WO2011114845A1 - X線撮影システム - Google Patents

X線撮影システム Download PDF

Info

Publication number
WO2011114845A1
WO2011114845A1 PCT/JP2011/053904 JP2011053904W WO2011114845A1 WO 2011114845 A1 WO2011114845 A1 WO 2011114845A1 JP 2011053904 W JP2011053904 W JP 2011053904W WO 2011114845 A1 WO2011114845 A1 WO 2011114845A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
ray
slit
image
grating
Prior art date
Application number
PCT/JP2011/053904
Other languages
English (en)
French (fr)
Inventor
木戸 一博
千穂 巻渕
淳子 清原
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2012505580A priority Critical patent/JP5900324B2/ja
Priority to US13/635,189 priority patent/US8989474B2/en
Publication of WO2011114845A1 publication Critical patent/WO2011114845A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/548Remote control of the apparatus or devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4423Constructional features of apparatus for radiation diagnosis related to hygiene or sterilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/406Imaging fluoroscopic image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/612Specific applications or type of materials biological material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Definitions

  • the present invention relates to an X-ray imaging system using a Talbot-Lau interferometer.
  • phase contrast imaging is performed in which X-ray images with high visibility are obtained by edge enhancement using X-ray refraction during magnified imaging (see, for example, Patent Documents 1 and 2).
  • the absorption contrast method is effective for photographing a subject with large X-ray absorption such as bone.
  • the phase contrast method has a small X-ray absorption difference and can image breast tissue, articular cartilage, and soft tissue around the joint, which are difficult to appear as an image by the absorption contrast method. Application to diagnosis is expected.
  • the Talbot effect is a phenomenon in which, when coherent light is transmitted through a first grating provided with slits at a certain period, the grating image is formed at a certain period in the light traveling direction. This lattice image is called a self-image, and the Talbot interferometer arranges a second grating at a position connecting the self-images, and measures interference fringes (moire) generated by slightly shifting the second grating. If an object is placed in front of the second grating, the moire is disturbed.
  • the object is placed in front of the first grating and irradiated with coherent X-rays. It is possible to obtain a reconstructed image of the subject by calculating a moire image.
  • a Talbot-Lau interferometer has been proposed in which a multi-slit is installed between the X-ray source and the first grating to increase the X-ray irradiation dose (see, for example, Patent Document 6).
  • a conventional Talbot-Lau interferometer takes a plurality of moire images at a constant interval while moving the first grating or the second grating (relatively moving both gratings). Is provided for the increase of
  • an image equivalent to the reconstructed image obtained by the conventional method can be obtained by moving the multi slit with respect to the first grating and the second grating in the Talbot-Lau interferometer.
  • the application was filed in Japanese Patent Application 2009-214483 (PCT / JP2010 / 53978).
  • the interference fringes of the individual moire images used to generate the reconstructed image are not only clear, but also the number of interference fringes. It is known that it is also necessary to reduce the amount (see, for example, Non-Patent Document 1 (page 15)).
  • the first grating and the second grating are interposed between the subject and the X-ray detector. It is necessary to arrange so that the slit longitudinal direction (referred to as the slit direction) of the second grating is optimal. Moreover, it is necessary to adjust the slit direction of the multi slit along with the slit directions of the first grating and the second grating. However, if the slit directions of the first grating and the second grating are fixed, the patient is required to have a painful posture.
  • the X-ray source is not an ideal point light source and due to manufacturing variations of the multi slit and each grating Due to the existence of dimensional errors and their interaction, the X-ray distribution varies depending on the slit direction of the multi-slit and each grating at the time of imaging, making it impossible to generate a high-resolution reconstructed image. This is necessary.
  • the relative positions of the first and second gratings are used to optimize the number of interference fringes and the sharpness of the interference fringes in the moire image. It is necessary to adjust the relationship and the slit direction of the multi slit with respect to the first grating and the second grating. However, adjustment that optimizes both the number of interference fringes and the sharpness of the interference fringes in a moire image is not easy, and requires a considerable amount of time for adjustment.
  • the adjustment mechanism for the slit direction is enlarged and the apparatus configuration is complicated. This is not preferable.
  • An object of the present invention is to eliminate the influence on the image quality of a reconstructed image that occurs when an X-ray imaging apparatus using a Talbot-Lau interferometer is used for imaging by changing the slit direction of a multi slit or each grating, It is to provide a good reconstructed image for diagnosis.
  • An X-ray source that emits X-rays;
  • a multi-slit composed of a plurality of slits arranged in a direction orthogonal to the X-ray irradiation axis direction;
  • a first grating and a second grating configured by arranging a plurality of slits in a direction orthogonal to the X-ray irradiation axis direction;
  • a conversion element that generates an electrical signal in accordance with the irradiated X-rays is arranged in a two-dimensional manner, and includes an X-ray detector that reads the electrical signal generated by the conversion element as an image signal, Irradiated by the X-ray source every time the multi-slit moves in the slit arrangement direction in the slit arrangement direction or every relative movement of the first grating and the second grating in the slit arrangement direction.
  • An X-ray imaging system in which the X-ray detector repeats the process of reading an image signal in accordance with X-rays, performs imaging a plurality of times, and creates a reconstructed image of the subject based on the obtained plurality of moire images.
  • a signal value difference caused by variation in X-ray intensity at the time of photographing between a plurality of moire images with a subject photographed by placing the subject on the subject table is corrected, and a plurality of moire images with the subject are corrected.
  • Diagnostic image creating means for creating a diagnostic subject reconstructed image based on a plurality of corrected moire images with a subject and a plurality of corrected moire images without a subject after correction.
  • the diagnostic image creation means includes: A signal value difference caused by variation in X-ray intensity at the time of photographing between a plurality of moire images with a subject photographed by placing the subject on the subject table is corrected, and the plurality of moire images after the correction are corrected.
  • the X-ray imaging system includes: Detecting means for detecting an X-ray irradiation amount in each of a plurality of times of photographing with and without the subject,
  • the reconstructed image creation means with subject is based on the X-ray irradiation amount at the time of photographing with the subject detected by the detecting means, and the X-ray intensity at the time of photographing between the plurality of moire images with the subject.
  • Correct signal value differences caused by fluctuations The subject-free reconstructed image creating means determines the X-ray intensity at the time of photographing between the plurality of moire images without the subject based on the X-ray irradiation amount at the time of photographing without the subject detected by the detecting means. It is preferable to correct the signal value difference caused by the fluctuation.
  • the X-ray imaging system includes: A grating assembly in which a relative positional relationship between the first grating and the second grating is fixed and fixed in advance; Grid assembly rotating means for rotating the grid assembly about an X-ray irradiation axis to adjust the slit direction of the grid assembly relative to the subject; Multi-slit rotating means for rotating the multi-slit around the X-ray irradiation axis according to the rotation of the grating assembly; It is preferable to provide.
  • the relative positional relationship between the first grating and the second grating is adjusted in advance so that either the sharpness of the interference fringes of the moire image or the number of interference fringes satisfies a predetermined criterion. It is preferable that they are fixed.
  • the X-ray imaging system includes:
  • the multi-slit rotation means rotates the multi-slit around the X-ray irradiation axis according to the rotation of the lattice assembly, thereby adjusting in advance in the lattice assembly among the sharpness of the interference fringes of the moire image or the number of interference fringes. It is preferable to provide control means for adjusting the remaining one that is not.
  • the X-ray imaging system includes: Refractive index adjustment means for reducing the X-ray refractive index difference between the subject surface in the X-ray irradiation direction corresponding to the region of interest inside the subject and the surrounding area from the X-ray refractive index difference between the region of interest and the surrounding area. Is preferred.
  • an X-ray imaging apparatus using a Talbot-Lau interferometer when imaging is performed by changing the slit direction of each grating of a multi-slit or grating assembly, it is caused by these manufacturing variations. It is possible to remove the influence on the image quality of the reconstructed image that is likely to occur, and to provide a reconstructed image that is favorable for diagnosis regardless of the manufacturing variation of the slit.
  • FIG. 1 is a diagram showing an X-ray imaging system (including a side view of an X-ray imaging apparatus) according to first and second embodiments. It is a top view of a multi slit. It is the top view and side view of the state which hold
  • FIG. 29A It is a figure which shows the reconstruction image (differential phase image) obtained by putting the above-mentioned bird wing in water and image
  • FIG. 37 is a plan view of the X-ray imaging apparatus shown in FIG. 36. It is a figure which shows an example of the X-ray imaging apparatus of a structure which rotates an X-ray source, a multi slit, and a grating
  • FIG. 1 shows an X-ray imaging system according to this embodiment.
  • the X-ray imaging system includes an X-ray imaging apparatus 1 and a controller 5.
  • the X-ray imaging apparatus 1 performs X-ray imaging using a Talbot-Lau interferometer, and the controller 5 creates a reconstructed image of the subject using the moire image obtained by the X-ray imaging.
  • the X-ray imaging apparatus 1 will be described as an apparatus that images a finger as a subject, but is not limited to this.
  • the X-ray imaging apparatus 1 includes an X-ray source 11, a multi-slit 12, a subject table 13, a first grating 14, a second grating 15, an X-ray detector 16, a holding part 17, and a body part 18. Etc.
  • the X-ray imaging apparatus 1 is a vertical type, and an X-ray source 11, a multi slit 12, a subject table 13, a first grating 14, a second grating 15, and an X-ray detector 16 are arranged in this order in the z direction, which is the gravitational direction. Placed in.
  • the distance between the focal point of the X-ray source 11 and the multi-slit 12 is d 1 (mm)
  • the distance between the focal point of the X-ray source 11 and the X-ray detector 16 is d 2 (mm)
  • the distance between the multi-slit 12 and the first grating 14 is represented by d3 (mm)
  • the distance between the first grating 14 and the second grating 15 is represented by d4 (mm).
  • the distance d1 is preferably 5 to 500 (mm), more preferably 5 to 300 (mm).
  • the distance d2 is preferably at least 3000 (mm) or less since the height of the radiology room is generally about 3 (m) or less.
  • the distance d2 is preferably 400 to 5000 (mm), and more preferably 500 to 2000 (mm).
  • the distance (d1 + d3) between the focal point of the X-ray source 11 and the first grating 14 is preferably 300 to 5000 (mm), and more preferably 400 to 1800 (mm).
  • the distance (d1 + d3 + d4) between the focal point of the X-ray source 11 and the second grating 15 is preferably 400 to 5000 (mm), more preferably 500 to 2000 (mm).
  • Each distance may be set by calculating an optimum distance at which the lattice image (self-image) by the first lattice 14 overlaps the second lattice 15 from the wavelength of the X-rays emitted from the X-ray source
  • the X-ray source 11, the multi slit 12, the subject table 13, the first grating 14, the second grating 15, and the X-ray detector 16 are integrally held by the same holding unit 17 and the positional relationship in the z direction is fixed. ing.
  • the holding portion 17 is formed in a C-shaped arm shape, and is attached to the main body portion 18 so as to be movable (up and down) in the z direction by a driving portion 18 a provided in the main body portion 18.
  • the X-ray source 11 is held via a buffer member 17a. Any material may be used for the buffer member 17a as long as it can absorb shocks and vibrations, and examples thereof include an elastomer. Since the X-ray source 11 generates heat upon irradiation with X-rays, it is preferable that the buffer member 17a on the X-ray source 11 side is additionally a heat insulating material.
  • the X-ray source 11 includes an X-ray tube, generates X-rays from the X-ray tube, and irradiates the X-rays in the z direction (gravity direction).
  • X-ray tube for example, a Coolidge X-ray tube or a rotary anode X-ray tube widely used in the medical field can be used.
  • anode tungsten or molybdenum can be used.
  • the focal diameter of the X-ray is preferably 0.03 to 3 (mm), more preferably 0.1 to 1 (mm).
  • the multi slit 12 is a diffraction grating, and a plurality of slits are arranged at predetermined intervals as shown in FIG. 2A.
  • the plurality of slits are arranged in a direction (indicated by white arrows in FIG. 2A) orthogonal to the X-ray irradiation axis direction (z direction in FIG. 1).
  • the multi-slit 12 is formed on a substrate having a low X-ray absorption rate such as silicon or glass by using a material having a high X-ray shielding power such as tungsten, lead, or gold, that is, a high X-ray absorption rate.
  • the resist layer is masked in a slit shape by photolithography, and UV is irradiated to transfer the slit pattern to the resist layer.
  • a slit structure having the same shape as the pattern is obtained by exposure, and a metal is embedded between the slit structures by electroforming to form a multi-slit 12.
  • the slit period of the multi slit 12 is 1 to 60 ( ⁇ m). As shown in FIG. 2A, the slit period is defined as a period between adjacent slits.
  • the width of the slit (the length of each slit in the slit arrangement direction) is 1 to 60 (%) of the slit period, and more preferably 10 to 40 (%).
  • the height of the slit (the height in the z direction) is 1 to 500 ( ⁇ m), preferably 1 to 150 ( ⁇ m).
  • the multi slit 12 is held by a holder 12b having a rack 12a as shown in FIG. 2B.
  • the rack 12 a is provided with a rack 12 a in the slit arrangement direction of the multi slit 12.
  • the rack 12a engages with a pinion 122c of a driving unit 122 described later, and moves the multi slit 12 held by the holder 12b in the slit arrangement direction according to the rotation (phase angle) of the pinion 122c.
  • the X-ray imaging apparatus 1 is provided with a multi-slit rotating unit 121 and a driving unit 122.
  • the multi-slit rotating unit 121 rotates the multi-slit 12 held by the holder 12b around the X-ray irradiation axis in accordance with the rotation (phase angle) of the first grating 14 and the second grating 15 around the X-ray irradiation axis.
  • the drive unit 122 is a mechanism for moving the multi-slit 12 in the slit arrangement direction for photographing a plurality of moire images.
  • FIG. 3 shows a plan view and a cross-sectional view taken along line AA ′ of the multi-slit rotating unit 121 and the driving unit 122.
  • the multi-slit rotating unit 121 includes a motor unit 121a, a gear unit 121b, a gear unit 121c, a support unit 121d, and the like.
  • the motor part 121a, the gear part 121b, and the gear part 121c are held by the holding part 17 via the support part 121d.
  • the motor unit 121a is a pulse motor that can be switched to microstep driving, and is driven in accordance with control from the control unit 181 (see FIG. 11), and the gear unit 121c is moved to the X-ray irradiation axis (see FIG. 11) via the gear unit 121b. 3) (represented by a dashed line R in FIG. 3).
  • the gear part 121c has an opening part 121e for mounting the multi slit 12 held by the holder 12b. By rotating the gear part 121c, the multi slit 12 mounted on the opening 121e can be rotated around the X-ray irradiation axis, and the slit arrangement direction of the multi slit 12 can be varied.
  • the opening 121e has a shape and size that allows the multi slit 12 held by the holder 12b to be fitted from above.
  • the size W4 of the opening 121e in the slit arrangement direction is slightly larger than the size W2 of the holder 12b in the slit arrangement direction, and the multi-slit 12 can be slid in the slit arrangement direction.
  • the size W3 in the direction orthogonal to the slit arrangement direction in the opening 121e is a dimension that allows precise fitting with the size W1 in the direction orthogonal to the slit arrangement direction in the holder 12b, and the holder 12b is attached to the opening 121e. Then, the rack 12a provided in the holder 12b is disposed outside the opening 121e so as to be engageable with a pinion 122c described later.
  • the drive unit 122 includes a precision reducer that moves the multi slit 12 in the slit arrangement direction in units of several ⁇ m.
  • the drive unit 122 includes a motor unit 122a, a gear unit 122b, a pinion 122c, and the like, and is fixed to the gear unit 121c of the multi-slit rotating unit 121 by an L-shaped sheet metal (not shown).
  • the multi slit 12 and the drive part 122 are rotated integrally.
  • the motor unit 122a is driven in accordance with control from the control unit 181 and rotates the pinion 122c via the gear unit 122b.
  • the pinion 122c engages with the rack 12a of the multi slit 12 and rotates to move the multi slit 12 in the slit arrangement direction.
  • the subject table 13 is a table for placing a finger as a subject.
  • the subject table 13 is preferably provided at a height at which the patient's elbow can be placed. In this way, by being configured to be placed up to the patient's elbow, the patient can have a comfortable posture, and the movement of the imaging part of the fingertip can be reduced during imaging for a relatively long time.
  • the subject table 13 is provided with a subject holder 130 for fixing the subject.
  • the subject holder 130 is a plate-like member having an elliptical shape 131 such as a mouse that can be easily grasped by the palm.
  • the elliptical shape 131 is a gentle convex curved surface of the palm size, as shown in FIG. 4B, and the patient grasps the elliptical shape 131 with the palm. The downward movement of the subject can be suppressed while the subject is less tired.
  • the subject holder 130 When the subject holder 130 has a non-uniform shape or thickness of X-ray transmittance depending on the location, the X-ray dose reaching the X-ray detector 16 is due to the non-uniform X-ray transmittance of the subject holder 130. Unevenness occurs.
  • An inter-finger spacer 133 is preferably provided on the subject holder 130 in order to further stabilize the subject posture.
  • the subject holder 130 is created according to the shape of the palm for each patient, and the subject holder 130 for the patient is magnetized on the subject table 13 at the time of photographing. It is preferable to attach by etc.
  • the subject holder 130 may be any resin (plastic) molding that can withstand the weight of the fingertip portion and the force pressed by the patient from above, and can be mass-produced at low cost. It is possible.
  • the first grating 14 is a diffraction grating provided with a plurality of slits arranged in a direction orthogonal to the z direction, which is the X-ray irradiation axis direction, like the multi-slit 12.
  • the first lattice 14 can be formed by photolithography using UV as in the case of the multi-slit 12, or a silicon substrate is deeply digged with a fine fine line by a so-called ICP method to form a lattice structure only with silicon. It is good as well.
  • the slit period of the first grating 14 is 1 to 20 ( ⁇ m).
  • the width of the slit is 20 to 70 (%) of the slit period, and preferably 35 to 60 (%).
  • the height of the slit is 1 to 100 ( ⁇ m).
  • the slit height (z-direction height) is a phase difference of ⁇ between the two materials forming the slit period, that is, the materials of the X-ray transmitting portion and the X-ray shielding portion. / 8 to 15 ⁇ ⁇ / 8.
  • the height is preferably ⁇ / 4 to 3 ⁇ ⁇ / 4.
  • the height of the slit is set to a height at which X-rays are sufficiently absorbed by the X-ray shielding part.
  • the second grating 15 is a diffraction grating provided with a plurality of slits arranged in a direction orthogonal to the z direction, which is the X-ray irradiation axis direction, like the multi-slit 12.
  • the second grating 15 can also be formed by photolithography.
  • the slit period of the second grating 15 is 1 to 20 ( ⁇ m).
  • the width of the slit is 30 to 70 (%) of the slit period, and preferably 35 to 60 (%).
  • the height of the slit is 1 to 100 ( ⁇ m).
  • each of the first grating 14 and the second grating 15 has a grating plane perpendicular to the z direction (parallel in the xy plane), and the slit arrangement direction of the first grating 14 and the second grating 15.
  • the slit arrangement direction is parallel to the xy plane or inclined by a predetermined angle within a range of 0 ° to 5 °.
  • they are disposed at a predetermined angle (0.3 ° to 0.5 °) in the xy plane.
  • the multi-slit 12, the first grating 14, and the second grating 15 can be configured as follows, for example.
  • Focal diameter of X-ray tube of X-ray source 11 300 ( ⁇ m), tube voltage: 40 (kVp), additional filter: aluminum 1.6 (mm)
  • Distance d1 from the focal point of the X-ray source 11 to the multi slit 12 240 (mm)
  • Multi slit 12 size 10 (mm square), slit period: 22.8 ( ⁇ m) Size of the first grating 14: 50 (mm square), slit period: 4.3 ( ⁇ m) Size of the second grating 15: 50 (mm square), slit period: 5.3 ( ⁇ m)
  • the first grating 14 and the second grating 15 constitute a grating assembly 200 whose relative positional relationship is fixed in advance by a spacer (fixing member) 201 and a holder 202, as shown in FIG. Yes.
  • FIG. 5 shows a plan view of the grating assembly 200 and a cross-sectional view taken along the line BB ′ of the grating assembly 200.
  • FIG. 6 shows a change in the moire image when the relative angle between the first grating 14 and the second grating 15 is changed from an appropriate position (design value).
  • the relative angle between the first grating 14 and the second grating 15 is adjusted so that a moire image with the smallest number of interference fringes can be obtained like the moire image surrounded by a frame in FIG. .
  • the operator has no moire image (zero interference fringes) as shown in FIG.
  • first grating 14 or the second grating 15 itself has periodic unevenness (unevenness caused by manufacturing variation), even if the adjusted relative angle is appropriate, moire is partially found. Will occur. Therefore, although the operator is in the proper position, the operator adjusts the position again, requiring man-hours (time) for the adjustment. In the worst case, it is determined that the adjustment is poor. On the other hand, the number of interference fringes can be easily confirmed by the operator, and considering the adjustment man-hours, a configuration in which the first grating and the second grating are slightly tilted is preferable.
  • the X-ray imaging apparatus 1 is provided with a lattice assembly rotating unit 210 (see FIG. 8).
  • the Talbot interferometer and the Talbot-low interferometer have a characteristic that a structure extending linearly in parallel with the slit direction of the first grating 14 and the second grating 15 cannot be photographed clearly. Therefore, it is necessary to adjust the angle of the slit direction of the first grating 14 and the second grating 15 in accordance with the arrangement direction of the structure to be noticed by the subject.
  • the grating assembly rotating unit 210 rotates the grating assembly 200 around the X-ray irradiation axis, and adjusts the angle of the slit direction of the grating assembly 200 with respect to the arrangement direction of the structure to be observed of the subject.
  • FIG. 8 shows a plan view and a DD ′ sectional view of the lattice assembly rotating unit 210.
  • the lattice assembly rotating unit 210 includes a handle 211 and a rotating tray 212.
  • the handle 211 is a protrusion for an operator such as a photographic engineer to manually rotate the rotating tray 212 around an X-ray irradiation axis (indicated by a dashed line R in FIG. 8).
  • the rotating tray 212 rotates by rotating the rotating tray 212 by engaging with an opening 212a for mounting the lattice assembly 200 and a ball (see FIGS. 9A and 9B) biased by a spring of a tray fixing member 171b described later.
  • Recesses 212b to 212e for fixing the angle are provided.
  • the opening 212a has a shape and size that allows the lattice assembly 200 to be fitted from above, and the rotation assembly 212 rotates the lattice assembly 200 attached to the opening 212a around the X-ray irradiation axis. Can be rotated.
  • the recesses 212b to 212e are positions at a predetermined rotation angle (here, the position where the recess 212b faces the ball of the tray fixing member 171b is a 0 ° position) (here, the position where the recess 212b faces the ball of the tray fixing member 171b). (0 °, 30 °, 60 °, 90 °).
  • the position (angle) of the lattice assembly 200 when the rotating tray 212 is set to 0 ° is set as the home position of the lattice assembly 200.
  • the position (angle) at which the slit direction of the first grating 14 and the slit direction of the multi slit 12 are parallel when the grating assembly 200 is at the home position is defined as the home position of the multi slit 12.
  • FIG. 9A is an enlarged plan view showing the holding portion 171 of the lattice assembly rotating unit 210 in the holding unit 17, and FIG. 9B is a cross-sectional view taken along line EE ′ in FIG. 9A.
  • FIG. 9C is a diagram illustrating a state in which the lattice assembly rotating unit 210 is held by the holding unit 17.
  • the holding portion 171 has a size that can be precisely fitted to the rotating tray 212, and an opening 171a that rotatably holds the rotating tray 212, and the rotation angle of the rotating tray 212.
  • a tray fixing member 171b for fixing.
  • the space between the bottom of the opening 171a and the mounting portion of the X-ray detector 16 is preferably hollow or made of aluminum or carbon having a high X-ray transmittance so as not to prevent the transmission of X-rays.
  • the tray fixing member 171b guides the ball in the direction of the arrow in FIGS. 9A and 9B.
  • a slide guide (a guide of a pressing spring) (not shown) is used.
  • the slide guide of the tray fixing member 171b causes the ball to engage with the facing recess and
  • the angle detection sensor (any of SE1 to SE4) provided detects the engagement of the ball and outputs a detection signal to the control unit 181.
  • the control unit 181 can detect the rotation angle of the lattice assembly 200 from the home position.
  • the first grating 14 and the second grating 15 may be circular as shown in FIG.
  • the area in which the subject can be photographed differs depending on the arrangement angle of these grids with respect to the subject, but if it is circular, the subject can be photographed at any angle. Can be made constant.
  • a mounting portion 212f of the X-ray detector 16 is provided below the opening 212a of the rotating tray 212 so that the lattice assembly 200 and the X-ray detector 16 can be rotated together. It may be.
  • the vertical and horizontal sharpness of the reconstructed image is not affected by the influence of the anisotropy of the vertical and horizontal sharpness anisotropy of the X-ray detector 16 (the influence of the pixel size and aperture ratio). Regardless of the rotation angle of the assembly 200, it can be substantially constant.
  • the X-ray detector 16 includes two-dimensionally arranged conversion elements that generate electric signals according to the irradiated X-rays, and reads the electric signals generated by the conversion elements as image signals.
  • the pixel size of the X-ray detector 16 is 10 to 300 ( ⁇ m), more preferably 50 to 200 ( ⁇ m).
  • the position of the X-ray detector 16 is fixed to the holding unit 17 so as to contact the second grating 15. This is because the moire image obtained by the X-ray detector 16 becomes blurred as the distance between the second grating 15 and the X-ray detector 16 increases.
  • an FPD Felat Panel Detector
  • the FPD includes an indirect conversion type in which X-rays are converted into electric signals by a photoelectric conversion element via a scintillator, and a direct conversion type in which X-rays are directly converted into electric signals. Any of these may be used.
  • photoelectric conversion elements are two-dimensionally arranged with TFTs (thin film transistors) under a scintillator plate such as CsI or Gd 2 O 2 to constitute each pixel.
  • TFTs thin film transistors
  • the scintillator plate emits light. Charges are accumulated in each photoelectric conversion element by the emitted light, and the accumulated charges are read as an image signal.
  • an amorphous selenium film having a film pressure of 100 to 1000 ( ⁇ m) is formed on glass by the thermal vapor deposition of amorphous selenium, and the amorphous selenium film and the electrode are arranged on a two-dimensionally arranged TFT array. Vapor deposited.
  • the amorphous selenium film absorbs X-rays, a voltage is released in the material in the form of electron-hole pairs, and a voltage signal between the electrodes is read by the TFT.
  • imaging means such as a CCD (Charge Coupled Device) or an X-ray camera may be used as the X-ray detector 16.
  • the FPD is reset to remove unnecessary charges remaining after the previous photographing (reading). Thereafter, charges are accumulated at the timing when the X-ray irradiation starts, and the charges accumulated at the timing when the X-ray irradiation ends are read as an image signal. Note that dark reading is performed to detect the voltage value of the accumulated charge immediately after resetting or after reading the image signal.
  • the main body unit 18 includes a control unit 181, an operation unit 182, a display unit 183, a communication unit 184, and a storage unit 185.
  • the control unit 181 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), and the like, and executes various processes in cooperation with a program stored in the storage unit 185. For example, the control unit 181 executes various processes including an imaging control process A described later.
  • the operation unit 182 includes a touch panel configured integrally with the display of the display unit 183 in addition to a key group used for input operations such as an exposure switch and an imaging condition, and generates an operation signal corresponding to these operations to generate a control unit. It outputs to 181.
  • the display unit 183 displays the operation screen, the operation status of the X-ray imaging apparatus 1 and the like on the display according to the display control of the control unit 181.
  • the communication unit 184 includes a communication interface and communicates with the controller 5 on the network. For example, the communication unit 184 transmits the moire image read by the X-ray detector 16 and stored in the storage unit 185 to the controller 5.
  • the storage unit 185 stores a program executed by the control unit 181 and data necessary for executing the program.
  • the storage unit 185 stores the moire image obtained by the X-ray detector 16.
  • the controller 5 controls the imaging operation of the X-ray imaging apparatus 1 according to the operation by the operator, and creates a diagnostic subject reconstruction image using a plurality of moire images obtained by the X-ray imaging apparatus 1.
  • the controller 5 is used as an image processing apparatus that creates a reconstructed image of a subject.
  • a dedicated image processing apparatus that performs various image processing on an X-ray image is connected to the X-ray imaging apparatus 1.
  • the reconstructed image may be created by the image processing apparatus.
  • the controller 5 includes a control unit 51, an operation unit 52, a display unit 53, a communication unit 54, and a storage unit 55.
  • the control unit 51 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), and the like.
  • the control unit 51 includes a diagnostic image creation process A described later. Perform various processes.
