NO170921B - Reaktor for autotermisk fremstilling av en syntesegass - Google Patents

Reaktor for autotermisk fremstilling av en syntesegass Download PDF

Info

Publication number
NO170921B
NO170921B NO850329A NO850329A NO170921B NO 170921 B NO170921 B NO 170921B NO 850329 A NO850329 A NO 850329A NO 850329 A NO850329 A NO 850329A NO 170921 B NO170921 B NO 170921B
Authority
NO
Norway
Prior art keywords
reactor
reaction
combustion
chamber
synthesis gas
Prior art date
Application number
NO850329A
Other languages
English (en)
Other versions
NO170921C (no
NO850329L (no
Inventor
Jerry Lee Lewis
Original Assignee
Fluor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fluor Corp filed Critical Fluor Corp
Publication of NO850329L publication Critical patent/NO850329L/no
Publication of NO170921B publication Critical patent/NO170921B/no
Publication of NO170921C publication Critical patent/NO170921C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • C01B2203/143Three or more reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Den foreliggende oppfinnelse vedrører en reaktor for autotermisk fremstilling av en syntesegass egnet for fremstilling av metanol, ammoniakk, hydrogen, oksoalkoholer eller hydrokarboner ved hjelp av Fischer-Tropsch-prosessen, og det særegne ved reaktoren i henhold til oppfinnelsen er at den omfatter et varmevekslingskammer med et første innløp for innføring av damp og hydrokarbontilførselsgass til det nevnte varmevekslingskammer, reaksjonsrør montert inne i varmevekslingskammeret og innrettet til å inneholde en primær reforme-ringskatalysator for gjennomføring av en primær reformeringsreaksjon, innretninger i forbindelse med de nevnte reaksjonsrør for å føre gassene som har reagert i reaksjonsrørene til et forbrenningsreaksjonskammer med et annet innløp for innføring av oksygen eller oksygenanriket luft til det nevnte forbrenningsreaksjonskammer, en deleinnretning som separerer varmevekslingskammeret fra det nevnte forbrenningsreaksjonskammer, idet deleinnretningen har åpninger som tillater passering av utstrømning fra forbrenningsreaksjonskammeret inn i en sekundær katalysatorsone etablert ved hjelp av deleinnretningen slik at utstrømning fra forbrenningsreaksjonskammeret etter å ha passert gjennom deleinnretningen inn i den nevnte sekundære katalysatorsone kan underkastes ytterligere reformeringsreaksjon og frembringe den nevnte syntesegass, et utløp for fjernelse av den fremstilte syntesegass i motstrøm til strømmen av hydrogen og hydrokarbon tilførselsgass inne i reaksjonsrørene og anordnet i reaktoren omtrent inntil det første innløp men separert fra dette slik at varm syntesegass kan passere langs utsiden av reaksjonsrørene før de passerer ut gjennom det nevnte utløp og derved tilveiebringe varme for den nevnte første reformeringsreaksjon inne i reaksjonsrørene samtidig med avkjøling av den varme syntesegass.
Disse og andre trekk ved oppfinnelsenfremgår av patentkravene.
Reaktoren er særlig egnet for fremstilling av en hydrogenrik syntesegass, f.eks. en ammoniakksyntesegass.
Prosessen for fremstilling av ammoniakk fra en hydrokarbontil-førselsstrøm som f.eks. naturgass, er selvfølgelig velkjent.
En blanding av hydrokarbontilførselsgass og vann i form av damp underkastes en endotermisk katalytisk reaksjon og gir karbon-monoksyd og hydrogen. Reaksjonen omtales vanligvis som en primær reformering. Det er da nødvendig å innføre nitrogen som typisk tilføres i form av luft, for fremstilling av den nødvendige ammoniakk-syntesegass ved hjelp av det som omtales som sekundær reformering.
I tidligere kjente kommersielle ammoniakkprosesser har de primære og sekundære reformeringstrinn typisk vært gjennomført i separate reaktorer, og slike prosesser er ganske egnet og tilfredsstillende i anleggssituasjoner hvor det er nødvendig eller ønskelig å fremstille damp for andre anvendelser innen anlegget. Ved slike prosesser anvendes således den varme reaksjonsutstrømning fra den sekundære reformeringsoperasjon for å utvikle og/eller overopphete damp, enten for anvendelse på annen måte innenfor ammoniakkprosessen eller for annen anvendelse.
