Aufnahmen |
DE102006037254B4 (de) * | 2006-02-01 | 2017-08-03 | Paul Scherer Institut | Fokus-Detektor-Anordnung zur Erzeugung projektiver oder tomographischer Phasenkontrastaufnahmen mit röntgenoptischen Gittern, sowie Röntgen-System, Röntgen-C-Bogen-System und Röntgen-Computer-Tomographie-System |
DE102006017290B4 (de) * | 2006-02-01 | 2017-06-22 | Siemens Healthcare Gmbh | Fokus/Detektor-System einer Röntgenapparatur, Röntgen-System und Verfahren zur Erzeugung von Phasenkontrastaufnahmen |
DE102006015356B4 (de) * | 2006-02-01 | 2016-09-22 | Siemens Healthcare Gmbh | Verfahren zur Erzeugung projektiver und tomographischer Phasenkontrastaufnahmen mit einem Röntgen-System |
DE102006063048B3 (de) * | 2006-02-01 | 2018-03-29 | Siemens Healthcare Gmbh | Fokus/Detektor-System einer Röntgenapparatur zur Erzeugung von Phasenkontrastaufnahmen |
EP1879020A1 (en) * | 2006-07-12 | 2008-01-16 | Paul Scherrer Institut | X-ray interferometer for phase contrast imaging |
WO2008102685A1 (ja) * | 2007-02-21 | 2008-08-28 | Konica Minolta Medical & Graphic, Inc. | 放射線画像撮影装置及び放射線画像撮影システム |
US7920673B2 (en) * | 2007-10-30 | 2011-04-05 | Massachusetts Institute Of Technology | Phase-contrast x-ray imaging |
EP2073040A2 (en) * | 2007-10-31 | 2009-06-24 | FUJIFILM Corporation | Radiation image detector and phase contrast radiation imaging apparatus |
ATE524056T1 (de) * | 2007-11-15 | 2011-09-15 | Suisse Electronique Microtech | Interferometervorrichtung und verfahren |
CN101576515B (zh) * | 2007-11-23 | 2012-07-04 | 同方威视技术股份有限公司 | X射线光栅相衬成像系统及方法 |
US8576983B2 (en) * | 2008-02-14 | 2013-11-05 | Koninklijke Philips N.V. | X-ray detector for phase contrast imaging |
JP5339975B2 (ja) * | 2008-03-13 | 2013-11-13 | キヤノン株式会社 | X線位相イメージングに用いられる位相格子、該位相格子を用いたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム |
US8565371B2 (en) * | 2008-03-19 | 2013-10-22 | Koninklijke Philips N.V. | Rotational X ray device for phase contrast imaging |
JP5451150B2 (ja) * | 2008-04-15 | 2014-03-26 | キヤノン株式会社 | X線用線源格子、x線位相コントラスト像の撮像装置 |
JP4864052B2 (ja) * | 2008-07-31 | 2012-01-25 | アース製薬株式会社 | 温水洗浄便座の洗浄ノズル洗浄用泡吐出式ポンプ製品 |
JP2010063646A (ja) * | 2008-09-11 | 2010-03-25 | Fujifilm Corp | 放射線位相画像撮影装置 |
DE102008048683A1 (de) * | 2008-09-24 | 2010-04-08 | Siemens Aktiengesellschaft | Verfahren zur Bestimmung von Phase und/oder Amplitude zwischen interferierenden benachbarten Röntgenstrahlen in einem Detektorpixel bei einem Talbot-Interferometer |
DE102008048688B4 (de) * | 2008-09-24 | 2011-08-25 | Paul Scherrer Institut | Röntgen-CT-System zur Erzeugung tomographischer Phasenkontrast- oder Dunkelfeldaufnahmen |
DE102008049200B4 (de) * | 2008-09-26 | 2010-11-11 | Paul Scherrer Institut | Verfahren zur Herstellung von röntgenoptischen Gittern, röntgenoptisches Gitter und Röntgen-System |
EP2168488B1 (de) * | 2008-09-30 | 2013-02-13 | Siemens Aktiengesellschaft | Röntgen-CT-System zur Röntgen-Phasenkontrast-und/oder Röntgen-Dunkelfeld-Bildgebung |
CN101413905B (zh) * | 2008-10-10 | 2011-03-16 | 深圳大学 | X射线微分干涉相衬成像系统 |
US8559594B2 (en) * | 2008-10-29 | 2013-10-15 | Canon Kabushiki Kaisha | Imaging apparatus and imaging method |
CN103876761B (zh) * | 2008-10-29 | 2016-04-27 | 佳能株式会社 | X射线成像装置和x射线成像方法 |
DE102009004702B4 (de) * | 2009-01-15 | 2019-01-31 | Paul Scherer Institut | Anordnung und Verfahren zur projektiven und/oder tomographischen Phasenkontrastbildgebung mit Röntgenstrahlung |
US7949095B2 (en) * | 2009-03-02 | 2011-05-24 | University Of Rochester | Methods and apparatus for differential phase-contrast fan beam CT, cone-beam CT and hybrid cone-beam CT |
JP2010236986A (ja) * | 2009-03-31 | 2010-10-21 | Fujifilm Corp | 放射線位相画像撮影装置 |
JP2010253194A (ja) * | 2009-04-28 | 2010-11-11 | Fujifilm Corp | 放射線位相画像撮影装置 |