  • the operation unit 52 includes a keyboard having cursor keys, numeric input keys, various function keys, and the like, and a pointing device such as a mouse, and includes a key pressing signal pressed by the keyboard and an operation signal by the mouse. Is output to the control unit 51 as an input signal. It is good also as a structure provided with the touchscreen comprised integrally with the display of the display part 53, and producing
  • the display unit 53 includes, for example, a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display), and the operation screen and the operation status of the X-ray imaging apparatus 1 according to the display control of the control unit 51.
  • a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display)
  • the operation screen and the operation status of the X-ray imaging apparatus 1 according to the display control of the control unit 51.
  • the created subject reconstructed image or the like is displayed.
  • the communication unit 54 includes a communication interface, and communicates with the X-ray imaging apparatus 1 and the X-ray detector 16 on the network by wire or wirelessly. For example, the communication unit 54 transmits imaging conditions and control signals to the X-ray imaging apparatus 1 and receives a moire image from the X-ray imaging apparatus 1 or the X-ray detector 16.
  • the storage unit 55 stores a program executed by the control unit 51 and data necessary for executing the program.
  • the storage unit 55 stores imaging order information indicating an order reserved by a RIS, HIS or the like or a reservation device (not shown).
  • the imaging order information is information such as a patient name, an imaging region, an imaging method, and the like.
  • the storage unit 55 stores the moire image obtained by the X-ray detector 16 and the diagnostic subject reconstructed image created based on the moire image in association with the imaging order information.
  • the storage unit 55 stores in advance gain correction data corresponding to the X-ray detector 16, a defective pixel map, and the like.
  • the imaging unit information is read from the storage unit 55 by the control unit 51 and displayed on the display unit 53.
  • imaging order information is specified by the operation unit 52 (when the X-ray detector 16 is a cassette type, a cassette ID that is identification information of a cassette used for imaging is further specified).
  • the imaging condition setting information according to the order information, the warm-up instruction of the X-ray source 11, etc. are transmitted to the X-ray imaging apparatus 1 by the communication unit 54.
  • the X-ray detector is a cable-less cassette type FPD device, it is activated from a sleep state for preventing internal battery consumption to a photographing enabled state.
  • the communication unit 184 receives imaging condition setting information from the controller 5, preparation for X-ray imaging is executed.
  • the second grating 15 is arranged in parallel at a position connecting the self-images, and the second grating 15 is slightly tilted from a position parallel to the grating direction of the first grating 14, and therefore the second grating 15.
  • a moire image M is obtained by the X-rays transmitted through.
  • the phase of the X-ray is shifted by the subject H, so that the interference fringes on the moire image M are bordered on the edge of the subject H as shown in FIG. 13. Disturbed.
  • the disturbance of the interference fringes can be detected by processing the moire image M, and the subject image can be imaged. This is the principle of the Talbot interferometer and Talbot low interferometer.
  • a multi-slit 12 is disposed near the X-ray source 11 between the X-ray source 11 and the first grating 14, and X-ray imaging using a Talbot-Lau interferometer is performed.
  • the Talbot interferometer is based on the premise that the X-ray source 11 is an ideal point source. However, since a focal point having a large focal diameter is used for actual imaging, it is as if a plurality of point sources are connected by the multi slit 12. Multiple light sources are used as if they were irradiated with X-rays. This is an X-ray imaging method using a Talbot-Lau interferometer, and a Talbot effect similar to that of a Talbot interferometer can be obtained even when the focal diameter is somewhat large.
  • the multi-slit 12 is used for the purpose of increasing the number of light sources and increasing the irradiation dose as described above.
  • the first grating 14 or the second grating 15 is used. Were moved relative to each other. However, in the present embodiment, the first grating 14 or the second grating 15 is not moved relatively, but the positions of the first grating 14 and the second grating 15 are fixed and the first grating 14 and the second grating 15 are fixed.
  • a plurality of moire images having a constant periodic interval are obtained.
  • 14A to 14B are flowcharts showing an imaging control process A executed by the control unit 181 of the X-ray imaging apparatus 1.
  • the imaging control process A is executed by cooperation of a program stored in the control unit 181 and the storage unit 185.
  • the X-ray imaging method using the Talbot-Lau interferometer described above is used for X-ray imaging
  • the fringe scanning method is used for reconstruction of the subject image.
  • the multi-slit 12 is moved by a plurality of steps at equal intervals, and imaging is performed for each step, and a moire image at each step is obtained.
  • the number of steps is 2 to 20, more preferably 3 to 10. From the viewpoint of obtaining a reconstructed image with high visibility in a short time, 5 steps are preferable (reference (1) K. Hibino, BFOreb and DIFarrant, Phase shifting for nonsinusoidal wave forms with phase-shift errors, J.Opt.Soc.Am.A, Vol.12, 761-768 (1995), reference (2) A.Momose, W.Yashiro, Y. Takeda, Y.Suzuki and T.Hattori, Phase Tomography by X -ray Talbot Interferometetry for biological imaging, Jpn. J. Appl. Phys., Vol.45, 5254-5262 (2006)).
  • the X-ray source 11 is switched to the warm-up state by the control unit 181 (step S1).
  • the grid assembly 200 is rotated in accordance with the operation of the operator, and the slit direction of the grid assembly 200 with respect to the subject is set (step S2). That is, an operator such as an imaging engineer rotates the handle 211 of the lattice assembly rotating unit 210 and sets the slit direction of the lattice assembly 200 according to the arrangement direction of the structure to be noted of the subject placed on the subject table 13. To do.
  • the motor unit 121a of the multi-slit rotating unit 121 is controlled by pulses according to the rotation angle of the grating assembly 200, and the multi-slit 12 is rotated according to the rotation angle of the grating assembly 200 (step S3).
  • the pulse motor of the motor unit 121a is controlled, and the rotation angle of the multi slit 12 from the home position is close to the rotation angle of the grating assembly 200 (for example, about 29 ° when the grating assembly 200 is set to 30 °). It is rotated at a stretch.
  • step S4 the motor unit 121a is switched to microstep precision control, and shooting is performed at a plurality of rotation angles while rotating the multi slit 12 little by little, and a plurality of moire images for adjustment are generated (step S4).
  • the multi-slit 12 is set to three rotation angles of 29.5 °, 30 °, and 30.5 °, and low X-rays are emitted from the X-ray source 11 to perform imaging. Thereby, three moire images for adjustment are acquired.
  • shooting is performed without placing the subject on the subject table 13.
  • the plurality of adjustment moire images that have been photographed are displayed side by side in association with the rotation angle of the multi slit 12 on the display unit 183 (step S5).
  • step S2 since the relative angle between the first grating 14 and the second grating 15 is adjusted at the time of shipment from the factory so that the number of interference fringes is minimized, in step S2, as shown in FIG.
  • the grating assembly 200 is rotated while maintaining the relative angle.
  • the sharpness of interference fringes ie, moire
  • FIG. 16 a moire image with high definition of interference fringes is obtained as the relative angle between the multi-slit 12 and the grating assembly 200 is smaller.
  • 16 is a view showing a moire image when the relative angle between the grating assembly 200 and the multi slit 12 is 0 °, 2 °, and 10 °. That is, as shown in FIG. 15, when the lattice assembly 200 is rotated by 30 °, the multi slit 12 is preferably rotated by 30 °. However, since the multi slit 12 is disposed in the vicinity of the X-ray source 11 that is a heat generating portion, it is easily affected by heat. Therefore, in consideration of deformation of the multi-slit 12, etc., not only the multi-slit 12 is rotated by the same angle as the grating assembly 200, but the motor unit 121a is micro-step driven to perform fine adjustment in steps S4 to S7. It is valid.
  • the operator observes the moire image displayed on the display unit 183 in step S5, and selects the rotation angle at which the interference fringes are clear as the rotation angle used for photographing.
  • the sharpness of the interference fringes is observed by the operator's visual observation, the sharpness indicating the degree of the sharpness of the interference fringes is set to a maximum value and a minimum value in a sine curve (see FIG. 22) described later.
  • MIN it can be expressed by the following formula.
  • step S6 When the rotation angle of the multi slit 12 is input by the operation unit 182 (step S6; YES), the motor unit 121a is re-driven so that the rotation angle from the home position of the multi slit 12 becomes the input rotation angle.
  • the position of the multi slit 12 is finely adjusted (step S7).
  • the multi-slit 12 After the rotation angle of the multi-slit 12 is adjusted, when the subject is placed on the subject table 13 and the exposure switch is turned on by the operator (step S8; YES), the multi-slit 12 is arranged in the slit arrangement direction by the drive unit 122. And a plurality of steps of photographing are executed, and a plurality of moire images with a subject are generated (step S9).
  • X-ray irradiation by the X-ray source 11 is started with the multi-slit 12 stopped.
  • the X-ray detector 16 accumulates charges in accordance with the timing of X-ray irradiation, and reads the accumulated charges as image signals in accordance with the timing of X-ray irradiation stop.
  • the movement of the multi-slit 12 is started at the timing when the photographing for one step is finished, stopped when the predetermined amount is moved, and the photographing of the next step is performed. In this manner, the movement and stop of the multi-slit 12 are repeated for a predetermined number of steps, and when the multi-slit 12 is stopped, X-ray irradiation and image signal reading are performed.
  • the read image signal is output to the main body 18 as a moire image.
  • the slit period of the multi-slit 12 is 22.8 ( ⁇ m), and five-step shooting is performed in 10 seconds. Shooting is performed every time the multi slit 12 moves and stops 4.56 ( ⁇ m) corresponding to 1/5 of the slit period.
  • the slit period of the second grating 15 is relatively small and the movement amount of each step is small, but the slit period of the multi slit 12 is the second. It is relatively larger than the grid 15 and the amount of movement at each step is also large.
  • the amount of movement of the second grating 15 with a slit period of 5.3 ( ⁇ m) per step is 1.06 ( ⁇ m)
  • the amount of movement of the multi-slit 12 with a slit period of 22.8 ( ⁇ m) is It is 4.56 ( ⁇ m), about four times as large.
  • a moving pulse motor (drive source)
  • the method of moving is smaller. This indicates that it is easy to obtain a moire image along a sine curve, which will be described later, and that a high-definition reconstructed image can be obtained even after repeated activation and stoppage.
  • the image based on the conventional method is sufficiently suitable for diagnosis, the accuracy of the entire drive transmission system including the motor (drive source) (especially, start characteristics and stop characteristics) is relaxed, and the components of the drive transmission system are reduced. This shows that the cost can be reduced.
  • the moire image of each step is transmitted from the communication unit 184 of the main body unit 18 to the controller 5 (step S10).
  • a moire image with a subject is transmitted from the main body 18 to the controller 5 one by one every time photographing of each step is completed.
  • dark reading is performed by the X-ray detector 16, and a dark image for correcting image data with a subject is acquired (step S11).
  • the dark reading is performed at least once.
  • the average value may be acquired as a dark image by performing multiple dark readings.
  • the dark image is transmitted from the communication unit 184 to the controller 5 (step S12).
  • the offset correction data based on the dark reading is commonly used for correcting each moire image signal.
  • the acquisition of the dark image may be performed by performing dark reading of the corresponding step after generating the moire image of each step and generating offset correction data dedicated to each step. If the shooting interval of each step is short and there is no room for offset correction, dark reading is performed only during the shooting of the first step to obtain an offset correction value, and the correction value is applied to shooting of the subsequent step. May be.
  • step S13 the operator waits for an ON operation of the exposure switch (step S13).
  • the operator removes the subject from the subject table 13 and retracts the patient so that a moire image without the subject can be created.
  • the exposure switch is pressed.
  • step S13 When the exposure switch is pressed (step S13; YES), the multi-slit 12 is moved in the slit arrangement direction by the drive unit 122, and a plurality of steps of photographing are executed without a subject, and a plurality of moire images without a subject are obtained. It is generated (step S14).
  • step S15 the moire image of each step is transmitted from the communication unit 184 of the main body unit 18 to the controller 5 (step S15).
  • a moire image without a subject is transmitted from the main body 18 to the controller 5 one by one by the communication unit 184 every time photographing of each step is completed.
  • dark reading is performed in the X-ray detector 16, and a dark image without a subject is acquired (step S16).
  • the dark reading is performed at least once.
  • the average value may be acquired as a dark image by performing multiple dark readings.
  • the dark image is transmitted from the communication unit 184 to the controller 5 (step S17), and a series of shootings for one shooting order is completed.
  • the acquisition of the dark image may be performed by performing dark reading of the corresponding step after generating the moire image of each step and generating offset correction data dedicated to each step.
  • the controller 5 when the moire image is received by the communication unit 54, the received moire image is stored in the storage unit 55 in association with the shooting order information specified at the start of shooting.
  • the controller 5 is not dedicated to the X-ray imaging apparatus 1 using a Talbot / interferometer, but as shown in FIG.
  • one image one image and one or several dark reading data for offset correction in some cases
  • the controller 5 transmits a plurality of moire images to the controller 5 each time an image is taken, an error occurs that there is no imaging order information associated with that image when the second and subsequent moire images are transmitted. There is a fear. Therefore, in such a system configuration, it is preferable to transmit a plurality of moire images (including dark images in some cases) to the controller 5 as a series of related image sets.
  • a cassette type FPD device is provided with a memory capable of temporarily storing a plurality of read data
  • the read data is sequentially stored in the memory every time shooting is performed, and is collectively transmitted after the last data is read. Can do.
  • the controller 5 recognizes that the modality information using the Talbot photographing device is included in the photographing order information
  • the controller 5 corresponds the read data transmitted from the cassette type FPD device for each photographing with the photographing order information.
  • the reconstructed image is stored in association with the imaging order information, and the read data that has been temporarily stored is deleted. It is also possible to configure as described above.
  • the X-ray detector 16 is a cassette type FPD device and the X-ray detector 16 directly transmits the read image to the controller 5 by wireless communication
  • the X-ray detector 16 When loaded in a modality such as the X-ray imaging apparatus 1, the control unit of these apparatuses cannot control the image transmission method. Therefore, (1) the cassette is provided with a transmission button for an operator to instruct transmission, and (2) the controller 5 designates the imaging order information by the operation unit 52 and also uses the modality and cassette used for imaging. An input of an ID is received, and an operation mode (general mode, Talbot mode) corresponding to the modality used for photographing is set by the control unit 51 for the designated cassette. (3) In Talbot mode, the cassette is If the transmission button is turned on by the engineer as a trigger, a series of related image sets stored in the cassette are transmitted, the image is transmitted to the controller 5 by a transmission method according to the modality. be able to.
  • FIG. 18 is a flowchart showing diagnostic image creation processing A executed by the control unit 51 of the controller 5 after receiving the moire image.
  • the diagnostic image creation process A is executed in cooperation with the control unit 51 and a program stored in the storage unit 55.
  • a reconstructed image creation process with a subject is executed, and a reconstructed image with a subject is created from a plurality of moire images with a subject (step S21).
  • a reconstructed image without a subject is executed, and a reconstructed image without a subject is created from a plurality of moire images without a subject (step S22).
  • a diagnostic subject reconstructed image is created (step S23).
  • the created subject reconstructed image is stored in the storage unit 55 in association with the designated shooting order information (step S24).
  • FIG. 19 is a flowchart showing the flow of the reconstructed image generation process with subject executed in step S21.
  • steps S201 to S203 a correction process for correcting variations in each pixel of the X-ray detector 16 is executed for a plurality of moire images with a subject. Specifically, offset correction processing (step S201), gain correction processing (step S202), and defective pixel correction processing (step S203) are executed.
  • step S201 offset correction processing
  • step S202 gain correction processing
  • step S203 defective pixel correction processing
  • the correction data for the gain correction processing does not require special adjustment for Talbot photography, and is performed using the tube for the standing bucky device or the tube for the standing bucky device. It may be obtained by typical gain calibration.
  • a cassette-type FPD device is generally expensive, and it is preferable because it can be shared with these general simple imaging devices in consideration of the introduction cost to a facility.
  • step S201 offset correction is performed on each moire image based on the dark image for correcting the image data with subject.
  • step S202 gain correction data corresponding to the X-ray detector 16 used for imaging is read from the storage unit 55, and gain correction is performed on each moire image based on the read gain correction data.
  • step S203 a defective pixel map (data indicating the defective pixel position) corresponding to the X-ray detector 16 used for imaging is read from the storage unit 55, and the position indicated by the defective pixel position map in each moire image is read. Pixel values (signal values) are interpolated and calculated by surrounding pixels.
  • step S204 X-ray intensity fluctuation correction (trend correction) is performed between the plurality of moire images.
  • X-ray intensity fluctuation correction trend correction
  • step S204 processing for correcting a signal value difference due to X-ray intensity fluctuations at the time of imaging in a plurality of moire images is performed.
  • a correction method using a signal value of a predetermined pixel of each moire image, a signal value difference in a predetermined direction of the X-ray detector 16 between each moire image is corrected ( Any one of a method for correcting one-dimensionally and a method for correcting a signal value difference in a two-dimensional direction between each moire image (two-dimensional correction) may be used.
  • a direct X outside the moire fringe region (subject placement region) 161 of the X-ray detector 16 is used for each of a plurality of moire images.
  • a signal value of a pixel at a predetermined position P corresponding to the line area is acquired.
  • the first moire image is normalized with the average signal value of the pixels at the acquired position P for the second and subsequent sheets, and each moire image for the second and subsequent sheets is based on the value of the normalized position P.
  • the correction coefficient is calculated.
  • the X-ray intensity fluctuation is corrected by multiplying the second and subsequent moire images by a correction coefficient.
  • detection means such as a sensor for detecting the X-ray irradiation amount is provided on the back side of the X-ray detector 16, and based on the X-ray irradiation amount at the time of capturing each moire image output from the detection means, It is also possible to correct the signal value difference caused by the X-ray intensity fluctuation at the time of imaging.
  • an average signal value of pixels in a predetermined row L1 (a row indicates a reading line direction in the X-ray detector 16) is calculated for each of a plurality of moire images.
  • the first moire image is normalized by the average signal value of the second and subsequent pixels, and two images are obtained based on the signal value of each pixel in the normalized row L1 and the second and subsequent rows L1.
  • a correction coefficient in the row direction of each moire image after the eye is calculated.
  • the X-ray intensity fluctuation in the row direction is corrected by multiplying the second and subsequent moire images by a correction coefficient corresponding to the position in the row direction.
  • the fluctuation of the X-ray intensity in the one-dimensional direction between each imaging can be easily corrected.
  • the X-ray intensity fluctuation in the reading line direction of the X-ray detector 16 and the like caused by this difference It can be corrected.
  • the two-dimensional correction In the two-dimensional correction, first, for each of a plurality of moire images, an average of pixels in each of a predetermined row L1 and column L2 (the column indicates a direction orthogonal to the reading line direction in the X-ray detector 16). A signal value is calculated. Next, the first moiré image is normalized by the average signal value of the pixels in the second and subsequent rows L1, and based on the signal values of the pixels in the normalized row L1 and the second and subsequent rows L1. The correction coefficient in the row direction of each of the second and subsequent moire images is calculated.
  • the first moire image is normalized by the average signal value of the pixels in the second and subsequent columns L2, and is based on the signal values of the respective pixels in the normalized column L2 and the second and subsequent columns L2.
  • the correction coefficients in the column direction of the second and subsequent moire images are calculated.
  • the correction coefficients for the pixels in the second and subsequent moire images are calculated by multiplying the correction coefficients in the row direction and the column direction.
  • the correction coefficients for the pixels in the second and subsequent moire images are calculated by multiplying the correction coefficients in the row direction and the column direction.
  • by multiplying each pixel by a correction coefficient in the row direction and the column direction fluctuations in X-ray intensity in the two-dimensional direction are corrected.
  • the fluctuation of the X-ray intensity in the two-dimensional direction between each imaging can be easily corrected.
  • step S205 the analysis of the moire image is performed (step S205), and it is determined whether or not it can be used to create a reconstructed image (step S206).
  • the multi-slit 12 can be moved with a constant feed amount with ideal feed accuracy, five moire images corresponding to one slit period of the multi-slit 12 can be obtained in five steps as shown in FIG. Since the moire image of each step is a result of stripe scanning at fixed intervals of 0.2 cycles, when attention is paid to any one pixel of each moire image, the X-ray relative intensity obtained by normalizing the signal value Draws a sine curve as shown in FIG. Therefore, the controller 5 obtains the X-ray relative intensity by paying attention to the pixel having the moire image obtained in each step.
  • the X-ray relative intensity obtained from each moire image forms a sine curve as shown in FIG. 22, it is determined that a moire image with a constant periodic interval is obtained and can be used to create a reconstructed image. be able to.
  • the sine curve shape depends on the opening width of the multi-slit 12, the period of the first grating 14 and the second grating 15, and the distance between the gratings of the first and second gratings. In the case of coherent light, it has a triangular wave shape, but the X-rays act as quasi-coherent light due to the multi-slit effect, thereby drawing a sine curve.
  • step S206 If there is a moire image in which a sine curve cannot be formed in the moire image in each step, it is determined that it cannot be used to create a reconstructed image (step S206; NO), and an instruction is given to change the shooting timing and reshoot.
  • Control information is transmitted from the controller 5 to the X-ray imaging apparatus 1 (step S207). For example, as shown in FIG. 22, if the third step is originally 0.4 cycle, and the cycle is shifted and a moiré image of 0.35 cycle is obtained, the feeding accuracy of the drive unit 122 is reduced. This is considered to be caused (for example, noise superimposition on the drive pulse of the pulse motor). Therefore, it suffices to instruct to re-shoot only the third step by advancing the shooting timing by 0.05 cycles.
  • the imaging timing is adjusted according to the control information, and re-imaging with the subject placed is executed.
  • a reconstructed image with a subject is created using a plurality of moiré images with a subject (step S208). For example, an intensity change (change in signal value) for each step is calculated for each pixel of a plurality of moire images, and a differential phase is calculated from the intensity change. If necessary, a phase connection (phase unwrapping) is performed to determine the phase of the entire step. The optical path difference in the z direction is calculated from the phase, and a reconstructed image representing the shape of the subject is created (reference documents (1) and (2) above).
  • the analysis of the moire image may be performed using an image before trend correction.
  • step S22 of FIG. 18 the same processing as that performed on the plurality of moire images with the subject in the above-described subject-with-reconstructed image creation processing is performed on the subject-less moire image. And a reconstructed image without a subject is created.
  • step S23 in FIG. 18 uses the reconstructed image without the subject to calculate the X-ray dose distribution resulting from the change of the slit direction of the multi-slit 12 or the grating assembly 200 from the reconstructed image with the subject.
  • Processing for removing image unevenness (artifact) including unevenness, unevenness of dose distribution due to manufacturing variation of the slit, and unevenness mainly due to reflection on the image of the subject holder 130 is included.
  • a diagnostic subject reconstructed image is created by the processing described in the following publicly known document (A) and publicly known document (B).
  • the signal value of each pixel of the reconstructed image with the subject is reconstructed without the subject, as described in publicly known document (C).
  • a division process is performed to divide by the signal value of the corresponding pixel of the image, and the result of this division process is obtained as a subject reconstructed image for diagnosis (known document (C); F. Pfeiffer, M. Bech, O Bunk, P. Kraft, EFEikenberry, CH. Broennimann, C. Grunzweig, and C. David, Hard-X-ray dark-field imaging using a grating interferometer, nature materials Vol.7, 134-137 (2008)).
  • the signal value of each pixel of the reconstructed image with the subject obtained in the process of creating the subject reconstructed image for diagnosis is reconstructed without the subject.
  • a process of correcting image unevenness by subtracting or dividing by the signal value of the corresponding pixel of the constituent image is included.
  • the storage unit 185 of the main body unit 18 stores a program for executing a shooting control process B described later.
  • the storage unit 55 of the controller 5 stores a program for executing diagnostic image creation processing B, which will be described later, rotation angles from the home positions of the multi-slit 12 and the grating assembly 200, and an X-ray detector used for imaging. Gain correction data corresponding to 16 combinations is stored in advance. Since the configuration of the other second embodiment is the same as that described with reference to FIGS. 1 to 12 in the first embodiment, the operation of the second embodiment will be described below.
  • FIG. 23 is a flowchart showing an imaging control process B executed by the control unit 181 of the X-ray imaging apparatus 1 in the second embodiment.
  • the step of step S6-1 is executed, and the processing of steps S13 to S17 shown in FIG. That is, it is different from the first embodiment in that shooting without a subject is not performed. That is, in the second embodiment, after the rotation angle of the multi-slit 12 is set, information on the rotation angle of the multi-slit 12 is transmitted to the controller 5 by the communication unit 184 and the subject is placed on the subject table 13. Shooting is performed.
  • the information on the rotation angle of the multi-slit 12 may be configured to be input by the operator of the controller 5 via the operation unit 52 instead of being transmitted from the X-ray imaging apparatus 1.
  • the operator presses the transmission button of the X-ray detector 16 and transmits the moire image stored in the X-ray detector 16.
  • the rotation angle of the multi slit 12 is input by the operation unit 52 of the controller 5.
  • FIG. 24 is a flowchart showing the reconstructed image creation process B executed by the control unit 51 of the controller 5 in the second embodiment. This process is executed in cooperation with the control unit 51 and the program stored in the storage unit 55.
  • a correction process for correcting variation of each pixel of the X-ray detector 16 is executed for a plurality of moire images received from the X-ray imaging apparatus 1. Specifically, offset correction processing (step S31), gain correction processing (step S32), and defective pixel correction processing (step S33) are executed.
  • the same processes as in steps S201 and S202 in FIG. 19 are performed.
  • the gain correction processing in step S32 the rotation angle from the home position of the multi slit 12 and the grating assembly 200, and gain correction data corresponding to the combination of the X-ray detector 16 used for imaging are read from the storage unit 55, Based on the read gain correction data, gain correction is performed on each moire image.
  • the gain correction data is an image obtained by uniformly irradiating a predetermined dose of X-rays without a subject and reading the X-ray detector 16.
  • step S34 X-ray intensity fluctuation correction (trend correction) between a plurality of moire images is performed (step S34).
  • the trend correction is the same as step S204 in FIG.
  • step S35 the moire image is analyzed (step S35), and it is determined whether the moire image can be used to create a reconstructed image (step S36).
  • the analysis in step S35 and the determination in step S36 are the same as in step S205 and step S206 in FIG.
  • the analysis of the moire image may be performed using an image before trend correction.
  • step S36 If there is a moiré image in which a sine curve cannot be formed in the moiré image at each step, it is determined that the moiré image cannot be used to create a reconstructed image (step S36; NO), and an instruction is given to change the shooting timing and reshoot.
  • Control information is transmitted from the controller 5 to the X-ray imaging apparatus 1 (step S37). In the X-ray imaging apparatus 1, the imaging timing is adjusted according to the control information, and re-imaging with the subject placed is executed.
  • a reconstructed image for diagnosis is created using the plurality of received moire images (step S37). For example, an intensity change (change in signal value) for each step is calculated for each pixel of a plurality of moire images, and a differential phase is calculated from the intensity change. If necessary, a phase connection (phase unwrapping) is performed to determine the phase of the entire step. The optical path difference in the z direction is calculated from the phase, and a reconstructed image representing the shape of the subject is created (reference documents (1) and (2) above).
