RU2012109893A - Зонд td и его применения - Google Patents

Зонд td и его применения Download PDF

Info

Publication number
RU2012109893A
RU2012109893A RU2012109893/10A RU2012109893A RU2012109893A RU 2012109893 A RU2012109893 A RU 2012109893A RU 2012109893/10 A RU2012109893/10 A RU 2012109893/10A RU 2012109893 A RU2012109893 A RU 2012109893A RU 2012109893 A RU2012109893 A RU 2012109893A
Authority
RU
Russia
Prior art keywords
nucleic acid
probe
terminal
hybridization
acid sequence
Prior art date
Application number
RU2012109893/10A
Other languages
English (en)
Other versions
RU2542478C2 (ru
Inventor
Джон Йоон ЧУН
Ин Таэк ХВАН
Сан Кил ЛЕЭ
Original Assignee
Сиджен, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сиджен, Инк. filed Critical Сиджен, Инк.
Publication of RU2012109893A publication Critical patent/RU2012109893A/ru
Application granted granted Critical
Publication of RU2542478C2 publication Critical patent/RU2542478C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6823Release of bound markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

1. Дискриминирующий мишень зонд (TD-зонд), имеющий структуру модифицированного олигонуклеотида с двойной специфичностью (mDSO), представленную следующей общей формулой I, позволяющий отличать (то есть дискриминировать) нуклеиновокислотную последовательность-мишень от нуклеиновокислотной последовательности, не являющейся мишенью:где Х'представляет собой 5'-концевой второй участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; Y'представляет собой разделительный участок, содержащий по меньшей мере три универсальных основания; Z'представляет собой 3'-концевой первый участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; р, q и r представляют количество нуклеотидов; и X', Y' и Z' представляют собой дезоксирибонуклеотиды или рибонуклеотиды; Т(температура плавления) 5'-концевого второго участка гибридизации ниже, чем у 3'-концевого первого участка гибридизации, и разделительный участок имеет самую низкую Тсреди этих трех участков Х', Y'и Z'; разделительный участок отделяет 5'-концевой второй участок гибридизации от 3'-концевого первого участка гибридизации с точки зрения событий гибридизации с нуклеиновокислотной последовательностью-мишенью, в силу чего специфичность гибридизации TD-зонда определяется двойственно 5'-концевым вторым участком гибридизации и 3'-концевым первым участком гибридизации, так что общая специфичность гибридизации TD-зонда является повышенной; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последователь�

Claims (40)

