RU2009114853A - Реконструкция и восстановление поля оптического сигнала - Google Patents

Реконструкция и восстановление поля оптического сигнала Download PDF

Info

Publication number
RU2009114853A
RU2009114853A RU2009114853/09A RU2009114853A RU2009114853A RU 2009114853 A RU2009114853 A RU 2009114853A RU 2009114853/09 A RU2009114853/09 A RU 2009114853/09A RU 2009114853 A RU2009114853 A RU 2009114853A RU 2009114853 A RU2009114853 A RU 2009114853A
Authority
RU
Russia
Prior art keywords
signal
receiver
optical signal
receiver according
samples
Prior art date
Application number
RU2009114853/09A
Other languages
English (en)
Other versions
RU2423001C2 (ru
Inventor
Сян ЛЮ (US)
Сян Лю
Син ВЭЙ (US)
Син ВЭЙ
Original Assignee
Лусент Текнолоджиз Инк. (Us)
Лусент Текнолоджиз Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лусент Текнолоджиз Инк. (Us), Лусент Текнолоджиз Инк. filed Critical Лусент Текнолоджиз Инк. (Us)
Publication of RU2009114853A publication Critical patent/RU2009114853A/ru
Application granted granted Critical
Publication of RU2423001C2 publication Critical patent/RU2423001C2/ru

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5161Combination of different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/676Optical arrangements in the receiver for all-optical demodulation of the input optical signal
    • H04B10/677Optical arrangements in the receiver for all-optical demodulation of the input optical signal for differentially modulated signal, e.g. DPSK signals

Abstract

1. Оптический приемник, содержащий ! приемник прямого дифференциального детектирования, который в качестве входного сигнала способен принимать входящий оптический сигнал и формировать аналоговые представления действительной и мнимой частей сигнала сложной формы в качестве выходного сигнала, содержащего информацию о разности фаз между множеством положений по времени входящего оптического сигнала, которые разделены заданным интервалом, и ! процессор для обработки сигналов, связанный с упомянутым приемником прямого дифференциального детектирования и обеспечивающий формирование цифрового представления профиля распределения интенсивности и фаз, отображающего входящий оптический сигнал. ! 2. Приемник по п.1, в котором для обработки сигналов дополнительно содержит средство компенсации по меньшей мере одного искажения передачи упомянутого цифрового представления профиля распределения интенсивности и фаз, отображающего входящий оптический сигнал, вносимого в принимаемый оптический сигнал каналом передачи принимаемого оптического сигнала. ! 3. Приемник по п.1, в котором процессор для обработки сигналов дополнительно содержит средство, воспринимающее упомянутое цифровое представление профиля распределения интенсивности и фаз, отображающего входящий оптический сигнал, и осуществляющее демодуляцию и восстановление данных. ! 4. Приемник по п.1, в котором процессор для обработки сигналов способен определять величину фазы, которая соответствует разностям оптических фаз между выборками упомянутого сигнала сложной формы, разделенными упомянутым заданным интервалом. ! 5. Приемник по п.1, в котором процессо�

Claims (37)