  • gain correction data is prepared for each combination of rotation angles of the X-ray detector 16 and the multi-slit 12 in advance, and the X-ray detector 16 and the multi-slit 12 previously used for imaging are prepared.
  • the processing of the second embodiment is affected by variations in the characteristics of individual pixels of the X-ray detector 16, multiple X-ray detectors 16 that may be used in the X-ray imaging apparatus 1 are It is necessary to create gain correction data for each rotation angle of the slit 12. Further, if the arrangement direction of the X-ray detector 16 does not coincide with the time of creation of the gain correction data, proper correction cannot be performed, so the direction of the X-ray detector 16 rotates integrally with the multi-slit 12. It is preferable to adopt a configuration to do so.
  • FIG. 25 shows an X-ray imaging system according to the third embodiment.
  • the X-ray imaging system includes an X-ray imaging apparatus 2 and a controller 5.
  • the X-ray imaging apparatus 2 performs X-ray imaging using a Talbot-Lau interferometer, and the controller 5 creates a reconstructed image of the subject using the moire image obtained by the X-ray imaging.
  • the X-ray imaging apparatus 2 will be described as an apparatus that images a finger as a subject, but the present invention is not limited to this.
  • the X-ray imaging apparatus 2 includes an X-ray source 11, a multi slit 12, a drive unit 122, a subject table 13, a first grating 14, a second grating 15, an X-ray detector 16, and a holding unit 17. , A main body 18, a refractive index adjustment tank 19, and the like. That is, the refractive index adjustment tank 19 is added to the configuration of the X-ray imaging apparatus 1 described with reference to FIG. 1 in the first embodiment.
  • the refractive index adjustment tank 19 is a container placed on the subject table 13 and holds, for example, water therein as a liquid material that reduces the X-ray refractive index difference between the subject surface and the surroundings.
  • the storage unit 185 of the main body unit 18 stores a program for executing a shooting control process C described later.
  • the storage unit 55 of the controller 5 stores a program for executing a reconstructed image creation process shown in FIG.
  • the other configurations of the X-ray source 11, the multi-slit 12, the drive unit 122, the subject table 13, the first grating 14, the second grating 15, the X-ray detector 16, the holding unit 17, and the main body unit 18 Since it is the same as what was demonstrated in embodiment, description is used. In the present embodiment, it does not matter whether the multi-slit rotating unit 121 and the lattice assembly rotating unit 210 are provided. It does not matter whether the first grating 14 and the second grating 15 constitute a grating assembly.
  • the wavefront is distorted by the subject. This is because the X-ray propagation speed differs because the X-ray refractive index of the subject and the surroundings are different. Therefore, the larger the difference in the X-ray refractive index between the subject and its surroundings, the greater the wavefront distortion.
  • the larger the wavefront distortion the larger the differential phase value obtained. That is, in the reconstructed image of the subject, the larger the difference in the X-ray refractive index from the surroundings, the larger the signal value appears.
  • FIG. 26A shows a reconstructed image (differential phase image) obtained by photographing a bird wing in the air using a Talbot-Lau interferometer.
  • FIG. 26B shows a signal value profile at the position FF ′ in FIG. 26A.
  • a portion surrounded by a solid line in FIG. 26B corresponds to a skin portion (including a wrinkle) on the surface of the subject, and a portion surrounded by a dotted line corresponds to a region of interest inside the subject (soft tissue peripheral portion).
  • the skin portion of the subject surface has a large refractive index difference from the surrounding (air), the shape of the skin portion appears as a large signal value.
  • the region of interest (soft tissue peripheral portion) inside the subject has a small difference in refractive index from the surrounding area, the signal value indicating the region of interest (soft tissue peripheral portion) is small. If the skin (including wrinkles) on the surface of the subject and the region of interest inside the subject (soft tissue periphery) do not overlap in the z direction, the region of interest (soft tissue periphery) can be visually recognized even in air. It is.
  • the subject surface (X-ray incident side surface and emission side surface) in the X-ray irradiation direction corresponding to the region of interest inside the subject H (indicated by ROI in FIG. 27), that is, in FIG. If there is a shape change portion (indicated by ST in FIG. 27) on the surface of the subject indicated by an arrow, a signal value indicating a region of interest (ROI) and a shape change portion (ST) when the reconstructed image is observed.
  • a signal value indicating a region of interest (ROI) cannot be visually recognized due to superimposition with a larger signal value.
  • the surface of the subject is covered with a liquid material (indicated by W in FIG. 27) whose X-ray refractive index is substantially the same as that of the subject and has high adhesion to the subject surface.
  • a region that overlaps the region of interest in the reconstructed image that is, the subject surface in the X-ray irradiation direction (upward and downward) corresponding to the region of interest, as indicated by an arrow in FIG.
  • reducing the difference in the X-ray refractive index between the surface of the subject in the covered area and the surrounding area is smaller than the difference in X-ray refractive index between the region of interest and the surrounding area. Is important.
  • the imaging procedure of the present embodiment first covers the subject surface with a liquid material having an X-ray refractive index substantially equal to that of the subject surface and having high adhesion to the subject surface.
  • adjustment is performed to reduce the difference in the X-ray refractive index between the subject surface and the surrounding area from the X-ray refractive index difference between the region of interest and the surrounding area (step S41).
  • imaging is performed by irradiating the X-ray from the X-ray source 11 (step S42), and a reconstructed image is generated (step S43).
  • step S41 an object (here, a hand) is put into the refractive index adjustment tank 19 containing water here.
  • Water has an X-ray refractive index closer to the subject surface than air. If the hand is put in the water, the subject surface is covered with water, and the water is brought into close contact with the subject surface by water pressure. Therefore, the difference in X-ray refractive index between the subject surface and its surroundings is reduced.
  • water is the simplest, cheap, and safe as the liquid material covering the subject, but it is preferable to use water that has been devised to increase the patient's sense of security by adding fragrances, disinfectants, pigments, etc. to the water. Also good.
  • a liquid material that is closer to human flesh or body fluid, rather than water.
  • a hyaluronic acid solution a gelatin solution, a glycerin solution, a mannose solution, a rice juice, a starch powder, or the like can be used alone or in a solution with water.
  • FIG. 29A shows a reconstructed image (differential phase image) obtained by photographing a bird wing placed in water using a Talbot-Lau interferometer with the same subject arrangement as FIG. 29A.
  • FIG. 29B shows a signal profile at the position GG ′ in FIG. 29A.
  • the part surrounded by the solid line is the signal value of the pixel corresponding to the skin part of the subject surface.
  • a portion surrounded by a dotted line is a signal value of a pixel corresponding to a region of interest inside the subject (around the soft tissue).
  • the X-ray imaging apparatus 2 has a configuration in which the subject is pressed and fixed.
  • the refractive index adjustment tank 19 preferably has a floating cover 191 and is connected to the sub tank 193 via the pipe 192.
  • the refractive index adjustment tank 19 is filled with water while the sub tank 193 is kept at a position higher than the refractive index adjustment tank 19, and the subject is placed in water.
  • the sub tank 193 is moved to a predetermined position lower than the refractive index adjustment tank 19, and the water level is lowered to a position where the floating lid 192 presses the subject. In this way, by pressing and holding the subject with the floating lid 192, it is possible to suppress the movement of the subject in the z-direction, particularly the X-ray tube direction at the time of imaging, and improve the diagnostic accuracy of the reconstructed image. be able to.
  • the subject table 13 preferably has a length that can hold from the elbow to the fingertip. This allows the patient to deposit the load (weight) in the periphery of the imaging target on the subject table, and therefore the probability that the finger that is the region of interest moves unexpectedly can be made extremely low.
  • step S42 the imaging control process C is executed according to the flow shown in FIG. 31 under the control of the control unit 181 of the X-ray imaging apparatus 2.
  • the X-ray imaging method using the Talbot-Lau interferometer described above is used for X-ray imaging
  • the fringe scanning method is used for reconstruction of the subject image.
  • the multi-slit 12 is moved by a plurality of steps at equal intervals, and imaging is performed for each step to obtain a moire image at each step.
  • the number of steps is 2 to 20, more preferably 3 to 10. From the viewpoint of obtaining a reconstructed image with high visibility in a short time, 5 steps are preferable.
  • step S301 when the exposure switch is turned ON by the operator (step S301; YES), the multi-slit 12 is moved in the x direction by the drive unit 122, and a plurality of steps of imaging are executed, and the moire image is displayed. It is generated (step S302).
  • the specific processing in step S302 is the same as that described in step S9 in FIG.
  • the moire image of each step is transmitted from the main body unit 18 to the controller 5 (step S303).
  • the main body 18 may send the image to the controller 5 one by one each time the shooting of each step is completed, or after the shooting of each step is completed and all the moire images are obtained, the images are collected. It is good also as transmitting.
  • step S43 a reconstructed image is created by the controller 5 according to the flow shown in FIG.
  • the moire image is first analyzed (step S401), and it is determined whether it can be used to create a reconstructed image (step S402).
  • the processing in steps S401 and S402 is the same as that described in steps S205 and S206 in FIG.
  • step S403 If there is a moiré image in which a sine curve cannot be formed in the moiré image at each step, it is determined that the moiré image cannot be used to create a reconstructed image (step S402; NO), and an instruction is given to change the shooting timing and reshoot. Control information is transmitted from the controller 5 to the X-ray imaging apparatus 2 (step S403). The processing in step S403 is the same as that described in step S207 in FIG.
  • step S404 when it is determined that the moire image can be used to create the reconstructed image (step S402; YES), the controller 5 processes the moire image and creates a reconstructed image of the subject (step S404).
  • the processing in step S404 is the same as that described in step S208 in FIG.
  • the fourth embodiment of the present invention will be described below.
  • the X-ray imaging apparatus 2 in the fourth embodiment is different from the X-ray imaging apparatus 2 in the third embodiment shown in FIG. 25 in that the refractive index adjustment tank 19 is not provided. Since the other configuration is the same as that of the X-ray imaging apparatus 2 described in the third embodiment, the description is cited.
  • a photographing method according to the fourth embodiment will be described.
  • the method of adjusting the X refractive index difference in step S41 shown in FIG. 28 is different from that of the third embodiment.
  • a liquid material having an X-ray refractive index substantially the same as that of the subject surface and high adhesion to the subject surface for example, a gel such as gelatin solution or starch powder is applied to the subject surface (both front and back surfaces) to cover the subject surface.
  • the region that overlaps the region of interest in the reconstructed image that is, the subject surface in the X-ray irradiation direction (upward and downward) corresponding to the region of interest, as indicated by an arrow in FIG. This is important for improving the visibility of the region of interest.
  • the difference in the X-ray refractive index between the subject surface and the surrounding area is made smaller than the difference in the X-ray refractive index between the region of interest and the surrounding area, thereby reducing the signal value indicating the shape change of the subject surface. It is possible to obtain a reconstructed image with good visibility of the region. Since the imaging time is expected to be as long as several minutes, for example, about 5 minutes, the liquid material is preferably a viscous substance.
  • a flexible material bag for example, a plastic bag
  • the surface of the subject may be covered with a water pillow-like refractive index adjusting means.
  • the X-ray imaging apparatus 2 has a configuration in which a finger that is a region of interest is pressed and fixed without causing pain to the subject.
  • a holding plate 135 that is disposed at a position between the fingers of the subject at the time of shooting and provided with a finger spacer 136 for fixing the subject is provided on the subject table 13, and the subject is set on this.
  • a holding plate 135 having inter-finger spacers 136 whose convex amount and position are adjusted is prepared in advance for each patient.
  • the holding plate 135 is preferably attached to the subject table 13 with a magnet or the like.
  • the subject holder 130 described with reference to FIGS. 4A and 4B in the first embodiment may be provided on the subject table 13. If the subject holder 130 is used in combination with the above-described configuration in which the surface of the subject is covered with a water pillow-like object, it is possible to suppress upward movement of the subject due to the weight of the object placed on the subject.
  • the subject holder 130 preferably has a uniform thickness and a uniform X-ray transmittance in order to prevent reflection in the reconstructed image. Further, as shown in FIG. 34, an opening (notch) 134 is provided in a portion corresponding to the interstitial portion which is a notable structure (region of interest) of the subject holder 130 so that it is reflected in the reconstructed image. It may be prevented.
  • the subject holder 130 may be any material that can withstand the weight of the fingertip and the slight force that the patient may press from above, and can be made of resin that can be mass-produced at low cost.
  • the floating lid 191 and the subject holder 130 as subject fixing means provided for fixing the subject during imaging have shapes in which the X-ray transmittance is uneven depending on the location. Or it may have thickness.
  • the floating lid 191 and the subject holder 130 appear in the image due to the non-uniformity of the X-ray transmittance. Therefore, in the fifth embodiment, a subject reconstruction for diagnosis is performed using a moire image with a subject obtained by photographing with a subject and a moire image without a subject obtained by photographing without a subject. By creating an image, image unevenness due to the influence of the floating lid 191 and the subject holder 130 is reduced.
  • the X-ray imaging system in the fifth embodiment may have the configuration described in the third embodiment (see FIG. 25), or the configuration described in the fourth embodiment (a configuration without the refractive index adjustment tank 19). ).
  • the shooting procedure is the same as that shown in FIG. 28, but the shooting process in step S42 and the reconstructed image creation process in step S43 are different, and will be described below.
  • FIG. 35 is a flowchart showing an imaging control process D executed by the control unit 181 of the X-ray imaging apparatus 2 in the imaging step of step S42 in FIG.
  • the imaging control process D is executed by the cooperation of programs stored in the control unit 181 and the storage unit 185.
  • step S501 When the subject is placed on the subject table 13 and the exposure switch is turned on by the operator (step S501; YES), the multi-slit 12 is moved in the slit arrangement direction by the drive unit 122, and a plurality of steps of imaging is executed. Then, a plurality of moire images with a subject are generated (step S502).
  • the moire image of each step is transmitted from the communication unit 184 of the main body unit 18 to the controller 5 (step S503).
  • a moire image with a subject is transmitted from the main body 18 to the controller 5 one by one every time photographing of each step is completed.
  • dark reading is performed by the X-ray detector 16, and a dark image for correcting image data with a subject is acquired (step S504).
  • the dark reading is performed at least once.
  • the average value may be acquired as a dark image by performing multiple dark readings.
  • the dark image is transmitted from the communication unit 184 to the controller 5 (step S505).
  • the offset correction data based on the dark reading is commonly used for correcting each moire image signal.
  • the acquisition of the dark image may be performed by performing dark reading of the corresponding step after generating the moire image of each step and generating offset correction data dedicated to each step.
  • step S506 the operator enters an ON switch waiting state for the exposure switch.
  • the operator removes the subject from the subject table 13 and retracts the patient so that a moire image without the subject can be created.
  • the exposure switch is pressed.
  • step S506 When the exposure switch is pressed (step S506; YES), the multi-slit 12 is moved in the slit arrangement direction by the drive unit 122, and shooting in a plurality of steps is performed without a subject, and a plurality of moire images without a subject are obtained. It is generated (step S507).
  • the moire image of each step is transmitted from the communication unit 184 of the main body unit 18 to the controller 5 (step S508).
  • a moire image without a subject is transmitted from the main body 18 to the controller 5 one by one by the communication unit 184 every time photographing of each step is completed.
  • dark reading is performed in the X-ray detector 16, and a dark image without a subject is acquired (step S509).
  • the dark reading is performed at least once.
  • the average value may be acquired as a dark image by performing multiple dark readings.
  • the dark image is transmitted from the communication unit 184 to the controller 5 (step S510), and a series of imaging for one imaging order is completed.
  • the processing executed by the control unit 51 of the controller 5 in the reconstructed image creation step of step S43 in FIG. 28 is the same as the diagnostic image creation processing A described with reference to FIGS. 18 to 20 in the first embodiment. Because there is, explanation is used.
  • detection means such as a sensor for detecting the X-ray irradiation amount is provided on the back side of the X-ray detector 16, and each moire image output from the detection means. Based on the X-ray irradiation amount at the time of imaging, the signal value difference caused by the X-ray intensity fluctuation at the time of imaging between the moire images may be corrected.
  • the control unit 51 of the controller 5 has a plurality of moire images with a subject imaged by placing the subject on the subject table 13. Is input, the signal value difference caused by the fluctuation of the X-ray intensity at the time of imaging between the plurality of moire images is corrected, and a reconstructed image with a subject is created based on the plurality of corrected moire images To do.
  • the control unit 51 sets a plurality of moire images without a subject that are photographed without placing a subject with the lattice assembly rotating unit 210 and the multi-slit rotating unit 121 in the same state as when capturing a plurality of moire images with a subject.
  • a signal value difference caused by fluctuations in the X-ray intensity at the time of imaging between the plurality of moire images is corrected, and a reconstructed image without a subject is created based on the plurality of corrected moire images.
  • the control unit 51 corrects the image unevenness in the reconstructed image with the subject due to the non-uniformity of the X-ray light quantity distribution due to the rotation angle of the multi slit 12 and the grating assembly 200 based on the reconstructed image without the subject. Create a subject reconstructed image for diagnosis.
  • the influence on the image quality (fine signal) due to the signal value difference caused by the fluctuation of the X-ray intensity at the time of imaging between the plurality of moire images, and the X-ray caused by the rotation angle of the multi slit 12 and the grating assembly 200 It is possible to remove the influence of image unevenness due to non-uniform dose distribution and provide a reconstructed image that is favorable for diagnosis.
  • the subject holder 130 has non-uniform X-ray transmittance. If the image has a shape or thickness, it is possible to remove the influence on the image quality of the reconstructed image (occurrence of artifacts due to the subject holder 130).
  • the X-ray intensity fluctuation in the one-dimensional direction between imaging can be corrected.
  • X in the reading line direction of the X-ray detector 16 caused by a difference between the irradiation timing of the X-ray source 11 and the reading timing of the X-ray detector 16. It is possible to correct the line intensity variation and the like.
  • the first grating 14 and the first grating 14 are arranged so that either the sharpness of the interference fringes of the moire image or the number of interference fringes satisfies a predetermined criterion.
  • a lattice assembly 200 in which the relative positional relationship of the two lattices 15 is adjusted and fixed in advance, a lattice assembly rotating unit 210 for adjusting the slit direction of the lattice assembly 200 with respect to the subject, and a multi-slit rotating unit that rotates the multi-slit 12 121, and when the grating assembly 200 is rotated according to the arrangement direction of the subject, the controller 181 causes the multi-slit rotating unit 121 to move the multi-slit 12 around the X-ray irradiation axis according to the rotation of the grating assembly.
  • the grating assembly 200 of the moire image has a sharpness of the interference fringes or the number of the interference fringes. Adjusting the one remaining that have not been adjusted.
  • the slit direction of the first grating and the second grating relative to the object can be changed with a simple apparatus configuration without requiring a large-scale mechanism such as rotating the object relative to the grating assembly 200.
  • the slit directions of the first lattice and the second lattice with respect to the subject are changed, it is possible to easily perform adjustment for maintaining the sharpness of the reconstructed image.
  • the multi-slit rotating unit 121 is configured to rotate the multi-slit 12 and the driving unit 122 integrally, so that even when the multi-slit 12 is rotated, the multi-slit 12 can be stably slit at the time of photographing. It is possible to move in the arrangement direction.
  • the X-ray detector 16 may be affected by the sharpness anisotropy in the vertical and horizontal directions. Therefore, the vertical and horizontal sharpness of the reconstructed image can be made substantially constant regardless of the rotation angle of the grid assembly 200.
  • the X-ray refractive index is substantially equal to that of the subject surface, and the subject surface is covered with a liquid material having high adhesion to the subject surface.
  • imaging is performed after adjusting the X-ray refractive index difference between the subject surface and its surroundings to be smaller than the X-ray refractive index difference between the region of interest and its surroundings. Therefore, the signal value indicating the shape change of the subject surface is reduced, and the visibility of the region of interest inside the subject in the reconstructed image of the subject can be improved.
  • a reconstructed image with a subject is created from a plurality of moire images with a subject photographed by placing the subject, and a plurality of moire images without a subject photographed without placing the subject on the subject table
  • a reconstructed image without a subject is created from the image, and a division process is performed to divide the signal value of each pixel of the reconstructed image with the subject by the signal value of the corresponding pixel of the reconstructed image without the subject, thereby reconstructing the subject for diagnosis.
  • the said embodiment is a suitable example of this invention, and is not limited to this.
  • the X-ray source 11, the multi slit 12, the subject table 13, the first grating 14, the second grating 15, and the X-ray detector 16 are arranged in this order (hereinafter referred to as the first arrangement).
  • the arrangement of the X-ray source 11, the multi-slit 12, the first grating 14, the subject table 13, the second grating 15, and the X-ray detector 16 (hereinafter referred to as the second arrangement) also includes the first grating 14 and A reconstructed image can be obtained by moving the multi slit 12 while the second grating 15 is fixed.
  • the subject center and the first grid 14 are separated from each other by the thickness of the subject, which is slightly inferior in sensitivity compared to the above-described embodiment.
  • the arrangement effectively uses X-rays by the amount of X-ray absorption in the first grating 14.
  • the effective spatial resolution at the subject position depends on the X-ray focal spot diameter, the spatial resolution of the detector, the magnification of the subject, the thickness of the subject, and the like. When the resolution is 120 ⁇ m (Gauss half width) or less, the effective spatial resolution is smaller in the second arrangement than in the first arrangement. It is preferable to determine the order of arrangement of the first grating 14 and the object table 13 in consideration of sensitivity, spatial resolution, the amount of X-ray absorption in the first grating 14, and the like.
  • the present invention is applied to a Talbot-Lau interferometer X-ray imaging apparatus that generates a plurality of moire images by moving the multi slit 12 while fixing the positions of the first grating 14 and the second grating 15.
  • a conventional Talbot-Lau interferometer that generates a plurality of moire images by moving the positions of the first grating 14 and the second grating 15 while fixing the multi slit 12.
  • the present invention can also be applied to an X-ray imaging apparatus using the above.
  • the order of shooting with a subject and shooting without a subject is not limited to the above embodiment, and any order may be used. The same applies to the order of creating a reconstructed image with a subject and creating a reconstructed image without a subject.
  • a cableless cassette type FPD that incorporates a battery and outputs an image signal to the main body 18 wirelessly may be used.
  • cables connected to the main body 18 can be eliminated, and a further space around the X-ray detector 16 can be reduced. By reducing the space, the subject's feet can be configured wider, and the patient can be more difficult to touch.
  • the subject table 13 is easy to transmit vibration by contact with the patient. Therefore, the subject table 13 may be separated from the holding unit 17 including the multi slit, the first grating 14, the second grating 15, and the like that require a highly accurate positional relationship, and may be held in another holding unit.
  • 36 is a side view when the subject table 13 is held by another holding portion 13b
  • FIG. 37 is a plan view. In this way, by separating the subject table 13 from the first grating 14 and the second grating 15 and so on to have a separate structure, the influence on the positional relationship among the multi slit 12, the first grating 14 and the second grating 15 can be affected as much as possible. It is possible to reduce and maintain the positional relationship.
  • a drive unit 13a that moves the subject table 13 in the z direction is provided in the holding unit 13b.
  • the position of the subject table 13 can be adjusted according to the height of the subject.
  • a load such as the weight of the patient is applied to the subject table 13
  • the load applied to the holding unit 17 that moves up and down can be removed by making the subject table 13 separate from the holding unit 17. There is no need to reinforce the holding portion 17 to withstand the load, and the cost can be reduced.
  • the example in which the movement and stop of the multi-slit 12 are repeated for each photographing step has been described.
  • the error between the control amount and the actual movement amount is cumulatively expanded by repeating the movement and the stop, it is assumed that it is difficult to obtain a moire image at regular intervals.
  • a continuous shooting method in which shooting is performed a plurality of times while moving the multi slit 12 is preferable.
  • the exposure switch is turned on, the multi-slit 12 starts to move, exceeds the unstable movement area at the time of activation, reaches the stable movement area, and further moves the multi-slit continuously to a predetermined amount.
  • X-ray pulse irradiation and reading of an image signal are repeated each time it moves.
  • the X-ray detector 16 is preferably an FPD that can handle a large frame rate (number of times that imaging can be performed per unit time) and that can capture moving images. Assuming that shooting is performed five times or more in several hundred milliseconds to several seconds, a frame rate of at least 10 frames / second is required, and a frame rate of 20 frames / second or more is preferable.
  • preliminary shooting may be further performed before and after each step.
  • the drive unit 122 can move the multi-slit 12 at a constant feed amount, that is, at a constant movement speed with ideal feed accuracy, a sine curve can be formed by a moire image at each step as shown in FIG. .
  • a moire image with a constant periodic interval cannot be obtained.
  • a three-step moire image originally corresponds to 0.4 cycles, but if the feed amount of the drive unit 122 at three steps is shifted, a moire image of around 0.4 cycles is obtained. It is done.
  • the ⁇ 0.1 second mentioned above as an adjustment time for preliminary shooting is an example, and the adjustment time may be appropriately determined by test shooting.
  • test imaging is performed by changing the adjustment time for preliminary imaging, such as ⁇ 0.1 seconds, ⁇ 0.2 seconds, etc. before and after each step imaging, and it is most consistent with the sine curve. It is good also as calculating
  • the X-ray source 11, the multi-slit 12, and the grating assembly 200 are held in the holding unit 17 of the X-ray imaging apparatus 1.
  • An arm 17b rotatable about the X-ray irradiation axis is provided, and when the arm 17b is rotated so that the slit direction of the grating assembly 200 is a predetermined direction with respect to the subject, the X-ray source 11, the multi-slit 12,
  • the grating assembly 200 may be configured to rotate integrally around the X-ray irradiation axis. With the configuration shown in FIG.
  • the relative positional relationship between the first grating 14 and the second grating 15 so that the number of moire images and the sharpness of the fringes satisfy a predetermined standard at the time of factory shipment.
  • the X-ray detector 16 may be configured to be held by the arm 17b so as to rotate integrally with the X-ray source 11, the multi-slit 12, and the grating assembly 200, or may be fixed by the holding unit 17 separately from these. It is good also as a structure hold
  • the multi-slit 12 is rotated in accordance with the rotation angle of the grating assembly 200 at the time of photographing so that the interference fringes in the moire image become the clearest.
  • the relative positional relationship between the first grating 14 and the second grating 15 is adjusted in advance so that the interference fringes are clearest, and the multi slit 12 is rotated according to the rotation angle of the grating assembly 200 at the time of photographing. The adjustment may be performed so that the number of interference fringes in the moire image is minimized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 タルボ・ロー干渉計を利用したX線撮影装置において、マルチスリットや各格子のスリット方向を変更して撮影した場合等に生じる再構成画像の画質への影響を除去し、診断に良好な再構成画像を提供できるようにする。 コントローラ5の制御部51は、被写体を被写体台13に載置して撮影された複数のモアレ画像及び被写体無しで撮影された複数のモアレ画像が入力されると、被写体有りの複数のモアレ画像間及び被写体無しの複数のモアレ画像間のそれぞれにおける撮影時のX線強度の変動に起因する信号値差を補正して、被写体有りの再構成画像及び被写体無しの再構成画像をそれぞれ作成する。そして、制御部51は、マルチスリットの回転角度に起因する光量分布の不均一による被写体有りの再構成画像における画像ムラを被写体無しの再構成画像に基づいて補正して診断用の被写体再構成画像を作成する。