1. Дискриминирующий мишень зонд (TD-зонд), имеющий структуру модифицированного олигонуклеотида с двойной специфичностью (mDSO), представленную следующей общей формулой I, позволяющий отличать (то есть дискриминировать) нуклеиновокислотную последовательность-мишень от нуклеиновокислотной последовательности, не являющейся мишенью:
5 ' X ' p Y ' q Z ' r 3 ' , ( I )
Figure 00000001
где Х'р представляет собой 5'-концевой второй участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; Y'q представляет собой разделительный участок, содержащий по меньшей мере три универсальных основания; Z'r представляет собой 3'-концевой первый участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; р, q и r представляют количество нуклеотидов; и X', Y' и Z' представляют собой дезоксирибонуклеотиды или рибонуклеотиды; Тпл (температура плавления) 5'-концевого второго участка гибридизации ниже, чем у 3'-концевого первого участка гибридизации, и разделительный участок имеет самую низкую Тпл среди этих трех участков Х'р, Y'q и Z'r; разделительный участок отделяет 5'-концевой второй участок гибридизации от 3'-концевого первого участка гибридизации с точки зрения событий гибридизации с нуклеиновокислотной последовательностью-мишенью, в силу чего специфичность гибридизации TD-зонда определяется двойственно 5'-концевым вторым участком гибридизации и 3'-концевым первым участком гибридизации, так что общая специфичность гибридизации TD-зонда является повышенной; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью-мишенью, тогда и 5'-концевой второй участок гибридизации, и 3'-концевой первый участок гибридизации оба гибридизуются с данной нуклеиновокислотной последовательностью-мишенью; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью, не являющейся мишенью, тогда и 5'-концевой второй участок гибридизации, и разделительный участок оба образуют одиночную цепь, на основании чего TD-зонд позволяет отличать нуклеиновокислотную последовательность-мишень от нуклеиновокислотной последовательности, не являющейся мишенью.
2. TD-зонд по п.1, где зонд имеет метку или систему взаимодействующих меток, содержащую некоторое количество меток для генерирования детектируемого сигнала.
3. TD-зонд по п.1, где Тпл 3'-концевого первого участка гибридизации находится в диапазоне от 40°С до 80°С.
4. TD-зонд по п.1, где Тпл 5'-концевого второго участка гибридизации находится в диапазоне от 6°С до 40°С.
5. TD-зонд по п.1, где Тпл разделительного участка находится в диапазоне от 2°С до 15°С.
6. Способ детекции нуклеиновокислотной последовательности-мишени из ДНК или смеси нуклеиновых кислот с использованием дискриминирующего мишень зонда (TD-зонда), включающий стадии:
(а) гибридизации нуклеиновокислотной последовательности-мишени с TD-зондом, имеющим гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; где TD-зонд имеет структуру модифицированного олигонуклеотида с двойной специфичностью (mDSO), представленную следующей общей формулой I:
5 ' X ' p Y ' q Z ' r 3 ' , ( I )
Figure 00000001
где Х'р представляет собой 5'-концевой второй участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; Y'q представляет собой разделительный участок, содержащий по меньшей мере три универсальных основания; Z'r представляет собой 3'-концевой первый участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; TD-зонд содержит две метки - флуоресцентную репортерную молекулу и молекулу-гаситель, способную гасить флуоресценцию репортерной молекулы; по меньшей мере одна молекула из флуоресцентной репортерной молекулы и молекулы-гасителя, расположена на 5'-концевом втором участке гибридизации; р, q и r представляют количество нуклеотидов; и X', Y' и Z' представляют собой дезоксирибонуклеотиды или рибонуклеотиды; Тпл 5'-концевого второго участка гибридизации ниже, чем у 3'-концевого первого участка гибридизации, и разделительный участок имеет самую низкую Тпл среди этих трех участков Х'р, Y'q и Z'r; разделительный участок отделяет 5'-концевой второй участок гибридизации от 3'-концевого первого участка гибридизации с точки зрения событий гибридизации с нуклеиновокислотной последовательностью-мишенью, в силу чего специфичность гибридизации TD-зонда определяется двойственно 5'-концевым вторым участком гибридизации и 3'-концевым первым участком гибридизации, так что общая специфичность гибридизации TD-зонда является повышенной;
при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью-мишенью, тогда и 5'-концевой второй участок гибридизации, и 3'-концевой первый участок гибридизации оба гибридизуются с данной нуклеиновокислотной последовательностью-мишенью, а 5'-концевой второй участок гибридизации переваривается ферментом, обладающим 5'→3'-экзонуклеазной активностью; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью, не являющейся мишенью, тогда и 5'-концевой второй участок гибридизации, и разделительный участок оба образуют одиночную цепь, вследствие чего 5'-концевой второй участок гибридизации не переваривается ферментом, обладающим 5'→3'-экзонуклеазной активностью, на основании чего TD-зонд позволяет отличать нуклеиновокислотную последовательность-мишень от нуклеиновокислотной последовательности, не являющейся мишенью,
(b) приведения в контакт продукта со стадии (а) с ферментом, обладающим 5'→3'-экзонуклеазной активностью; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью-мишенью, 5'-концевой второй участок гибридизации переваривается ферментом, обладающим 5'→-3'-экзонуклеазной активностью, с целью разъединения флуоресцентной репортерной молекулы и молекулы-гасителя на TD-зонде, в результате чего генерируется сигнал флуоресценции; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью, не являющейся мишенью, 5'-концевой второй участок гибридизации не переваривается ферментом, обладающим 5'→3'-экзонуклеазной активностью, в результате чего сигнал флуоресценции будет отсутствовать; и
(c) детекции сигнала флуоресценции, так что сигнал флуоресценции, генерируемый в результате переваривания 5'-концевого второго участка гибридизации, является указанием на наличие нуклеиновокислотной последовательности-мишени.
7. Способ по п.6, где фермент, обладающий 5'→3'-экзонуклеазной активностью, представляет собой матричную полимеразу нуклеиновых кислот, обладающую 5'→3'-экзонуклеазной активностью.
8. Способ по п.6, где стадию (а) выполняют с использованием TD-зонда вместе с прямым праймером, подлежащим гибридизации с сайтом, расположенным "вниз по течению" относительно сайта гибридизации TD-зонда, и ферментом, обладающим 5'→3'-экзонуклеазной активностью, является матричная полимераза нуклеиновых кислот, обладающая 5'→3'-экзонуклеазной активностью, так что прямой праймер удлиняется под действием матричной полимеразы нуклеиновых кислот на стадии (b).