DE102009019595B4 (de) * | 2009-04-30 | 2013-02-28 | Forschungszentrum Karlsruhe Gmbh | Gitter mit großem Aspektverhältnis, insbesondere zur Verwendung als röntgenoptisches Gitter in einem CT-System, hergestellt durch ein Lithographieverfahren |
US8855265B2 (en) * | 2009-06-16 | 2014-10-07 | Koninklijke Philips N.V. | Correction method for differential phase contrast imaging |
JP5459659B2 (ja) * | 2009-10-09 | 2014-04-02 | キヤノン株式会社 | X線位相コントラスト像の撮像に用いられる位相格子、該位相格子を用いた撮像装置、x線コンピューター断層撮影システム |
CN102781327B (zh) * | 2009-12-10 | 2015-06-17 | 皇家飞利浦电子股份有限公司 | 相衬成像 |
WO2011070493A1 (en) * | 2009-12-10 | 2011-06-16 | Koninklijke Philips Electronics N.V. | Apparatus for phase-contrast imaging comprising a displaceable x-ray detector element and method |
US8848863B2 (en) * | 2009-12-10 | 2014-09-30 | Koninklijke Philips N.V. | Non-parallel grating arrangement with on-the-fly phase stepping, X-ray system |
US8532252B2 (en) * | 2010-01-27 | 2013-09-10 | Canon Kabushiki Kaisha | X-ray shield grating, manufacturing method therefor, and X-ray imaging apparatus |
JP5631013B2 (ja) * | 2010-01-28 | 2014-11-26 | キヤノン株式会社 | X線撮像装置 |
JP5702586B2 (ja) * | 2010-02-04 | 2015-04-15 | 富士フイルム株式会社 | 放射線撮影システム |
JP5627247B2 (ja) * | 2010-02-10 | 2014-11-19 | キヤノン株式会社 | マイクロ構造体の製造方法および放射線吸収格子 |
JP5725870B2 (ja) * | 2010-02-22 | 2015-05-27 | キヤノン株式会社 | X線撮像装置およびx線撮像方法 |
JP5586986B2 (ja) * | 2010-02-23 | 2014-09-10 | キヤノン株式会社 | X線撮像装置 |
WO2011114845A1 (ja) * | 2010-03-18 | 2011-09-22 | コニカミノルタエムジー株式会社 | X線撮影システム |
JP5438649B2 (ja) * | 2010-03-26 | 2014-03-12 | 富士フイルム株式会社 | 放射線撮影システム及び位置ずれ判定方法 |
JP5378335B2 (ja) * | 2010-03-26 | 2013-12-25 | 富士フイルム株式会社 | 放射線撮影システム |
JP5660910B2 (ja) * | 2010-03-30 | 2015-01-28 | 富士フイルム株式会社 | 放射線画像撮影用グリッドの製造方法 |
JP2012090944A (ja) * | 2010-03-30 | 2012-05-17 | Fujifilm Corp | 放射線撮影システム及び放射線撮影方法 |
JP5548085B2 (ja) * | 2010-03-30 | 2014-07-16 | 富士フイルム株式会社 | 回折格子の調整方法 |
JP5796976B2 (ja) * | 2010-05-27 | 2015-10-21 | キヤノン株式会社 | X線撮像装置 |
JP5896999B2 (ja) * | 2010-06-28 | 2016-03-30 | パウル・シェラー・インスティトゥート | X線装置 |
JP5731214B2 (ja) * | 2010-08-19 | 2015-06-10 | 富士フイルム株式会社 | 放射線撮影システム及びその画像処理方法 |
US9105369B2 (en) * | 2010-09-03 | 2015-08-11 | Koninklijke Philips N.V. | Differential phase-contrast imaging with improved sampling |
RU2573114C2 (ru) * | 2010-10-19 | 2016-01-20 | Конинклейке Филипс Электроникс Н.В. | Формирование изображений методом дифференциального фазового контраста |
JP5875280B2 (ja) * | 2010-10-20 | 2016-03-02 | キヤノン株式会社 | トールボット干渉を用いた撮像装置および撮像装置の調整方法 |
JP5331940B2 (ja) * | 2010-10-27 | 2013-10-30 | 富士フイルム株式会社 | 放射線撮影システム及び放射線画像生成方法 |
JP5796908B2 (ja) * | 2010-10-29 | 2015-10-21 | 富士フイルム株式会社 | 放射線位相画像撮影装置 |
US9287017B2 (en) * | 2011-02-07 | 2016-03-15 | Koninklijke Philips N.V. | Differential phase-contrast imaging with increased dynamic range |
US9066704B2 (en) * | 2011-03-14 | 2015-06-30 | Canon Kabushiki Kaisha | X-ray imaging apparatus |
CN104039227B (zh) * | 2012-01-12 | 2018-02-02 | 皇家飞利浦有限公司 | 在x射线系统中生成衰减图像数据和相位图像数据 |
JP6265914B2 (ja) * | 2012-01-24 | 2018-01-24 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 多方向位相コントラストx線撮像 |
BR112015003425A2 (pt) | 2012-08-20 | 2017-07-04 | Koninklijke Philips Nv | sistema de formação de imagens de raio x para formação de imagens de contraste de fases diferencial, método de manuseio de desalinhamento em um sistema de formação de imagens de raio x para formação de imagens de contraste de fases diferencial, elemento de programa de computador para controlar um aparelho, e meio legível por computador |
US10096098B2 (en) | 2013-12-30 | 2018-10-09 | Carestream Health, Inc. | Phase retrieval from differential phase contrast imaging |
US9364191B2 (en) * | 2013-02-11 | 2016-06-14 | University Of Rochester | Method and apparatus of spectral differential phase-contrast cone-beam CT and hybrid cone-beam CT |
-
2011
