KR920006875B1 - 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치 - Google Patents

비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치 Download PDF

Info

Publication number
KR920006875B1
KR920006875B1 KR1019880002843A KR880002843A KR920006875B1 KR 920006875 B1 KR920006875 B1 KR 920006875B1 KR 1019880002843 A KR1019880002843 A KR 1019880002843A KR 880002843 A KR880002843 A KR 880002843A KR 920006875 B1 KR920006875 B1 KR 920006875B1
Authority
KR
South Korea
Prior art keywords
layer
compound semiconductor
source
ohmic contact
drain
Prior art date
Application number
KR1019880002843A
Other languages
English (en)
Other versions
KR880011902A (ko
Inventor
시게루 구로다
다까시 미무라
세이시 노또미
Original Assignee
후지쓰 가부시끼가이샤
야마모도 다꾸마
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후지쓰 가부시끼가이샤, 야마모도 다꾸마 filed Critical 후지쓰 가부시끼가이샤
Publication of KR880011902A publication Critical patent/KR880011902A/ko
Application granted granted Critical
Publication of KR920006875B1 publication Critical patent/KR920006875B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

내용 없음.

Description

비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치
제1도는 본 발명의 화합물 반도체 장치의 일예인 HEMT의 바람직한 일실시예의 제조과정을 설명하기 위한 측면도.
제2도는 제1도에 도시한 공정의 다음 공정을 설명하기 위한 측면도.
제3도는 제2도에서 보인 공정 다음에 오는 공정을 설명하기 위한 측면도.
제4도는 제3도에서 보인 공정의 다음 공정을 설명하기 위한 측면도.
제5도는 상기 공정들에 의하여 제조되는 일실시예의 HEMT의 측면도.
제6a도는 및 제6b도는 제5도에 도시한 HEMT의 에너지 대역도.
제7도는 In×Ga1-xAs에 있어서의 접촉저항과 몰(mole)단편 X과의 관계를 도시한 그래프.
제8도는 본 발명의 화합물 반도체 장치의 다른 예인 MESFET의 일실시예의 제조과정을 설명하기 위한 측면도.
제9도는 제8도에 도시한 공정의 다음 공정을 설명하기 위한 측면도.
제10도는 제9도에서 보인 공정 다음에 오는 공정을 설명하기 위한 단면도.
제11도는 상기 공정들에 의하여 제조되는 일실시예의 MESFET의 측면도.
제12도는 화합물 반도체 장치들로 구성되는 논리회로도.
제13도는 제12도에 도시한 회로도의 설계 배치도.
본 발명은 화합물 반도체 장치에 관한 것으로서, 특히 전자이동도가 큰 트랜지스터와 금속 반도체 전계효과 트랜지스터 등의 화합물 반도체 장치 및, 비합금 오금 콘택트를 갖는 화합물 반도체 장치에 관한 것이다.
요즈음 화합물 반도체 장치를 사용한 집적회로장치의 실용화가 진척되고 있어, 그러한 뛰어난 물리적 성질으로 인해 장래가 크게 기대되고 있는 상태에 있으며, 고집적화, 고속화, 저 소비전력화되도록 하고 있다.
현재, 화합물 반도체 집적회로 장치로서 제조되어 있는 전자회로들은 주로 논리회로들이며, 그 논리회로의 단위셀이나 회로는 보통 직렬로 접속되어 있는 구동측 트랜지스터와 부하측 트랜지스터로 이루어진 인버터 이어서 대부분의 경우에 화합물 반도체 집적회로장치에 있어서의 각 인버터를 구성하는 각 트랜지스터는 전자 이동도가 큰 트랜지스터(이하 간단히 "HEMT"라 한다.) 또는 금속 반도체 전계효과 트랜지스터(이하 간단히 "MESFET"라 한다.)가 많이 사용되고 있다.
공지된 바와 같이, 오옴 콘택트(접촉) 및 숏트키 콘택트의 합금으로서는 알루미늄 갈륨비소/갈륨비소(AlGa As/GaAs)HEMT, GaAs MESFET등등이 가장 많이 사용되고 있다. 소오스 전극과 드레인 전극은 오옴 콘택트를 하고, 게이트 전극들은 숏트키 콘택트를 한다. 소오스 및 드레인 전극들의 재료로서는 소오스 및 드레인 영역과 오옴콘택트되도록 합금처리를 받은 AuGe이고, 숏트키 게이트 전극들의 재료로서는 채널들과 쉽게 숏트키 콘택트되는 Al이나 고용융 금속등을 사용하여 금속화 처리를 행하고 있다 이와같이, 숏트키 게이트 전극과 합금된 소오스 및 드레인 각 전극의 재료에 있어서는 다른 종류의 금속을 사용하고 있다. 상기 구조를 가지는 종래의 HEMT의 일예가 미국 특허번호 4,424,525에 기재되어 있다.
전술에서 숏트키 게이트 전극과 합금된 소오스 및 드레인 각 전극이 서로 다른 종류의 금속으로 만들어지므로 화합물 반도체 집적회로의 고집적화를 실현시키는데 문제가 있다. 소오스 전극 또는 드레인 전극을 숏트키 게이트 전극들에 연결해주는 접촉 영역들이 논리회로를 형성하기 때문이다. 즉, 이 접촉 영역들이 고집적화를 저하시킨다. 말하자면 고집적도의 향상에 따라 반도체 칩상에 각 접촉 영역들의 점유 영역이 확대된다. 그리하여 화합물 반도체 집적회로의 집적도의 향상을 기대할 수 없다. 또한, 오옴 콘택트를 형성하는 합금공정을 복잡하고 귀찮은 일이다.