1. Оптический приемник, содержащий
приемник прямого дифференциального детектирования, который в качестве входного сигнала способен принимать входящий оптический сигнал и формировать аналоговые представления действительной и мнимой частей сигнала сложной формы в качестве выходного сигнала, содержащего информацию о разности фаз между множеством положений по времени входящего оптического сигнала, которые разделены заданным интервалом, и
процессор для обработки сигналов, связанный с упомянутым приемником прямого дифференциального детектирования и обеспечивающий формирование цифрового представления профиля распределения интенсивности и фаз, отображающего входящий оптический сигнал.
2. Приемник по п.1, в котором для обработки сигналов дополнительно содержит средство компенсации по меньшей мере одного искажения передачи упомянутого цифрового представления профиля распределения интенсивности и фаз, отображающего входящий оптический сигнал, вносимого в принимаемый оптический сигнал каналом передачи принимаемого оптического сигнала.
3. Приемник по п.1, в котором процессор для обработки сигналов дополнительно содержит средство, воспринимающее упомянутое цифровое представление профиля распределения интенсивности и фаз, отображающего входящий оптический сигнал, и осуществляющее демодуляцию и восстановление данных.
4. Приемник по п.1, в котором процессор для обработки сигналов способен определять величину фазы, которая соответствует разностям оптических фаз между выборками упомянутого сигнала сложной формы, разделенными упомянутым заданным интервалом.
5. Приемник по п.1, в котором процессор для обработки сигналов способен получать выборки упомянутого сигнала сложной формы в положениях по времени для каждого бита, которые заданы следующим уравнением:
Figure 00000001
в котором t1 означает начальное произвольное положение по времени, а n означает произвольно выбранное число.
6. Приемник по п.1, в котором упомянутый приемник прямого дифференциального детектирования дополнительно содержит блок прямого детектирования интенсивности, способный получать профиль распределения интенсивности входящего оптического сигнала.
7. Приемник по п.1, дополнительно содержащий аналогово-цифровой преобразователь, который способен преобразовывать упомянутые действительную и мнимую части сигнала сложной формы в их соответствующие цифровые представления и направлять это цифровое представление действительной и мнимой частей сигнала сложной формы в процессор для обработки сигналов.
8. Приемник по п.7, в котором упомянутый приемник прямого дифференциального детектирования дополнительно содержит по меньшей мере один фотодетектор, а процессор для обработки сигналов осуществляет функцию, обратную передаточной функции фильтра вследствие наложения собственной характеристики фотодетектора и собственной характеристики аналого-цифрового преобразователя применительно по меньшей мере к одному из упомянутых цифровых представлений действительной и мнимой частей сигнала сложной формы.
9. Приемник по п.7, дополнительно содержащий блок автоматической регулировки усиления, расположенный между упомянутыми приемником прямого дифференциального детектирования и аналогово-цифровым преобразователем.
10. Приемник по п.7, в котором процессор для обработки сигналов способен обрабатывать группу выборок упомянутого цифрового представления действительной и мнимой частей сигнала сложной формы, которые одновременно поступают из аналогово-цифрового преобразователя.
11. Приемник по п.1, в котором упомянутый приемник прямого дифференциального детектирования дополнительно содержит несколько оптических интерферометров с задержкой.
12. Приемник по п.11, в котором по меньшей мере один из оптических интерферометров с задержкой имеет задержку, примерно равную упомянутому заданному интервалу.
13. Приемник по п.11, в котором по меньшей мере два из упомянутых оптических интерферометров с задержкой имеют ортогональные сдвиги фаз.
14. Приемник по п.11, в котором по меньшей мере два из упомянутых оптических интерферометров с задержкой имеют операционные задержки, не равные друг другу, при этом каждая из этих задержек примерно равна упомянутому заданному интервалу.
15. Приемник по п.11, в котором два из оптических интерферометров с задержкой имеют операционные задержки, не равные друг другу, и разность между задержками, которая соответствует разности оптических фаз, составляющей π/2.
16. Приемник по п.11 в котором упомянутый приемник прямого дифференциального детектирования дополнительно содержит по меньшей мере два балансных детектора интенсивности, каждый из которых связан с соответствующим одним из упомянутых оптических интерферометров с задержкой.
17. Приемник по п.11, дополнительно содержащий аналогово-цифровой преобразователь для преобразования по меньшей мере упомянутых действительной или мнимой частей сигнала сложной формы в цифровое представление, и направления этого цифрового представления действительной и мнимой частей сигнала сложной формы в процессор для обработки сигналов, при этом упомянутый заданный интервал составляет
Figure 00000002
, 1≤m≤sps, где m является целым числом,
TS означает период символа входящего оптического сигнала, sps означает число выборок на символ, которые берет упомянутый аналогово-цифровой преобразователь для преобразования упомянутых действительной или мнимой частей сигнала сложной формы в цифровое представление, m является целым числом от 1 до sps, а упомянутый сигнал сложной формы равен
Figure 00000003
,
при этом ureal(t) и uimag(t), соответственно означают упомянутые действительную и мнимую части сигнала сложной формы.
18. Приемник по п.17, в котором процессор для обработки сигналов способен определять профиль распределения фаз сигнала в каждой соответствующей подгруппе выборок внутри кадра, при этом каждая подгруппа содержит те выборки упомянутого кадра, интервал между которыми составляет ΔТ или кратное ему целое число, а упомянутый профиль распределения фаз сигнала получают, исходя из разности оптических фаз соседних выборок внутри каждой подгруппы согласно следующему уравнению
Figure 00000004
в котором n означает положение конкретной выборки внутри подгруппы, а при n=0 сумму не вычисляют.