9. Способ по п.6, где стадию (а) выполняют с использованием TD-зонда вместе с обратным праймером, и ферментом, обладающим 5'→3'-экзонуклеазной активностью, является матричная полимераза нуклеиновых кислот, обладающая 5'→3'-экзонуклеазной активностью, так что на стадии (b) получают нуклеиновокислотную последовательность-мишень, гибридизуемую с TD-зондом благодаря реакции удлинения обратного праймера под действием матричной полимеразы нуклеиновых кислот.
10. Способ по п.6, где флуоресцентная репортерная молекула и молекула-гаситель обе расположены на 5'-концевом втором участке гибридизации, либо флуоресцентная репортерная молекула и молекула-гаситель каждая расположена каждый раз на своем участке, выбранном из 5'-концевого второго участка гибридизации и разделительного участка.
11. Способ по п.6, где флуоресцентная репортерная молекула и молекула-гаситель каждая расположена каждый раз на своем участке, выбранном из 5'-концевого второго участка гибридизации и 3'-концевого первого участка гибридизации.
12. Способ по п.6, дополнительно включающий повторение стадий (а)-(b) или (а)-(с) вместе со стадией денатурации между повторяющимися циклами.
13. Способ по п.6, где нуклеиновокислотная последовательность-мишень включает по меньшей мере два типа нуклеиновокислотных последовательностей, и TD-зонд включает по меньшей мере два типа зондов.
14. Способ по п.8, где нуклеиновокислотная последовательность-мишень включает по меньшей мере два типа нуклеиновокислотных последовательностей, TD-зонд включает по меньшей мере два типа зондов и прямой праймер включает по меньшей мере два типа праймеров или обратный праймер включает по меньшей мере два типа праймеров.
15. Способ по п.6, где вариабельность нуклеотидов в нуклеиновокислотной последовательности-мишени присутствует в сайте, расположенном напротив 5'-концевого второго участка гибридизации TD-зонда.
16. Способ по п.6, где в состав TD-зонда входит блокирующий сайт, содержащий в качестве молекулы-блокатора по меньшей мере один нуклеотид, устойчивый к расщеплению под действием фермента, обладающего 5'→3'-экзонуклеазной активностью, и блокирующий сайт расположен в 3'-концевом участке гибридизации TD-зонда.
17. Способ детекции нуклеиновокислотной последовательности-мишени из ДНК или смеси нуклеиновых кислот на твердой фазе с использованием дискриминирующего мишень зонда (TD-зонда), включающий стадии:
(а) гибридизации нуклеиновокислотной последовательности-мишени с TD-зондом, имеющим гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; где TD-зонд иммобилизован через свой 3'-конец на поверхности твердой подложки; где TD-зонд имеет структуру модифицированного олигонуклеотида с двойной специфичностью (mDSO), представленную следующей общей формулой I:
5 ' X ' p Y ' q Z ' r 3 ' , ( I )
Figure 00000002
где Х'р представляет собой 5'-концевой второй участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; Y'q представляет собой разделительный участок, содержащий по меньшей мере три универсальных основания; Z'r представляет собой 3'-концевой первый участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; TD-зонд имеет метку, генерирующую детектируемый сигнал, и эта метка расположена на 5'-концевом втором участке гибридизации TD-зонда; р, q и r представляют количество нуклеотидов; и X', Y' и Z' представляют собой дезоксирибонуклеотиды или рибонуклеотиды; Тпл 5'-концевого второго участка гибридизации ниже, чем у 3'-концевого первого участка гибридизации, и разделительный участок имеет самую низкую Тпл среди этих трех участков Х'р, Y'q и Z'r; разделительный участок отделяет 5'-концевой второй участок гибридизации от 3'-концевого первого участка гибридизации с точки зрения событий гибридизации с нуклеиновокислотной последовательностью-мишенью, в силу чего специфичность гибридизации TD-зонда определяется двойственно 5'-концевым вторым участком гибридизации и 3'-концевым первым участком гибридизации, так что общая специфичность гибридизации TD-зонда является повышенной;
при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью-мишенью, тогда и 5'-концевой второй участок гибридизации, и 3'-концевой первый участок гибридизации оба гибридизуются с данной нуклеиновокислотной последовательностью-мишенью, а 5'-концевой второй участок гибридизации переваривается ферментом, обладающим 5'→3'-экзонуклеазной активностью; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью, не являющейся мишенью, тогда и 5'-концевой второй участок гибридизации, и разделительный участок оба образуют одиночную цепь, вследствие чего 5'-концевой второй участок гибридизации не переваривается ферментом, обладающим 5'→3'-экзонуклеазной активностью, на основании чего TD-зонд позволяет отличать нуклеиновокислотную последовательность-мишень от нуклеиновокислотной последовательности, не являющейся мишенью;
(b) приведения в контакт продукта со стадии (а) с ферментом, обладающим 5'→3'-экзонуклеазной активностью; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью-мишенью, его 5'-концевой второй участок гибридизации переваривается ферментом, обладающим 5'→3'-экзонуклеазной активностью, с высвобождением метки из TD-зонда, в результате чего изменяется сигнал от TD-зонда, иммобилизованного на твердой подложке; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью, не являющейся мишенью, 5'-концевой второй участок гибридизации не переваривается ферментом, обладающим 5'→3'-экзонуклеазной активность, в результате чего не происходит никакого изменения сигнала на TD-зонде, иммобилизованном на твердой подложке, в силу чего изменение сигнала на твердой подложке детектируют для определения наличия нуклеиновокислотной последовательности-мишени; и
(c) детекции изменения сигнала на твердой подложке, так что изменение сигнала в результате переваривания на 5'-концевом втором участке гибридизации указывает на наличие нуклеиновокислотной последовательности-мишени.
18. Способ по п.17, где метка представляет собой флуоресцентную репортерную молекулу и изменение сигнала представляет собой уменьшение или исчезновение сигналов флуоресценции на твердой подложке.