본 발명의 일반적인 목적으로서는 상술한 문제점들이 해결된 새롭고 유용한 비합금 오옴 콘택트를 갖는 화합물 반도체 장치를 제공하는 것이고 특별한 목적으로서는 비합금 오옴 콘택트로 소오스 및 드레인 각 전극이 소오스 영역 및 드레인 영역에 접속되게 하는 비합금 오옴 콘택트를 지닌 화합물 반도체 장치를 제공하는 것이다.
본 발명의 상기 이외의 목적으로는 동일 금속재료로 소오스, 드레인 및 게이트등의 각 전극을 형성할 수 있는 비합금 오옴 콘택트를 지닌 화합물 반도체 장치를 제공하는 것이다.
본 발명에 따른 다른 목적은 게이트 전극과 함께 소오스 또는 드레인 전극을 집적화되도록 하는, 비합금 오옴 콘택트를 지닌 화합물 반도체 장치를 제공하는 것이다.
본 발명에 따른 또 다른 목적은 집적회로의 고집적도를 제공할 수 있는, 비합금 오옴 콘택트를 지닌 화합물 반도체 장치를 제공하는 것이다.
또한 본 발명의 상기 이외의 목적으로서는 대량으로 제조할 수 있고 높은 신뢰성을 지닌, 비합금 오옴 콘택트를 지닌 화합물 반도체 장치를 제공하는 것이다.
본 발명의 상기 목적들을 달성하게 해주는, 비합금 오옴 콘택트를 지닌 화합물 반도체 장치는 첫번째 반도체로 만들어졌고 화합물 반도체 기판상에 형성되며 채널영역과 소오스 및 드레인 각 영역을 지닌 엑티브(활성 또는 능동)영역과, 액티브 층상에 형성되고 첫번째 반도체의 전자 친화력보다 친화력이 더 작은 두번째 반도체로 이루어진 전자 공급층과, 세번째 반도체로 만들어졌고 전자 공급층상에 그리고 드레인 영역 및 소오스 영역 전역에 형성되어 있는 중간층과, 네번째 반도체로 이루어졌고 중간층상에 형성되어 있으며 금속과 비합금 오옴 콘택트를 형성하는 오옴 콘택트층등으로 이루어져 있고, 소오스 및 드레인 각 전극은 오옴 콘택트 층상에, 그리고 소오스 및 드레인 영역 전역에 형성되어 있으며, 숏트키 게이트 전극은 전자 공급 층상에 형성되어 있다.
본 발명의 다른 구성에 의하면, 논리회로를 형성하기 위하여 소오스 및 드레인 각 전극중에 적어도 하나에 게이트 전극을 연결하기 위한 연결층(또는 접속층)을 상술한 구조에다 포함시킨 것이다. 연결층을 게이트, 소오스 및 드레인 각 전극과 함께 동일 금속 재료로 완전히 형성한다.
본 발명의 상기 목적을 달성하게 해주는 비합금 오옴 콘택트를 지닌 화합물 반도체 장치는 첫번째 반도체로 만들어졌고 화합물 반도체 기판상에 형성되어 있으며 채널 영역, 소오스 영역 및 드레인 영역이 있는 액티브층과, 두번째 반도체로 이루어졌고 소오스 영역 및 드레인 영역 전역에 있는 액티브층의 일부분상에 형성되어 있는 오옴 콘택트층과, 논리회로를 형성하기 위하여 소오스 및 드레인 각 전극중에서 적어도 한 전극에 게이트 전극을 연결해주는 금속층등으로 구성되어 있으며, 소오스 전극 및 드레인 전극이 오옴 콘택트 층상에, 그리고 소오스 영역 및 드레인 영역 전역에 형성되어 있고 금속과 함께 비합금 오옴 콘택트를 형성한다. 숏트키 게이트 전극은 액티브 층상에, 그리고 거기에 형성된 채널영역 전역에 형성되어 있다. 전극들과 연결층은 동일 금속으로 형성되어 있다.
본 발명의 상기 이외의 목적, 구성 및 잇점들은 첨부된 도면에 의거하여 설명되는 것으로부터 명백해질 것이다.
제1도 내지 제7도를 참조하여서 본 발명에 따른 화합물 반도체 장치의 일실시예를 서술할 것이다.
도면들에 있어서는 선택 도우핑된 화합물 반도체 장치의 전형적인 일예인 HEMT의 구조를 개선한 것이다.