19. Приемник по п.18, в котором ts является положением по времени, а процессор для обработки сигналов вычисляет упомянутое цифровое представление поля принимаемого оптического сигнала Er(ts) путем решения уравнения
Figure 00000005
, в котором I(ts) означает профиль распределения интенсивности входящего оптического сигнала в момент времени ts, а φ(ts) означает фазу в момент времени ts.
20. Приемник по п.18, дополнительно содержащий блок прямого детектирования интенсивности, связанный с аналогово-цифровым преобразователем и формирующий упомянутый профиль распределения интенсивности.
21. Приемник по п.18, в котором в момент времени ts упомянутый профиль распределения интенсивности приближен на абсолютное значение u(ts).
22. Приемник по п.17, в котором процессор для обработки сигналов способен определять соотношение фаз у разделенных одинаковыми интервалами выборок в каждой из соответствующих m подгрупп, при этом в каждую подгруппу входят выборки упомянутого кадра с интервалом между ними, равным ΔТ или кратному ему целому числу.
23. Приемник по п.17, в котором процессор для обработки сигналов способен определять соотношение фаз у разделенных одинаковыми интервалами выборок m подгрупп, при этом в каждую подгруппу входят выборки упомянутого кадра с интервалом между ними, равным ΔТ или кратному ему целому числу.
24. Приемник по п.23, в котором процессор для обработки сигналов способен определять упомянутое соотношение фаз у выборок только первой подгруппы, которая является единственной подгруппой.
25. Приемник по п.23, в котором процессор для обработки сигналов способен определять соотношение фаз у разделенных одинаковыми интервалами выборок всех из упомянутых m подгрупп, исходя из анализа спектров оптической мощности набора пробных реконструированных сигналов на основе упомянутых подгрупп, в результате чего определяют все соотношения фаз у упомянутых выборок входящего оптического сигнала.
26. Приемник по п.25, в котором по результатам упомянутого анализа спектров оптической мощности набора пробных реконструированных сигналов получают пробный реконструированный сигнал с максимальной спектральной плотностью оптической мощности в интервале [-SR, +SR] вокруг средней частоты входящего сигнала среди упомянутого набора пробных реконструированных сигналов, при этом SR означает скорость передачи символов входящего оптического сигнала.
27. Приемник по п.25, в котором по результатам упомянутого анализа спектров оптической мощности набора пробных реконструированных сигналов получают пробный реконструированный сигнал с минимальной спектральной плотностью оптической мощности вне интервала [-SR, +SR] вокруг средней частоты входящего сигнала среди упомянутого набора пробных реконструированных сигналов, при этом SR означает скорость передачи символов входящего оптического сигнала.
28. Приемник по п.17, в котором процессор для обработки сигналов способен определять профиль распределения фазовой постоянной сигнала для каждой соответствующей подгруппы выборок внутри кадра, каждая из которых состоит из тех выборок кадра, интервал между которыми составляет ΔТ или кратное ему целое число, при этом упомянутую фазовую постоянную сигнала получают, исходя из разностей оптических фаз соседних выборок оптического сигнала внутри каждой подгруппы, согласно следующему уравнению
Figure 00000006
в котором n означает положение конкретной выборки внутри подгруппы, а при n=0 сумму не вычисляют.
29. Приемник по п.28, в котором процессор для обработки сигналов вычисляет упомянутое цифровое представление поля принимаемого оптического сигнала в зависимости от упомянутого профиля фазовой постоянной сигнала и цифровое представление профиля распределения интенсивности входящего оптического сигнала.
30. Приемник по п.28, в котором ts является положением по времени, а процессор для обработки сигналов вычисляет упомянутое цифровое представление поля принимаемого оптического сигнала Er(ts) путем решения уравнения
Figure 00000007
, в котором I(ts) означает профиль распределения интенсивности входящего оптического сигнала в момент времени ts, а
Figure 00000008
означает фазовую постоянную в момент времени ts.
31. Приемник по п.30, дополнительно содержащий блок прямого детектирования интенсивности, связанный с аналогово-цифровым преобразователем и формирующий упомянутый профиль распределения интенсивности.
32. Приемник по п.30, в котором в момент времени ts упомянутый профиль распределения интенсивности приближен на абсолютное значение u(ts).
33. Приемник по п.30, в котором в момент времени ts упомянутый профиль распределения интенсивности приближен на квадратный корень абсолютного значения u(ts) и
Figure 00000009
.
34. Приемник по п.30, в котором процессор для обработки сигналов дополнительно способен осуществлять компенсацию по меньшей мере одного искажения передачи упомянутого цифрового представления поля принимаемого оптического сигнала, вносимого каналом передачи принимаемого оптического сигнала.
35. Приемник по п.34, в котором процессор для обработки сигналов дополнительно способен осуществлять демодуляцию и восстановление данных.
36. Способ использования оптического приемника, включающий шаги, на которых:
формируют аналоговое представление действительной и мнимой частей сигнала сложной формы, содержащее информацию о разности фаз между множеством положений по времени оптического сигнала, который поступает в упомянутый оптический приемник, при этом эти положения разделены заданным интервалом,
преобразуют упомянутое аналоговое представление в цифровое представление,
в зависимости от этого цифрового представления формируют профиль распределения интенсивности и фаз, представляющий входящий оптический сигнал, и
подают выходной сигнал, отображающий информацию, представленную входящим оптическим сигналом.
37. Способ по п.36, в котором на упомянутом шаге подачи выходного сигнала дополнительно компенсируют по меньшей мере одно искажение передачи упомянутого цифрового представления, вносимое в принимаемый оптический сигнал каналом передачи принимаемого оптического сигнала.
RU2009114853/08A 2006-09-22 2007-09-20 Реконструкция и восстановление поля оптического сигнала RU2423001C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/525,786 2006-09-22
US11/525,786 US9312964B2 (en) 2006-09-22 2006-09-22 Reconstruction and restoration of an optical signal field