19. Способ по п.17, где метка представляет собой систему взаимодействующих меток, содержащую пару, состоящую из флуоресцентной репортерной молекулы и молекулы-гасителя, и TD-зонд имеет одну из молекул, выбранную из репортерной молекулы и молекулы-гасителя, расположенную в сайте на 5'-концевом втором участке гибридизации, подлежащем перевариванию ферментом, обладающим 5'→3'-экзонуклеазной активностью, а другую - в сайте, не подлежащем перевариванию ферментом, обладающим 5'→3'-экзонуклеазной активностью.
20. Способ по п.19, где молекула-гаситель расположена в сайте на 5'-концевом втором участке гибридизации TD-зонда, подлежащем перевариванию ферментом, обладающим 5'→3'-экзонуклеазной активностью, а флуоресцентная репортерная молекула расположена в сайте, не подлежащем перевариванию ферментом, обладающим 5'→3'-экзонуклеазной активностью; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью-мишенью, его 5'-концевой второй участок гибридизации переваривается ферментом, обладающим 5'→3'-экзонуклеазной активностью, с отделением флуоресцентной репортерной молекулы от молекулы-гасителя на TD-зонде, в результате чего генерируется сигнал флуоресценции; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью, не являющейся мишенью, 5'-концевой второй участок гибридизации не переваривается ферментом, обладающим 5'→3'-экзонуклеазной активностью, в результате чего сигнал флуоресценции будет отсутствовать; тем самым осуществляется детекция сигнала флуоресценции на твердой подложке для определения наличия нуклеиновокислотной последовательности-мишени.
21. Способ по п.17, дополнительно включающий повторение стадий (а)-(b) или (а)-(с) вместе со стадией денатурации между повторяющимися циклами.
22. Способ по п.17, где нуклеиновокислотная последовательность-мишень включает по меньшей мере два типа нуклеиновокислотных последовательностей, и TD-зонд включает по меньшей мере два типа зондов.
23. Способ по п.17, где эта нуклеиновокислотная последовательность-мишень содержит вариабельность нуклеотидов и вариабельность нуклеотидов в нуклеиновокислотной последовательности-мишени присутствует в сайте, расположенном напротив 5'-концевого второго участка гибридизации TD-зонда.
24. Способ по п.17, где в состав TD-зонда входит блокирующий сайт, содержащий в качестве молекулы-блокатора по меньшей мере один нуклеотид, устойчивый к расщеплению под действием фермента, обладающего 5'→3'-экзонуклеазной активностью, и блокирующий сайт расположен в 3'-концевом участке гибридизации TD-зонда.
25. Способ детекции нуклеиновокислотной последовательности-мишени из ДНК или смеси нуклеиновых кислот с использованием дискриминирующего мишень зонда (TD-зонда) и полимеразной цепной реакции (ПЦР), включающий стадии:
(а) приготовления смеси для ПЦР, содержащей (1) нуклеиновокислотную последовательность-мишень, (2) TD-зонд, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени, (3) пару праймеров, состоящую из двух праймеров в качестве прямого праймера и обратного праймера, каждый из которых имеет гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени, и (4) матричную полимеразу нуклеиновых кислот, обладающую 5→3'-экзонуклеазной активностью; где TD-зонд гибридизуется с сайтом, расположенным между двумя этими праймерами; где TD-зонд имеет структуру модифицированного олигонуклеотида с двойной специфичностью (mDSO), представленную следующей общей формулой I:
5 ' X ' p Y ' q Z ' r 3 ' , ( I )
Figure 00000002
где Х'р представляет собой 5'-концевой второй участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; Y'q представляет собой разделительный участок, содержащий по меньшей мере три универсальных основания; Z'r представляет собой 3'-концевой первый участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; TD-зонд содержит две метки - флуоресцентную репортерную молекулу и молекулу-гаситель, способную гасить флуоресценцию репортерной молекулы; флуоресцентная репортерная молекула и молекула-гаситель обе расположены на 5'-концевом втором участке гибридизации, или репортерная молекула и молекула-гаситель каждая расположена каждый раз на своем участке, выбранном из 5'-концевого второго участка гибридизации и разделительного участка; р, q и r представляют количество нуклеотидов; и X', Y' и Z' представляют собой дезоксирибонуклеотиды или рибонуклеотиды; Тпл 5'-концевого второго участка гибридизации ниже, чем у 3'-концевого первого участка гибридизации, и разделительный участок имеет самую низкую Тпл среди этих трех участков Х'р, Y'q и Z'r; разделительный участок отделяет 5'-концевой второй участок гибридизации от 3'-концевого первого участка гибридизации с точки зрения событий гибридизации с нуклеиновокислотной последовательностью-мишенью, в силу чего специфичность гибридизации TD-зонда определяется двойственно 5'-концевым вторым участком гибридизации и 3'-концевым первым участком гибридизации, так что общая специфичность гибридизации TD-зонда является повышенной;
при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью-мишенью, тогда и 5'-концевой второй участок гибридизации, и 3'-концевой первый участок гибридизации оба гибридизуются с данной нуклеиновокислотной последовательностью-мишенью, и 5'-концевой второй участок гибридизации переваривается в результате проявления 5'→3'-экзонуклеазной активности матричной полимеразы нуклеиновых кислот; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью, не являющейся мишенью, тогда и 5'-концевой второй участок гибридизации, и разделительный участок оба образуют одиночную цепь, вследствие чего 5'-концевой второй участок гибридизации не переваривается в результате проявления 5'→3'-экзонуклеазной активности матричной полимеразы нуклеиновых кислот, на основании чего TD-зонд позволяет отличать нуклеиновокислотную последовательность-мишень от нуклеиновокислотной последовательности, не являющейся мишенью,
(b) амплификации нуклеиновокислотной последовательности-мишени с использованием смеси для ПЦР посредством проведения по меньшей мере двух циклов отжига праймеров, удлинения праймеров и денатурации, при этом данные два праймера удлиняются под действием полимеразной активности матричной полимеразы нуклеиновых кислот для амплификации нуклеиновокислотной последовательности-мишени; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью-мишенью, 5'-концевой второй участок гибридизации переваривается в результате проявления 5'→3'-экзонуклеазной активности матричной полимеразы нуклеиновых кислот с отделением флуоресцентной репортерной молекулы от молекулы-гасителя на TD-зонде, в результате чего генерируется сигнал флуоресценции; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью, не являющейся мишенью, 5'-концевой второй участок гибридизации не переваривается в результате проявления 5'→3'-экзонуклеазной активности матричной полимеразы нуклеиновых кислот, так что флуоресцентная репортерная молекула не отделяется от молекулы-гасителя на TD-зонде, в результате чего сигнал флуоресценции будет отсутствовать; и