Description

X線撮影システム
 本発明は、タルボ・ロー干渉計を用いたX線撮影システムに関する。
 診断に用いられる医療用のX線画像のほとんどは、吸収コントラスト法による画像である。吸収コントラスト法は、X線が被写体を透過したときのX線強度の減衰の差によりコントラストを形成する。一方、X線の吸収ではなく、X線の位相変化によってコントラストを得る位相コントラスト法が提案されている。例えば、拡大撮影時のX線の屈折を利用したエッジ強調によって視認性の高いX線画像を得る位相コントラスト撮影が行われている(例えば、特許文献1、2参照)。
 吸収コントラスト法は骨等のX線吸収が大きい被写体の撮影に有効である。これに対し、位相コントラスト法はX線吸収差が小さく、吸収コントラスト法によっては画像として現れにくい乳房の組織や関節軟骨、関節周辺の軟部組織をも画像化することが可能であり、X線画像診断への適用が期待されている。
 位相コントラスト撮影の1つとして、タルボ効果を利用するタルボ干渉計も検討されている(例えば、特許文献3~5)。タルボ効果とは、一定の周期でスリットが設けられた第1格子を、干渉性の光が透過すると、光の進行方向に一定周期でその格子像を結ぶ現象をいう。この格子像は自己像と呼ばれ、タルボ干渉計は自己像を結ぶ位置に第2格子を配置し、この第2格子をわずかにずらすことで生じる干渉縞(モアレ)を測定する。第2格子の前に物体を配置するとモアレが乱れることから、タルボ干渉計によりX線撮影を行うのであれば、第1格子の前に被写体を配置して干渉性X線を照射し、得られたモアレの画像を演算することによって被写体の再構成画像を得ることが可能である。
 また、X線源と第1格子間にマルチスリットを設置し、X線の照射線量を増大させるタルボ・ロー干渉計も提案されている(例えば、特許文献6参照)。従来のタルボ・ロー干渉計は、第1格子又は第2格子を移動しながら(両格子を相対移動させながら)、一定周期間隔のモアレ画像を複数撮影するものであり、マルチスリットは、X線量の増大のために設けられている。
 また、本願発明者等は、タルボ・ロー干渉計において、マルチスリットを第1格子及び第2格子に対して移動せしめることでも従来方式で得られる再構成画像と同等の画像を得られることを見出し、日本特許出願2009-214483(PCT/JP2010/53978)において出願を行った。
 上記のタルボ装置及びタルボ・ロー装置ともに、再構成画像が鮮明であるためには、再構成画像の生成に用いる個々のモアレ画像の干渉縞が鮮明であることはもちろんのこと、干渉縞の本数が少ないことも必要であることが知られている(例えば、非特許文献1(第15頁)参照)。
特開2007-268033号公報 特開2008-18060号公報 特開昭58-16216号公報 国際公開第2004/058070号パンフレット 特開2007-203063号公報 国際公開第2008/102898号パンフレット
山田朝治、横関俊介編著「モアレ縞・干渉縞応用計測法」、コロナ社、1996年12月10日
 ところで、タルボ干渉計、タルボ・ロー干渉計においては、被写体とX線検出器との間に第1格子及び第2格子が介在するため、被写体における注目すべき構造物に対して第1格子及び第2格子のスリット長手方向(スリット方向と呼ぶ)が最適となるように配置する必要がある。また、第1格子及び第2の格子のスリット方向に伴って、マルチスリットのスリット方向も調整する必要がある。
 しかしながら、第1格子及び第2格子のスリット方向を固定とすると、患者に苦痛を伴う姿勢を要求することになり好ましくない。被写体は固定としたままマルチスリット、第1格子及び第2格子のスリット方向を可変とすることは可能だが、X線源は理想的な点光源ではないこと及びマルチスリットや各格子の製造バラツキによる寸法誤差が存在すること、及びこれらの交互作用等に起因して、撮影時のマルチスリットや各格子のスリット方向に応じてX線分布にムラが生じ、高精細な再構成画像を生成できなくなり、この対応が必要になる。
 更に、瞬時に終了する単純X線撮影系とは異なり、複数のモアレ画像の撮影の間(通常、数分レベル)は患者は体動を我慢せねばならず、患者に苦痛を強いることになる。リウマチ患者等は平坦な被写体台に対し、手指を全面的にフィットさせることができず、意識的にではなくとも指等の位置が変化し、再撮影となってしまうことが想定される。この対処のために被写体台に被写体の撮影中の動きを抑制するためのホルダー等を設けると、X線検出器に到達するX線量にムラが生じてしまい、これが診断用の再構成画像に於いては画像ムラ(アーチファクト)となる。
 また、第1格子及び第2格子のスリット方向を可変とした場合、モアレ画像における干渉縞本数と干渉縞の鮮明性を最適なものとするため、第1格子及び第2格子の相対的な位置関係、並びに、第1格子及び第2格子に対するマルチスリットのスリット方向を調整する必要がある。しかしながら、モアレ画像における干渉縞本数と干渉縞の鮮明性の両方を最適なものとする調整は容易ではなく、調整にかなりの時間を要するので、患者を長時間拘束することとなり、好ましくない。
 また、マルチスリット、第1格子、第2格子の相対的な位置関係を維持したまま、被写体に対するスリット方向の調整を可能とする場合は、スリット方向の調整機構が大型化するとともに装置構成が複雑化することとなり、好ましくない。
 本発明の課題は、タルボ・ロー干渉計を利用したX線撮影装置において、マルチスリットや各格子のスリット方向を変更して撮影した場合等に生じる再構成画像の画質への影響を除去し、診断に良好な再構成画像を提供することである。
 上記課題を解決するため、本発明の第1の側面によると、
 X線を照射するX線源と、
 前記X線の照射軸方向と直交する方向に複数のスリットが配列されて構成されたマルチスリットと、
 前記X線の照射軸方向と直交する方向に複数のスリットが配列されて構成された第1格子及び第2格子と、
 被写体台と、
 照射されたX線に応じて電気信号を生成する変換素子が2次元状に配置され、当該変換素子により生成された電気信号を画像信号として読み取るX線検出器と、を備え、
 前記マルチスリットの前記スリット配列方向への一定周期間隔の移動毎に、又は前記第1格子と前記第2格子の前記スリット配列方向の一定周期間隔の相対移動毎に、前記X線源により照射されたX線に応じて前記X線検出器が画像信号の読み取る処理を繰り返して複数回の撮影を行い、得られた複数のモアレ画像に基づいて被写体の再構成画像を作成するX線撮影システムであって、
 前記被写体台に前記被写体を載置して撮影された被写体有りの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、前記被写体有りの複数のモアレ画像の撮影時と同じ状態にして前記被写体台に前記被写体を載置せずに撮影された被写体無しの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、前記補正後の被写体有りの複数のモアレ画像と前記補正後の被写体無しの複数のモアレ画像とに基づいて診断用の被写体再構成画像を作成する診断用画像作成手段を備える。
 前記診断用画像作成手段は、
 前記被写体台に前記被写体を載置して撮影された被写体有りの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、当該補正後の複数のモアレ画像に基づいて被写体有りの再構成画像を作成する被写体有り再構成画像作成手段と、
 前記被写体有りの複数のモアレ画像の撮影時と同じ状態にして前記被写体台に前記被写体を載置せずに撮影された被写体無しの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、当該補正後の複数のモアレ画像に基づいて被写体無しの再構成画像を作成する被写体無し再構成画像作成手段と、
を有し、
 前記被写体有りの再構成画像と前記被写体無しの再構成画像とに基づいて診断用の被写体再構成画像を作成することが好ましい。
 前記X線撮影システムは、
 前記被写体有り及び前記被写体無しでの複数回の撮影のそれぞれにおけるX線照射量を検知する検知手段を備え、
 前記被写体有り再構成画像作成手段は、前記検知手段により検知された前記被写体有りでの撮影時におけるX線照射量に基づいて、前記被写体有りの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、
 前記被写体無し再構成画像作成手段は、前記検知手段により検知された前記被写体無しでの撮影時におけるX線照射量に基づいて、前記被写体無しの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正することが好ましい。
 また、前記X線撮影システムは、
 前記第1格子と前記第2格子の相対位置関係が予め調整されて固定された格子アセンブリと、
 前記被写体に対する前記格子アセンブリのスリット方向を調整するために前記格子アセンブリをX線照射軸周りに回転させる格子アセンブリ回転手段と、
 前記格子アセンブリの回転に応じて前記マルチスリットをX線照射軸周りに回転させるマルチスリット回転手段と、
 を備えることが好ましい。
 また、前記格子アセンブリは、前記モアレ画像の干渉縞の鮮明性又は干渉縞本数の何れかが予め定められた基準を満たすように前記第1格子と前記第2格子の相対位置関係が予め調整されて固定されていることが好ましい。
 また、前記X線撮影システムは、
 前記格子アセンブリの回転に応じて前記マルチスリット回転手段により前記マルチスリットをX線照射軸周りに回転させることによって、前記モアレ画像の干渉縞の鮮明性又は干渉縞本数のうち前記格子アセンブリにおいて予め調整されていない残りの一つを調整する制御手段を備えることが好ましい。
 また、前記X線撮影システムは、
 被写体内部の関心領域に対応するX線照射方向の被写体表面とその周囲とのX線屈折率差を、前記関心領域とその周囲とのX線屈折率差より低減させる屈折率調整手段を有することが好ましい。
 本発明によれば、タルボ・ロー干渉計を利用したX線撮影装置において、マルチスリットや格子アセンブリの各格子のスリット方向を変更して撮影した場合等に、これらの製造バラつき等に起因して生じやすい再構成画像の画質への影響を除去し、スリットの製造バラつき等に係らず、診断に良好な再構成画像を提供することが可能となる。
第1~第2の実施形態に係るX線撮影システム(X線撮影装置の側面図を含む)を示す図である。 マルチスリットの平面図である。 ホルダーにマルチスリットを保持した状態の平面図及び側面図である。 マルチスリット回転部の平面図及び側面図である。 被写体ホルダーの平面図である。 被写体ホルダーの側面図である。 格子アセンブリの構成を概略的に示す図である。 第1格子と第2格子の相対角度を変化させた場合のモアレ画像の変化を示す図である。 相対角ゼロ設定時時の、干渉縞のない画像を示す図である。 格子アセンブリ回転部の平面図及び側面図である。 図1の保持部における格子アセンブリ回転部の保持部分を拡大して示した平面図である。 図9AにおけるE-E´断面図である。 保持部に格子アセンブリ回転部を保持した状態を示す図である。 格子アセンブリとX線検出器を一体的に回転可能な回転トレイを示す断面図である。 第1格子及び第2格子を円形にした場合の例を示す図である。 本体部の機能的構成を示すブロック図である。 コントローラの機能的構成を示すブロック図である。 タルボ干渉計の原理を説明する図である。 X線撮影装置の制御部による撮影制御処理Aを示すフローチャートである。 X線撮影装置の制御部による撮影制御処理Aを示すフローチャートである。 マルチスリット、第1格子、第2格子のスリット方向の関係を模式的に示す図である。 マルチスリットと格子アセンブリ(第1格子と第2格子)との相対角度を0度、2度、10度として撮影されたモアレ画像を示す図である。 他のモダリティとコントローラを共有にした場合のシステム構成を示す図である。 コントローラの制御部により実行される診断用画像作成処理Aを示すフローチャートである。 コントローラの制御部により実行される被写体有り再構成画像作成処理を示すフローチャートである。 複数のモアレ画像間のX線強度変動補正を説明するための図である。 5ステップの撮影により得られるモアレ画像を示す図である。 各ステップのモアレ画像の注目画素のX線相対強度を示すグラフである。 X線撮影装置の制御部による撮影制御処理Bを示すフローチャートである。 コントローラの制御部により実行される診断用画像作成処理Bを示すフローチャートである。 第3の実施形態におけるX線撮影システム(X線撮影装置の側面図を含む)を示す図である。 タルボ・ロー干渉計を用いて、鳥手羽を被写体として空気中で撮影することにより得られた再構成画像(微分位相画像)を示す図である。 図26AのF-F´位置における信号値のプロファイルを示す図である。 被写体表面の形状変化と関心領域の関係を示す図である。 本発明の実施の形態における撮影手順を示すフローチャートである。 タルボ・ロー干渉計を用いて、上述の鳥手羽を水中に入れて撮影することにより得られた再構成画像(微分位相画像)を示す図である。 図29AのG-G´位置における信号プロファイルを示す図である。 被写体固定手段として浮蓋を備えた屈折率調整タンクを説明するための図である。 被写体固定手段として浮蓋を備えた屈折率調整タンクにおいて被写体を固定するしくみを説明するための図である。 図28のステップS42において本体部の制御部により実行される撮影制御処理Cを示すフローチャートである。 図28のステップS43においてコントローラの制御部により実行される再構成画像の作成の処理を示すフローチャートである。 被写体を固定する指間スペーサが設けられた保持板を示す図である。 切り欠き部を有する被写体ホルダーを示す側面図である。 第5の実施形態において本体部の制御部により実行される撮影制御処理Dを示すフローチャートである。 被写体台を第1格子及び第2格子の保持部と別の保持部に保持した場合のX線撮影装置の概略構成を示す側面図である。 図36に示すX線撮影装置の平面図である。 X線源、マルチスリット、格子アセンブリを一体的に回転させる構成のX線撮影装置の一例を示す図である。
 以下、図面を参照して本発明の実施形態について説明する。
〔第1の実施形態〕
 図1に、本実施形態に係るX線撮影システムを示す。X線撮影システムは、X線撮影装置1とコントローラ5を備える。X線撮影装置1はタルボ・ロー干渉計によるX線撮影を行い、コントローラ5は当該X線撮影により得られたモアレ画像を用いて被写体の再構成画像を作成する。本実施形態においては、X線撮影装置1は、手指を被写体として撮影する装置として説明するが、これに限定されるものではない。
 X線撮影装置1は、図1に示すように、X線源11、マルチスリット12、被写体台13、第1格子14、第2格子15、X線検出器16、保持部17、本体部18等を備える。 X線撮影装置1は縦型であり、X線源11、マルチスリット12、被写体台13、第1格子14、第2格子15、X線検出器16は、この順序に重力方向であるz方向に配置される。X線源11の焦点とマルチスリット12間の距離をd1(mm)、X線源11の焦点とX線検出器16間の距離をd2(mm)、マルチスリット12と第1格子14間の距離をd3(mm)、第1格子14と第2格子15間の距離をd4(mm)で表す。
 距離d1は好ましくは5~500(mm)であり、さらに好ましくは5~300(mm)である。
 距離d2は、一般的に放射線科の撮影室の高さは3(m)程度又はそれ以下であることから、少なくとも3000(mm)以下であることが好ましい。なかでも、距離d2は400~5000(mm)が好ましく、さらに好ましくは500~2000(mm)である。
 X線源11の焦点と第1格子14間の距離(d1+d3)は、好ましくは300~5000(mm)であり、さらに好ましくは400~1800(mm)である。
 X線源11の焦点と第2格子15間の距離(d1+d3+d4)は、好ましくは400~5000(mm)であり、さらに好ましくは500~2000(mm)である。
 それぞれの距離は、X線源11から照射されるX線の波長から、第2格子15上に第1格子14による格子像(自己像)が重なる最適な距離を算出し、設定すればよい。
 X線源11、マルチスリット12、被写体台13、第1格子14、第2格子15、X線検出器16は、同一の保持部17に一体的に保持され、z方向における位置関係が固定されている。保持部17はC型のアーム状に形成され、本体部18に設けられた駆動部18aによりz方向に移動(昇降)可能に本体部18に取り付けられている。
 X線源11は、緩衝部材17aを介して保持されている。緩衝部材17aは、衝撃や振動を吸収できる材料であれば何れの材料を用いてもよいが、例えばエラストマー等が挙げられる。X線源11はX線の照射によって発熱するため、X線源11側の緩衝部材17aは加えて断熱素材であることが好ましい。
 X線源11はX線管を備え、当該X線管によりX線を発生させてz方向(重力方向)にX線を照射する。X線管としては、例えば医療現場で広く一般に用いられているクーリッジX線管や回転陽極X線管を用いることができる。陽極としては、タングステンやモリブデンを用いることができる。
 X線の焦点径は、0.03~3(mm)が好ましく、さらに好ましくは0.1~1(mm)である。
 マルチスリット12は回折格子であり、図2Aに示すように複数のスリットが所定間隔で配列されて設けられている。この複数のスリットは、X線照射軸方向(図1のz方向)と直交する方向(図2Aに白矢印で示す)に配列されている。マルチスリット12はシリコンやガラスといったX線の吸収率が低い材質の基板上に、タングステン、鉛、金といったX線の遮蔽力が大きい、つまりX線の吸収率が高い材質により形成される。例えば、フォトリソグラフィーによりレジスト層がスリット状にマスクされ、UVが照射されてスリットのパターンがレジスト層に転写される。露光によって当該パターンと同じ形状のスリット構造が得られ、電鋳法によりスリット構造間に金属が埋め込まれて、マルチスリット12が形成される。
 マルチスリット12のスリット周期は1~60(μm)である。スリット周期は、図2Aに示すように隣接するスリット間の距離を1周期とする。スリットの幅(各スリットのスリット配列方向の長さ)はスリット周期の1~60(%)の長さであり、さらに好ましくは10~40(%)である。スリットの高さ(z方向の高さ)は1~500(μm)であり、好ましくは1~150(μm)である。
 マルチスリット12のスリット周期をw(μm)、第1格子14のスリット周期をw(μm)とすると、スリット周期wは下記式により求めることができる。
 w=w・(d3+d4)/d4
 当該式を満たすように周期wを決定することにより、マルチスリット12及び第1格子14の各スリットを通過したX線により形成される自己像が、それぞれ第2格子15上で重なり合い、いわばピントが合った状態とすることができる。
 マルチスリット12は、図2Bに示すように、ラック12aを有するホルダー12bに保持されている。ラック12aは、マルチスリット12のスリット配列方向にラック12aが設けられている。ラック12aは、後述する駆動部122のピニオン122cと係合し、ピニオン122cの回転(位相角)に応じてホルダー12bに保持されたマルチスリット12をスリット配列方向に移動させるためのものである。 
 本実施形態において、X線撮影装置1には、マルチスリット回転部121及び駆動部122が設けられている。マルチスリット回転部121は、第1格子14及び第2格子15のX線照射軸周りの回転(位相角)に応じてホルダー12bに保持されたマルチスリット12をX線照射軸周りに回転させるための機構である。駆動部122は、複数のモアレ画像の撮影のためにマルチスリット12をスリット配列方向に移動させるための機構である。
 図3に、マルチスリット回転部121及び駆動部122の平面図及びA-A´断面図を示す。図3に示すように、マルチスリット回転部121は、モータ部121a、ギア部121b、ギア部121c、支持部121d等を備えて構成されている。モータ部121a、ギア部121b、ギア部121cは、支持部121dを介して保持部17に保持されている。
 モータ部121aは、マイクロステップ駆動に切り替え可能なパルスモータであり、制御部181(図11参照)からの制御に応じて駆動され、ギア部121bを介してギア部121cをX線照射軸(図3に一点鎖線Rで示す)を中心として回転させる。ギア部121cは、ホルダー12bに保持されたマルチスリット12を装着するための開口部121eを有している。ギア部121cを回転させることにより、開口部121eに装着されたマルチスリット12をX線照射軸周りに回転させ、マルチスリット12のスリット配列方向を可変することができる。なお、撮影において、マルチスリット12は0°~90°程度回転できればよいので、ギア部121cは全周にある必要はなく、図3に2点鎖線で示す範囲(正逆回転方向にそれぞれ90°)で回転できればよい。
 開口部121eは、ホルダー12bに保持されたマルチスリット12を上部から嵌め込むことが可能な形状及びサイズとなっている。ここでは、開口部121eにおけるスリット配列方向のサイズW4はホルダー12bにおけるスリット配列方向のサイズW2より若干大きくなっており、マルチスリット12をスリット配列方向にスライドさせることが可能となっている。なお、開口部121eにおけるスリット配列方向に直交する方向のサイズW3は、ホルダー12bにおけるスリット配列方向に直交する方向のサイズW1との精密嵌合可能な寸法としており、ホルダー12bを開口部121eに装着すると、ホルダー12bに設けられたラック12aは開口部121eの外に、後述するピニオン122cと係合可能に配置される。
 駆動部122は、数μm単位でマルチスリット12をスリット配列方向に移動させる精密減速機等を備えて構成される。駆動部122は、例えば、図3に示すように、モータ部122a、ギア部122b、ピニオン122c等を備えて構成され、図示しないL字型板金等によりマルチスリット回転部121のギア部121cに固定されている。これにより、マルチスリット12と駆動部122は一体的に回転されるようになっている。
 モータ部122aは、例えば、制御部181からの制御に応じて駆動され、ギア部122bを介してピニオン122cを回転させる。ピニオン122cは、マルチスリット12のラック12aと係合して回転することで、マルチスリット12をスリット配列方向に移動させる。
 図1に戻り、被写体台13は、被写体である手指を載置するための台である。被写体台13は、患者の肘が載置できる高さに設けられていることが好ましい。このように、患者の肘まで載置できるように構成することで、患者は楽な姿勢となり、比較的長時間にわたる撮影の間に、指先の撮影部位の動きを低減させることができる。
 また、被写体台13には、被写体を固定するための被写体ホルダー130が設けられている。図4Aに示すように、被写体ホルダー130は、手のひらで掴みやすいマウスのような楕円形状131のついた板状の部材である。上記楕円形状131は、その断面(C-C´)を側面から観察すると、図4Bに示すように、手のひらサイズのなだらかな凸曲面となっており、患者が手のひらで楕円形状131を掴むことで、被写体が疲れにくい状態で被写体の下方への動きを抑制することができる。
 被写体ホルダー130が場所によってX線透過率の不均一な形状又は厚みを有している場合、X線検出器16に到達するX線量は被写体ホルダー130のX線透過率が不均一であることによってムラが生じる。
 被写体ホルダー130上には、更に被写体姿勢を安定させるため、指間スペーサ133を備えることが好ましい。また、患者毎に手や指間の大きさは異なるので、患者毎の手のひらの形状に合わせて被写体ホルダー130を作成しておき、撮影時には、その患者用の被写体ホルダー130を被写体台13にマグネット等で取り付けることが好ましい。腕から手首までの荷重は被写体台13が支えるので、被写体ホルダー130は指先部分の加重と患者が上方から押さえる力に耐えるものであればよく、安価で量産が可能な樹脂(プラスチック)成形とすることが可能である。
 図1に戻り、第1格子14は、マルチスリット12と同様にX線照射軸方向であるz方向と直交する方向に複数のスリットが配列されて設けられた回折格子である。第1格子14は、マルチスリット12と同様にUVを用いたフォトリソグラフィーによって形成することもできるし、いわゆるICP法によりシリコン基板に微細細線で深掘加工を行い、シリコンのみで格子構造を形成することとしてもよい。第1格子14のスリット周期は1~20(μm)である。スリットの幅はスリット周期の20~70(%)であり、好ましくは35~60(%)である。スリットの高さは1~100(μm)である。
 第1格子14として位相型を用いる場合、スリットの高さ(z方向の高さ)はスリット周期を形成する2種の素材、つまりX線透過部とX線遮蔽部の素材による位相差がπ/8~15×π/8となる高さとする。好ましくは、π/4~3×π/4となる高さである。第1格子14として吸収型を用いる場合、スリットの高さはX線遮蔽部によりX線が十分吸収される高さとする。
 第1格子14が位相型である場合、第1格子14と第2格子15間の距離d4は、次の条件をほぼ満たすことが必要である。
 d4=(m+1/2)・w /λ
 なお、mは整数であり、λはX線の波長である。
 第2格子15は、マルチスリット12と同様に、X線照射軸方向であるz方向と直交する方向に複数のスリットが配列されて設けられた回折格子である。第2格子15もフォトリソグラフィーにより形成することができる。第2格子15のスリット周期は1~20(μm)である。スリットの幅はスリット周期の30~70(%)であり、好ましくは35~60(%)である。スリットの高さは1~100(μm)である。
 本実施形態では第1格子14及び第2格子15は、それぞれの格子面がz方向に対し垂直(x-y平面内で平行)であり、第1格子14のスリット配列方向と第2格子15のスリット配列方向とは、診断用の再構成画像を得る目的に対しては、x-y平面内で平行であっても、或いは、0°から5°の範囲内の所定角度だけ傾けて配置されても、どちらでもよいが、本実施例に於いては調整容易化の為に、x-y平面内で所定角度(0.3°~0.5°)だけ傾けて配置されている。 
 上記マルチスリット12、第1格子14、第2格子15は、例えば下記のように構成することができる。
X線源11のX線管の焦点径;300(μm)、管電圧:40(kVp)、付加フィルタ:アルミ1.6(mm)
 X線源11の焦点からマルチスリット12までの距離d1 : 240(mm)
 マルチスリット12から第1格子14までの距離d3   :1110(mm)
 マルチスリット12から第2格子15までの距離d3+d4:1370(mm)
 マルチスリット12のサイズ:10(mm四方)、スリット周期:22.8(μm)
 第1格子14のサイズ:50(mm四方)、スリット周期:4.3(μm)
 第2格子15のサイズ:50(mm四方)、スリット周期:5.3(μm)
 本実施形態において、第1格子14及び第2格子15は、図5に示すように、スペーサ(固定部材)201及びホルダー202によりその相対的位置関係が予め固定された格子アセンブリ200を構成している。図5に、格子アセンブリ200の平面図、及び格子アセンブリ200のB-B´断面図を示す。