Publications (2)

Publication Number Publication Date
RU2009114853A true RU2009114853A (ru) 2010-10-27
RU2423001C2 RU2423001C2 (ru) 2011-06-27

Family

ID=38829655

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009114853/08A RU2423001C2 (ru) 2006-09-22 2007-09-20 Реконструкция и восстановление поля оптического сигнала

Country Status (13)

Country Link
US (1) US9312964B2 (ru)
EP (1) EP2070224B1 (ru)
JP (2) JP2010504694A (ru)
KR (2) KR101106946B1 (ru)
CN (1) CN101523773A (ru)
AU (1) AU2007297667B2 (ru)
BR (1) BRPI0716906A2 (ru)
ES (1) ES2435168T3 (ru)
IL (1) IL197606A (ru)
MX (1) MX2009002789A (ru)
RU (1) RU2423001C2 (ru)
TW (1) TWI469546B (ru)
WO (1) WO2008036356A1 (ru)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606498B1 (en) * 2005-10-21 2009-10-20 Nortel Networks Limited Carrier recovery in a coherent optical receiver
US7623796B2 (en) * 2006-02-27 2009-11-24 Alcatel-Lucent Usa Inc. Data-aided multi-symbol phase estimation for optical differential multilevel phase-shift keying signals
US7688918B2 (en) * 2006-07-07 2010-03-30 Alcatel-Lucent Usa Inc. Recursive phase estimation for a phase-shift-keying receiver
US9312964B2 (en) * 2006-09-22 2016-04-12 Alcatel Lucent Reconstruction and restoration of an optical signal field
US8463141B2 (en) * 2007-09-14 2013-06-11 Alcatel Lucent Reconstruction and restoration of two polarization components of an optical signal field
WO2009046759A1 (en) * 2007-10-09 2009-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Receiving apparatus and method for electronic noise compensation in phase modulated optical transmission
MX2007016078A (es) * 2007-12-14 2009-06-15 Itesm Modulador y demodulador para un formato de modulación óptico diferencial con ocho cambios de fase.
EP2146448B1 (en) * 2008-07-16 2010-11-17 Alcatel Lucent Adaptive non-linearity compensation in coherent receiver
JP5088271B2 (ja) * 2008-08-19 2012-12-05 富士通株式会社 歪補償器、光受信装置およびそれらの制御方法並びに光伝送システム
JP5217792B2 (ja) * 2008-08-29 2013-06-19 富士通株式会社 光受信機の電力供給制御方法、並びに、デジタル信号処理回路および光受信機
JP5298894B2 (ja) * 2009-01-30 2013-09-25 富士通株式会社 歪み補償装置,光受信装置及び光送受信システム
WO2011051448A2 (en) * 2009-10-30 2011-05-05 Bangor University Synchronisation process in optical frequency division multiplexing transmission systems
JP5390488B2 (ja) * 2010-08-18 2014-01-15 日本電信電話株式会社 雑音信号除去装置、雑音信号除去の方法、及び光受信機
US9203682B2 (en) * 2010-09-07 2015-12-01 Alcatel Lucent Frequency-dependent I/Q-signal imbalance correction coherent optical transceivers
US8660433B2 (en) 2010-12-10 2014-02-25 Alcatel Lucent Pilot-assisted data transmission in a coherent optical-communication system
US8515286B2 (en) 2010-12-10 2013-08-20 Alcatel Lucent Coherent optical receiver for pilot-assisted data transmission
US8744275B2 (en) 2011-03-05 2014-06-03 LGS Innovations LLC System, method, and apparatus for high-sensitivity optical detection
US8824501B2 (en) 2011-09-16 2014-09-02 Alcatel Lucent Performance enhancement through optical variants