I situasjoner hvor fremstilling av damp ikke er nødvendig er det følgelig fordelaktig å anvende den varme som er tilgjengelig fra det sekundære reformeringstrinn for andre formål innenfor syntesegassproduksjonsprosessen. En slik anvendelse av den tilgjengelige varme fra sekundær reformering er å tilveiebringe den varme som er nødvendig for den primære reformering. Tilveiebringelsen av en reaktor for å oppnå sådan anvendelse ved et høyt virkningsgradnivå er følgelig et første formål for den foreliggende oppfinnelse.
Fremstillingen av ammoniakk, såvel som andre produkter som f.eks. metanol som avledes fra hydrokarboner, er i de siste år blitt utviklet til en sofistikert teknologitilstand hvor omkostningseffektive forbedringer er av vesentlig betydning, men er særdeles vanskelig å oppnå. På bakgrunn av dette er det meget ønskelig å kunne oppnå både primær reformering og sekundær reformering i en enkelt reaktor, slik at de samlede omkostninger ved fremstillingsprosessen kan reduseres ved eliminering av dyre reaktorer og derved forbundet vesentlig utstyr.
Det har tidligere vært anstrengelser for å tilveiebringe slike tilfredsstillende reaktorer, men visse vesentlige ulemper er forekommet. F.eks. beskriver US-PS 4.751.228 en reaktor hvori det varme reformerte gassformede produkt fjernes fra bunnen av reaktoren i stedet for å anvendes til å gi varme til reforme-ringsreaksjonen. I stedet innføres varm gass fra utsiden av reaktoren for å tilveiebringe den nødvendige varme for reformeringstrinnet. En lignende reaktor er beskrevet i US-PS 4.127.289.
US-PS 4.071.330 beskriver en reaktor som er anbragt inne i en oppvarmet ovn og som anvender varmeoverføring fra ovnen gjennom reaktormantelen for den nødvendige varme for den endoterme reformeringsreaksjon. Mantelen er tildannet av et varmeledende material som f.eks. stål med høyt nikkel-krominnhold.
I US-PS 3.549.335 illustreres og beskrives en autotermisk reaktor som inkluderer en ytre mantel med en indre mantel i avstand fra denne til å gi en ringformet gjennomstrømningskanal hvorigjennom hydrokarbon- og dampblandingen passerer gjennom åpninger i den indre mantel ved den nedre del av reaktoren og gjennom det primære reformeringskatalysatorlag anbragt utenfor rørene. Gassen bringes deretter i kontakt med forbrennings-reaks jonsproduktet og fjernes til slutt fra reaktoren. Denne reaksjonsprosess som anvender atmosfærisk luft for forbren-ningstrinnet, tilveiebringer ikke effektiv utnyttelse av eksoterm reaksjonsvarme, noe som er meget ønskelig i dagens sofistikerte og konkurrerende teknologiske situasjon.
Som angitt i det foregående er det et formål for den foreliggende oppfinnelse å tilveiebringe en forbedret reaktor for autotermisk fremstilling av en hydrogenrik syntesegass som f.eks. ammoniakksyntesegass hvor effektiv utnyttelse av eksoterm reaksjonsvarme oppnås innenfor syntesegassproduksjonsprosessen.
Ved hjelp av reaktoren i henhold til oppfinnelsen underkastes en blanding av damp og hydrokarbontilførselsgass for en primær reformering ved å føres gjennom en katalysator i motstrøm til strømmen av utstrømningen fra forbrenningsreaksjonen i prosessen. Blandingen føres gjennom reaksjonsrørene som inneholder primær reformeringskataiysator og bringes deretter i kontakt med oksygen eller oksygenanriket luft for å gjennomføre forbrenning. Utstrømningen fra forbrenningsreaksjonen føres gjennom en annen katalysatorsone for en ytterligere reaksjon, det vil si den sekundære reformeringsreaksjon, og tilveiebringe syntesegassen. Syntesegassproduktet føres omkring utsiden av reaksjonsrørene slik at den eksoterme forbrenningsvarme utnyttes til å tilveiebringe varme for de endotermiske primære og sekundære reaksjonstrinn.
For forståelse av oppfinnelsen vises til vedføyde figur som viser en foretrukket utførelsesform av den autotermiske reaktor i samsvar med oppfinnelsen.
Figuren viser den autotermiske reaktor 1, omfattende et varmevekslingskammer 2 og et første innløp 3 for innføring av en blanding av damp og hydrokarbontilførselsgass, som f.eks. naturgass. Et flertall reaksjonsrør 4 (bare to er illustrert for tydelighetens skyld) er anordnet inne i varmevekslingskammeret i rørplater 5 og 6. Reaksjonsrørene er konstruert slik at et fiksert lag av primær katalysator 7 kan være anbragt deri. Katalysatoren kan selvfølgelig være en hvilken som helst egnet reformeringskataiysator, som f.eks. nikkel, idet valget av en spesiell katalysator lett foretas av den fagkyndige på området.