 上述のように、タルボ・ロー干渉計においては、モアレ画像における干渉縞の本数が少ないほど、このモアレ画像に基づいて作成される再構成画像が鮮明となることが知られている(非特許文献1参照)。
 そこで、本実施形態の格子アセンブリ200は、前述するように、第1格子及び第2格子を0.3°~0.5°だけ傾けて配置しているので、相対位置の調整過程でモアレ画像の干渉縞本数が最も少なくなるような位置が適正位置となり、その第1格子14及び第2格子15間の相対的位置関係が工場出荷時に調整されている。
 図6に、第1格子14と第2格子15の相対角度を適正位置(設計値)から変化させた場合のモアレ画像の変化を示す。工場出荷時においては、図6において枠で囲まれたモアレ画像のように、干渉縞本数が最も少ないモアレ画像が得られるように、第1格子14と第2格子15の相対角度が調整される。
 一方、第1格子14と第2格子15のスリット方向が平行、即ち相対角度がない設定であると、作業者は、調整時に図7に示すようなモアレのない(干渉縞0本の)画像位置を模索することになるが、第1格子14や第2格子15自体に周期ムラ(製造バラツキに起因するムラ)があると、調整された相対角度が適正であっても部分的にモアレが発生することとなる。そのため、適正位置にあるにもかかわらず、作業者は再度位置調整することとなり、調整に工数(時間)を要することとなり、最悪の場合には調整不良と判断されてしまう。
 これに対し、干渉縞の本数は作業者により容易に確認することができ、調整工数を考慮すると、第1格子及び第2格子をわずかに傾けて配置する構成が好ましい。
 また、X線撮影装置1には、格子アセンブリ回転部210(図8参照)が設けられている。ここで、タルボ干渉計及びタルボ・ロー干渉計では、第1格子14及び第2格子15のスリット方向と平行に線状に延びる構造物は鮮明に撮影することができないという特性がある。よって、被写体の注目すべき構造物の配置方向に応じて、第1格子14及び第2格子15のスリット方向の角度を調整する必要がある。格子アセンブリ回転部210は、格子アセンブリ200をX線照射軸周りに回転させ、被写体の注目すべき構造物の配置方向に対する格子アセンブリ200のスリット方向の角度を調整するためのものである。
 図8に、格子アセンブリ回転部210の平面図、及びD-D´断面図を示す。図8に示すように、格子アセンブリ回転部210は、ハンドル211、回転トレイ212を備えて構成されている。ハンドル211は、撮影技師等のオペレータがX線照射軸(図8に一点鎖線Rで示す)を軸として回転トレイ212を手動で回転させるための突起である。回転トレイ212は、格子アセンブリ200を装着するための開口部212a、後述するトレイ固定部材171bのバネに付勢されたボール(図9A、図9B参照)と係合することにより回転トレイ212の回転角度を固定するための凹部212b~212eを有している。開口部212aは、格子アセンブリ200を上部から嵌め込むことが可能な形状及びサイズとなっており、回転トレイ212を回転させることにより、開口部212aに装着された格子アセンブリ200をX線照射軸周りに回転させることができる。凹部212b~212eは、予め0°と定められた位置(ここでは凹部212bがトレイ固定部材171bのボールと対向する位置を0°の位置とする)から所定の回転角度にある位置(ここでは、0°、30°、60°、90°)に設けられている。凹部212b~212eのそれぞれには、角度検知センサSE1~SE4が設けられており、トレイ固定部材171bと係合したことを検知して制御部181にその検知信号を出力する。
 このように、格子アセンブリ200を手動で回転させるので、患者が触れる範囲に格子アセンブリ200を回転させるための電気コード等を設ける必要がなく、安全性を確保することができる。
 なお、本実施形態では、回転トレイ212が0°に設定されたときの格子アセンブリ200の位置(角度)を格子アセンブリ200のホームポジションとする。また、格子アセンブリ200がホームポジションであるときの第1格子14のスリット方向とマルチスリット12のスリット方向が平行である位置(角度)をマルチスリット12のホームポジションとする。
 図9Aは、保持部17における格子アセンブリ回転部210の保持部分171を拡大して示した平面図であり、図9Bは、図9AにおけるE-E´断面図である。図9Cは、保持部17に格子アセンブリ回転部210を保持した状態を示す図である。
 図9A、図9Bに示すように、保持部分171には、回転トレイ212と精密嵌合可能なサイズであり、回転トレイ212を回転可能に保持する開口部171aと、回転トレイ212の回転角度を固定するためのトレイ固定部材171bと、が設けられている。開口部171aの底部とX線検出器16の載置部の間は、X線の透過を妨げないように、中空とするか又はX線透過率の高いアルミやカーボン等とすることが好ましい。トレイ固定部材171bは、凹部212b~212eの何れかがトレイ固定部材171bと対向するように位置したときにその対向する凹部に係合するボールと、ボールを図9A、図9Bの矢印方向に誘導するための図示しないスライドガイド(押圧バネのガイド)により構成されている。凹部212b~212eの何れかがトレイ固定部材171bと対向する位置で回転トレイ212の回転が停止すると、トレイ固定部材171bのスライドガイドにより、対向している凹部にボールが係合するとともに、凹部に設けられた角度検知センサ(SE1~SE4の何れか)によりボールの係合が検知されて制御部181に検知信号が出力される。これにより、制御部181は、ホームポジションからの格子アセンブリ200の回転角度を検知できるようになっている。
 なお、第1格子14及び第2格子15は、図10に示すように円形としてもよい。第1格子14及び第2格子15を矩形とした場合、被写体に対するこれらの格子の配置角度によって被写体を撮影可能な領域が異なるが、円形とすれば、どの角度に配置されても被写体を撮影可能な領域を一定とすることができる。
 また、図9Dに示すように、回転トレイ212の開口部212aの下部に、X線検出器16の装着部212fを設け、格子アセンブリ200とX線検出器16を一体として回転させることができるようにしてもよい。このようにすれば、X線検出器16の縦横方向の鮮鋭性の異方性の影響(画素サイズと開口率との影響)を受けることがないので、再構成画像の縦横の鮮鋭性を格子アセンブリ200の回転角度によらずに概ね一定とすることができる。
 X線検出器16は、照射されたX線に応じて電気信号を生成する変換素子が2次元状に配置され、当該変換素子により生成された電気信号を画像信号として読み取る。X線検出器16の画素サイズは10~300(μm)であり、さらに好ましくは50~200(μm)である。
 X線検出器16は第2格子15に当接するように保持部17に位置を固定することが好ましい。第2格子15とX線検出器16間の距離が大きくなるほど、X線検出器16により得られるモアレ画像がボケるからである。
 X線検出器16としては、FPD(Flat Panel Detector)を用いることができる。FPDにはX線をシンチレータを介して光電変換素子により電気信号に変換する間接変換型、X線を直接的に電気信号に変換する直接変換型があるが、何れを用いてもよい。
 間接変換型は、CsIやGd等のシンチレータプレートの下に、光電変換素子がTFT(薄膜トランジスタ)とともに2次元状に配置されて各画素を構成する。X線検出器16に入射したX線がシンチレータプレートに吸収されると、シンチレータプレートが発光する。この発光した光により、各光電変換素子に電荷が蓄積され、蓄積された電荷は画像信号として読み出される。
 直接変換型は、アモルファスセレンの熱蒸着により、100~1000(μm)の膜圧のアモルファスセレン膜がガラス上に形成され、2次元状に配置されたTFTのアレイ上にアモルファスセレン膜と電極が蒸着される。アモルファスセレン膜がX線を吸収するとき、電子正孔対の形で物質内に電圧が遊離され、電極間の電圧信号がTFTにより読み取られる。
 なお、CCD(Charge Coupled Device)、X線カメラ等の撮影手段をX線検出器16として用いてもよい。
 X線撮影時のFPDによる一連の処理を説明する。
 まずFPDはリセットを行い、前回の撮影(読取)以降に残存する不要な電荷を取り除く。その後、X線の照射が開始するタイミングで電荷の蓄積が行われ、X線の照射が終了するタイミングで蓄積された電荷が画像信号として読み取られる。なお、リセットの直後や画像信号の読み取り後に、蓄積されている電荷の電圧値を検出するダーク読み取りを行う。 
 本体部18は、図11に示すように、制御部181、操作部182、表示部183、通信部184、記憶部185を備えて構成されている。
 制御部181は、CPU(Central Processing Unit)やRAM(Random Access Memory)等から構成され、記憶部185に記憶されているプログラムとの協働により、各種処理を実行する。例えば、制御部181は、後述する撮影制御処理Aをはじめとする各種処理を実行する。
 操作部182は曝射スイッチや撮影条件等の入力操作に用いるキー群の他、表示部183のディスプレイと一体に構成されたタッチパネルを備え、これらの操作に応じた操作信号を生成して制御部181に出力する。
 表示部183は制御部181の表示制御に従って、ディスプレイに操作画面やX線撮影装置1の動作状況等を表示する。
 通信部184は通信インターフェイスを備え、ネットワーク上のコントローラ5と通信する。例えば、通信部184はX線検出器16によって読み取られ、記憶部185に記憶されたモアレ画像をコントローラ5に送信する。
 記憶部185は、制御部181により実行されるプログラム、プログラムの実行に必要なデータを記憶している。また、記憶部185はX線検出器16によって得られたモアレ画像を記憶する。
 コントローラ5は、オペレータによる操作に従ってX線撮影装置1の撮影動作を制御し、X線撮影装置1により得られた複数のモアレ画像を用いて診断用の被写体再構成画像を作成する。本実施形態では被写体の再構成画像を作成する画像処理装置としてコントローラ5を用いた例を説明するが、X線画像に様々な画像処理を施す専用の画像処理装置をX線撮影装置1と接続し、当該画像処理装置により再構成画像の作成を行うこととしてもよい。
 コントローラ5は、図12に示すように、制御部51、操作部52、表示部53、通信部54、記憶部55を備えて構成されている。
 制御部51は、CPU(Central Processing Unit)やRAM(Random Access Memory)等から構成され、記憶部55に記憶されているプログラムとの協働により、後述する診断用画像作成処理Aをはじめとする各種処理を実行する。
 操作部52は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、キーボードで押下操作されたキーの押下信号とマウスによる操作信号とを、入力信号として制御部51に出力する。表示部53のディスプレイと一体に構成されたタッチパネルを備え、これらの操作に応じた操作信号を生成して制御部51に出力する構成としてもよい。
 表示部53は、例えば、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)等のモニタを備えて構成されており、制御部51の表示制御に従って、操作画面、X線撮影装置1の動作状況、作成された被写体再構成画像等を表示する。
 通信部54は、通信インターフェイスを備え、ネットワーク上のX線撮影装置1やX線検出器16と有線又は無線により通信する。例えば、通信部54は、X線撮影装置1に撮影条件や制御信号を送信したり、X線撮影装置1又はX線検出器16からモアレ画像を受信したりする。
 記憶部55は、制御部51により実行されるプログラム、プログラムの実行に必要なデータを記憶している。例えば、記憶部55は、RIS、HIS等や図示しない予約装置より予約されたオーダを示す撮影オーダ情報を記憶している。撮影オーダ情報は、患者名、撮影部位、撮影方法等の情報である。記憶部55は、X線検出器16によって得られたモアレ画像、モアレ画像に基づき作成された診断用の被写体再構成画像を撮影オーダ情報に対応付けて記憶する。
 また、記憶部55は、X線検出器16に対応するゲイン補正データ、欠陥画素マップ等を予め記憶する。
 コントローラ5においては、操作部52の操作により撮影オーダ情報の一覧表示が指示されると、制御部51により、記憶部55から撮影オーダ情報が読み出されて表示部53に表示される。操作部52により撮影オーダ情報が指定されると(X線検出器16がカセッテ型である場合は、更に撮影に使用するカセッテの識別情報であるカセッテIDが指定されると)、指定された撮影オーダ情報に応じた撮影条件の設定情報やX線源11のウォームアップの指示等が通信部54によりX線撮影装置1に送信される。また、X線検出器がケーブルレスのカセッテ型FPD装置である場合には、内部バッテリ消耗防止の為のスリープ状態から、撮影可能状態に起動せしめる。
 X線撮影装置1においては、通信部184によりコントローラ5から撮影条件の設定情報等が受信されると、X線撮影準備が実行される。 
 上記X線撮影装置1のタルボ・ロー干渉計によるX線撮影方法を説明する。
 図13に示すように、X線源11から照射されたX線が第1格子14を透過すると、透過したX線がz方向に一定の間隔で像を結ぶ。この像を自己像といい、自己像が形成される現象をタルボ効果という。自己像を結ぶ位置に第2格子15が平行に配置され、当該第2格子15はその格子方向が第1格子14の格子方向と平行な位置からわずかに傾けられているので、第2格子15を透過したX線によりモアレ画像Mが得られる。X線源11と第1格子14間に被写体Hが存在すると、被写体HによってX線の位相がずれるため、図13に示すようにモアレ画像M上の干渉縞は被写体Hの辺縁を境界に乱れる。この干渉縞の乱れを、モアレ画像Mを処理することによって検出し、被写体像を画像化することができる。これがタルボ干渉計及びタルボ・ロー干渉計の原理である。
 X線撮影装置1では、X線源11と第1格子14との間のX線源11に近い位置に、マルチスリット12が配置され、タルボ・ロー干渉計によるX線撮影が行われる。タルボ干渉計はX線源11が理想的な点線源であることを前提としているが、実際の撮影にはある程度焦点径が大きい焦点が用いられるため、マルチスリット12によってあたかも点線源が複数連なってX線が照射されているかのように多光源化する。これがタルボ・ロー干渉計によるX線撮影法であり、焦点径がある程度大きい場合にも、タルボ干渉計と同様のタルボ効果を得ることができる。
 従来のタルボ・ロー干渉計では、マルチスリット12は上述のように多光源化と照射線量の増大を目的に用いられ、縞走査法によりモアレ画像を得るため、第1格子14又は第2格子15を相対移動させていた。しかし、本実施形態では、第1格子14又は第2格子15を相対移動させるのではなく、第1格子14及び第2格子15の位置は固定したまま、第1格子14及び第2格子15に対してマルチスリットを移動させることで一定周期間隔のモアレ画像を複数得る。
 図14A~図14Bは、X線撮影装置1の制御部181により実行される撮影制御処理Aを示すフローチャートである。撮影制御処理Aは、制御部181と記憶部185に記憶されているプログラムの協働により実行される。
 ここで、X線撮影には上述のタルボ・ロー干渉計によるX線撮影方法が用いられ、被写体像の再構成には縞走査法が用いられる。X線撮影装置1ではマルチスリット12が等間隔毎に複数ステップ移動され、ステップ毎に撮影が行われて、各ステップのモアレ画像が得られる。
 ステップ数は2~20、さらに好ましくは3~10である。視認性の高い再構成画像を短時間で得るという観点からすれば、5ステップが好ましい(参照文献(1)K.Hibino, B.F.Oreb and D.I.Farrant, Phase shifting for nonsinusoidal wave forms with phase-shift errors, J.Opt.Soc.Am.A, Vol.12, 761-768(1995)、参照文献(2)A.Momose, W.Yashiro, Y. Takeda, Y.Suzuki and T.Hattori, Phase Tomography by X-ray Talbot Interferometetry for biological imaging, Jpn. J. Appl. Phys., Vol.45, 5254-5262(2006))。
 図14Aに示すように、まず、制御部181により、X線源11がウォームアップ状態に切り替えられる(ステップS1)。
 次いで、オペレータの操作に応じて格子アセンブリ200が回転され、被写体に対する格子アセンブリ200のスリット方向が設定される(ステップS2)。即ち、撮影技師等のオペレータは、格子アセンブリ回転部210のハンドル211を回転させ、被写体台13に載置された被写体の注目すべき構造物の配置方向に応じて格子アセンブリ200のスリット方向を設定する。ハンドル211の回転が停止し、トレイ固定部材171bのバネ附勢されたボールの係合により位置固定されると、角度検知センサSE1~SE4の何れかから制御部181に検知信号が出力され、制御部181において、設定されたスリット方向に対応する、格子アセンブリ200のホームポジションからの回転角度が取得される。
 次いで、格子アセンブリ200の回転角度に応じて、マルチスリット回転部121のモータ部121aがパルスにより制御され、格子アセンブリ200の回転角度に応じてマルチスリット12が回転される(ステップS3)。例えば、モータ部121aのパルスモータが制御され、マルチスリット12のホームポジションからの回転角度が格子アセンブリ200の回転角度近傍(例えば、格子アセンブリ200が30°に設定された場合は29°ぐらい)まで一気に回転される。
 次いで、モータ部121aがマイクロステップ精密制御に切り替えられ、マルチスリット12を少しずつ回転させながら複数の回転角度で撮影が行われて調整用の複数のモアレ画像が生成される(ステップS4)。例えば、マルチスリット12を29.5°、30°、30.5°の3つの回転角度に設定してX線源11により低X線が照射され、撮影が行われる。これにより、調整用の3つのモアレ画像が取得される。なお、ステップS4においては、被写体を被写体台13に載置しない状態で撮影が行われる。
 撮影された調整用の複数のモアレ画像は、マルチスリット12の回転角度に対応付けて、並べて表示部183に表示される(ステップS5)。
 ここで、上述のように、第1格子14と第2格子15の相対角度は干渉縞本数が最小となるように工場出荷時に調整されているので、ステップS2においては、図15に示すように、その相対角度を保ったまま格子アセンブリ200が回転される。しかし、格子アセンブリ200が回転し、マルチスリット12と格子アセンブリ200との相対角度が変化すると、図16に示すように、干渉縞(すなわちモアレ)の鮮明性が変化してしまう。そこで、マルチスリット12と格子アセンブリ200との相対角度を調整する必要がある。
 一般的には、図16に示すように、マルチスリット12と格子アセンブリ200との相対角度が少ないほど、干渉縞の鮮明度の高いモアレ画像が得られる。図16は、格子アセンブリ200とマルチスリット12の相対角度を0°、2°、10°としたときのモアレ画像を示す図である。即ち、図15に示すように格子アセンブリ200が30°回転した場合、マルチスリット12を30°回転させることが好ましい。しかし、マルチスリット12は発熱部であるX線源11近傍に配置されるので熱影響を受けやすい。そのため、マルチスリット12の変形等を考慮して、マルチスリット12を格子アセンブリ200と同じ角度だけ回転させるだけでなく、モータ部121aをマイクロステップ駆動させてステップS4~S7における微調整を行うことが有効である。
 オペレータは、ステップS5で表示部183に表示されたモアレ画像を観察し、干渉縞が最も鮮明な回転角度を撮影に用いる回転角度として選択する。なお、ここでは、干渉縞の鮮明性はオペレータの目視により観察するが、干渉縞の鮮明性の度合いを示す鮮明度は、後述するサインカーブ(図22参照)における極大値をMAX、極小値をMINとした場合、下記の式で表すことができる。
 干渉縞の鮮明度=(MAX-MIN)/(MAX+MIN)=振幅/平均値
 操作部182により、マルチスリット12の回転角度が入力されると(ステップS6;YES)、モータ部121aが再駆動され、マルチスリット12のホームポジションからの回転角度が入力された回転角度となるようにマルチスリット12の位置が微調整される(ステップS7)。
 マルチスリット12の回転角度の調整後、被写体台13に被写体が載置され、オペレータにより曝射スイッチがON操作されると(ステップS8;YES)、駆動部122によりマルチスリット12がそのスリット配列方向に移動され、複数ステップの撮影が実行され、被写体有りの複数のモアレ画像が生成される(ステップS9)。
 まず、マルチスリット12が停止した状態でX線源11によるX線の照射が開始される。X線検出器16ではリセット後、X線照射のタイミングに合わせて電荷が蓄積され、X線の照射停止のタイミングに合わせて蓄積された電荷が画像信号として読み取られる。これが1ステップ分の撮影である。1ステップ分の撮影が終了するタイミングでマルチスリット12の移動が開始され、所定量移動すると停止され、次のステップの撮影が行われる。このようにして、マルチスリット12の移動と停止が所定のステップ数分だけ繰り返され、マルチスリット12が停止したときにX線の照射と画像信号の読み取りが行われる。読み取られた画像信号はモアレ画像として本体部18に出力される。
 例えば、マルチスリット12のスリット周期を22.8(μm)とし、5ステップの撮影を10秒で行うとする。マルチスリット12がそのスリット周期の1/5に該当する4.56(μm)移動し停止する毎に撮影が行われる。
 従来のように第2格子15(又は第1格子)を移動させる場合、第2格子15のスリット周期は比較的小さく、各ステップの移動量も小さくなるが、マルチスリット12のスリット周期は第2格子15よりも比較的大きく、各ステップの移動量も大きい。例えば、スリット周期5.3(μm)の第2格子15のステップ毎の移動量は1.06(μm)であるのに対し、スリット周期22.8(μm)のマルチスリット12の移動量は4.56(μm)と約4倍の大きさである。同一の駆動伝達系(駆動源、減速伝達系を含む)を使用し、各ステップの撮影に際し、駆動部122の起動と停止を繰り返して撮影を行った場合、移動用のパルスモータ(駆動源)の制御量(駆動パルス数)に対応した実際の移動量に占める、起動時及び停止時の駆動部122のバックラッシュ等の影響による移動量誤差の割合は、本実施形態のようにマルチスリット12を移動させる方式の方が小さくなる。これは、後述するサインカーブに沿ったモアレ画像を得やすく、起動及び停止を繰り返しても高精細な再構成画像が得られることを示している。或いは、従来方式による画像でも充分診断に適合する場合には、モータ(駆動源)を含む駆動伝達系全体の精度(特に、起動特性及び停止特性)を緩和し、駆動伝達系を構成する部品のコストダウンが可能であることを示している。
 各ステップの撮影が終了すると、本体部18の通信部184からコントローラ5に、各ステップのモアレ画像が送信される(ステップS10)。本体部18からコントローラ5に対しては各ステップの撮影が終了する毎に1枚ずつ被写体有りのモアレ画像が送信される。
 次いで、X線検出器16においてダーク読み取りが行われ、被写体有り画像データ補正用のダーク画像が取得される(ステップS11)。ダーク読み取りは、少なくとも1回行われる。又は、複数回のダーク読み取りを行ってその平均値をダーク画像として取得してもよい。ダーク画像は、通信部184からコントローラ5に送信される(ステップS12)。当該ダーク読取に基づくオフセット補正データは、各モアレ画像信号の補正に共通に用いられる。
 尚、ダーク画像の取得は、各ステップのモアレ画像取得後に、当該ステップのダーク読取を行って、各ステップ専用のオフセット補正データを生成することとしても良い。各ステップの撮影間隔が短く、オフセット補正を行う余裕がない場合は、最初のステップの撮影時のみダーク読み取りを行い、オフセット補正値を得て、当該補正値を後のステップの撮影にも適用してもよい。
 次いで、オペレータによる曝射スイッチのON操作待ち状態となる(ステップS13)。ここで、オペレータは、被写体無しのモアレ画像を作成できるように、被写体台13から被写体を取り除いて患者を退避させる。被写体なしの撮影の準備が完了したら、曝射スイッチを押下する。
 曝射スイッチが押下されると(ステップS13;YES)、駆動部122によりマルチスリット12がそのスリット配列方向に移動され、被写体なしで複数ステップの撮影が実行され、被写体無しの複数のモアレ画像が生成される(ステップS14)。各ステップの撮影が終了すると、本体部18の通信部184からコントローラ5に、各ステップのモアレ画像が送信される(ステップS15)。本体部18からコントローラ5に対しては各ステップの撮影が終了する毎に通信部184により1枚ずつ被写体無しのモアレ画像が送信される。
 次いで、X線検出器16においてダーク読み取りが行われ、被写体無しのダーク画像が取得される(ステップS16)。ダーク読み取りは、少なくとも1回行われる。又は、複数回のダーク読み取りを行ってその平均値をダーク画像として取得してもよい。ダーク画像は、通信部184からコントローラ5に送信され(ステップS17)、一つの撮影オーダに対する一連の撮影は終了する。
 尚、ダーク画像の取得は、各ステップのモアレ画像取得後に、当該ステップのダーク読取を行って、各ステップ専用のオフセット補正データを生成することとしても良い。
 コントローラ5においては、通信部54によりモアレ画像が受信されると、受信されたモアレ画像が撮影開始時に指定された撮影オーダ情報と対応付けて記憶部55に記憶される。
 なお、コントローラ5がタルボ・干渉計を用いたX線撮影装置1専用ではなく、図17に示すように、カセッテ型FPD装置を装填して使用可能な立位ブッキー装置や臥位ブッキー装置等の他のモダリティと共有である場合、他のモダリティによる撮影時は1つの撮影オーダ情報に対し1枚の画像(場合によっては1枚の画像とオフセット補正用の1乃至数個のダーク読取データ)が対応づく方式であるので、X線撮影装置1において複数のモアレ画像を撮影の都度コントローラ5に送信すると、2枚目以降のモアレ画像送信時にその画像に対応付ける撮影オーダ情報が存在しないというエラーが発生する恐れがある。そこで、このようなシステム構成の場合は、複数のモアレ画像(場合によってはダーク画像を含む)を一連の関連画像セットとしてコントローラ5に送信することが好ましい。これは、例えば、カセッテ型FPD装置に複数の読取データを一時保存可能なメモリーを設ければ、撮影毎に順次読取データをメモリーに保存し、最後のデータの読取終了後に、纏めて送信することができる。或いは、コントローラ5が撮影オーダ情報にタルボ撮影装置を用いるモダリティ情報が含まれていることを認識したら、コントローラ5はカセッテ型FPD装置から撮影毎に送信されてくる読取データを当該撮影オーダ情報と対応付けて1次保存するように構成し、当該読取データに基づき再構成画像が生成されると、当該再構成画像を撮影オーダ情報と対応付けて保存し、一次保存していた読取データを削除するように構成することも可能である。