- 2011-10-17 RU RU2013122847/28A patent/RU2572644C2/ru not_active IP Right Cessation
- 2011-10-17 CN CN201180050514.2A patent/CN103168228B/zh not_active Expired - Fee Related
- 2011-10-17 BR BR112013009253A patent/BR112013009253A2/pt not_active IP Right Cessation
- 2011-10-17 WO PCT/IB2011/054580 patent/WO2012052900A1/en active Application Filing
- 2011-10-17 US US13/878,841 patent/US9861330B2/en active Active
- 2011-10-17 EP EP11776579.2A patent/EP2630476B1/en not_active Not-in-force
- 2011-10-17 JP JP2013534424A patent/JP6060082B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN103168228A (zh) | 2013-06-19 |
US9861330B2 (en) | 2018-01-09 |
WO2012052900A1 (en) | 2012-04-26 |
EP2630476B1 (en) | 2017-12-13 |
EP2630476A1 (en) | 2013-08-28 |
CN103168228B (zh) | 2015-11-25 |
BR112013009253A2 (pt) | 2019-09-24 |
JP6060082B2 (ja) | 2017-01-11 |
JP2013540031A (ja) | 2013-10-31 |
RU2572644C2 (ru) | 2016-01-20 |
US20130202081A1 (en) | 2013-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2013122847A (ru) | Формирование дифференциальных фазово-контрастных изображений | |
RU2013122887A (ru) | Формирование изображений методом дифференциального фазового контраста | |
Blake et al. | The 2-degree Field Lensing Survey: design and clustering measurements | |
Sabbi et al. | Hubble Tarantula Treasury Project. III. Photometric catalog and resulting constraints on the progression of star formation in the 30 Doradus region | |
RU2014134452A (ru) | Мультинаправленная фазоконтрастная рентгеновская визуализация | |
EP2633813A4 (en) | PHASE CONTRAST RADIATION IMAGE DEVICE | |
CN107850680B (zh) | 用于相位对比和/或暗场成像的x射线探测器 | |
Lites et al. | The SP_PREP data preparation package for the Hinode spectro-polarimeter | |
Plewa et al. | Pinpointing the near-infrared location of Sgr A* by correcting optical distortion in the NACO imager | |
JP2014121607A5 (ru) | ||
US10729397B2 (en) | X-ray phase contrast and dark-field information extraction with electric fringe scanning and/or active pixel processing | |
RU2014103625A (ru) | Устройство формирования изображений методом фазового контраста | |
He et al. | Mapping two-dimensional deformation field time-series of large slope by coupling DInSAR-SBAS with MAI-SBAS | |
RU2013141214A (ru) | Формирование дифференциальных фазо-контрастных изображений с увеличенным динамическим диапазоном | |
RU2011151625A (ru) | Дифракционная решетка для получения изображений методом фазового контраста | |
WO2016074864A1 (en) | System for obtaining quantitative x-ray images using hilbert transform on imaged fringes | |
Neelmeijer et al. | Estimating spatial and temporal variability in surface kinematics of the inylchek glacier, central Asia, using TerraSAR–X data | |
Shkvarko et al. | Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems | |
Pesta et al. | Radiometric non-uniformity characterization and correction of landsat 8 oli using earth imagery-based techniques | |
Vollrath et al. | Decomposing DInSAR time-series into 3-D in combination with GPS in the case of low strain rates: An application to the Hyblean Plateau, Sicily, Italy | |
Elfadaly et al. | Discovering potential settlement areas around archaeological tells using the integration between historic topographic maps, optical, and radar data in the northern Nile Delta, Egypt | |
Lazecký et al. | Displacements monitoring over Czechia by IT4S1 System for Automatised Interferometric measurements using sentinel-1 data | |
Denker et al. | Image quality in high-resolution and high-cadence solar imaging | |
Wang et al. | Retrieving three-dimensional co-seismic deformation of the 2017 Mw7. 3 Iraq earthquake by multi-sensor SAR images | |
Kim et al. | A high full well capacity CMOS image sensor for space applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20161018 |