Innretninger vist som en konusformet kollektor 10 med et vertikalt oppstående rør 11 er anordnet i forbindelse med reaksjonsrørene inntil rørplaten 6 for å tilveiebringe passering av de reagerte delvis reformerte gasser fra reak-sjonsrørene til et forbrenningsreaksjonskammer 12 som er tilveiebragt ved bunndelen av reaktoren 1. Mens konfigura-sjonen av kollektoren 10 er illustrert som en konus, er det klart at andre konfigurasjoner også kan anvendes.
Et annet innløp 13 er anordnet ved bunnen av reaktoren for å innføre oksygen eller oksygenanriket luft for å bevirke forbrenning inne i forbrenningsreaksjonskammeret. En deleinnretning 14 er anordnet inntil enden av det vertikalt forløpende rør 11 for å separere forbrenningsreaksjonskammeret 12 fra varmevekslingskammeret 2. Anordninger er tilveiebragt i form av et flertall åpninger 15 i deleinnretningen 14 slik at utstrømningen fra forbrenningsreaksjonen kan passere deri-gjennom og gå inn i en annen katalysatorsone, generelt betegnet 16, hvorved utstrømningen kan passere gjennom katalysatorsonen og underkastes ytterligere eller sekundær reformering for å frembringe den ønskede syntesegass. Også her kan reformerings-katalysatoren være en hvilken som helst av de typisk anvendte og kan lett velges av den fagkyndige på området. Også for illustrerende klarhet er bare en forholdsvis liten andel av katalysatoren vist, men det vil være klart at tilstrekkelig katalysator tilveiebringes for å oppnå en fullstendig katalysatorsone .
Etter som syntesegassen fremstilt på denne måte passerer oppover fra den annen katalysatorsone, dirigeres den ved hjelp av strømningsledeplater 20 omkring det ytre av reaksjonsrørene 4 til å gi intim kontakt mellom reaksjonsrørene og den varme utstrømning. Dette tillater i sin tur tilstrekkelig utnyttelse av den eksoterme forbrenningsvarme til å tilveiebringe varmen for den endotermiske reaksjon som foregår inne i reaksjons-rørene 4.
Et utløp 21 er også anordnet omtrent inntil innløpet 3 hvorigjennom syntesegassen fjernes for rensing og ytterligere behandling for fremstilling av ammoniakk (eller annet produkt, avhengig av den spesielle reaksjonsprosess).
Tilgang til reaktoren skjer gjennom åpninger 22, på konven-sjonell måte, til å muliggjøre reparasjoner eller annet vedlikehold. Reaktoren kan også utstyres med ytterligere innløp og utløp etter behov og ønske, for strømningsfordeling eller for innføring av ytterligere brennstoffgass eller damp til forbrenningskammeret.
Ved gjennomføring av reformeringsprosessen for ammoniakksyn-tesefremstilling, bringes blandingen av damp og naturgass eller annen hydrokarbontilførselsgass inn i reaktoren 1 gjennom innløpet 3 ved en temperatur på omtrent 482 til 704°C. Blandingen passerer gjennom åpningene i rørplaten 5 og gjennom reaksjonsrørene 4, passerer ut fra reaksjonsrørene gjennom den konusformede kollektor 10 og passerer gjennom røret 11 og slipper ut i den nedre del av reaktoren 1 og inn i forbrenningsreaksjonskammeret ved en temperatur på omtrent 593 til 760°C. Oksygen eller oksygenanriket luft ved en temperatur på fra omtrent romtemperatur til omtrent 38°C innføres i forbren-ningsreaks jonskammeret gjennom innløpet 13 for å bevirke forbrenning. Den resulterende utstrømning fra forbrennings-reaks jonskammeret har således en temperatur på 1371 til 1926°C og passerer oppover gjennom åpningene 15 i deleinnretningen 14 og gjennom den annen katalysatorsone 16, hvorved den sekundære reformeringsoperasjon foregår.
Syntesegassblandingen fremstilt på denne måte ved den sekundære reformering har en temperatur på 816 til 1147°C og strømmer oppover, som illustrert og beskrevet ovenfor, i intim kontakt med reaksjonsrørene 4 hvorved den ønskede varmeveksling foregår for oppvarming av dampen og hydrokarbontilførselsgassblandingen i rørene 4 og avkjøler syntesegassblandingen. Etter å ha kommet ut fra utløpet 21 er temperaturen av syntesegassblandingen 538 til 704°C.
Trykket inne i reaktoren kan variere fra hovedsakelig atmos-færetrykk opptil syntesegassomdannelsestrykket, som med dagens teknologi er omtrent 85 kg/cm<2>, avhengig av de anvendbare prosessbetingelser. Et typisk trykk for fremstilling av ammoniakksyntesegass er omtrent 50 kg/cm<2>.
Det sees fra den foregående beskrivelse at reaktoren i samsvar med oppfinnelsen kan anvendes for fremstilling av syntesegasser for fremstilling av andre produkter enn ammoniakk, som metanol, hydrogen, oksoalkohol, eller et hydrokarbon ved hjelp av Fischer-Tropsch-teknikk. I og med at de sentrale prosesstrinn er de samme som beskrevet ovenfor for ammoniakksyntesefremstil-ling vil slike fremgangsmåter ikke på nytt bli beskrevet i sammenheng med tilsvarende syntesegasser.