(c) детекции сигнала флуоресценции, так что генерируемый сигнал флуоресценции указывает на наличие нуклеиновокислотной последовательности-мишени.
26. Способ по п.25, где нуклеиновокислотная последовательность-мишень включает по меньшей мере два типа нуклеиновокислотных последовательностей, TD-зонд включает по меньшей мере два типа зондов, прямой праймер включает по меньшей мере два типа праймеров и обратный праймер включает по меньшей мере два типа праймеров.
27. Способ по п.25, где эта нуклеиновокислотная последовательность-мишень содержит вариабельность нуклеотидов и вариабельность нуклеотидов в нуклеиновокислотной последовательности-мишени присутствует в сайте, расположенном напротив 5'-концевого второго участка гибридизации TD-зонда.
28. Способ детекции нуклеиновокислотной последовательности-мишени из ДНК или смеси нуклеиновых кислот с использованием дискриминирующего мишень зонда (TD-зонда) с применением реакции лигирования, включающий стадии:
(а) гибридизации нуклеиновокислотной последовательности-мишени с первым зондом, имеющим гибридизующуюся нуклеотидную последовательность, комплементарную первому сайту нуклеиновокислотной последовательности-мишени, и вторым зондом, имеющим гибридизующуюся нуклеотидную последовательность, комплементарную второму сайту нуклеиновокислотной последовательности-мишени, который расположен "вверх по течению" относительно первого сайта; где по меньшей мере один зонд, выбранный из первого зонда или второго зонда, содержит метку для генерации детектируемого сигнала; где второй зонд представляет собой TD-зонд; где TD-зонд имеет структуру модифицированного олигонуклеотида с двойной специфичностью (mDSO), представленную следующей общей формулой I:
5 ' X ' p Y ' q Z ' r 3 ' , ( I )
Figure 00000002
где Х'р представляет собой 5'-концевой второй участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; Y'q представляет собой разделительный участок, содержащий по меньшей мере три универсальных основания; Z'r представляет собой 3'-концевой первый участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; р, q и r представляют количество нуклеотидов; и X', Y' и Z' представляют собой дезоксирибонуклеотиды или рибонуклеотиды; Тпл 5'-концевого второго участка гибридизации ниже, чем у 3'-концевого первого участка гибридизации, и разделительный участок имеет самую низкую Тпл среди этих трех участков Х'р, Y'q и Z'r; разделительный участок отделяет 5'-концевой второй участок гибридизации от 3'-концевого первого участка гибридизации с точки зрения событий гибридизации с нуклеиновокислотной последовательностью-мишенью, в силу чего специфичность гибридизации TD-зонда определяется двойственно 5'-концевым вторым участком гибридизации и 3'-концевым первым участком гибридизации, так что общая специфичность гибридизации TD-зонда является повышенной;
при этом, когда второй зонд гибридизуется с нуклеиновокислотной последовательностью-мишенью, тогда и 5'-концевой второй участок гибридизации, и 3'-концевой первый участок гибридизации второго зонда оба гибридизуются с данной нуклеиновокислотной последовательностью-мишенью, что позволяет осуществлять лигирование первого зонда и второго зонда; при этом, когда второй зонд гибридизуется с нуклеиновокислотной последовательностью, не являющейся мишенью, тогда и 5'-концевой второй участок гибридизации, и разделительный участок второго зонда оба образуют одиночную цепь, так что первый зонд и второй зонд не подвергаются лигированию, на основании чего второй зонд позволяет отличать нуклеиновокислотную последовательность-мишень от нуклеиновокислотной последовательности, не являющейся мишенью;
(b) лигирования первого зонда и второго зонда, гибридизованных с нуклеиновокислотной последовательностью-мишенью, с получением лигированного зонда;
(c) денатурации продукта со стадии (b);
(d) детекции сигнала от метки на лигированном зонде, так что сигнал указывает на наличие нуклеиновокислотной последовательности-мишени.
29. Способ по п.28, где метка представляет собой систему взаимодействующих меток, содержащую пару, состоящую из репортерной молекулы и молекулы-гасителя.
30. Способ по п.28, где первый зонд имеет структуру олигонуклеотида с двойной специфичностью (DSO), представленную следующей общей формулой II:
5 ' X ' p Y ' q Z ' r 3 ' , ( I )
Figure 00000002
где Хр представляет собой 5'-концевой первый участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновой кислоте-мишени; Yq представляет собой разделительный участок, содержащий по меньшей мере три универсальных основания; Zr представляет собой 3'-концевой второй участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновой кислоте-мишени; р, q и r представляют количество нуклеотидов, и X, Y и Z представляют собой дезоксирибонуклеотиды или рибонуклеотиды; Тпл 5'-концевого первого участка гибридизации выше, чем у 3'-концевого второго участка гибридизации, и разделительный участок имеет самую низкую Тпл среди этих трех участков; разделительный участок отделяет 5'-концевой первый участок гибридизации от 3'-концевого второго участка гибридизации с точки зрения событий гибридизации с нуклеиновой кислотой-мишенью, в силу чего специфичность гибридизации олигонуклеотида определяется двойственно 5'-концевым первым участком гибридизации и 3'-концевым вторым участком гибридизации, так что общая специфичность гибридизации олигонуклеотида является повышенной.
31. Способ по п.28, дополнительно включающий повторение стадий (а)-(с) или (a)-(d).
32. Способ по п.28, который осуществляют на твердой фазе; где первый зонд иммобилизован через свой 5'-конец на поверхности твердой подложки, а второй зонд не иммобилизован.
33. Способ по п.28, который выполняют на твердой фазе; где второй зонд иммобилизован через свой 3'-конец на поверхности твердой подложки, а первый зонд не иммобилизован.
34. Способ по п.28, где нуклеиновокислотная последовательность-мишень включает по меньшей мере два типа нуклеиновокислотных последовательностей, и первый зонд и второй зонд каждый включает по меньшей мере два типа зондов.
35. Способ по п.28, где эта нуклеиновокислотная последовательность-мишень содержит вариабельность нуклеотидов и вариабельность нуклеотидов в нуклеиновокислотной последовательности-мишени присутствует в сайте, расположенном напротив 5'-концевого второго участка гибридизации второго зонда.