제1도를 참조하여 설명하면, 도우핑하지 않은(이하 간단히 "순수한"이라 한다), 갈륨비소(i-GaAs)액티브층 12를 반절연성(semi-insulating) GaAs기판 11상에 성장시키고 거기에서는 2차원 전자 가스 채널(이하 간단히 "2DEG"라 한다.)들 16 및 소오스 영역 및 드레인 영역이 형성된다. 한쌍의 소오스 및 드레인 각 영역은 2DEG 채널 양측에 위치된다. n형 알루미늄 갈륨비소(AlGaAs) 전자 공급층 13을 순수한 GaAs 액티브층 12상에 성장시킨다. GaAs중간층 14를 n-AlGaAs전자 공급층 13상에 성장시킨다. n+형 인듐 갈륨비소(In×Ga1-XAS : O≤X≤1)오옴 콘택트층 15를 n-GaAs중간층 14상에 성장시킨다. 이와 같이 형성된 상기 구조를 분자선 엑피택셜(이하 간단히 "MBE"라 한다.), 유기 금속화학 기상 퇴적(이하 간단히 "MOCVD"라 한다.), 기상 액피택셜(이하 간단히 "VPE"라 한다.) 중에서 어느 한 방법으로 성장시킬 수 있다. n-AlGaAs전자 공급층 13의 전자 친화력은 i-GaAs액티브층 12의 전자 친화력보다 작다. 2DEG채널 16은 이종(hetero)공유영역 근처에 형성되어 있다. 우선 x=O-X=0.5범위내에 경사층 부분을 형성하고 나서 일정한 몰단편 x=0.5인 층 부분을 경사층 부분상에 형성하여서 n+-InxGa1-xAs오옴 콘택트층 15를 형성한다.
제1도에 도시한 HEMT의 층들에 관한 주요 매개변수는 다음과 같으며, 여기에서 d는 불순물 또는 도우핑 농도이고 t는 층두께이다.
A : 순수한 GaAs액티브층 12
t : 600(㎚)
B. n-AlGaAs전자 공급층 13
t : 40(㎚)
d ; 1.4×1018(㎝-3)
C. n-GaAs중간층 14
t : 70(㎚)
d : 2×1018(㎝-3)
D. n+-In×Ga1-xAs오옴 콘택트층 15의 경사부분
x치 : 0.0→0.5
t : 150(㎚)
d : 1×1019(㎝-3)
E. n+-InxGa1-xAs오옴 콘택트층 15의 나머지 부분
x치 : 0.5
t : 50㎚)
d : 1×1019(㎝-3)
제2도에 의거하여 설명하면, 종래 포토리소그라피 기술에 있어서의 레지스트처리, 습식에칭, 건식에칭등의 기술을 병합 사용하여 소자간을 분리하기 위한 홈 11A를 형성한다. 에칭 공정 대신에 이온 주입(예를들면, H+, O+)을 절연에 적용시킬 수 있다.
제3도를 참조하여 설명하면, 종래 포토리스그라피 기술에 있어서의 레지스트 처리를 적용하는 것에 의하여서 게이트 전극을 형성할 곳에 개구가 있는 포토레지스트막 17을 형성한다. 그리고 HF 또는 H3PO4를 함유하는 에칭제의 주성분으로서의 n+-In×Ga1-xAs오옴 콘택트 층 15가 선택적으로 에칭된다. 이 에칭공정으로 n+-In×Ga1-xAs오옴 콘택트층 14에 개구 15A를 형성한다. GaAs중간층 14의 표면에서 에칭공정을 마친다.
제4도를 참조하여 설명하면, 종래의 포토리소그라피 기술에 있어서의 레지스트 처리를 적용하는 것에 의하여서 게이트 전극을 형성할 영역과 소오스 및 드레인 각 전극을 형성할 영역에 개구를 가지는 포토레지스트막 10을 형성한다 에칭가스를 CCl2F2+HE로 사용하여 n-GaAs중간층 14를 선택적으로 에칭한다. 본 발명의 에칭 공정에 따르면 GaAs/AlGaAs의 선택비는 약 250정도이고 또한 매끄럽고 균일한 숏트키 공유영역을 얻을 수 있다. 또한 CCl2F2+He가스를 사용한 선택적 에칭은 GaAs/AlGaAs 뿐만 아니라 GaAs/InGaAs에도 효과적이다. 즉 InGaAs계의 에칭율은 약 2(㎚/min)이며, 비율은 AlGaAs의 에칭율과 거의 같다. 따라서, 게이트 전극을 형성할 GaAs중간층 14의 노광된 부분에 대한 선택적인 에칭을 행하는 동안 소오스 및 드레인 각 전극을 형성할 포토레지스트 막 18의 개구가 개구상태로 있는 것이 좋다. 그리고 나서 종래의 기상증착법을 적용하는 것에 따라서 약 400(㎚)정도의 두께의 알루미늄(Al)막 19가 형성된다. Al 막 19 대신에 티탄늄(Ti)막 플래티늄(Pt)막, 텅스텐 실리사이드(WSi)막 및 그와 유사한 막을 적용할 수 있다.
그런후에 상기 구조를 아세톤에 담가서 포토레지스트막 18을 분해 제거한다. 이에 의하여 Al막 19는 소위 리프트 오프(lift-off)법에 의하여 패턴화되어 게이트 전극 19G, 소오스 전극 19S 및 드레인 전극 19D가 형성된다. 이와 같이 형성한 소오스 및 드레인 전극 19S 및 19D를 비합금 오옴 콘택트로 n+-In GaAs오옴 콘택트층 15에 접속하고, 게이트 전극 19G를 숏트키 콘택트로 n-Al GaAs전자공급층 14에 접속한다.
제6a도, 제6b도, 및 제7도에 의거하면, 소오스 및 드레인 각 전극이 저저항 오옴 콘택트들에 의하여 액티브 층에 형성된 소오스 영역 및 드레인 영역과 접속될 수 있도록한 효과를 설명한 것이다.