 更に、X線検出器16がカセッテ型FPD装置であり、読み取られた画像をX線検出器16が無線通信により直接コントローラ5に送信する構成である場合は、X線検出器16が、一旦、X線撮影装置1をはじめとするモダリティに装填されると、これら装置の制御部で画像の送信方法を制御することができない。そこで、(1)カセッテには、オペレータが送信指示をするための送信ボタンを設けておき、(2)コントローラ5においては、操作部52による撮影オーダ情報の指定とともに、撮影に使用するモダリティとカセッテIDの入力を受け付け、指定されたカセッテに対し、制御部51により撮影に使用するモダリティに応じた動作モード(一般モード、タルボモード)を設定し、(3)タルボモードでは、撮影終了後、カセッテの送信ボタンが技師によりONされたことをトリガとして、カセッテ内部に記憶されている一連の関連画像セットを送信する、という構成とすれば、モダリティに応じた送信方法でコントローラ5に画像を送信することができる。
 図18は、モアレ画像を受信した後、コントローラ5の制御部51により実行される診断用画像作成処理Aを示すフローチャートである。診断用画像作成処理Aは、制御部51と記憶部55に記憶されているプログラムとの協働により実行される。
 まず、被写体有り再構成画像作成処理が実行され、被写体有りの複数のモアレ画像から被写体有りの再構成画像が作成される(ステップS21)。次いで、被写体無し再構成画像作成処理が実行され、被写体無しの複数のモアレ画像から被写体無しの再構成画像が作成される(ステップS22)。そして、被写体有りの再構成画像及び被写体無しの再構成画像に基づいて、診断用の被写体再構成画像が作成される(ステップS23)。作成された被写体再構成画像は、指定されている撮影オーダ情報と対応付けて記憶部55に記憶される(ステップS24)。
 図19は、ステップS21において実行される被写体有り再構成画像作成処理の流れを示すフローチャートである。
 まず、ステップS201~S203においては、被写体有りの複数のモアレ画像について、X線検出器16の各画素のバラツキを補正するための補正処理が実行される。具体的には、オフセット補正処理(ステップS201)、ゲイン補正処理(ステップS202)、欠陥画素補正処理(ステップS203)が実行される。
 尚、本発明に於いては、図18に示すフローにより診断用の再構成画像を生成することとしているので、個々の画素の絶対出力値自体が再構成画像の画質にあまり影響を与えない。従い、このゲイン補正処理用の補正データは、タルボ撮影用の特殊な調整等は不要となり、前記立位ブッキー装置用の管球、或いは、臥位ブッキー装置用の管球を用いて行う、一般的なゲインキャリブレーションにより得られるもので良い。カセッテ型FPD装置は一般的に高価であり、施設への導入費用を勘案すると、これら一般の単純撮影系の装置と共用できるので好ましい。
 ステップS201においては、被写体有り画像データ補正用のダーク画像に基づいて、各モアレ画像にオフセット補正が施される。
 ステップS202においては、撮影に用いられたX線検出器16に対応するゲイン補正データが記憶部55から読み出され、読み出されたゲイン補正データに基づいて、各モアレ画像にゲイン補正が施される。
 ステップS203においては、撮影に用いられたX線検出器16に対応する欠陥画素マップ(欠陥画素位置を示すデータ)が記憶部55から読み出され、各モアレ画像における欠陥画素位置マップで示す位置の画素値(信号値)が周辺画素により補間算出される。
 次いで、複数のモアレ画像間でX線強度変動補正(トレンド補正)が行われる(ステップS204)。タルボ撮影では、複数のモアレ画像に基づいて1枚の被写体再構成画像が作成される。そのため、各モアレ画像の撮影において照射されるX線強度にゆらぎ(変動)があると精巧な被写体再構成画像が得られず、微細な信号の変化が見落とされてしまう可能性がある。そこで、ステップS204においては、複数のモアレ画像における撮影時のX線強度変動による信号値差を補正する処理が行われる。
 具体的な処理としては、各モアレ画像の予め定められた1点の画素の信号値を用いて補正する方法、各モアレ画像間におけるX線検出器16の所定方向の信号値差を補正する(一次元補正する)方法、各モアレ画像間における2次元方向の信号値差を補正する(二次元補正する)方法、の何れであってもよい。
 1点の画素の信号値を用いて補正する方法では、まず、図20に示すように複数のモアレ画像のそれぞれについて、X線検出器16のモアレ縞領域(被写体配置領域)161外の直接X線領域に対応する予め定められた位置Pにある画素の信号値が取得される。次いで、1枚目のモアレ画像が2枚目以降の上記取得された位置Pの画素の平均信号値で規格化され、規格化後の位置Pの値に基づいて2枚目以降の各モアレ画像の補正係数が算出される。そして、2枚目以降の各モアレ画像に補正係数が乗算されることにより、X線強度変動が補正される。この補正方法では、各撮影間の全体的なX線強度の変動を容易に補正することができる。なお、X線検出器16の裏側に、X線照射量を検知するセンサ等の検知手段を設け、検知手段から出力される各モアレ画像撮影時のX線照射量に基づいて、各モアレ画像間における撮影時のX線強度変動に起因する信号値差を補正することとしてもよい。
 一次元補正では、まず、複数のモアレ画像のそれぞれについて、予め定められた行L1(行は、X線検出器16における読み取りライン方向をさす)の画素の平均信号値が算出される。次いで、1枚目のモアレ画像が2枚目以降の画素の平均信号値で規格化され、規格化後の行L1と2枚目以降の行L1の各画素の信号値に基づいて、2枚目以降の各モアレ画像の行方向の補正係数が算出される。そして、2枚目以降の各モアレ画像に行方向の位置に応じた補正係数が乗算されることにより、行方向のX線強度変動が補正される。この補正方法では、各撮影間の一次元方向のX線強度の変動を容易に補正することができる。例えば、或る撮影において、X線源11による照射タイミングとX線検出器16の読み取りタイミングのずれが生じた場合に、これにより生じるX線検出器16の読み取りライン方向のX線強度変動等を補正することができる。
 二次元補正では、まず、複数のモアレ画像のそれぞれについて、予め定められた行L1、列L2(列は、X線検出器16における読み取りライン方向と直交する方向をさす)のそれぞれにおける画素の平均信号値が算出される。次いで、1枚目のモアレ画像が2枚目以降の行L1の画素の平均信号値で規格化され、規格化後の行L1と2枚目以降の行L1の各画素の信号値に基づいて、2枚目以降の各モアレ画像の行方向の補正係数が算出される。同様に、1枚目のモアレ画像が2枚目以降の列L2の画素の平均信号値で規格化され、規格化後の列L2と2枚目以降の列L2の各画素の信号値に基づいて、2枚目以降の各モアレ画像の列方向の補正係数が算出される。そして行方向と列方向の補正係数が掛け合わされて2枚目以降の各モアレ画像の各画素の補正係数が算出される。そして、各画素に行方向及び列方向の補正係数が乗算されることにより、二次元方向のX線強度変動が補正される。この補正方法では、各撮影間の二次元方向のX線強度の変動を容易に補正することができる。
 次いで、モアレ画像の解析が行われ(ステップS205)、再構成画像の作成に使用できるか否かが判断される(ステップS206)。理想的な送り精度によりマルチスリット12を一定の送り量で移動できた場合、図21に示すように、5ステップの撮影でマルチスリット12のスリット周期1周期分のモアレ画像5枚が得られる。各ステップのモアレ画像は0.2周期という一定周期間隔毎に縞走査をした結果であるので、各モアレ画像の任意の1画素に注目すると、その信号値を正規化して得られるX線相対強度は、図22に示すようにサインカーブを描く。よって、コントローラ5は得られた各ステップのモアレ画像のある画素に注目してX線相対強度を求める。各モアレ画像から求められたX線相対強度が、図22に示すようなサインカーブを形成すれば、一定周期間隔のモアレ画像が得られているので、再構成画像の作成に使用できると判断することができる。
 なお、上記サインカーブ形状は、マルチスリット12の開口幅、第1格子14及び第2格子15の周期、及び第1格子及び第2格子の格子間距離に依存し、また、放射光のようなコヒーレント光の場合には三角波形状となるが、マルチスリット効果によりX線が準コヒーレント光として作用する為、サインカーブを描くものとなる。
 各ステップのモアレ画像の中にサインカーブを形成できないモアレ画像がある場合、再構成画像の作成に使用できないと判断され(ステップS206;NO)、撮影のタイミングを変更して再撮影するよう指示する制御情報がコントローラ5からX線撮影装置1に送信される(ステップS207)。例えば、図22に示すように、3ステップ目は本来0.4周期のところ、周期がずれて0.35周期のモアレ画像が得られた場合であれば、駆動部122の送り精度の低下が原因(例えば、パルスモータの駆動パルスへのノイズ重畳等)と考えられる。よって、0.05周期分だけ撮影のタイミングを早めて3ステップ目のみ再撮影を行うよう指示すればよい。或いは、5ステップ全てについて再撮影し、3ステップ目のみ0.05周期分の撮影時間を早めるように指示してもよい。5ステップ全てのモアレ画像が所定量ずつサインカーブからずれている場合、駆動部122の起動から停止までの駆動パルス数を増やすか、或いは減らすように指示してもよい。
 X線撮影装置1では、当該制御情報に従って撮影のタイミングが調整され、被写体を載置した再撮影が実行される。
 一方、再構成画像の作成にモアレ画像を使用できると判断された場合(ステップS206;YES)、被写体有りの複数のモアレ画像を用いて被写体有りの再構成画像が作成される(ステップS208)。例えば、複数のモアレ画像の各画素についてステップ毎の強度変化(信号値の変化)が算出され、当該強度変化より微分位相が算出される。必要であれば、位相接続(位相アンラップ)が行われ、ステップ全体の位相が求められる。当該位相からz方向における光路差が算出され、被写体の形状を表す再構成画像が作成される(上記参照文献(1)、(2))。
 なお、モアレ画像の解析は、トレンド補正前の画像を使用して行っても良い。
 図18のステップS22における被写体無し再構成画像作成処理では、上述の被写体有り再構成画像作成処理で被写体有りの複数のモアレ画像に対して行った処理と同一の処理が被写体無しのモアレ画像に対して行われ、被写体無しの再構成画像が作成される。
 図18のステップS23の処理は、被写体無しの再構成画像を用いて、被写体有りの再構成画像から、撮影時のマルチスリット12や格子アセンブリ200のスリット方向変更に起因するX線の線量分布のムラ、当該スリットの製造バラつき起因の線量分布のムラ、及び、主に被写体ホルダー130の画像への写り込みによるムラ、を含む画像ムラ(アーチファクト)を除去するための処理が含まれる。
 例えば、被写体有りの再構成画像が微分位相画像である場合には、以下の公知文献(A)、公知文献(B)に記載されている処理によって診断用の被写体再構成画像が作成される。(公知文献(A);Timm Weitkamp,Ana Diazand,Christian David, franz Pfeiffer and Marco Stampanoni, Peter Cloetens and Eric Ziegler, X-ray Phase Imaging with a grating interferometer,OPTICSEXPRESS,Vol.13, No.16,6296-6004(2005)、公知文
献(B);Atsushi Momose, Wataru Yashiro, Yoshihiro Takeda, Yoshio Suzuki and Tadashi Hattori, Phase Tomography by X-ray Talbot Interferometry for Biological Imaging, Japanese Journal of Applied Physics, Vol.45, No. 6A, 2006, pp.5254-5262(2006))。
 被写体有りの再構成画像が吸収画像、小角散乱画像である場合には、公知文献(C)に記載されているように、被写体有りの再構成画像の各画素の信号値を被写体無しの再構成画像の対応する画素の信号値で除算する割り算処理が行われ、この割り算処理の結果が診断用の被写体再構成画像として取得される(公知文献(C);F.Pfeiffer, M.Bech,O.Bunk, P.Kraft, E.F.Eikenberry, CH.Broennimann,C.Grunzweig, and C.David,Hard-X-ray dark-field imaging using a grating interferometer, nature materials Vol.7,134-137(2008))。
 上記の公知文献(A)(B)(C)の手法においても、診断用の被写体再構成画像を作成する過程で得られる被写体有りの再構成画像の各画素の信号値を、被写体無しの再構成画像の対応する画素の信号値で引き算、或いは除算することによって画像ムラを補正する処理が含まれる。
 上記処理では、マルチスリット12及び格子アセンブリ200の各格子のスリット方向変更や被写体台特性に起因するX線の線量分布のムラだけでなく、撮影に用いられるX線検出器16の個々の画素の特性にバラツキがあっても、この影響を除去することができるので好ましい。従い、スリット方向を被写体に応じて可変としても、被写体に対するX線検出器16の配置方向を固定(位置変更せず)とすることができ、コントローラ5に表示される被写体再構成画像における被写体の表示向きは、コントローラ表示画面上で常に同一方向となるので、経過観察等で過去画像との比較読影を行う場合に、コントローラ5において被写体再構成画像の向きを揃える操作を行う必要がなくなるので、より好ましい。
〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。
 第2の実施形態において、本体部18の記憶部185には、後述する撮影制御処理Bを実行するためのプログラムが記憶されている。また、コントローラ5の記憶部55には、後述する診断用画像作成処理Bを実行するためのプログラム及びマルチスリット12及び格子アセンブリ200のホームポジションからの回転角度、並びに撮影に用いられるX線検出器16の組み合わせに対応するゲイン補正データが予め記憶されている。その他の第2の実施形態の構成は、第1の実施形態で図1~図12を用いて説明したものと同様であるので、以下第2の実施形態の動作について説明する。
 図23は、第2の実施形態においてX線撮影装置1の制御部181により実行される撮影制御処理Bを示すフローチャートである。図23に示すように、第2の実施形態においては、図14Aに示すフローのステップS6の後に、ステップS6-1のステップが実行される点、及び図14Bに示すステップS13~S17の処理、即ち、被写体無しでの撮影を行わない点が第1の実施形態と異なる。即ち、第2の実施形態においては、マルチスリット12の回転角度が設定された後、通信部184によりコントローラ5にマルチスリット12の回転角度の情報が送信され、被写体台13に被写体を載置して撮影が行われる。
 なお、マルチスリット12の回転角度の情報は、X線撮影装置1から送信するのではなく、コントローラ5のオペレータが操作部52を介して入力する構成としてもよい。特に、図17に示すように、コントローラ5が他のモダリティと共有である場合は、オペレータがX線検出器16の送信ボタンを押下してX線検出器16に記憶されているモアレ画像を送信後、コントローラ5の操作部52によりマルチスリット12の回転角度を入力する構成とすることが好ましい。
 コントローラ5においては、通信部54によりX線撮影装置1からのマルチスリット12の回転角度及びモアレ画像が受信されると、診断用画像作成処理Bが実行される。
 図24は、第2の実施形態においてコントローラ5の制御部51により実行される再構成画像作成処理Bを示すフローチャートである。当該処理は、制御部51と記憶部55に記憶されているプログラムとの協働により実行される。
 まず、X線撮影装置1から受信された複数のモアレ画像について、X線検出器16の各画素のバラツキを補正するための補正処理が実行される。具体的には、オフセット補正処理(ステップS31)、ゲイン補正処理(ステップS32)、欠陥画素補正処理(ステップS33)が実行される。
 ステップS31のオフセット補正処理、ステップS33の欠陥画像補正処理では、それぞれ図19のステップS201、S202と同様の処理が実行される。ステップS32におけるゲイン補正処理では、マルチスリット12及び格子アセンブリ200のホームポジションからの回転角度、並びに撮影に用いられるX線検出器16の組み合わせに対応するゲイン補正データが記憶部55から読み出され、読み出されたゲイン補正データに基づいて、各モアレ画像にゲイン補正が施される。ゲイン補正データは、予め指定された線量のX線を被写体なしで一様に照射して、X線検出器16で読み取った画像である。
 次いで、複数のモアレ画像間のX線強度変動補正(トレンド補正)が行われる(ステップS34)。トレンド補正は、図19のステップS204と同様であるので説明を省略する。
 次いで、モアレ画像の解析が行われ(ステップS35)、モアレ画像が再構成画像の作成に使用できるか否かが判断される(ステップS36)。ステップS35における解析及びステップS36の判断は、図19のステップS205及びステップS206と同様であるので説明を省略する。なお、モアレ画像の解析は、トレンド補正前の画像を使用して行っても良い。
 各ステップのモアレ画像の中にサインカーブを形成できないモアレ画像がある場合、再構成画像の作成に使用できないと判断され(ステップS36;NO)、撮影のタイミングを変更して再撮影するよう指示する制御情報がコントローラ5からX線撮影装置1に送信される(ステップS37)。X線撮影装置1では、当該制御情報に従って撮影のタイミングが調整され、被写体を載置した再撮影が実行される。
 一方、再構成画像の作成にモアレ画像を使用できると判断された場合(ステップS36;YES)、受信された複数のモアレ画像を用いて診断用の再構成画像が作成される(ステップS37)。例えば、複数のモアレ画像の各画素についてステップ毎の強度変化(信号値の変化)が算出され、当該強度変化より微分位相が算出される。必要であれば、位相接続(位相アンラップ)が行われ、ステップ全体の位相が求められる。当該位相からz方向における光路差が算出され、被写体の形状を表す再構成画像が作成される(上記参照文献(1)、(2))。
 第2の実施形態においては、予めX線検出器16及びマルチスリット12の回転角度の組み合わせ毎にゲイン補正データを用意しておき、撮影に使用された予めX線検出器16及びマルチスリット12の回転角度の組み合わせに応じたゲイン補正データを読み出してゲイン補正を行うことで、マルチスリット12及び格子アセンブリ200の回転角度の変更に伴うX線分布の照射ムラに起因する画像ムラを除去することができる。
 第2の実施形態の処理では、X線検出器16の個々の画素の特性のバラツキの影響を受けるので、X線撮影装置1で使用する可能性のあるX線検出器16の全てについて、マルチスリット12の回転角度毎のゲイン補正データを作成する必要がある。また、X線検出器16の配置方向がゲイン補正データの作成時と一致していなければ、適正な補正をすることができないので、X線検出器16の方向はマルチスリット12と一体的に回転する構成とすることが好ましい。
〔第3の実施形態〕
 以下、図面を参照して本発明の第3の実施形態について説明する。
 図25に、第3の実施形態に係るX線撮影システムを示す。X線撮影システムは、X線撮影装置2とコントローラ5を備える。X線撮影装置2はタルボ・ロー干渉計によるX線撮影を行い、コントローラ5は当該X線撮影により得られたモアレ画像を用いて被写体の再構成画像を作成する。ここでは、X線撮影装置2は、手指を被写体として撮影する装置として説明するが、これに限定されるものではない。
 X線撮影装置2は、図25に示すように、X線源11、マルチスリット12、駆動部122、被写体台13、第1格子14、第2格子15、X線検出器16、保持部17、本体部18、屈折率調整タンク19等を備える。即ち、第1の実施形態で図1を用いて説明したX線撮影装置1の構成に、屈折率調整タンク19を追加した構成である。
 屈折率調整タンク19は、被写体台13上に載置された容器であり、被写体表面と周囲とのX線屈折率差を低減させる液状物として、例えば水を内部に保持する。
 また、第3の実施形態において、本体部18の記憶部185には、後述する撮影制御処理Cを実行するためのプログラムが記憶されている。また、コントローラ5の記憶部55には、後述する図32に示す再構成画像の作成処理を実行するためのプログラムが記憶されている。
 X線源11、マルチスリット12、駆動部122、被写体台13、第1格子14、第2格子15、X線検出器16、保持部17及び本体部18のその他の構成については、第1の実施形態で説明したものと同様であるので説明を援用する。なお、本実施形態においては、マルチスリット回転部121、格子アセンブリ回転部210を備えているか否かは問わない。また、第1格子14及び第2格子15が格子アセンブリを構成しているか否かは問わない。
 タルボ干渉計及びタルボ・ロー干渉計において、可干渉性のX線を被写体に照射すると、被写体により波面が歪む。これは、被写体と周囲とのX線の屈折率が異なるため、X線の伝播速度が異なるためである。従って、被写体とその周囲とのX線屈折率の差が大きいほど波面の歪みが大きくなる。タルボ干渉計、タルボ・ロー干渉計においては、この波面の歪みが大きいほど得られる微分位相の値は大きくなる。つまり、被写体の再構成画像において、周囲とのX線屈折率の差が大きい部分ほど大きな信号値として現れる。
 そのため、被写体内部の構造物(例えば、軟骨等)を関心領域として撮影を行った場合、被写体表面に形状変化(例えば、関節表皮のしわ等)があると、被写体表面と周囲の空気とのX線屈折率差が比較的大きいため被写体表面の形状変化を示す信号値が大きく現れてしまい、関心領域の構造を示す微小な信号値の変化と重畳し、当該関心領域の信号値の視認性が悪くなってしまう。
 図26Aに、タルボ・ロー干渉計を用いて、鳥手羽を被写体として空気中で撮影することにより得られた再構成画像(微分位相画像)を示す。
 図26Bに、図26AのF-F´位置における信号値のプロファイルを示す。
 図26Bの実線で囲んだ部分は、被写体表面の皮部分(皺を含む)に対応し、点線で囲んだ部分は、被写体内部の関心領域(軟部組織周辺部)に対応する。
 図26Bに示すように、被写体表面の皮部分は周囲(空気)との屈折率差が大きい為、皮部分の形状は大きな信号値として表れている。一方、被写体内部の関心領域(軟部組織周辺部)は周囲との屈折率差が小さい為、当該関心領域(軟部組織周辺部)を示す信号値は小さくなる。
 被写体表面の皮部分(皺を含む)と被写体内部の関心領域(軟部組織周辺部)とが、z方向に重畳していなければ、関心領域(軟部組織周辺部)は空気中の撮影でも視認可能である。
 然し乍、被写体内部の関心領域が被写体表面構造に対し、どういう相対位置関係にあるかを撮影前に把握するのは困難である。
 特に、図27に示すように、被写体H内部の関心領域(図27にROIで示す)に対応するX線照射方向の被写体表面(X線入射側表面及び出射側表面)、即ち、図27中に矢印で示す範囲の被写体表面に形状変化部分(図27にSTで示す)があると、再構成画像を観察したときに関心領域(ROI)を示す信号値と、形状変化部分(ST)を示すより大きな信号値とが重畳し、関心領域(ROI)を示す信号値が視認できなくなってしまう。
 そこで、本実施形態においては、図27に示すように、X線屈折率が被写体表面と略同じで被写体表面への密着性の高い液状物(図27にWで示す)で被写体表面を覆うことによって、被写体表面とその周囲とのX線屈折率の差を関心領域とその周囲とのX線屈折率差より低減してから撮影を行うことにより、被写体表面の形状変化部分を示す信号値が低減された再構成画像を取得できるようにする。特に、再構成画像において関心領域と重畳する領域、即ち、図27に矢印で示すような、関心領域に対応するX線照射方向(上方向及び下方向)の被写体表面を上述の液状物で覆い、その覆った範囲の被写体表面と周囲とのX線屈折率の差を関心領域とその周囲とのX線屈折率差より低減することは、再構成画像における関心領域の視認性を向上させる上で重要である。
 即ち、本実施形態の撮影の手順としては、図28に示すように、まず、X線屈折率が被写体表面と略同等であり、被写体表面への密着性の高い液状物で被写体表面を覆うことにより、被写体表面とその周囲とのX線屈折率の差を関心領域とその周囲とのX線屈折率差より低減する調整を行う(ステップS41)。次いで、X線源11からX線を照射して撮影を行い(ステップS42)、再構成画像を生成する(ステップS43)。
 ステップS41においては、図25に示すように、ここでは水の入った屈折率調整タンク19に被写体(ここでは手)を入れる。水は、空気よりもX線屈折率が被写体表面に近い。また、水中に手を入れれば、被写体表面は水で覆われ、水は水圧により被写体表面に密着する。よって、被写体表面とその周囲とのX線屈折率の差は低減される。
 なお、被写体を覆う液状物としては、水がもっとも簡便、安価、安全であり、好ましいが、水に香料、消毒薬、色素など添加して患者の安心感を増す工夫を施したものを用いてもよい。また、水ではなく、より人体の肉や体液に近い液状物を使用することは好ましい態様である。例えばヒアロルン酸溶液、ゼラチン溶液、グリセリン溶液、マンノース溶液、米汁、片栗粉液等を単独で又は水との溶液としたものを使用することができる。
 図29Aに、図29Aと同一の被写体配置で、タルボ・ロー干渉計を用いて、鳥手羽を水中に入れて撮影することにより得られた再構成画像(微分位相画像)を示す。図29Bに、図29AのG-G´位置における信号プロファイルを示す。図29Bにおいて実線で囲んだ部分は、被写体表面の皮部分に対応する画素の信号値である。図29Bにおいて点線で囲んだ部分は、被写体内部の関心領域(軟部組織周辺)に対応する画素の信号値である。
 図29Bに示すように、被写体とX線屈折率の近い水中で撮影を行うことにより、被写体表面の形状変化を示す信号値を空気中で撮影した場合(図26B参照)に比べて小さくすることができることが判る。従い、関心領域(軟部組織周辺)に於いても、被写体表面の影響が低減された、被写体内部の構造を観察しやすい再構成画像を取得することが可能となる。