36. Способ детекции нуклеиновокислотной последовательности-мишени из ДНК или смеси нуклеиновых кислот с использованием дискриминирующего мишень зонда (TD-зонда), включающий стадии:
(а) гибридизации нуклеиновокислотной последовательности-мишени с TD-зондом, имеющим гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; где TD-зонд имеет структуру модифицированного олигонуклеотида с двойной специфичностью (mDSO), представленную следующей общей формулой I:
5 ' X ' p Y ' q Z ' r 3 ' , ( I )
Figure 00000002
где Х'р представляет собой 5'-концевой второй участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; Y'q представляет собой разделительный участок, содержащий по меньшей мере три универсальных основания; Z'r представляет собой 3'-концевой первый участок гибридизации, имеющий гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновокислотной последовательности-мишени; TD-зонд содержит в качестве метки флуоресцентную репортерную молекулу на 5'-концевом втором участке гибридизации; р, q и r представляют количество нуклеотидов; и X', Y' и Z' представляют собой дезоксирибонуклеотиды или рибонуклеотиды; Тпл 5'-концевого второго участка гибридизации ниже, чем у 3'-концевого первого участка гибридизации, и разделительный участок имеет самую низкую Тпл среди этих трех участков X'p, Y'q и Z'r; разделительный участок отделяет 5'-концевой второй участок гибридизации от 3'-концевого первого участка гибридизации с точки зрения событий гибридизации с нуклеиновокислотной последовательностью-мишенью, в силу чего специфичность гибридизации TD-зонда определяется двойственно 5'-концевым вторым участком гибридизации и 3'-концевым первым участком гибридизации, так что общая специфичность гибридизации TD-зонда является повышенной;
при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью-мишенью, тогда и 5'-концевой второй участок гибридизации, и 3'-концевой первый участок гибридизации оба гибридизуются с данной нуклеиновокислотной последовательностью-мишенью, индуцируя изменение флуоресценции от флуоресцентной репортерной молекулы; при этом, когда TD-зонд гибридизуется с нуклеиновокислотной последовательностью, не являющейся мишенью, тогда и 5'-концевой второй участок гибридизации, и разделительный участок оба образуют одиночную цепь, не индуцируя изменения флуоресценции от флуоресцентной репортерной молекулы, на основании чего TD-зонд позволяет отличать нуклеиновокислотную последовательность-мишень от нуклеиновокислотной последовательности, не являющейся мишенью; и
(b) детекции изменения флуоресценции, так что изменение флуоресценции указывает на наличие нуклеиновокислотной последовательности-мишени.
37. Способ по п.36, где стадию (а) выполняют с использованием TD-зонда вместе с обратным праймером и матричной полимеразой нуклеиновых кислот, так что образуется дополнительное количество нуклеиновокислотной последовательности-мишени, гибридизуемой с TD-зондом, что усиливает изменение флуоресценции, указывающее на наличие нуклеиновокислотной последовательности-мишени.
38. Способ по п.36, где стадию (а) выполняют с использованием TD-зонда вместе с парой праймеров, состоящей из двух праймеров в качестве прямого праймера и обратного праймера, и матричной полимеразой нуклеиновых кислот, так что нуклеиновокислотная последовательность-мишень, гибридизуемая с TD-зондом, амплифицируется в результате ПЦР, что усиливает изменение флуоресценции, указывающее на наличие нуклеиновокислотной последовательности-мишени.
39. Способ по п.36, где TD-зонд дополнительно метят молекулой-гасителем, способной гасить флуоресценцию репортерной молекулы.
40. Способ, позволяющий с помощью молекулы зонда отличать нуклеиновокислотную последовательность-мишень от нуклеиновокислотной последовательности, не являющейся мишенью, включающий стадии:
(a) выбора нуклеиновокислотной последовательности-мишени;
(b) конструирования последовательности молекулы зонда, содержащей (1) гибридизующуюся последовательность, комплементарную нуклеиновой кислоты-мишени, и (2) разделительный участок, содержащий по меньшей мере три универсальных основания, так что разделительный участок располагается посередине в гибридизующейся последовательности с образованием трех участков в молекуле зонда; и
(c) определения положения разделительного участка в молекуле зонда, позволяющего участку, расположенному в 5'-направлении от разделительного участка, иметь более низкую Тпл, чем участку расположенному в 3'-направлении от разделительного участка, и позволяющего разделительному участку иметь наиболее низкую Тпл среди этих трех участков, тем самым обеспечивая получение молекулы зонда, имеющей три разных участка с отличающимися друг от друга величинами Тпл, среди которых (1) 5'-концевой второй участок гибридизации молекулы зонда имеет гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновой кислоте-мишени, (2) 3'-концевой первый участок гибридизации молекулы зонда имеет гибридизующуюся нуклеотидную последовательность, комплементарную нуклеиновой кислоте-мишени; и (3) разделительный участок молекулы зонда, расположенный между 5'-концевым вторым участком гибридизации и 3'-концевым первым участком гибридизации, содержит по меньшей мере три универсальных основания; и Тпл 5'-концевого второго участка гибридизации ниже, чем у 3'-концевого первого участка гибридизации, и разделительный участок имеет самую низкую Тпл среди этих трех участков,
при этом, когда молекула зонда гибридизуется с нуклеиновокислотной последовательностью-мишенью, тогда и 5'-концевой второй участок гибридизации, и 3'-концевой первый участок гибридизации второго зонда оба гибридизуются с данной нуклеиновокислотной последовательностью-мишенью; при этом, когда молекула зонда гибридизуется с нуклеиновокислотной последовательностью, не являющейся мишенью, тогда и 5'-концевой второй участок гибридизации, и разделительный участок оба образуют одиночную цепь, на основании чего молекула зонда позволяет отличать нуклеиновокислотную последовательность-мишень от нуклеиновокислотной последовательности, не являющейся мишенью.
RU2012109893/10A 2009-09-03 2010-09-02 Дискриминирующий мишень зонд, способ его конструирования и способ детекции нуклеиновокислотной последовательности-мишени (варианты) RU2542478C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20090083196 2009-09-03
KR10-2009-0083196 2009-09-03
KRPCT/KR2010/004119 2010-06-24
PCT/KR2010/004119 WO2011027966A2 (en) 2009-09-03 2010-06-24 Td probe and its uses
PCT/KR2010/005971 WO2011028041A2 (en) 2009-09-03 2010-09-02 Td probe and its uses