제6a도 및 제6b도는 상기 연속 공정으로 제작한 HEMT의 에너지 대역도이다. 제6a도의 수평축은 숏트키 게이트 전극 19G로부터의 깊이를, 수직축은 에너지를 나타낸다. 제16b도에 있어서 수평축은 소오스 전극 19S 또는 드레인 전극 19D로부터의 깊이를, 수직축은 에너지를 나타낸다. 제6a도 및 제6b도에 있어서 기호 Ev는 가전자 대역의 에너지 준위이고, EF는 페르미 준위, Ec는 전도대역의 최하위 에너지 준위이다.
공지된 바와 같이, n-GaAs/n-AlGaAs순수한 GaAs더블-이종 접합은 소오스 전극 또는 드레인 전극으로부터 2DEG채널로, 혹은 그와 반대로 2DEG로부터 소오스 전극 또는 드레인 전극으로 향하는 전자에 대한 장벽을 형성한다. 거기에다 금속 기판으로 만든 소오스 및 드레인 각 전극과 이들 전극상에 놓여져 있는 반도체 층과의 공유영역에서 전자에 대한 금속 반도체 장벽이 형성된다. 합금 공정은 이들 장벽들을 파괴하게 하는데 도움이 되므로 소오스 영역 및 드레인 영역을 오옴 콘택트와 합금을 한다.
다른 한편, 본 발명에 따른 HEMT는 금속 오옴 콘택트를 적용하지 아니한다. 이러한 관점에서 제6b도시한 바와 같이, 거기에서는 금속-반도체 장벽 40 뿐만 아니라 n-GaAs/n-AlGaAs/순수한 GaAs더블-이종 접합 장벽 50도 있다. 비합금 오옴 콘택트를 가지고 있는 HEMT를 달성하기 위하여 장벽 40 및 50의 콘택트 저항 pc1 및 pc2는 가능한한 작게 해야만 한다. 즉, 장벽 40의 높이 및 폭과, 장벽 50의 높이는 작아야 한다는 것이다. 이 경우에 있어서 장벽 40의 높이, 폭을 작게하는 것이 극히 중요하다. 즉 가능한한 콘택트 저항 pc1를 작게 한다. 이것은 보통 금속-반도체 장벽 40의 콘택트 저항 pc1이 더블-이종접합 장벽 50의 콘택트 저항 pc2보다 크기 때문이다. 후에 서술되는 바와 같이, n-AlxGa1-xAs전자 공급층 13에서 몰 단편 x를 적당하게 선택하여 1×10-6(Ω·㎠) 또는 그 이하로 장벽 50의 저항 pc2를 충분히 작게 할 수 있다.
장벽 40의 콘택트저항 pc1를 작게하기 위하여 n+-InGaAs오옴 콘택트층 15를 본 발명에 따른 화합물 반도체 장치들의 일예인 HEMT에서 사용한다.
제7도는 In×Ga1-xAs의 몰단편 x의 함수로서 콘택트 저항을 보인 그래프이다. 그래프의 수평축은 in×Ga1-xAs의 몰 단편 x를 나타내고 수평축은 콘택트저항(Ω·㎠)을 나타낸다. 설명한 그래프는 x치가 0.5이고 도우핑 농도 ND가 1×1019(㎝-3) 또는 그 이상일때, 300K(실온)에서 금속과 반도체 In×Ga1-xAs와의 사이에 콘택트 저항 pc1이 1×10-7(Ω·㎠) 또는 그 이하이다. 따라서 장벽 40의 높이 및 폭은 충분히 줄어들어서 전자가 터널링으로서 장벽 40을 넘어갈 수 있다. 종래의 HEMT의 합금 오옴 콘택트의 콘택트 저항이 약 1×10-6(Ω·㎠)이라는 것을 알아야 한다. 따라서, 비합금 오옴 콘택트들이 HEMT에 대하여 유효하다는 것을 알 수 있었다. 콘택트 저항 pc1은 1×10-6(Ω·㎠) 또는 그 이하가 적당하다. 왜냐하면 비합금 오옴 콘택트는 콘택트 저항 pc2의 장벽 50에다가 장벽 40을 가진다. 콘택트 저항 pc1의 상기 조건이 만족되기 때문에 몰 단편 x와 도우핑 농도 ND를 적당히 조합하여 선택할 수 있다. InGaAs는 5×1019(㎝-3)정도로 깊게 도우핑할 수 있기 때문에, 콘택트 저항 pc1의 차원을 1×10-6(Ω·㎠) 또는 그 이하로 얻을 수 있다. 적어도 5×1018(㎝-3)의 도우핑 농도 ND가 콘택트 저항 pc1을 1×10-6(Ω·㎠)정도로 얻는데 필요하다는 것을 그래프에서 알 수 있다.