Det er av betydning for den heldige gjennomføring av fremgangs-måten at oksygen eller oksygenanriket luft innføres i forbrenningsreaksjonskammeret istedet for atmosfærisk luft, for å gjennomføre forbrenningen. Med oksygenanriket luft defineres det en luftblanding med et oksygeninnhold på omtrent 25 volum% eller mer. Oksygeninnholdet kan variere fra denne lave grense opptil 100 %, avhengig av de spesifikke reaksjonsprosesser. Med ammoniakksyntesegassfremstilling kan således 02-innholdet variere fra 25 % til 7 0 % eller mer, idet omtrent 35 volum% er optimalt for de fleste ammoniakksyntesegassprosessbetingelser. Ved metanolfremstilling vil på den annen side omtrent 100 % oksygen bli anvendt. I alle fall vil de fagkyndige på området ved hjelp av den her gitte fremstilling kunne bestemme passende mengdeforhold og om oksygen eller oksygenanriket luft skal anvendes.
Bruken av oksygenanriket luft i stedet for atmosfærisk luft gir et antall viktige fordeler. Bedre styring av nitrogeninnholdet i forbrenningsutstrømningen oppnås på grunn av muligheten til å styre forholdet mellom oksygen og nitrogen i blandingen. Styring av nitrogeninnholdet er ytterst viktig på grunn av at nitrogen gjerne vil føre varme ut fra reaktoren slik at høynivåvarmen som ellers er tilgjengelig fra forbrenningsreak-sj onen for prosessbruk nedsettes. Ved å styre nitrogeninnholdet unngår følgelig den foreliggende prosess unødvendige tap av tilgjengelig varme og muliggjør at det høyeste nivå for tilgjengelig varme kan tilpasses det høyeste bruksnivå innenfor prosessen.
Som den fagkyndige på området vil skjønne kan damp også innføres i forbrenningsreaksjonskammeret sammen med den oksygenanrikede luft. Dette ville muliggjøre innføring av ytterligere dampreaksjonskomponent for kompensasjon for forbruket som resulterer fra den primære reformeringsreaksjon. Dette vil også lette styring av forbrenningstemperaturen og forbedre driften av oppstrøms oksygenanriket luftforvarmings-utstyr.
Det vil også innsees av den fagkyndige på området at reaktoren i samsvar med den foreliggende oppfinnelse har vesentlige ytterligere fordeler overfor tidligere kjente reaktorer. Investeringsomkostningene nødvendige for den foreliggende reaktor er vesentlig lavere enn for vanlige forbrenningsstyrte reformeringsreaktorer. Ytterligere kan den foreliggende oppfinnelse lett modifiseres for bruk ved høytrykksreformering og er meget egnet for moduloppbygging, som er av vesentlig betydning i utviklingsland eller ved utnyttelse av assosiert gass offshore.
Videre kan igangkjølingstiden reduseres, som i sin tur resulterer i besparelser i gassforbruket, og reformeringstiden ved utkobling, med ineffektiv gassanvendelse når syntesean-legget er utkoblet, kan også reduseres. Den foreliggende oppfinnelse er også lettere å tilpasse automatisk igangsetting og styring enn primære reformeringsreaktorer hittil anvendt for multiple passeringer og multiple brennere for oppvarming.
Det bør også nevnes at selv om den autotermiske reaktor som er illustrert og beskrevet heri er en vertikalt anordnet reaktor for varmevekslingskammeret anbragt over de sekundære reformeringskatalysatorlag og forbrenningsreaksjonskammeret, kan andre fysiske anordninger for denne reaktor være nærliggende for den fagkyndige på området.
Det bør også nevnes at mantelen eller veggen i reaktoren 1 er innvendig isolert, som vist ved 8, med et material som f.eks. forsterkende keramikk for å nedsette varmeoverføring gjennom mantelen til et minimum. Dette resulterer i konservering av varme, beskyttelse av personale i nærheten av reaktoren, og også i lavere investeringer da et material som f.eks. vanlig karbonstål kan anvendes for mantelen. Ytterligere kan reaksjonsrørene 4, innenfor rørplatene 5 og 6, henges eller suspenderes inne i reaktoren ved hjelp av et oppheng på dennes vegg som illustrert i 25. Dette tillater bruk av tynnveggede rør som er billigere og har bedre varmeoverføringsegenskaper enn tykkere rør. Da tynnveggede rør har mer strekkstyrke enn trykkstyrke monteres de inne i reaktorbeholderen ved suspen-sjon, da rørene ellers ville bli deformert eller endog falle sammen.