Publications (2)

Publication Number Publication Date
RU2012109893A true RU2012109893A (ru) 2013-10-10
RU2542478C2 RU2542478C2 (ru) 2015-02-20

Family

ID=43649738

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012109893/10A RU2542478C2 (ru) 2009-09-03 2010-09-02 Дискриминирующий мишень зонд, способ его конструирования и способ детекции нуклеиновокислотной последовательности-мишени (варианты)

Country Status (16)

Country Link
US (1) US20120220468A1 (ru)
EP (1) EP2473634B1 (ru)
JP (1) JP5653437B2 (ru)
KR (1) KR101481004B1 (ru)
CN (2) CN102770556B (ru)
AU (1) AU2010290277B2 (ru)
BR (1) BR112012008102B1 (ru)
CA (1) CA2770588C (ru)
IL (1) IL218406A (ru)
MX (1) MX2012002609A (ru)
MY (1) MY157531A (ru)
NZ (1) NZ598821A (ru)
RU (1) RU2542478C2 (ru)
SG (2) SG10201405412RA (ru)
WO (2) WO2011027966A2 (ru)
ZA (1) ZA201201733B (ru)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101590175B1 (ko) * 2009-09-24 2016-01-29 주식회사 씨젠 반복적 엑소핵산 절단 반응에 의한 타겟 핵산서열의 검출
KR20110050327A (ko) * 2009-11-07 2011-05-13 주식회사 씨젠 Thd 프라이머 타겟 검출
WO2012039529A1 (en) * 2010-09-20 2012-03-29 Seegene, Inc. Detection of target nucleic acid sequences by exonucleolytic activity using single-labeled immobilized probes on solid phase
KR20120042100A (ko) 2010-10-22 2012-05-03 주식회사 씨젠 이중표지 고정화 프로브를 이용한 고상에서의 타겟 핵산서열 검출
MX2017015093A (es) 2011-01-11 2023-03-10 Seegene Inc Detección de secuencias de ácido nucleico objetivo mediante ensayo de escisión y extensión del pto.
JP5852222B2 (ja) * 2011-03-29 2016-02-03 シージーン アイエヌシー Pto切断及び延長−依存的切断によるターゲット核酸配列の検出
EP3382039B1 (en) * 2011-05-04 2023-09-13 Biocept, Inc. Methods for detecting nucleic acid sequence variants
US9850524B2 (en) 2011-05-04 2017-12-26 Seegene, Inc. Detection of target nucleic acid sequences by PO cleavage and hybridization
WO2012150749A1 (en) 2011-05-04 2012-11-08 Seegene, Inc. Detection of target nucleic acid sequences by po cleavage and hybridization
CN103781908B (zh) 2011-08-24 2016-08-31 盖立复治疗公司 用于核酸杂交的组合物、方法和试剂盒
GB201116131D0 (en) 2011-09-19 2011-11-02 Epistem Ltd Probe
KR20130101952A (ko) 2012-02-02 2013-09-16 주식회사 씨젠 Pto 절단과 연장-의존적 혼성화를 이용한 타겟 핵산서열의 검출
CN104245959B (zh) 2012-03-05 2017-10-13 Seegene株式会社 基于探测和标记寡核苷酸切割及延伸试验的从靶核酸序列的核苷酸变异检测
WO2013157821A1 (en) 2012-04-19 2013-10-24 Seegene, Inc. Detection of target nucleic acid sequence by pto cleavage and extension-dependent signaling oligonucleotide cleavage
US20140038182A1 (en) 2012-07-17 2014-02-06 Dna Logix, Inc. Cooperative primers, probes, and applications thereof
EP2875132A4 (en) * 2012-07-17 2016-02-24 Dna Logix Inc COOPERATIVE PRIMERS, PROBES AND APPLICATIONS THEREOF
CN105102467B (zh) 2013-02-07 2019-01-22 新泽西鲁特格斯州立大学 高度选择性核酸扩增引物
AU2014200958B2 (en) 2013-02-25 2016-01-14 Seegene, Inc. Detection of nucleotide variation on target nucleic acid sequence
KR101863943B1 (ko) 2013-07-15 2018-06-01 주식회사 씨젠 Pto 절단 및 연장-의존적 고정화 올리고뉴클레오타이드 혼성화를 이용한 타겟 핵산 서열의 검출
KR102126031B1 (ko) * 2013-07-23 2020-07-08 삼성전자주식회사 유전적 변이를 함유하는 핵산 검출 방법
CN105705657B (zh) * 2013-10-18 2020-07-28 Seegene株式会社 基于利用杂交-捕捉和模板化寡核苷酸的探测和标记寡核苷酸切割及延伸分析的在固相中的靶核酸序列检测
WO2015071552A1 (en) 2013-11-18 2015-05-21 Teknologian Tutkimuskeskus Vtt Multi-unit probes with high specificity and a method of designing the same
US9297033B2 (en) * 2013-12-13 2016-03-29 Roche Molecular Systems, Inc. Detecting single nucleotide polymorphism using hydrolysis probes with 3′ hairpin structure
GB201415674D0 (en) * 2014-09-04 2014-10-22 Moorlodge Biotech Ventures Ltd Nucleic acid analysis
CN107109398B (zh) * 2014-12-19 2020-08-18 荣研化学株式会社 单核苷酸多态性检测用寡核苷酸探针及单核苷酸多态性检测方法
US20180073082A1 (en) * 2015-02-25 2018-03-15 Diogene Co., Ltd Dumbbell-structure oligonucleotide, nucleic acid amplification primer comprising same, and nucleic acid amplification method using same
CN105368943B (zh) * 2015-11-21 2018-10-16 中国人民解放军第三〇九医院 一种用于鉴定分枝杆菌菌种的试剂盒及方法
US20200157601A1 (en) * 2016-12-02 2020-05-21 Congen Biotechnologie Gmbh Probe for detection of snps
RU2665631C2 (ru) * 2017-01-25 2018-09-03 Общество с ограниченной ответственностью "Секвойя Дженетикс" Способ специфической идентификации последовательностей днк
US11401546B2 (en) 2017-09-29 2022-08-02 Seegene, Inc. Detection of target nucleic acid sequences by PTO cleavage and extension-dependent extension assay
CN113913497B (zh) * 2021-02-03 2024-05-28 山东舜丰生物科技有限公司 利用碱基修饰的单链核酸进行靶核酸检测的方法
EP4446432A1 (en) * 2021-12-09 2024-10-16 POSTECH Research and Business Development Foundation Method for generating single strand and method for detecting mutation using same
KR20240028084A (ko) 2022-08-24 2024-03-05 주식회사 멀티렉스 표지자가 결합된 태그 프로브 및 이의 용도
CN118308506A (zh) * 2024-06-11 2024-07-09 国科大杭州高等研究院 一种检测鸡白痢沙门菌的引物和探针、试剂盒