장벽 50의 감소 확률을 조사하기 위하여 몰 단편 x가 계산을 위한 매개변수로서 사용될때 n-GaAs/n-AlxGa1-xAl/순수한 GaAs더블-이종 접합 장벽의 콘택트 저항 pc2를 계산할 수 있다. 이 계산은 상기 더블-이중 접합 장벽의 높이가 AlxGa1-xAs계의 X치에 의존한다는 사실에 근거를 두고한 것이다. 이 계산에서, 열적방출, 열적 전계방출 및 전계방출을 고려한다. 더구나, 계산에는 다음의 매개변수를 사용했다. n-GaAs도우핑 농도가 1.8×1018(㎝-3)이고, n-Al0.2Ga0.8As의 도우핑 농도가 1.4×1018(㎝-3), AlGaAs-GaAs의 전도대역 가장자리 오프셋트는 ΔEc=0.60ΔEg이다. x치가 0.2이었을 때에는 300k에서 콘택트 저항 pc2의 계산치는 1.5×10-7(Ω·㎠)이고 77K에서는 3.3×10-7(Ω·㎠)이다. 이것은 대부분의 전자가 터널링을 통하여 더불-이종 접합 장벽 50을 넘어갈 수 있다는 것을 의미한다. 장벽 50의 접합 저항 50을 넘어갈 수 있다는 것을 의미한다. 장벽 50의 접촉 저항 pc2에 대한 상기 치들은 합금 오옴 콘택트의 콘택트 저항 1×10-6(Ω·㎠) 과 비교하여 충분하다. 결과적으로 AlxGa1-xAs전자 공급층 13에서 몰 단편 x를 적당히 선택하여서 장벽 50의 콘택트 저하 pc2를 1×10-6(Ω·㎠) 또는 그 이하로 유지할 수 있다. 비합금 오옴 콘택트의 전체 콘택트 저항치가 약 1×10-6(Ω·㎠) 또는 그 이하이다. 비합금 오옴 콘택트의 콘택트 저항에 대한 어떠한 값은 HEMT의 오옴 콘택트에 적당하다. 예를들면 30분 동안 350℃로 열처리함으로써 콘택트 저항치를 5×10-7(Ω·㎠)정도로 개선시킬 수 있다.
다른 한편, 제6a도에 도시한 바와 같이, 게이트 전극 19G는 n-AlGaAs전자 공급층 13에 대하여 숏트키 콘택트를 형성한다. 따라서 숏트키 콘택트의 높이는 장벽 50의 높이보다 상당히 높다. 다시 말하면, 게이트 전극 19G밑에 있는 n-AlGaAs전자 공급층 13을 속박하는, 표면 페르미 레벨은 숏트키 콘택트를 형성하게 한다.
상술한 바에서 알 수 있는 것과같이, 비합금 오옴 콘택트를 가지고 있는 HEMT를 실현할 수 있다. 상기 서술을 간단히 요약하면 제6a도에 도시한 바대로 게이트 전극 19G바로 밑에 있는 전자공급층 13은 게이트 전극 19G의 숏트키 콘택트로 인하여 높은 장벽 특성을 나타낸다. 한편 제6b도에 도시한 바와 같이 소오스 및 드레인 각 전극 19S, 19D 바로밑에 있는 저장벽 50은 이종 접합으로 인하여 전자 공급층 13의 양끝 표면에서만 형성된다. 따라서 저 저항 비합금 오옴 콘택트는 우선 콘택트층 15와 소오스 및 드레인 각 전극 19S, 19D와의 사이의 콘택트 저항 pc1를 감소시키고 나서 전자공급층 13에서 몰 단편을 적당하게 선택하여 콘택트 저항 pc2를 감소시킨다. 즉, 전자가 터널링으로서 콘택트층 15와 소오스 및 드레인 각 전극 19S, 19D와의 사이에 있는 접합, 그리고 전자 공급층 13의 양끝면 사이에 있는 이종 접합을 넘어갈 수 있다.
소오스 및 드레인 각 전극 19S, 19D를 동일재료로 형성시킬 수 있다. 따라서 전극들의 재료와 동일재료로 만든 접속선으로서 사용되는 금속층으로 접촉 영역을 사용하지 않고 게이트 전극 19G를 소오스 전극 19S 또는 드레인 전극 19S에 연결할 수 있다. 다시 말해서, 연결선을 전극들과 함께 동일 재료를 사용하여 집적적으로 형성할 수 있다는 것이다.
상기 실시예에서, n+InGaAs오옴 콘택트층 15는 경사진 n+-InGaAs부분을 포함한다. 이 경사 부분은 n+InGaAs의 에너지 준위들 Ec와 Ev사이의 에너지 대역 갭이 n-GaAs의 에너지 대역 갭보다 상당히 작기 때문에 n+InGaAs의 오옴 콘택트층 15와 n-GaAs의 중간층 14사이에서 불연속성을 피하는데 쓰인다. 그러나, n+-InGaAs경사 부분은 본 발명에 따른 비합금 오옴 콘택트를 지닌 HEMT에 반드시 제공되지는 않는다. 이것은 InGaAs를 1×1019(㎝-3)정도로 깊게 도우핑할 수 있기 때문이다. 심지어, 상수 x치의 n+-InGaAs층이 GaAs중간층 14상에서 직접 성장될때라도 그들 사이의 공유영역에서 형성되어야 하는 장벽을 작게할 수 있는 전자들은 터널링을 통해 장벽을 넘을 수도 있기 때문이다.