Claims (5)

1. Reaktor (1) for autotermisk fremstilling av en syntesegass egnet for fremstilling av metanol, ammoniakk, hydrogen, oksoalkoholer eller hydrokarboner ved hjelp av Fischer-Tropsch-prosessen, karakterisert ved at den omfatter et varmevekslingskammer (2) med et første innløp (3) for innføring av damp og hydrokarbontilførselsgass til det nevnte varmevekslingskammer (2), reaksjonsrør (4) montert inne i varmevekslingskammeret (2) og innrettet til å inneholde en primær reformeringskataiysator (7) for gjennomføring av en primær reformeringsreaksjon, innretninger (10, 11) i forbindelse med de nevnte reaksjonsrør (4) for å føre gassene som har reagert i reaksjonsrørene (4) til et forbrenningsreaksjonskammer (12) med et annet innløp (13) for innføring av oksygen eller oksygenanriket luft til det nevnte forbrenningsreaksjonskammer (12), en deleinnretning (14) som separerer varmevekslingskammeret (2) fra det nevnte forbrenningsreaksjonkammer (12) , idet deleinnretningen (14) har åpninger (15) som tillater passering av utstrømning fra forbrenningsreaksjonskammeret (12) inn i en sekundær katalysatorsone (16) etablert ved hjelp av deleinnretningen (14) slik at utstrømning fra forbrenningsreaksjonskammeret (12) etter å ha passert gjennom deleinnretningen (14) inn i den nevnte sekundære katalysatorsone (16) kan underkastes ytterligere reformeringsreaksjon og frembringe den nevnte syntesegass, et utløp (21) for fjernelse av den fremstilte syntesegass i motstrøm til strømmen av hydrogen og hydrokarbon tilførselsgass inne i reaksjonsrørene (4) og anordnet i reaktoren (1) omtrent inntil det første innløp (3) men separert fra dette slik at varm syntesegass kan passere langs utsiden av reaksjonsrørene (4) før de passerer ut gjennom det evnte utløp (21) og derved tilveiebringe varme for den nevnte første reformeringsreaksjon inne i reaksjonsrørene (4) samtidig med avkjøling av den varme syntesegass.
2. Reaktor som angitt i krav 1, karakterisert ved strømningsledeplater (20) anordnet inne i varmevekslingskammeret (2) for å rette strømmen av utstrømning fra forbrenningsreaksjonskammeret (12) omkring de nevnte reaksjonsrør (4).
3. Reaktor som angitt i krav 1 eller 2, karakterisert ved at innretningene forbundet med de nevnte reaksjonsrør (4) er en kollektor (10) anordnet inntil den nedre ende av de nevnte reaksjonsrør (4) med et rør (11) som strekker seg vertikalt nedover derfra gjennom den nevnte deleinnretning (14) og inn i det nevnte forbrennings-reaks j onskammer (12) .
4. Reaktor som angitt i et eller flere av kravene 1 - 3, karakterisert ved at veggen i reaktoren (1) er innvendig isolert (8) for å maksimalisere varmeutnyttelsen.
5. Reaktor som angitt i et eller flere av kravene 1 - 4, karakterisert ved at reaksjonsrørene (4) er montert i reaktoren (1) ved hjelp av et oppheng på dennes vegg.
NO850329A 1984-01-30 1985-01-28 Reaktor for autotermisk fremstilling av en syntesegass NO170921C (no)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/574,921 US4666680A (en) 1984-01-30 1984-01-30 Autothermal production of synthesis gas