 なお、タルボ干渉計やタルボ・ロー干渉計を用いて撮影を行う場合、複数のモアレ画像を撮影するため、撮影時間が従来の単純X線撮影系と比べて長くなることが想定される(数分レベル)。この間、被写体が動いてしまう可能性がある。そこで、X線撮影装置2は、被写体を押さえて固定させる構成を有することとすることが好ましい。例えば、図30Aに示すように屈折率調整タンク19は、浮蓋191を有するとともに、パイプ192を介してサブタンク193に接続された構成とすることが好ましい。撮影時には、まず、サブタンク193を屈折率調整タンク19より高い位置に保った状態で屈折率調整タンク19を水で満たして被写体を水中に載置する。次いで、図30Bに示すようにサブタンク193を屈折率調整タンク19より低い所定の位置に移動させ、浮蓋192が被写体を圧迫する位置まで水位を下げる。このようにして、浮蓋192により被写体を圧迫して押さえることで撮影時の被写体のz方向、特に、X線管球方向への動きを抑えることができ、再構成画像の診断精度を向上させることができる。なお、被写体をより安定させるため、被写体台13は肘から指先までを保持できるだけの長さを有することが好ましい。これは患者が撮影対象周辺部の荷重(体重)を被写体台に預けることができ、従って、関心領域である指を不意に動かす確率を極めて低くすることが可能となる。
 ステップS42においては、X線撮影装置2の制御部181の制御により図31に示すフローで撮影制御処理Cが実行される。
 ここで、X線撮影には上述のタルボ・ロー干渉計によるX線撮影方法が用いられ、被写体像の再構成には縞走査法が用いられる。X線撮影装置2ではマルチスリット12が等間隔毎に複数ステップ移動され、ステップ毎に撮影が行われて、各ステップのモアレ画像が得られる。
 ステップ数は2~20、さらに好ましくは3~10である。視認性の高い再構成画像を短時間で得るという観点からすれば、5ステップが好ましい。
 図31に示すように、オペレータにより曝射スイッチがON操作されると(ステップS301;YES)、駆動部122によりマルチスリット12がx方向に移動され、複数ステップの撮影が実行され、モアレ画像が生成される(ステップS302)。ステップS302の具体的な処理は、図14BのステップS9で説明したものと同様であるので説明を援用する。
 各ステップの撮影が終了すると、本体部18からコントローラ5に、各ステップのモアレ画像が送信される(ステップS303)。本体部18からコントローラ5に対しては各ステップの撮影が終了する毎に1枚ずつ送信することとしてもよいし、各ステップの撮影が終了し、全てのモアレ画像が得られた後、まとめて送信することとしてもよい。
 ステップS43においては、コントローラ5により、図32に示すフローで再構成画像の作成が行われる。
 図32に示すように、まずモアレ画像の解析が行われ(ステップS401)、再構成画像の作成に使用できるか否かが判断される(ステップS402)。ステップS401、S402の処理については、図19のステップS205、S206で説明したものと同様であるので説明を援用する。
 各ステップのモアレ画像の中にサインカーブを形成できないモアレ画像がある場合、再構成画像の作成に使用できないと判断され(ステップS402;NO)、撮影のタイミングを変更して再撮影するよう指示する制御情報がコントローラ5からX線撮影装置2に送信される(ステップS403)。ステップS403の処理については、図19のステップS207で説明したものと同様であるので説明を援用する。
 一方、再構成画像の作成にモアレ画像を使用できると判断された場合(ステップS402;YES)、コントローラ5によってモアレ画像が処理され、被写体の再構成画像が作成される(ステップS404)。ステップS404の処理については、図19のステップS208で説明したものと同様であるので説明を援用する。
〔第4の実施形態〕 
 以下、本発明の第4の実施形態について説明する。
 第4の実施形態におけるX線撮影装置2は、屈折率調整タンク19を備えていない点が図25に示した第3の実施形態のX線撮影装置2と異なる。その他の構成は第3の実施形態で説明したX線撮影装置2と同様であるので説明を援用する。以下、第4の実施形態における撮影方法について説明する。
 第4の実施形態では、図28に示すステップS41におけるX屈折率差の調整方法が第3の実施の形態と異なる。
 ここでは、X線屈折率が被写体表面と略同じで被写体表面への密着性の高い液状物、例えば、ゼラチン溶液や片栗粉液等のジェルを被写体表面に(表裏両面)塗って被写体表面を覆う。特に、再構成画像において関心領域と重畳する領域、即ち、図27に矢印で示すような、関心領域に対応するX線照射方向(上方向及び下方向)の被写体表面がジェルで覆われることが関心領域の視認性を向上させる上で重要である。このようにして、被写体表面と周囲とのX線屈折率の差が関心領域とその周囲のX線屈折率差より小さくすることで、被写体表面の形状変化を示す信号値が低減された、関心領域の視認性のよい再構成画像を取得することができる。撮影時間は数分、例えば5分程度と長くなることが想定されるので、液状物は粘性のある物質であることが好ましい。
 液状物を被写体表面に塗る代わりに、X線屈折率が被写体表面と略同じで被写体表面への密着性の高い水やジェル等の液状物を可撓性材料の袋(例えば、ビニール袋)等に入れてなる水枕状の屈折率調整手段で被写体表面を覆うこととしてもよい。
 なお、タルボ干渉計やタルボ・ロー干渉計を用いて撮影を行う場合、複数のモアレ画像を撮影するため、撮影時間が数分、例えば5分程度と長くなることが想定される。この間、被写体が動いてしまう可能性がある。そこで、X線撮影装置2は、被写体に苦痛を与えることなく、関心領域である手指を押さえて固定させる構成を有することとすることが好ましい。
 例えば、図33に示すように、撮影時に被写体の指間となる位置に配置され、被写体を固定する指間スペーサ136が設けられた保持板135を被写体台13上に設け、これに被写体をセットして撮影を行うことで、撮影中の被写体の動き、特にx-y平面方向の動きを抑制することができる。なお、患者毎に手や指間の大きさは異なるので、患者毎に、凸量や位置が調整された指間スペーサ136を有する保持板135を予め作成しておき、撮影時には、その患者用の保持板135を被写体台13にマグネット等で取り付けることが好ましい。
 また、第1の実施形態で図4A、図4Bを用いて説明した被写体ホルダー130を被写体台13上に設けることとしてもよい。なお、被写体ホルダー130を上述の水枕状の物体で被写体表面を覆う構成と併用すれば、被写体に載せる物体の自重により被写体の上方への動きも抑えることができる。
 被写体ホルダー130は、再構成画像への写り込みを防止するため、均一の厚みとし、X線透過率を均一とすることが好ましい。また、図34に示すように、被写体ホルダー130の注目すべき構造物(関心領域)である間節に対応する部分には開口(切り欠)134を設けて、再構成画像への写り込みを防止することとしてもよい。
 被写体ホルダー130は指先部分の加重と患者が上方から押さえつける可能性のあるわずかな力に耐えるものであればよく、安価で量産が可能な樹脂成形とすることが可能である。
〔第5の実施形態〕
 次に、本発明の第5の実施形態について説明する。
 第3の実施形態及び第4の実施形態において、撮影中に被写体を固定するために設けられた被写体固定手段としての浮蓋191や被写体ホルダー130は、X線透過率が場所によって不均一な形状又は厚みを有している場合がある。この場合、そのX線透過率の不均一性によって浮蓋191や被写体ホルダー130が画像に写り込んでしまう。
 そこで、第5の実施形態においては、被写体有りで撮影をして得られた被写体有りのモアレ画像及び被写体無しで撮影をして得られた被写体無しのモアレ画像を用いて診断用の被写体再構成画像を作成することにより、浮蓋191や被写体ホルダー130の影響による画像ムラを低減する。
 第5の実施形態におけるX線撮影システムは、第3の実施形態で説明した構成(図25参照)としてもよいし、第4の実施形態で説明した構成(屈折率調整タンク19を備えない構成)としてもよい。
 撮影の手順は、図28に示したものと同様であるが、ステップS42の撮影及びステップS43の再構成画像作成の処理が異なるので、以下に説明する。
 図35は、図28のステップS42の撮影ステップにおいて、X線撮影装置2の制御部181により実行される撮影制御処理Dを示すフローチャートである。撮影制御処理Dは、制御部181と記憶部185に記憶されているプログラムの協働により実行される。
 被写体台13に被写体が載置され、オペレータにより曝射スイッチがON操作されると(ステップS501;YES)、駆動部122によりマルチスリット12がそのスリット配列方向に移動され、複数ステップの撮影が実行され、被写体有りの複数のモアレ画像が生成される(ステップS502)。
 各ステップの撮影が終了すると、本体部18の通信部184からコントローラ5に、各ステップのモアレ画像が送信される(ステップS503)。本体部18からコントローラ5に対しては各ステップの撮影が終了する毎に1枚ずつ被写体有りのモアレ画像が送信される。
 次いで、X線検出器16においてダーク読み取りが行われ、被写体有り画像データ補正用のダーク画像が取得される(ステップS504)。ダーク読み取りは、少なくとも1回行われる。又は、複数回のダーク読み取りを行ってその平均値をダーク画像として取得してもよい。ダーク画像は、通信部184からコントローラ5に送信される(ステップS505)。当該ダーク読取に基づくオフセット補正データは、各モアレ画像信号の補正に共通に用いられる。
 尚、ダーク画像の取得は、各ステップのモアレ画像取得後に、当該ステップのダーク読取を行って、各ステップ専用のオフセット補正データを生成することとしても良い。
 次いで、オペレータによる曝射スイッチのON操作待ち状態となる(ステップS506)。ここで、オペレータは、被写体無しのモアレ画像を作成できるように、被写体台13から被写体を取り除いて患者を退避させる。被写体なしの撮影の準備が完了したら、曝射スイッチを押下する。
 曝射スイッチが押下されると(ステップS506;YES)、駆動部122によりマルチスリット12がそのスリット配列方向に移動され、被写体なしで複数ステップの撮影が実行され、被写体無しの複数のモアレ画像が生成される(ステップS507)。各ステップの撮影が終了すると、本体部18の通信部184からコントローラ5に、各ステップのモアレ画像が送信される(ステップS508)。本体部18からコントローラ5に対しては各ステップの撮影が終了する毎に通信部184により1枚ずつ被写体無しのモアレ画像が送信される。
 次いで、X線検出器16においてダークよみとりが行われ、被写体無しのダーク画像が取得される(ステップS509)。ダーク読み取りは、少なくとも1回行われる。又は、複数回のダーク読み取りを行ってその平均値をダーク画像として取得してもよい。ダーク画像は、通信部184からコントローラ5に送信され(ステップS510)、一つの撮影オーダに対する一連の撮影は終了する。
 図28のステップS43の再構成画像作成ステップにおいてコントローラ5の制御部51により実行される処理は、第1の実施形態において図18~図20を用いて説明した診断用画像作成処理Aと同様であるので説明を援用する。複数のモアレ画像間のX線強度変動補正においては、同様に、X線検出器16の裏側に、X線照射量を検知するセンサ等の検出手段を設け、検出手段から出力される各モアレ画像撮影時のX線照射量に基づいて、各モアレ画像間における撮影時のX線強度変動に起因する信号値差を補正することとしてもよい。
 以上説明したように、第1~2の実施形態におけるX線撮影システムによれば、コントローラ5の制御部51は、被写体台13に被写体を載置して撮影された被写体有りの複数のモアレ画像が入力されると、この複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、当該補正後の複数のモアレ画像に基づいて被写体有りの再構成画像を作成する。また、制御部51は、被写体有りの複数のモアレ画像の撮影時と格子アセンブリ回転部210及びマルチスリット回転部121を同じ状態にして被写体を載置せずに撮影された被写体無しの複数のモアレ画像が入力されると、この複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、補正後の複数のモアレ画像に基づいて被写体無しの再構成画像を作成する。そして、制御部51はマルチスリット12及び格子アセンブリ200の回転角度に起因するX線の光量分布の不均一による被写体有りの再構成画像における画像ムラを被写体無しの再構成画像に基づいて補正して診断用の被写体再構成画像を作成する。
 従って、複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差による画質(微細な信号)への影響や、マルチスリット12及び格子アセンブリ200の回転角度に起因するX線の線量分布の不均一による画像ムラ等の影響を除去し、診断に良好な再構成画像を提供することが可能となる。
 また、被写体有りの再構成画像の各画素の信号値を被写体無しの再構成画像の対応する各画素の信号値で引き算、或いは除算することにより、被写体ホルダー130がX線透過率の不均一な形状又は厚みを有するものである場合、再構成画像の画質への影響(被写体ホルダー130起因のアーチファクト発生)も除去することが可能となる。
 また、撮影間のX線強度変動の補正を所定の方向に対して行うことで、撮影間の一次元方向におけるX線強度変動を補正することができる。例えば、この補正をX線検出器16における読み取りライン方向に行うことで、X線源11による照射タイミングとX線検出器16の読み取りタイミングのずれにより生じるX線検出器16の読み取りライン方向のX線強度変動等を補正することができる。
 また、撮影間のX線強度変動の補正を二次元方向に対して行うことで、撮影間の二次元方向におけるX線強度変動を補正することができる。
 また、第1及び第2実施形態におけるX線撮影装置1によれば、モアレ画像の干渉縞の鮮明性又は干渉縞本数の何れかが予め定められた基準を満たすように第1格子14と第2格子15の相対位置関係が予め調整されて固定された格子アセンブリ200と、被写体に対する格子アセンブリ200のスリット方向を調整するための格子アセンブリ回転部210と、マルチスリット12を回転させるマルチスリット回転部121とを有し、格子アセンブリ200が被写体の配置方向に応じて回転されると、制御部181により、格子アセンブリの回転に応じてマルチスリット回転部121によりマルチスリット12をX線照射軸周りに回転させることにより、モアレ画像の干渉縞の鮮明性又は干渉縞本数のうち格子アセンブリ200において予め調整されていない残りの一つを調整する。
 従って、被写体を格子アセンブリ200に対して回転させる等の大規模な機構を必要とせず、簡易な装置構成で、被写体に対する第1格子及び第2格子のスリット方向を変更することができる。また、被写体に対する第1格子及び第2格子のスリット方向を変更した場合において、再構成画像の鮮明性の維持のための調整を容易に行うことが可能となる。
 また、マルチスリット回転部121をマルチスリット12と駆動部122を一体的に回転させる構成とすることで、マルチスリット12を回転させた場合であっても、撮影時に安定してマルチスリット12をスリット配列方向に移動させることが可能となる。
 また、格子アセンブリ回転部210により格子アセンブリ200とX線検出器16を一体的に回転させる構成とすることで、X線検出器16の縦横方向の鮮鋭性の異方性の影響を受けることがないので、再構成画像の縦横の鮮鋭性を格子アセンブリ200の回転角度によらずに概ね一定とすることができる。
 また、マルチスリット回転部121のモータ部121aをパルス駆動により回転させた後、マイクロステップ精密駆動に切り替えてマルチスリット12の回転角を微調整することで、X線源11に近く熱の影響を受けやすいマルチスリット12の角度を精度よく調整することが可能となる。
 また、上記第3~第5の実施の形態におけるX線撮影システムによれば、X線屈折率が被写体表面と略同等であり、被写体表面への密着性の高い液状物で被写体表面を覆うことにより、被写体表面とその周囲とのX線屈折率の差を関心領域とその周囲とのX線屈折率差より低減する調整を行ってから撮影を行う。従って、被写体表面の形状変化を示す信号値が低減され、被写体の再構成画像における被写体内部の関心領域の視認性を向上させることができる。
 また、撮影時に被写体を固定するための被写体ホルダー130等を有する構成とすることで、撮影時の被写体の動きを抑えることができ、被写体の動きによるボケの少ない、診断精度の高い被写体の再構成画像を取得することができる。また、被写体を載置して撮影された被写体有りの複数のモアレ画像から被写体有りの再構成画像を作成し、被写体台に前記被写体を載置せずに撮影された被写体無しの複数のモアレ画像から被写体無しの再構成画像を作成し、被写体有りの再構成画像の各画素の信号値を被写体無しの再構成画像の対応する画素の信号値により除算する割り算処理を行って診断用の被写体再構成画像を作成することで、被写体ホルダー130が場所によってX線透過率の不均一な形状又は厚みを有するものである場合の画質への影響(被写体ホルダー130の画像への写り込み)を除去することが可能となる。
 なお、上記実施形態は本発明の好適な一例であり、これに限定されない。
 例えば、上記実施形態では、X線源11、マルチスリット12、被写体台13、第1格子14、第2格子15、X線検出器16をこの順に配置(以下、第1の配置と呼ぶ)したが、X線源11、マルチスリット12、第1格子14、被写体台13、第2格子15、X線検出器16の配置(以下、第2の配置と呼ぶ)としても、第1格子14及び第2格子15は固定のまま、マルチスリット12の移動により、再構成画像を得ることが可能である。
 第2の配置においては、被写体の厚み分だけ、被写体中心と第1格子14は離れることになり、上記の実施形態に比べ感度の点でやや劣ることになるが、一方で、被写体への被曝線量低減を考慮すると、当該配置の方が第1格子14でのX線吸収分だけX線を有効に活用していることになる。 
 また、被写体位置での実効的な空間分解能は、X線の焦点径、検出器の空間分解能、被写体の拡大率、被写体の厚さ等に依存するが、上記実施例に於ける検出器の空間分解能が120μm(ガウスの半値幅)以下の場合には、第1の配置よりも第2の配置の方が実効的な空間分解能は小さくなる。
 感度、空間分解能、及び、第1格子14でのX線吸収量等を考慮して、第1格子14、被写体台13の配置順をきめることが好ましい。
 また、上記実施形態においては、第1格子14と第2格子15の位置を固定し、マルチスリット12を移動させることで複数のモアレ画像を生成するタルボ・ロー干渉計のX線撮影装置に本発明を適用した場合を例にとり説明したが、マルチスリット12を固定とし、第1格子14と第2格子15の位置を移動させることで複数のモアレ画像を生成する従来型のタルボ・ロー干渉計を用いたX線撮影装置においても本発明を適用可能である。
 また、被写体有りの撮影と、被写体無しの撮影の順序は、上記実施形態に限定されず、何れを先としてもよい。被写体有りの再構成画像の作成と、被写体無しの再構成画像の作成の順序についても同様である。
 また、X線検出器16として、バッテリを内蔵し、無線により画像信号を本体部18に出力するケーブルレスのカセッテタイプFPDを用いてもよい。カセッテタイプFPDによれば、本体部18に接続するケーブル類を排除することができ、X線検出器16周辺の更なる小スペース化を図ることができる。小スペース化によって被写体の足下を広く構成し、より患者が接触し難い構成とすることができる。
 また、被写体台13は患者との接触により振動を伝えやすい。よって、被写体台13を高精度な位置関係が求められるマルチスリット、第1格子14、第2格子15等が含まれる保持部17と切り離し、別の保持部に保持することとしてもよい。図36は被写体台13を別の保持部13bにより保持したときの側面図、図37は平面図である。このように被写体台13を第1格子14、第2格子15等から離間させて別体構成とすることにより、マルチスリット12、第1格子14、第2格子15の位置関係に及ぶ影響をできるだけ減らし、当該位置関係の維持を図ることができる。
 被写体台13を別体構成とした場合、図36及び図37に示すように、被写体台13をz方向に移動させる駆動部13aを保持部13bに設ける。これにより、被写体の高さに合わせて、被写体台13の位置を調整することができる。被写体台13には患者の体重等の負荷がかかるが、被写体台13を保持部17と別体とすることにより、昇降する保持部17にかかる負荷を除去することができる。負荷に耐えるために保持部17を強化する必要がなく、コストを低減することができる。
 また、上記実施形態では、各ステップの撮影毎にマルチスリット12の移動と停止を繰り返す例を説明した。しかし、駆動部122の構成によっては、移動と停止を繰り返すことにより制御量と実際の移動量との誤差が累積拡大し、一定間隔毎のモアレ画像が得難いことが想定される場合には、連続的にマルチスリット12を移動させながら複数回の撮影を行う連続撮影方式が好ましい。曝射スイッチがONされると、マルチスリット12の移動を開始し、起動時の不安定移動領域を越え、安定移動領域に達した後、更に、マルチスリットを連続的に移動させて、所定量(例えば4.56(μm))移動する毎にX線のパルス照射と画像信号の読み取りを繰り返す。
 連続撮影方式におけるX線源11にはパルス照射可能なX線管を用いることが好ましい。
 また、X線検出器16としては、対応できるフレームレート(単位時間あたり撮影可能な回数)が大きく、動画撮影が可能なFPDが好ましい。数百m秒~数秒の間に5回以上の撮影を行うことを想定すると、少なくとも10フレーム/秒のフレームレートが必要であり、好ましくは20フレーム/秒以上のフレームレートである。
 連続撮影方式の場合、各ステップの前後でさらに予備撮影を行うこととしてもよい。
 駆動部122が理想的な送り精度によりマルチスリット12を一定の送り量、つまり一定の移動速度で移動できた場合、図22に示すように各ステップのモアレ画像によりサインカーブを形成することができる。しかし、経年変化や駆動部122の起動時の慣性影響、グリスの粘性影響等によって送り量にずれが生じると、一定周期間隔のモアレ画像が得られない。例えば、図22に示すように、3ステップのモアレ画像は本来0.4周期に該当するが、3ステップのときの駆動部122の送り量がずれると、0.4周期前後のモアレ画像が得られる。
 このように各ステップのモアレ画像の周期がばらつくと、正確な位相が計算できず、再構成画像において被写体像を正確に再現できない。そこで、例えば各撮影時間±0.1秒の撮影時間で撮影を行う予備撮影を加えて合計15回の撮影を行う。これにより、各ステップにつきそれぞれ3枚のモアレ画像が得られるので、そのうちX線相対強度のサインカーブに最も近いモアレ画像を選択して用いる。これにより、駆動部122の送り量に誤差が生じたとしても、再構成画像の再現性の向上を図ることができる。
 予備撮影する調整時間として上記に挙げた±0.1秒は例示であり、調整時間はテスト撮影によって適宜決定すればよい。例えば、X線撮影装置の設置時に、各ステップの撮影の前後で、±0.1秒、±0.2秒等、予備撮影時の調整時間を変えてテスト撮影を行い、最もサインカーブに一致しやすい調整時間を求めることとしてもよい。これにより、駆動部122の機器特性によって必要な調整時間が異なる場合にも対応することができる。
 また、第1及び第2の実施形態の他の実施形態として、図38に示すように、X線撮影装置1の保持部17に、X線源11、マルチスリット12、格子アセンブリ200を保持しX線照射軸を中心として回転可能なアーム17bを設け、格子アセンブリ200のスリット方向が被写体に対して所定の方向となるようにアーム17bを回転させた際にX線源11、マルチスリット12、格子アセンブリ200をX線照射軸周りに一体的に回転させる構成としてもよい。図38に示す構成とすれば、工場出荷時に、モアレ画像の干渉縞本数及び干渉縞の鮮明性が予め定められた基準を満たすように、第1格子14及び第2格子15の相対的位置関係並びに格子アセンブリ200とマルチスリット12の相対的位置関係を調整しておくことにより、撮影時の格子アセンブリ200に対するマルチスリット12の調整は不要となる。なお、X線検出器16は、アーム17bによりX線源11、マルチスリット12、格子アセンブリ200と一体的に回転するように保持する構成としてもよいし、これらとは別個に保持部17により固定的に保持する構成としてもよい。
 また、被写体無しの一連(5ステップ)の撮影のみを定期的に実施し、これらの各画像が前述するサインカーブにうまく合致するか否かを判断し、サインカーブからずれていると判断された場合には、装置メンテナンス必要性をコントローラ上で告知し、精密減速系等のメンテナンスを行わしめるものとすれば、高精細な診断用再構成画像を維持することが可能となる。
 また、上記実施形態においては、再構成画像を鮮明なものとするために、工場出荷時にモアレ画像の干渉縞本数が最小となるように第1格子14と第2格子15の相対位置関係を予め調整しておき、撮影時の格子アセンブリ200の回転角度に応じてマルチスリット12を回転させることで、モアレ画像の干渉縞が最も鮮明となるように調整することとしたが、工場出荷時にモアレ画像の干渉縞が最も鮮明となるように第1格子14と第2格子15の相対位置関係を予め調整しておき、撮影時の格子アセンブリ200の回転角度に応じてマルチスリット12を回転させることで、モアレ画像の干渉縞本数が最小となるように調整することとしてもよい。
 その他、X線撮影システムを構成する各装置の細部構成及び細部動作に関しても、発明の趣旨を逸脱することのない範囲で適宜変更可能である。
 なお、明細書、請求の範囲、図面及び要約を含む2010年3月18日に出願された日本特許出願No.2010-061973号、No.2010-061983号、No.2010-061993号の全ての開示は、そのまま本出願の一部に組み込まれる。
 医療の分野におけるX線画像の撮影に利用可能性がある。
1 X線撮影装置
11 X線源
12 マルチスリット
12a ラック
13 被写体台
130 被写体ホルダー
131 楕円形状
133 指間スペーサ
14 第1格子
15 第2格子
16 X線検出器
17 保持部
17a 緩衝部材
17b アーム
171a 開口部
171b トレイ固定部材
18 本体部
181 制御部
182 操作部
183 表示部
184 通信部
185 記憶部
18a 駆動部
121 マルチスリット回転部
121a モータ部
121b ギア部
121c ギア部
121d 支持部
121e 開口部
122 駆動部
122a モータ部
122b ギア部
122c ピニオン
200 格子アセンブリ
201 スペーサ
202 ホルダー
210 格子アセンブリ回転部
211 ハンドル
212 回転トレイ
212a 開口部
212b~212e 凹部
5 コントローラ
51 制御部
52 操作部
53 表示部
54 通信部
55 記憶部
13b 保持部