상기 서술한 InGaAs-AlGaAs HEMT외에 비합금 오옴 콘택트를 InGaAs-InAlAs HEMT, InGaAs-InGaP HEMT, Ge-InAlAs HEMT, Ge-InGaP HEMT 및 Ge-AlGaAs HEMT등에 만들 수 있다. 그리고 여러가지 반상(pseudomorphic)채널 HEMT에서도 비합금 오옴 콘택트를 만들 수 있다. 각 HEMT에 대한 층 구조는 다음과 같다.
A. InGaAs-InAlAs HEMT
기판 : InP
액티브층 : i-InGaAs
전자공급층 : n-InAlAs
중간층 : n-InGaAs
오옴 콘택트층 : n+-InGaAs
B. InGaAs-InGaP HEMT
기판 : GaAs
액티브층 : i-GaAs
전자공급층 : n-InGaP
중간층 : n-GaAs
오옴 콘택트층 : n+-InGaAs
C. Ge-InAlAs HEMT
기판 : InP
액티브층 : i-InGaAs
전자공급층 : n-InAlAs
중간층 : n-InGaAs
오옴 콘택트층 : n+-Ge
D. Ge-InGaP HEMT
기판 : GaAs
액티브층 : i-GaAs
전자공급층 : n-InGaP
중간층 : n-GaAs
오옴 콘택트층 : n+-Ge
E. Ge-AlGaAs HEMT
기판 : GaAs
액티브층 : i-GaAs
전자공급층 : n-AlGaAs
중간층 : n-GaAs
오옴 콘택트층 : n+-Ge
제8도 내지 제11도에 의거하여 본 발명의 다른 실시예의 화합물 반도체 장치 MESFET를 설명할 것이다.
우선 제8도를 설명하면, n-GaAs액티브층 22를 MBE, LPE 및 VPE법들중 어느 한 방법으로 반절연 GaAs기판 21상에다 성장시킨다. n-GaAs액티브층 22의 기본 매개변수는 다음과 같다.
t : 1000Å
d : 2×1017(㎝-3)
그 다음 공정으로서는 통상의 포토리소그라피 기술로 아이솔레이션을 행하지만 그것은 설명하지 아니한다.
그리고 질산화 실리콘(SiON) 또는 이산화실리콘(SiO2)으로 만든 절연막 23을 퇴적하고 패턴화하여서 제8도에 도시한 바와 같이, 소오스 및 드레인을 형성할 곳에 막 23의 부분이 형성된다. 플라즈마 화학기상 퇴적("플라즈마 CVD"라고 한다.)으로 절연막 23을 예를들면 두께 300(㎚)정도로 퇴적할 수 있다. 통상의 포토리소그라피 기술을 적용함으로써 패턴화를 행할 수 있다.
그리고, n+-InxGa1-xAs오옴 콘택트 층 24를 제8도에 도시한 바와 같이 MBE 또는 MOCVD법으로 성장시킨다. 전술한 InGaAs-AlGaAS HEMT의 n+-InxGa1-xAs 오옴 콘택트층 15의 경우와 같이, 오옴 콘택트 층 24는 n+-InxGa1-xAS에 있어서의 몰 단편 x가 0.0에서 0.5로 점차 변환되는 경사 부분을 포함한다. 경사부분상에서 성장되는 n+InxGa1-xAs 오옴 콘택트 층 24의 나머지 부분은 일정한 값 x=0.5를 가진다. 오옴 콘택트 층 24의 기본 매개변수는 다음과 같다.
A. n+-InxGa1-xAs오옴 콘택트층 24의 경사부분
x치 : 0.0-0.5
t : 150(㎚)
d : 1×1019(㎝-3)
B. n+-InxGa1-xAs오옴 콘택트층 24의 나머지 부분
x치 : 0.5
t : 50(㎚)
d : 1×1019(㎝-3)
상기 구조에서, 절연막 23에 형성된 개구를 통하여 부분적으로 노광되는 n-GaAs액티브 층 22상에 있는 오옴 콘택트 층 24부분들이 단결정으로 변화되는 반면에 절연막 23상에 있는 오옴 콘택트 층 24부분들은 다결정으로 변화된다.
다음 과정은 제8도에 도시한 구조의 전체표면 전역에 포토레지스트막(도시되어 있지 않음)을 두껍게 하고 스핀 코우트(spin coat)처리를 하여 평평하게 형성하는 것이다. 그런 후에 제9도에 도시한 바와 같이, 아르곤가스로 이온밀링(ion milling)하여 포토레지스트막의 전면을 균일하게 에칭하여 절연막 23의 표면을 노광시킨다. 그것에 의하여 절연막 23의 개구들안에 형성되는 층 24의 단결정 n-InxGa1-xAs부분만이 남는다.
그리고, 게이트, 소오스 및 드레인을 형성할 곳에 개구들을 지닌 포토레지스트 막 25를 통상의 포토리소그라피 기술에서 사용된 레지스트 처리로 제9도에 도시한 구조의 표면상에 퇴적시키고 나서 HF습식 에칭공정에 의하여 선택적 에칭이 수행된다. 다음은 개구를 통해 노광된 n-GaAs액티브층 22의 부분에 HF습식 에칭공정으로 홈을 형성한다. 이 경우에 있어서, 포토레지스트 막 25에 형성된 개구들은 개구상태로 남아있다. 그런후에 기상증착 공정으로 포토레지스트 막 25상에 Al막 26을 두께 400(㎚)정도로 퇴적시킨다.