Publications (3)

Publication Number Publication Date
NO850329L NO850329L (no) 1985-07-31
NO170921B true NO170921B (no) 1992-09-21
NO170921C NO170921C (no) 1992-12-30

Family

ID=24298191

Family Applications (1)

Application Number Title Priority Date Filing Date
NO850329A NO170921C (no) 1984-01-30 1985-01-28 Reaktor for autotermisk fremstilling av en syntesegass

Country Status (15)

Country Link
US (1) US4666680A (no)
JP (1) JPS60186401A (no)
AT (1) AT392628B (no)
AU (1) AU576214B2 (no)
BR (1) BR8500393A (no)
CA (1) CA1327271C (no)
DK (1) DK166770B1 (no)
GB (1) GB2153382B (no)
IN (1) IN163324B (no)
MY (1) MY101681A (no)
NL (1) NL192572C (no)
NO (1) NO170921C (no)
NZ (1) NZ210933A (no)
SU (1) SU1713420A3 (no)
ZA (1) ZA85527B (no)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650651A (en) * 1983-06-09 1987-03-17 Union Carbide Corporation Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons
US5006131A (en) * 1985-06-27 1991-04-09 Stone & Webster Engineering Corporation Apparatus for production of synthesis gas using convective reforming
US5181937A (en) * 1985-06-27 1993-01-26 Stone & Webster Engineering Corp. Apparatus for production of synthesis gas using convective reforming
DE3532413A1 (de) * 1985-09-11 1987-03-12 Uhde Gmbh Vorrichtung zur erzeugung von synthesegas
GB8609099D0 (en) * 1986-04-15 1986-05-21 British Petroleum Co Plc Production of synthesis gas
JPH01501224A (ja) * 1986-09-15 1989-04-27 エル・ウント・ツエ・シユタインミユラア・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 水蒸気によってガス状の炭化水素を触媒分解するための改質器、およびそのための1次改質器と2次改質器を備えた設備
GB8629497D0 (en) * 1986-12-10 1987-01-21 British Petroleum Co Plc Apparatus
DE3719780A1 (de) * 1987-06-13 1988-12-22 Uhde Gmbh Verfahren zur herstellung von ammoniak aus erdgas
IT1211957B (it) * 1987-12-07 1989-11-08 Kinetics Technology Procedimento,apparato e relativo metodo di funzionamento per la generazione di vapore ed il recupero dicalore in impianti di produzione di idrogeno e gas di sintesi
DE8816548U1 (no) * 1988-02-03 1989-10-26 Uhde Gmbh, 4600 Dortmund, De
DE3803082A1 (de) * 1988-02-03 1989-08-17 Uhde Gmbh Mehrstufiges verfahren zur erzeugung von h(pfeil abwaerts)2(pfeil abwaerts)- und co-haltigen synthesegasen
JPH01261201A (ja) * 1988-04-12 1989-10-18 Mitsubishi Gas Chem Co Inc 炭化水素改質反応器
GB2222533A (en) * 1988-04-20 1990-03-14 Humphreys & Glasgow Ltd Combined tubular primary and secondary reformer
DE3813863A1 (de) * 1988-04-23 1989-11-02 Uhde Gmbh Einrichtung zur aufnahme von katalysatoren, insbesondere bei der erzeugung von synthesegas
GB2217728B (en) * 1988-04-28 1992-02-26 Humphreys & Glasgow Ltd Combined reformer
JPH0218303A (ja) * 1988-07-07 1990-01-22 Mitsubishi Gas Chem Co Inc 炭化水素の改質反応器および改質方法
US5122299A (en) * 1989-12-11 1992-06-16 The M. W. Kellogg Company Autothermal steam reforming process
US5011625A (en) * 1989-12-11 1991-04-30 The M. W. Kellogg Company Autothermal steam reforming process
US5382271A (en) * 1991-12-26 1995-01-17 Industrial Technology Research Institute Hydrogen generator
JPH07126201A (ja) * 1993-10-27 1995-05-16 Mitsubishi Gas Chem Co Inc メタノール製造方法
US5980840A (en) * 1997-04-25 1999-11-09 Bp Amoco Corporation Autothermic reactor and process using oxygen ion--conducting dense ceramic membrane
DE19727841A1 (de) * 1997-06-24 1999-01-07 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur autothermen Reformierung von Kohlenwasserstoffen
EP0936183B1 (en) * 1998-02-17 2006-10-04 Haldor Topsoe A/S Process for the autothermal reforming of a hydrocarbon feedstock
WO2000001613A1 (en) * 1998-07-02 2000-01-13 Haldor Topsøe A/S Process for autothermal reforming of a hydrocarbon feedstock
DK173745B1 (da) * 1998-08-27 2001-09-03 Topsoe Haldor As Fremgangsmåde til autotermisk reforming af carbonhydridmateriale
US6180846B1 (en) 1998-09-08 2001-01-30 Uop Llc Process and apparatus using plate arrangement for combustive reactant heating
US6641625B1 (en) 1999-05-03 2003-11-04 Nuvera Fuel Cells, Inc. Integrated hydrocarbon reforming system and controls
EP1204593A2 (en) * 1999-07-29 2002-05-15 Sasol Technology (Proprietary) Limited Natural gas conversion to hydrocarbons and ammonia
DE10119083C1 (de) * 2001-04-19 2002-11-28 Joachim Alfred Wuenning Kompakt-Dampf-Reformer
US20050063899A1 (en) * 2003-08-21 2005-03-24 Syntroleum Corporation Two-stage auto thermal reforming process and system
US7892511B2 (en) * 2004-07-02 2011-02-22 Kellogg Brown & Root Llc Pseudoisothermal ammonia process
US7435401B2 (en) * 2004-07-02 2008-10-14 Kellogg Brown & Root Llc Pseudoisothermal ammonia process
ES2450591T3 (es) * 2004-12-23 2014-03-25 Saudi Arabian Oil Company Reformado termoneutro de hidrocarburos líquidos basados en el petróleo
US20070000173A1 (en) * 2005-06-28 2007-01-04 Michael Boe Compact reforming reactor
US7700005B2 (en) 2006-12-26 2010-04-20 Saudi Arabian Oil Company Oil-based thermo-neutral reforming with a multi-component catalyst
CN101848979A (zh) * 2007-07-20 2010-09-29 芬欧汇川集团 由固体生物质生产液体生物燃料的方法和装置
EP2065337A1 (en) * 2007-11-27 2009-06-03 Ammonia Casale S.A. Process for producing ammonia synthesis gas
US20100200812A1 (en) * 2007-11-29 2010-08-12 Jgc Corporation Production method for raw gas for ammonia synthesis and production apparatus therefor
US9321641B1 (en) 2011-02-11 2016-04-26 Emerging Fuels Technology, Inc. Process to convert natural gas into liquid fuels and chemicals
US9034208B1 (en) * 2011-02-11 2015-05-19 Emerging Fuels Technology, Inc. Process to convert natural gas into liquid fuels and chemicals
RU2480400C1 (ru) * 2011-12-02 2013-04-27 Общество с ограниченной ответственностью "Газохим Техно" Технологический комплекс для получения синтез-газа