US9300400B2 (en) 2011-09-16 2016-03-29 Alcatel Lucent Communication through multiplexed one-dimensional optical signals
US8934786B2 (en) 2011-09-16 2015-01-13 Alcatel Lucent Communication through pre-dispersion-compensated phase-conjugated optical variants
KR20140122754A (ko) 2012-03-05 2014-10-20 알까뗄 루슨트 비대칭 파워 분배를 하는 광 커플러 특징을 갖는 향상된 변조 포맷을 위한 플렉서블 광 변조기
US9209908B2 (en) * 2012-10-04 2015-12-08 Zte (Usa) Inc. System and method for heterodyne coherent detection with optimal offset
US9374260B2 (en) * 2013-11-07 2016-06-21 Futurewei Technologies, Inc. Method and apparatus for directly detected optical transmission systems based on carrierless amplitude-phase modulation
CN103973368B (zh) * 2014-03-17 2016-06-08 烽火通信科技股份有限公司 一种自适应色散补偿调整方法
EP3113390B1 (en) 2014-03-27 2019-05-08 Huawei Technologies Co., Ltd. Device and method for monitoring optical performance parameter, and optical transmission system
US9590730B2 (en) * 2014-10-01 2017-03-07 Futurewei Technologies, Inc. Optical transmitter with optical receiver-specific dispersion pre-compensation
JP6512660B2 (ja) * 2015-08-24 2019-05-15 国立大学法人 大分大学 Wdmダイバーシティ伝送システムおよび方法
EP4002724A1 (en) 2015-12-13 2022-05-25 Genxcomm, Inc. Interference cancellation methods and apparatus
US10257746B2 (en) 2016-07-16 2019-04-09 GenXComm, Inc. Interference cancellation methods and apparatus
CN106323346B (zh) * 2016-09-12 2019-01-29 哈尔滨工程大学 一种相位载波式激光干涉信号双频点闭环解调方法
CN106289053B (zh) * 2016-09-12 2018-08-31 哈尔滨工程大学 一种相位载波激光干涉信号正交合成式闭环解调方法
CN106248123B (zh) * 2016-09-12 2018-10-12 哈尔滨工程大学 一种差分反馈式相位载波迈克尔逊光纤干涉仪闭环解调方法
CN106768337B (zh) * 2017-02-27 2018-06-12 中国科学院上海高等研究院 一种二维傅里叶变换电子光谱中的相位重构方法
US10135541B1 (en) * 2017-07-24 2018-11-20 Raytheon Company Analog-to-digital converter using a timing reference derived from an optical pulse train
US10139704B1 (en) * 2017-07-24 2018-11-27 Raytheon Company High-speed analog-to-digital converter
US11150409B2 (en) 2018-12-27 2021-10-19 GenXComm, Inc. Saw assisted facet etch dicing
US10727945B1 (en) 2019-07-15 2020-07-28 GenXComm, Inc. Efficiently combining multiple taps of an optical filter
US11215755B2 (en) 2019-09-19 2022-01-04 GenXComm, Inc. Low loss, polarization-independent, large bandwidth mode converter for edge coupling
US11539394B2 (en) 2019-10-29 2022-12-27 GenXComm, Inc. Self-interference mitigation in in-band full-duplex communication systems
US11223426B2 (en) * 2020-06-09 2022-01-11 Wuhan University Of Technology Method for correcting phase jump caused by polarization-induced fading in optical fiber phase demodulation
US11796737B2 (en) 2020-08-10 2023-10-24 GenXComm, Inc. Co-manufacturing of silicon-on-insulator waveguides and silicon nitride waveguides for hybrid photonic integrated circuits
CA3234722A1 (en) 2021-10-25 2023-05-04 Farzad Mokhtari-Koushyar Hybrid photonic integrated circuits for ultra-low phase noise signal generators