마지막으로, 그렇게 구성된 구조를 아세톤에 담가 포토레지스트 막 25를 분해 제거시켜서 제11도에 도시한 바와 같이 리프트-오프(lift-off)법으로 Al막 26을 패턴화하고 게이트 전극 26G, 소오스 전극 26S 및 드레인 전극 26D를 형성한다. 이와 같이 소오스 전극 26s 및 드레인 전극 26D를 오옴 콘택트들로 n-InGaAs오옴 콘택트 층 25와 접속시키며, 숏트키콘택트들로 게이트 전극 26G를 n-GaAs액티브 층 22와 접속시킨다. 상술한 구성의 MESFET는 비합금 오옴 콘택트들을 가진다는 것을 알아야 한다. MESFET의 실시예에서 오옴 콘택트 층 24의 경사 부분은 반드시 필요하지는 않는다.
제12도는 화합물 반도체 장치들로 구성할 수 있는 논리회로도이다. 설명한 논리회로는 두개의 인버터로 구성되어 있다. 인버터들중 한 인버터는 구동측 트랜지스터 QD1및 부하측 트랜지스터 QL1로 이루어졌고 다른 하나는 구동측 트랜지스터 QD2및 부하측 트랜지스터 QL2로 구성되어 있다. 입력신호 IN1을 트랜지스터 QD1의 게이트 단자에 인가한다. 트랜지스터 QD1의 드레인 단자와 트랜지스터 QL1의 소오스 단자가 서로 연결되어 있고, 또한 트랜지스터 QL1의 게이트 단자는 그의 소오스 단자에 연결되어 있다. 첫번째 단에 있어서의 인버터의 출력신호 OT1이 트랜지스터 QD2의 게이트 단자에 공급된다. 트랜지스터 QD2의 드레인 단자는 트랜지스터 QL2의 소오스 및 게이트 단자에 접속된다. 트랜지스터 QD2및 QL2에 의해 형성된 인버터의 출력신호 OT2를 다음단(도시되어 있지 않음)에 공급한다. 기호 VDD및 VSS는 각각 양 전원 전위 및 접지전원 전위이다.
전술한 바와 같이 CT1및 CT2등의 콘택트 영역들은 합금 오옴 콘택트들을 지닌 종래의 HEMT는 MESFET에 의해 서술한 구조를 형성하는 것이 필요한데, 왜냐하면 게이트 전극의 재료와 소오스 및 드레인 각 전극의 재료가 다르기 때문이다. 접촉 영역들이 있으면 전술한 바와 같이 집적도 향상을 막는다.
일반적으로, 메모리 회로에 있어서의 단위 셀은 여섯개의 트랜지스터로 구성되어 있다. 이 경우에서 칩상의 단위 셀의 면적을 550(㎛2)정도로, 즉 집적도가 16K 정적 랜덤 액세스 메모리(SRAM)의 차원 정도로 되게 한다. 그외 다른 방법으로는 네개의 트랜지스터와 두개의 저항(부하)으로 이루어진 단위 셀의 면적은 350(㎛2)정도로 계산한다. 한편, 본 발명에 따른 화합물 반도체 장치들을 가지고 트랜지스터들의 전극들 및 트랜지스터들 사이의 연결선들을 동일 물질로 집적적으로 형성할 수 있다. 그리하여, CT1및 CT2등의 콘택트 영역들을 사용하지 않고 제12도에 도시한 회로를 형성할 수 있다. 결과적으로 네개의 트랜지스터와 두개의 저항으로 이루어진 단위 셀의 면적이 대략 150-200(㎛2)이 되도록 한다. 이 값은 통상의 트랜지스터들이 차지하는 면적의 1/3정도이다. 이 계산에서, 다음 매개변수들을 사용한다. 인접 소자들을 분리하기 위한 영역 : 3(㎛), 연결선의 선 및 간격 : 1.5/2(㎛), 구동장치의 게이트 폭 : 5(㎛), 전송게이트의 폭 : 2(㎛), 게이트의 길이 : 0.5-1(㎛)
제13도는 제12도에 도시한 회로의 설계도이고, 여기에서 본 발명에 의한 트랜지스터들을 사용하였다. VDD전원선 63은 콘택트 영역들 611및 612에서 각각 트랜지스터들 QL1및 QL2의 소오스 단자들에 연결되어 있다. VSS전원선 64는 콘택트 영역들 621 및 622에서 각각 트랜지스터들 QD1및 QD2의 소오스 단자들에 연결되어 있다. 트랜지스터 QL1의 소오스 단자와 트랜지스터 QD1의 드레인 단자, 트랜지스터 QL1의 게이트 단자와 트랜지스터 QD2의 게이트 단자는 콘택트 영역을 사용하지 않고 집적적으로 형성한 금속층(연결선)65에 의하여 상호 연결된다.
본 발명에 따른 화합물 반도체 장치는 서로 다른 물질로 만든 트랜지스터들의 단자들을 연결하기 위하여 콘택트 영역을 사용하지 아니하기 때문에, 고속화, 다량생산, 고 신뢰성을 지닌 집적회로를 제작할 수 있다는 이점이 있다.
본 발명을 상기 실시예들에 제한하지 아니하고 본 발명의 범위내에서 다양한 변화와 수정을 가할 수 있다.