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016A (en) * 1843-03-21 Burning bricks
US3996345A (en) 1974-08-12 1976-12-07 Syva Company Fluorescence quenching with immunological pairs in immunoassays
US4351760A (en) 1979-09-07 1982-09-28 Syva Company Novel alkyl substituted fluorescent compounds and polyamino acid conjugates
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5449602A (en) 1988-01-13 1995-09-12 Amoco Corporation Template-directed photoligation
US6004826A (en) 1988-07-20 1999-12-21 David Segev Repair-mediated process for amplifying and detecting nucleic acid sequences
JP3046837B2 (ja) 1989-03-10 2000-05-29 バイシス・インコーポレーテツド 固定化されたオリゴヌクレオチドのプローブおよびそれらの使用
AU4848393A (en) * 1992-09-25 1994-04-26 Abbott Laboratories Ligase chain reaction method for detecting small mutations
US6077668A (en) 1993-04-15 2000-06-20 University Of Rochester Highly sensitive multimeric nucleic acid probes
CA2195562A1 (en) * 1994-08-19 1996-02-29 Pe Corporation (Ny) Coupled amplification and ligation method
US5885813A (en) 1995-05-31 1999-03-23 Amersham Life Science, Inc. Thermostable DNA polymerases
SE506700C2 (sv) 1996-05-31 1998-02-02 Mikael Kubista Sond och förfaranden för analys av nukleinsyra
US6309824B1 (en) 1997-01-16 2001-10-30 Hyseq, Inc. Methods for analyzing a target nucleic acid using immobilized heterogeneous mixtures of oligonucleotide probes
US20030165888A1 (en) * 2001-07-18 2003-09-04 Brown Bob D. Oligonucleotide probes and primers comprising universal bases for diagnostic purposes
US6013449A (en) 1997-11-26 2000-01-11 The United States Of America As Represented By The Department Of Health And Human Services Probe-based analysis of heterozygous mutations using two-color labelling
US6140054A (en) 1998-09-30 2000-10-31 University Of Utah Research Foundation Multiplex genotyping using fluorescent hybridization probes
WO2000079009A2 (en) 1999-06-22 2000-12-28 Invitrogen Corporation Improved primers and methods for the detection and discrimination of nucleic acids
PT1715063E (pt) 2000-03-29 2011-04-28 Lgc Ltd Farol de hibridização e método para a detecção e discriminação rápida de sequência
US6350580B1 (en) 2000-10-11 2002-02-26 Stratagene Methods for detection of a target nucleic acid using a probe comprising secondary structure
GB0026604D0 (en) * 2000-10-31 2000-12-13 Roslin Inst Edinburgh Diagnostic method
US6558907B2 (en) * 2001-05-16 2003-05-06 Corning Incorporated Methods and compositions for arraying nucleic acids onto a solid support
RU2206615C1 (ru) * 2001-10-22 2003-06-20 Институт молекулярной биологии им. В.А. Энгельгардта РАН Способ частичного секвенирования днк для определения мутаций в коротких фрагментах одноцепочечной днк с использованием микрочипа
US7399590B2 (en) * 2002-02-21 2008-07-15 Asm Scientific, Inc. Recombinase polymerase amplification
US20090239211A1 (en) * 2004-02-17 2009-09-24 Nuevolution A/S Method For Enrichment Involving Elimination By Mismatch Hybridisation
JP4190562B2 (ja) * 2004-12-08 2008-12-03 健 山本 遺伝子配列検査法
US8192938B2 (en) * 2005-02-24 2012-06-05 The Ohio State University Methods for quantifying microRNA precursors
RU2400538C2 (ru) 2005-03-05 2010-09-27 Сиджен, Инк. Олигонуклеотид с двойственной специфичностью и способы, в которых он используется
WO2006095941A1 (en) * 2005-03-05 2006-09-14 Seegene, Inc. Processes using dual specificity oligonucleotide and dual specificity oligonucleotide
KR20070052890A (ko) * 2005-11-18 2007-05-23 주식회사 씨젠 호흡기 바이러스 핵산 검출용 올리고뉴클레오타이드
EP2079754B1 (en) * 2006-10-04 2017-03-15 Third Wave Technologies, Inc. Snap-back primers and detectable hairpin structures
KR20080037128A (ko) * 2006-10-25 2008-04-30 주식회사 씨젠 뉴클레오타이드 변이 검출 방법
KR100881924B1 (ko) * 2007-03-14 2009-02-04 주식회사 씨젠 레이블링된 프라이머를 이용한 뉴클레오타이드 변이 검출방법
KR101590175B1 (ko) * 2009-09-24 2016-01-29 주식회사 씨젠 반복적 엑소핵산 절단 반응에 의한 타겟 핵산서열의 검출
KR20110050327A (ko) * 2009-11-07 2011-05-13 주식회사 씨젠 Thd 프라이머 타겟 검출

Also Published As

Publication number Publication date
WO2011028041A2 (en) 2011-03-10
CN106434857A (zh) 2017-02-22
IL218406A (en) 2017-10-31
EP2473634B1 (en) 2019-05-01
SG178350A1 (en) 2012-03-29
EP2473634A4 (en) 2013-07-17
JP2013503627A (ja) 2013-02-04
WO2011027966A3 (en) 2011-05-19
WO2011027966A2 (en) 2011-03-10
CA2770588A1 (en) 2011-03-10
ZA201201733B (en) 2013-05-29
NZ598821A (en) 2014-09-26
US20120220468A1 (en) 2012-08-30
AU2010290277A1 (en) 2012-03-08
BR112012008102A2 (pt) 2020-10-27
KR20120046780A (ko) 2012-05-10
CA2770588C (en) 2018-07-10
EP2473634A2 (en) 2012-07-11
AU2010290277B2 (en) 2015-01-22
RU2542478C2 (ru) 2015-02-20
IL218406A0 (en) 2012-04-30
WO2011028041A3 (en) 2011-09-15
SG10201405412RA (en) 2014-10-30
CN102770556B (zh) 2016-09-14
KR101481004B1 (ko) 2015-01-22
JP5653437B2 (ja) 2015-01-14
CN102770556A (zh) 2012-11-07
MX2012002609A (es) 2012-04-02
MY157531A (en) 2016-06-15
BR112012008102B1 (pt) 2021-05-04

Similar Documents

Publication Publication Date Title
RU2012109893A (ru) Зонд td и его применения
US12077811B2 (en) Compositions of toehold primer duplexes and methods of use
JP7221199B2 (ja) マルチプレックスpcrの実施方法
EP1896617B1 (en) Multiplex amplification of short nucleic acids
JP3999653B2 (ja) 核酸の同種内検出用の特異的二本鎖プローブおよびその適用方法
DK2817421T3 (en) DETECTION OF NUCLEIC ACIDS
US20080194416A1 (en) Detection of mature small rna molecules
AU2007275762B2 (en) Specialized oligonucleotides and their use in nucleic acid amplification and detection
RU2012142160A (ru) Детекция нуклеиновокислотных последовательностей-мишеней в анализе с расщеплением и удлинением рто
US20090068643A1 (en) Dual Function Primers for Amplifying DNA and Methods of Use
JP2019528726A5 (ru)
RU2012129362A (ru) Обнаружение мишени tsg праймером
JP2013509871A5 (ru)
JP6144623B2 (ja) 核酸測定用の核酸プローブ
CA2768391C (en) Methods and compositions for quantitative detection of nucleic acid sequences over an extended dynamic range
RU2015130335A (ru) Детекция нуклеиновокислотной последовательности-мишени в анализе с отсутствием гибридизации, зависящим от расщепления и удлинения зондирующего и метящего олигонуклеотида (рто)
Huang et al. Thermodynamically modulated partially double-stranded linear DNA probe design for homogeneous real-time PCR
EP2619317B1 (en) Detection of target nucleic acid sequences by exonucleolytic activity using single-labeled immobilized probes on solid phase
WO2014138385A1 (en) Isothermal amplification of nuleic acid, and library preparation and clone generation in sequencing
Yang et al. An amplification-free detection method of nucleic acids by a molecular beacon probe based on endonuclease activity
CN108642165A (zh) 一种用于实时荧光pcr的探针及其使用方法
US20220145284A1 (en) Method of detecting multiple targets based on single detection probe using tag sequence snp
CN110023507B (zh) 检测小rna或与小rna相关的蛋白质的方法
ES2911458T3 (es) Procedimiento para la detección de secuencias de ácido nucleico específicas
US9163289B2 (en) Kit for detecting HIV-1 and method for detecting HIV-1 using the same