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7003120B1 (en) * 1998-10-29 2006-02-21 Paul Reed Smith Guitars, Inc. Method of modifying harmonic content of a complex waveform
GB2370473B (en) * 2000-12-21 2004-04-07 Marconi Caswell Ltd Improvements in or relating to optical communication
JP2004170954A (ja) * 2002-11-01 2004-06-17 National Institute Of Information & Communication Technology 光位相多値変調方法と光位相多値変調装置および誤り制御方法
US7460793B2 (en) * 2002-12-11 2008-12-02 Michael George Taylor Coherent optical detection and signal processing method and system
US7272327B2 (en) * 2003-04-29 2007-09-18 Nortel Networks Limited Multi-detector detection of optical signals
TWI242205B (en) * 2003-07-18 2005-10-21 Via Tech Inc Method and circuit for generating the tracking error signal using differential phase detection
US20050069330A1 (en) * 2003-09-29 2005-03-31 Yuan-Hua Kao System and method for optical transmission
US7340168B2 (en) * 2003-09-29 2008-03-04 Lucent Technologies Inc. System and method for optically labeled packet transmission
FR2862069B1 (fr) * 2003-11-07 2006-06-23 Celogos Analyse automatique d'echantillons cellulaires
CN1625063A (zh) * 2003-12-05 2005-06-08 皇家飞利浦电子股份有限公司 带通采样接收机及其采样方法
US7885178B2 (en) * 2003-12-29 2011-02-08 Intel Corporation Quasi-parallel multichannel receivers for wideband orthogonal frequency division multiplexed communications and associated methods
US20060067699A1 (en) 2004-09-24 2006-03-30 Sethumadhavan Chandrasekhar Equalizer having tunable optical and electronic dispersion compensation
JP4170298B2 (ja) * 2005-01-31 2008-10-22 富士通株式会社 差分4位相偏移変調方式に対応した光受信器および光受信方法
EP1694017B1 (en) 2005-02-18 2013-11-27 Nokia Solutions and Networks GmbH & Co. KG Method and apparatus for demodulating an optical differential phase-shift keying signal
CN1893324A (zh) * 2005-07-08 2007-01-10 富士通株式会社 光dqpsk接收机的相位监测装置、相位控制装置及其方法
US7623796B2 (en) * 2006-02-27 2009-11-24 Alcatel-Lucent Usa Inc. Data-aided multi-symbol phase estimation for optical differential multilevel phase-shift keying signals
JP4443539B2 (ja) * 2006-03-08 2010-03-31 アンリツ株式会社 光位相変調評価装置及びその位相校正方法
EP2017980A4 (en) 2006-05-11 2013-01-16 Hitachi Ltd OPTICAL ELECTRIC FIELD RECEIVER, OPTICAL MULTI-LEVEL SIGNAL RECEIVER AND OPTICAL TRANSMISSION SYSTEM
US20080025733A1 (en) * 2006-06-27 2008-01-31 Technion Research & Development Foundation Ltd. Optical differential phase shift keying receivers with multi-symbol decision feedback-based electro-optic front-end processing
US9312964B2 (en) * 2006-09-22 2016-04-12 Alcatel Lucent Reconstruction and restoration of an optical signal field
EP2071747B1 (en) * 2006-09-26 2015-02-18 Hitachi, Ltd. Optical electric field receiver and optical transmission system
US8463141B2 (en) * 2007-09-14 2013-06-11 Alcatel Lucent Reconstruction and restoration of two polarization components of an optical signal field
CN102017467B (zh) * 2007-11-09 2014-06-25 株式会社日立制作所 光电场发送器及光电场传输系统
CN102217215B (zh) * 2008-11-28 2013-11-06 株式会社日立制作所 光电场发送器和光传送系统
US8655193B2 (en) * 2009-03-02 2014-02-18 Hitachi, Ltd. Optical multi-level transmission system
US8693886B2 (en) * 2010-01-07 2014-04-08 Hitachi, Ltd. Optical transmission system
CN102971976A (zh) * 2010-07-09 2013-03-13 株式会社日立制作所 光接收器及光传送系统
US9294190B2 (en) * 2010-11-08 2016-03-22 Ben-Gurion University Of The Negev, Research And Development Authority Low cost direct modulation and coherent detection optical OFDM