Claims (7)

  1.  X線を照射するX線源と、
     前記X線の照射軸方向と直交する方向に複数のスリットが配列されて構成されたマルチスリットと、
     前記X線の照射軸方向と直交する方向に複数のスリットが配列されて構成された第1格子及び第2格子と、
     被写体台と、
     照射されたX線に応じて電気信号を生成する変換素子が2次元状に配置され、当該変換素子により生成された電気信号を画像信号として読み取るX線検出器と、を備え、
     前記マルチスリットの前記スリット配列方向への一定周期間隔の移動毎に、又は前記第1格子と前記第2格子の前記スリット配列方向の一定周期間隔の相対移動毎に、前記X線源により照射されたX線に応じて前記X線検出器が画像信号の読み取る処理を繰り返して複数回の撮影を行い、得られた複数のモアレ画像に基づいて被写体の再構成画像を作成するX線撮影システムであって、
     前記被写体台に前記被写体を載置して撮影された被写体有りの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、前記被写体有りの複数のモアレ画像の撮影時と同じ状態にして前記被写体台に前記被写体を載置せずに撮影された被写体無しの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、前記補正後の被写体有りの複数のモアレ画像と前記補正後の被写体無しの複数のモアレ画像とに基づいて診断用の被写体再構成画像を作成する診断用画像作成手段を備えるX線撮影システム。
  2.  前記診断用画像作成手段は、
     前記被写体台に前記被写体を載置して撮影された被写体有りの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、当該補正後の複数のモアレ画像に基づいて被写体有りの再構成画像を作成する被写体有り再構成画像作成手段と、
     前記被写体有りの複数のモアレ画像の撮影時と同じ状態にして前記被写体台に前記被写体を載置せずに撮影された被写体無しの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、当該補正後の複数のモアレ画像に基づいて被写体無しの再構成画像を作成する被写体無し再構成画像作成手段と、
    を有し、
     前記被写体有りの再構成画像と前記被写体無しの再構成画像とに基づいて診断用の被写体再構成画像を作成する請求項1に記載のX線撮影システム。
  3.  前記被写体有り及び前記被写体無しでの複数回の撮影のそれぞれにおけるX線照射量を検知する検知手段を備え、
     前記被写体有り再構成画像作成手段は、前記検知手段により検知された前記被写体有りでの撮影時におけるX線照射量に基づいて、前記被写体有りの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正し、
     前記被写体無し再構成画像作成手段は、前記検知手段により検知された前記被写体無しでの撮影時におけるX線照射量に基づいて、前記被写体無しの複数のモアレ画像間における撮影時のX線強度の変動に起因する信号値差を補正する請求項2に記載のX線撮影システム。
  4.  前記第1格子と前記第2格子の相対位置関係が予め調整されて固定された格子アセンブリと、
     前記被写体に対する前記格子アセンブリのスリット方向を調整するために前記格子アセンブリをX線照射軸周りに回転させる格子アセンブリ回転手段と、
     前記格子アセンブリの回転に応じて前記マルチスリットをX線照射軸周りに回転させるマルチスリット回転手段と、
     を備える請求項1~3の何れか一項に記載のX線撮影システム。
  5.  前記格子アセンブリは、前記モアレ画像の干渉縞の鮮明性又は干渉縞本数の何れかが予め定められた基準を満たすように前記第1格子と前記第2格子の相対位置関係が予め調整されて固定されている請求項4に記載のX線撮影システム。
  6.  前記格子アセンブリの回転に応じて前記マルチスリット回転手段により前記マルチスリットをX線照射軸周りに回転させることによって、前記モアレ画像の干渉縞の鮮明性又は干渉縞本数のうち前記格子アセンブリにおいて予め調整されていない残りの一つを調整する制御手段を備える請求項5に記載のX線撮影システム。
  7.  被写体内部の関心領域に対応するX線照射方向の被写体表面とその周囲とのX線屈折率差を、前記関心領域とその周囲とのX線屈折率差より低減させる屈折率調整手段を有する請求項1~3の何れか一項に記載のX線撮影システム。
PCT/JP2011/053904 2010-03-18 2011-02-23 X線撮影システム WO2011114845A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012505580A JP5900324B2 (ja) 2010-03-18 2011-02-23 X線撮影システム
US13/635,189 US8989474B2 (en) 2010-03-18 2011-02-23 X-ray image capturing system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-061983 2010-03-18
JP2010061983 2010-03-18
JP2010-061993 2010-03-18
JP2010061973 2010-03-18
JP2010061993 2010-03-18
JP2010-061973 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011114845A1 true WO2011114845A1 (ja) 2011-09-22

Family

ID=44648951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053904 WO2011114845A1 (ja) 2010-03-18 2011-02-23 X線撮影システム

Country Status (3)

Country Link
US (1) US8989474B2 (ja)
JP (1) JP5900324B2 (ja)
WO (1) WO2011114845A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275564A1 (en) * 2011-04-26 2012-11-01 Fujifilm Corporation Radiation imaging apparatus
WO2013084658A1 (ja) * 2011-12-05 2013-06-13 富士フイルム株式会社 放射線撮影装置
JP2013180040A (ja) * 2012-03-01 2013-09-12 Konica Minolta Inc 関節撮影装置
KR20140087755A (ko) * 2012-12-31 2014-07-09 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법
WO2014167901A1 (ja) * 2013-04-08 2014-10-16 コニカミノルタ株式会社 診断提供用医用画像システム及び一般撮影用の診断提供用医用画像システムにタルボ撮影装置系を導入する方法
CN104244832A (zh) * 2012-03-30 2014-12-24 卡尔斯特里姆保健公司 医学射线照相成像用混合pci系统
JP2015013051A (ja) * 2013-07-08 2015-01-22 コニカミノルタ株式会社 X線撮影方法、x線撮影装置及びx線画像システム
JP2015529510A (ja) * 2012-08-20 2015-10-08 コーニンクレッカ フィリップス エヌ ヴェ 微分位相コントラスト撮像における複数オーダの位相調整のためのソース格子対位相格子距離の位置合わせ
US9510799B2 (en) 2012-06-11 2016-12-06 Konica Minolta, Inc. Medical imaging system and medical image processing apparatus
JP2019505251A (ja) * 2015-12-01 2019-02-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被検体をx線撮像する装置
WO2020044581A1 (ja) * 2018-08-30 2020-03-05 株式会社島津製作所 X線位相イメージング装置
WO2023171726A1 (ja) * 2022-03-10 2023-09-14 コニカミノルタ株式会社 評価方法、評価装置及びプログラム

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493852B2 (ja) * 2007-02-21 2014-05-14 コニカミノルタ株式会社 放射線画像撮影装置
WO2012052900A1 (en) * 2010-10-19 2012-04-26 Koninklijke Philips Electronics N.V. Differential phase-contrast imaging
US20150117599A1 (en) 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
JP6053282B2 (ja) * 2011-12-28 2016-12-27 キヤノン株式会社 撮影制御装置、放射線撮影システム及び撮影制御方法
AU2012268876A1 (en) * 2012-12-24 2014-07-10 Canon Kabushiki Kaisha Non-linear solution for 2D phase shifting
US10085701B2 (en) * 2013-07-30 2018-10-02 Konica Minolta, Inc. Medical image system and joint cartilage state score determination method
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
JP6187298B2 (ja) * 2014-02-14 2017-08-30 コニカミノルタ株式会社 X線撮影システム及び画像処理方法
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
JP6369206B2 (ja) * 2014-08-06 2018-08-08 コニカミノルタ株式会社 X線撮影システム及び画像処理装置
JP6451400B2 (ja) * 2015-02-26 2019-01-16 コニカミノルタ株式会社 画像処理システム及び画像処理装置
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
EP3314576B1 (en) * 2015-06-26 2019-11-27 Koninklijke Philips N.V. Robust reconstruction for dark-field and phase contrast ct
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
JP6654397B2 (ja) * 2015-10-09 2020-02-26 株式会社イシダ X線検査装置
JP6613988B2 (ja) * 2016-03-30 2019-12-04 コニカミノルタ株式会社 放射線撮影システム
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
WO2018186296A1 (ja) * 2017-04-07 2018-10-11 コニカミノルタ株式会社 品質検査方法
WO2019073760A1 (ja) * 2017-10-11 2019-04-18 株式会社島津製作所 X線位相差撮影システムおよび位相コントラスト画像補正方法
JP6897799B2 (ja) * 2018-01-12 2021-07-07 株式会社島津製作所 X線位相撮像システム
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US11823376B2 (en) 2018-05-16 2023-11-21 Benevis Informatics, Llc Systems and methods for review of computer-aided detection of pathology in images
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
US11272894B2 (en) * 2018-06-15 2022-03-15 Shimadzu Corporation X-ray imaging device
WO2020023408A1 (en) 2018-07-26 2020-01-30 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
DE112019004433T5 (de) 2018-09-04 2021-05-20 Sigray, Inc. System und verfahren für röntgenstrahlfluoreszenz mit filterung
WO2020051221A2 (en) 2018-09-07 2020-03-12 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11143605B2 (en) 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
DE112021002841T5 (de) 2020-05-18 2023-03-23 Sigray, Inc. System und Verfahren für Röntgenabsorptionsspektroskopie unter Verwendung eines Kristallanalysators und mehrerer Detektorelemente
JP2023542674A (ja) 2020-09-17 2023-10-11 シグレイ、インコーポレイテッド X線を用いた深さ分解計測および分析のためのシステムおよび方法
KR20230109735A (ko) 2020-12-07 2023-07-20 시그레이, 아이엔씨. 투과 x-선 소스를 이용한 고처리량 3D x-선 이미징 시스템
US11992350B2 (en) 2022-03-15 2024-05-28 Sigray, Inc. System and method for compact laminography utilizing microfocus transmission x-ray source and variable magnification x-ray detector
WO2023215204A1 (en) 2022-05-02 2023-11-09 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209212A (ja) * 1994-01-20 1995-08-11 Hitachi Ltd 液体中の物体観察用位相型トモグラフィ装置
JP2002139459A (ja) * 2000-11-01 2002-05-17 Hitachi Ltd X線撮像法およびx線撮像装置
WO2008102685A1 (ja) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. 放射線画像撮影装置及び放射線画像撮影システム
WO2009069040A1 (en) * 2007-11-26 2009-06-04 Koninklijke Philips Electronics N.V. Detection setup for x-ray phase contrast imaging
JP2009150875A (ja) * 2007-11-15 2009-07-09 Csem Centre Suisse D'electronique & De Microtechnique Sa 干渉計デバイス及び干渉法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816216A (ja) 1981-07-22 1983-01-29 Canon Inc タルボ干渉計
US5812629A (en) * 1997-04-30 1998-09-22 Clauser; John F. Ultrahigh resolution interferometric x-ray imaging
WO2004058070A1 (ja) 2002-12-26 2004-07-15 Atsushi Momose X線撮像装置および撮像方法
DE102006017290B4 (de) 2006-02-01 2017-06-22 Siemens Healthcare Gmbh Fokus/Detektor-System einer Röntgenapparatur, Röntgen-System und Verfahren zur Erzeugung von Phasenkontrastaufnahmen
DE102006046034A1 (de) * 2006-02-01 2007-08-16 Siemens Ag Röntgen-CT-System zur Erzeugung projektiver und tomographischer Phasenkontrastaufnahmen
JP2007268033A (ja) 2006-03-31 2007-10-18 Konica Minolta Medical & Graphic Inc X線撮影システム及びx線撮影方法
US7753586B2 (en) * 2006-05-31 2010-07-13 Shimadzu Corporation Radiation imaging apparatus
JP2008018060A (ja) 2006-07-13 2008-01-31 Konica Minolta Medical & Graphic Inc 診断情報生成システム、診断情報生成方法及び診断情報表示方法
WO2008102898A1 (ja) 2007-02-19 2008-08-28 Tokyo Institute Of Technology 画質改善処理装置、画質改善処理方法及び画質改善処理プログラム
US20100080436A1 (en) * 2007-02-21 2010-04-01 Konica Minolta Medical & Graphic, Inc. Radiographic imaging device and radiographic imaging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209212A (ja) * 1994-01-20 1995-08-11 Hitachi Ltd 液体中の物体観察用位相型トモグラフィ装置
JP2002139459A (ja) * 2000-11-01 2002-05-17 Hitachi Ltd X線撮像法およびx線撮像装置
WO2008102685A1 (ja) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. 放射線画像撮影装置及び放射線画像撮影システム
JP2009150875A (ja) * 2007-11-15 2009-07-09 Csem Centre Suisse D'electronique & De Microtechnique Sa 干渉計デバイス及び干渉法
WO2009069040A1 (en) * 2007-11-26 2009-06-04 Koninklijke Philips Electronics N.V. Detection setup for x-ray phase contrast imaging

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275564A1 (en) * 2011-04-26 2012-11-01 Fujifilm Corporation Radiation imaging apparatus
WO2013084658A1 (ja) * 2011-12-05 2013-06-13 富士フイルム株式会社 放射線撮影装置
JP2013138836A (ja) * 2011-12-05 2013-07-18 Fujifilm Corp 放射線撮影装置
JP2013180040A (ja) * 2012-03-01 2013-09-12 Konica Minolta Inc 関節撮影装置
CN104244832A (zh) * 2012-03-30 2014-12-24 卡尔斯特里姆保健公司 医学射线照相成像用混合pci系统
US9510799B2 (en) 2012-06-11 2016-12-06 Konica Minolta, Inc. Medical imaging system and medical image processing apparatus
JP2015529510A (ja) * 2012-08-20 2015-10-08 コーニンクレッカ フィリップス エヌ ヴェ 微分位相コントラスト撮像における複数オーダの位相調整のためのソース格子対位相格子距離の位置合わせ
KR20140087755A (ko) * 2012-12-31 2014-07-09 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법
KR101999266B1 (ko) 2012-12-31 2019-07-12 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법
WO2014167901A1 (ja) * 2013-04-08 2014-10-16 コニカミノルタ株式会社 診断提供用医用画像システム及び一般撮影用の診断提供用医用画像システムにタルボ撮影装置系を導入する方法
JPWO2014167901A1 (ja) * 2013-04-08 2017-02-16 コニカミノルタ株式会社 診断提供用医用画像システム及び一般撮影用の診断提供用医用画像システムにタルボ撮影装置系を導入する方法
US9855018B2 (en) 2013-04-08 2018-01-02 Konica Minolta, Inc. Diagnostic medical image system and method of introducing Talbot capturing device to diagnostic medical image system used for general capturing
JP2015013051A (ja) * 2013-07-08 2015-01-22 コニカミノルタ株式会社 X線撮影方法、x線撮影装置及びx線画像システム
JP2019505251A (ja) * 2015-12-01 2019-02-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被検体をx線撮像する装置
WO2020044581A1 (ja) * 2018-08-30 2020-03-05 株式会社島津製作所 X線位相イメージング装置
JPWO2020044581A1 (ja) * 2018-08-30 2021-05-20 株式会社島津製作所 X線位相イメージング装置
JP7021705B2 (ja) 2018-08-30 2022-02-17 株式会社島津製作所 X線位相イメージング装置
WO2023171726A1 (ja) * 2022-03-10 2023-09-14 コニカミノルタ株式会社 評価方法、評価装置及びプログラム

Also Published As

Publication number Publication date
US20130011040A1 (en) 2013-01-10
US8989474B2 (en) 2015-03-24
JPWO2011114845A1 (ja) 2013-06-27
JP5900324B2 (ja) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5900324B2 (ja) X線撮影システム
US8995614B2 (en) Method for displaying medical images and medical image display system
JP5652245B2 (ja) X線撮影システム
JP5915645B2 (ja) 医用画像表示システム
JP5331940B2 (ja) 放射線撮影システム及び放射線画像生成方法
JP5708652B2 (ja) X線撮影システム
JP5857800B2 (ja) 関節撮影装置及び撮影対象固定ユニット
WO2011033798A1 (ja) X線撮影装置、x線画像システム及びx線画像生成方法
US20120099705A1 (en) Radiographic apparatus and radiographic system
JP2012115576A (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
JP2011045655A (ja) X線撮影装置
JP5831614B2 (ja) X線撮影システム
JP2013085631A (ja) 関節撮影装置
JP2012115577A (ja) 放射線撮影システム
JP6451400B2 (ja) 画像処理システム及び画像処理装置
JP6237001B2 (ja) 医用画像処理装置及び位相画像生成方法
JP2014030438A (ja) 放射線画像検出装置、放射線撮影装置、及び放射線撮影システム
JP2012115621A (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
JP2016096831A (ja) X線撮影システム
JP2012135561A (ja) X線撮影装置
JP2011206280A (ja) 放射線撮影方法及びシステム
JP2014132913A (ja) 放射線撮影システム及び放射線撮影方法
JP2011206489A (ja) 放射線撮影システム及び放射線撮影方法
WO2012057046A1 (ja) 放射線撮影装置及び放射線撮影システム
WO2012133553A1 (ja) 放射線撮影システム及び放射線撮影方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505580

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13635189

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756034

Country of ref document: EP

Kind code of ref document: A1