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR512655A (fr) * 1919-09-08 1921-01-28 Air Liquide Procédé de synthèse directe de l'ammoniaque
US2472254A (en) * 1944-08-22 1949-06-07 Shell Dev Apparatus and method for carrying out catalytic reactions
US2887365A (en) * 1955-02-21 1959-05-19 Belge Produits Chimiques Sa Catalytic reactor
DE1143295B (de) * 1961-05-06 1963-02-07 Metallgesellschaft Ag Vorrichtung zum autothermen, katalytischen Spalten von Kohlenwasserstoffen unter Druck
GB1093943A (en) * 1963-10-07 1967-12-06 Ici Ltd Reforming hydrocarbons
DE1442594A1 (de) * 1965-06-24 1968-11-28 Badische Anilin & Soda Fakrik Hochdrucksyntheseofen fuer exotherme Gasreaktionen
US3516800A (en) * 1965-08-25 1970-06-23 Hisao Yamamoto Synthesis reaction apparatus equipped with means for temperature control of catalyst bed
US3442613A (en) * 1965-10-22 1969-05-06 Braun & Co C F Hydrocarbon reforming for production of a synthesis gas from which ammonia can be prepared
GB1247338A (en) * 1967-10-13 1971-09-22 Power Gas Ltd Steam reforming of hydrocarbons
US3607125A (en) * 1968-12-30 1971-09-21 Gen Electric Reformer tube construction
US3658498A (en) * 1969-06-03 1972-04-25 Siegener Ag Geisweid Method and apparatus for producing ethylene and synthesis gas by thermal cracking
US3909299A (en) * 1973-10-01 1975-09-30 United Technologies Corp Fuel cell system including reform reactor
US4079017A (en) * 1976-11-19 1978-03-14 Pullman Incorporated Parallel steam reformers to provide low energy process
US4071330A (en) * 1976-12-22 1978-01-31 United Technologies Corporation Steam reforming process and apparatus therefor
US4221763A (en) * 1978-08-29 1980-09-09 Cities Service Company Multi tube high pressure, high temperature reactor
AU511381B2 (en) * 1978-09-12 1980-08-14 Midrex International B.V. Rotterdam Vertical shaft furnace forthe reduction of iron ore to sponge iron
DE3244252A1 (de) * 1982-11-30 1984-05-30 Uhde Gmbh, 4600 Dortmund Verfahren und vorrichtung zur erzeugung von produktgas mit wasserstoff- und kohlenoxyde-gehalten