Also Published As

Publication number Publication date
TWI469546B (zh) 2015-01-11
IL197606A (en) 2013-05-30
ES2435168T3 (es) 2013-12-18
AU2007297667B2 (en) 2010-08-05
BRPI0716906A2 (pt) 2013-11-05
JP2010504694A (ja) 2010-02-12
KR20090055585A (ko) 2009-06-02
RU2423001C2 (ru) 2011-06-27
KR20110081326A (ko) 2011-07-13
MX2009002789A (es) 2009-03-30
KR101063747B1 (ko) 2011-09-08
EP2070224B1 (en) 2013-08-14
KR101106946B1 (ko) 2012-01-20
TW200830743A (en) 2008-07-16
AU2007297667A1 (en) 2008-03-27
JP2011234420A (ja) 2011-11-17
IL197606A0 (en) 2009-12-24
EP2070224A1 (en) 2009-06-17
CN101523773A (zh) 2009-09-02
US20080075472A1 (en) 2008-03-27
US9312964B2 (en) 2016-04-12
WO2008036356A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
RU2009114853A (ru) Реконструкция и восстановление поля оптического сигнала
CN106576088B (zh) 用于峰值因数抑制的系统和方法
CN106936742A (zh) 基于神经网络的多档码速率自适应解调系统及方法
US20120166123A1 (en) Impulse response measuring method and impulse response measuring device
Abramo et al. Measuring large-scale structure with quasars in narrow-band filter surveys
KR20090084721A (ko) 아날로그 신호를 디지털 신호로 변환하기 위한 신호 처리 방법 및 회로
RU2599621C1 (ru) Адаптивный режектор пассивных помех
JP2019510194A5 (ru)
US6272441B1 (en) Method for determining the pulse response of a broad band linear system and a measuring circuit for carrying out the method
US7515089B2 (en) Signal analysis
Jeffery et al. Multicolour high-speed photometry of pulsating subdwarf B stars with ULTRACAM
Helton et al. FPGA-based 1.2 GHz bandwidth digital instantaneous frequency measurement receiver
TW200504733A (en) Method and circuit for generating the tracking error signal using differential phase detection
RU2003130094A (ru) Способ обработки сейсмических данных для повышения пространственного разрешения
Viticchié et al. Imaging spectropolarimetry with IBIS: evolution of bright points in the quiet sun
CN110186579B (zh) 超快光场的时空信息获取方法和系统
JP5486965B2 (ja) 光位相変調評価装置及び光位相変調評価方法
Sódor et al. The Blazhko behaviour of RR Geminorum II-Long-term photometric results
Jurcsik et al. A comprehensive photometric study of the RR Lyrae variables of the globular cluster M3
US4223270A (en) Multiplexed CCD pulse width discriminator
JP3097034B1 (ja) 信号分析装置
Ferry et al. SCOTT: A time and amplitude digitizer ASIC for PMT signal processing
CN109272054B (zh) 一种基于独立性的振动信号去噪方法及系统
JP6659216B2 (ja) 信号処理装置及び放射線計測装置
RU2291463C2 (ru) Способ аналого-дискретной обработки радиолокационных импульсных сигналов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170921