Also Published As

Publication number Publication date
NO170921C (no) 1992-12-30
MY101681A (en) 1991-12-31
JPH0522641B2 (no) 1993-03-30
DK166770B1 (da) 1993-07-12
GB2153382A (en) 1985-08-21
ATA24185A (de) 1990-10-15
GB2153382B (en) 1987-06-24
NL8500238A (nl) 1985-08-16
AU576214B2 (en) 1988-08-18
GB8501758D0 (en) 1985-02-27
IN163324B (no) 1988-09-10
NL192572C (nl) 1997-10-03
DK38385D0 (da) 1985-01-28
NL192572B (nl) 1997-06-02
AT392628B (de) 1991-05-10
NO850329L (no) 1985-07-31
US4666680A (en) 1987-05-19
JPS60186401A (ja) 1985-09-21
DK38385A (da) 1985-07-31
NZ210933A (en) 1987-07-31
SU1713420A3 (ru) 1992-02-15
ZA85527B (en) 1995-04-06
CA1327271C (en) 1994-03-01
AU3813585A (en) 1985-08-08
BR8500393A (pt) 1985-09-10

Similar Documents

Publication Publication Date Title
NO170921B (no) Reaktor for autotermisk fremstilling av en syntesegass
DK167864B1 (da) Fremgangsmaade og reaktorsystem til reforming af carbonhydrider under varmeveksling
US4824658A (en) Production of synthesis gas using convective reforming
US8696935B2 (en) Process for reforming hydrocarbons
US7297169B2 (en) Apparatus and method for hydrocarbon reforming process
US5006131A (en) Apparatus for production of synthesis gas using convective reforming
NO325283B1 (no) Fremstilling av metanol
AU783540B2 (en) Method and plant for production of oxygenated hydrocarbons
EA000777B1 (ru) Способ и технологический блок для получения синтез-газа для дальнейшего производства аммиака
EP1329256B1 (en) Apparatus and method for production of synthesis gas
CH650226A5 (it) Procedimento per la preparazione di gas contenenti idrogeno ed azoto.
NO324482B1 (no) Fremgangsmate for a utfore endotermisk dampreformering av et hydrokarbonrastoff
CN104152198B (zh) 甲烷化反应工艺
NO840842L (no) Katalytisk gassynteseprosess og apparat
EP3980172B1 (en) Process of steam reforming with low carbon dioxide emissions
AU2016259682A1 (en) Process for preparing a syngas and syngas cooling device
NO314496B1 (no) Fremgangsmåte for öking av produksjon i et eksisterende prosessanlegg samtet prosessanlegg
CN105473496B (zh) 预重整烃的方法
JPH04310501A (ja) 自己熱式スチーム改質プロセス
CN1008350B (zh) 合成气体的自热生产
NO311018B1 (no) Fremgangsmate for fremstilling av ra ammoniakk-syntesegass fra hydrokarboner
JPH04154601A (ja) 断熱リホーマー反応器
JPS60222141A (ja) 発熱接触反応装置
HU212607B (en) Process for producing ammonia synthesis gas