Claims (15)

  1. 화합물 반도체 기판(11, 21), 채널영역과 소오스 및 드레인 각 영역을 포함하고, 화합물 반도체 기판상에 형성된 첫번째 반도체의 액티브층(12, 22), 첫번째 반도체의 전자 친화력보다 친화력이 더 작고, 액티브층 상에 형성된 두번째 반도체의 전자공급층(13), 전자공급층상과 소오스영역 및 드레인 영역에 걸쳐 형성된 세번째 반도체의 중간층(14), 금속과 비합금 오옴 콘택트를 이루고, 중간층 상에 형성된 네번째 반도체의 오옴 콘택트층(15, 24), 오옴 콘택트층상과 소오스 영역 및 드레인 영역에 걸쳐 형성된 소오스 및 드레인 각 전극(19S, 19D ; 26S, 26D) ; 및 전자 공급층상에 형성된 쇼트키 게이트 전극(19G, 26G)으로 구성됨을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  2. 제1항에 있어서, 상기 네번째 반도체의 오옴 콘택트층(15, 24)은 인듐 갈륨비소(InxGa1-xAs ; 0〈X〈1)와 게르마늄(Ge)으로 이루어진 그룹에서 선택되어짐을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  3. 제2항에 있어서, 상기 인듐 갈륨 비소(InxGa1-xAs)는 그 도우핑 농도가 5×1018(㎝-3) 또는 그 이상임을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  4. 제2항에 있어서, 상기 오옴 콘택트 층(15, 24)은 인듐 갈륨 비소(InxGa1-xAs)의 몰단편 X가 중간층(14)과 경계된 부분에서 증가되는 경사층 부분을 포함함을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합 반도체 장치.
  5. 제1항에 있어서, 상기 소오스, 드레인 및 게이트 각 전극(19S, 19D, 19G ; 26S, 26D, 26G)은 동일 금속 기판으로 이루어짐을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  6. 제1항에 있어서, 상기 소오스 및 드레인 각 전극(19S, 19D ; 26S, 26D)하에 놓인 액티브층(12), 전자공급층(13) 및 중간층(14)을 포함하는 구조의 저항은 전자공급층(13)을 형성하는 두번째 반도체의 몰 단편을 선택함에 따라 1×10-6(Ω·㎠) 또는 그 이하로 설정되어 짐을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  7. 제1항에 있어서, 상기 소오스 또는 드레인 전극(19S, 26S; 19D, 26D)과 오옴 콘택트층(15)사이의 경계된 부분에서 형성된 장벽의 콘택트 저항은 1×10-6(Ω·㎠) 또는 그 이하가 됨을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  8. 제1항에 있어서, 상기 소오스 및 드레인 각 전극(19S, 19D ; 26S, 26D)하에 놓인 액티브층(12), 전자공급층(13) 및 중간층(14)을 포함하는 구조의 저항은 게이트 전극(19G ; 26G)하에 놓인 쇼트키 장벽의 저항보다 더 작음을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  9. 제1항에 있어서, 상기 두번째 반도체의 전자공급층(13)은 알루미늄 갈륨 비소(AlGaAs), 인듐 알루미늄 비소(InalAs) 및 인듐 갈륨인(InGaP)으로 이루어진 그룹에서 선택되어짐을 특징으로 하는 비합금(InGAP)으로 이루어진 그룹에서 선택되어짐을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  10. 화합물 반도체 기판(11, 21), 채널영역과 소오스 및 드래인 각 영역을 포함하고, 화합물 반도체 기판상에 형성된 첫번째 반도체의 액티브층(12, 22), 금속과 비합금 오옴 콘택트를 이루고, 소오스 및 드레인 각 영역에 걸쳐 있는 액티브층의 일부분 상에 형성된 두번째 반도체의 오옴콘택트층(15, 24), 오옴 콘택트층 상과 소오스 및 드레인 각 영역에 걸쳐 형성된 소오스 및 드레인 각 전극(19S, 19D ; 26S, 26D), 액티브층 상과 그리고 거기에 형성된 채널 영역에 걸쳐 형성된 쇼트키 게이트 전극(19G ; 26G), 및 게이트 전극(19G, 26G)을 소오스 및 드레인 각 전극(19S, 19D ; 26S, 26D)중 적어도 하나에 연결하기 위한 금속층(65)으로 구성되며, 여기서 각 전극 및 금속층은 동일 금속 기판으로 집적 형성되어짐을 특징으로 하는 비합금 오옴콘택트들을 가지고 있는 화합물 반도체 장치.
  11. 제10항에 있어서, 상기 네번째 반도체의 오옴 콘택트층(15, 24)는 인듐 갈륨 비소(InxGa1-xAs ; 0〈X〈1)와 게르마늄(Ge)으로 이루어진 그룹에서 선택되어짐을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  12. 제10항에 있어서, 상기 인듐 갈륨 비소(InxGa1-xAs)는 그 도우핑 농도가 5×1018(㎝-3) 또는 그 이상임을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  13. 제10항에 있어서, 상기 오옴콘택트 층(15, 24)은 인듐 갈륨 비소(InxGa1-xAs)의 몰 단편 X가 중간층(14)과 경계된 부분에서 증가하는 경사층 부분을 포함함을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  14. 제10항에 있어서, 첫번째 반도체보다 더 작은 전자 친회력을 갖으며, 상기 액티브층상에 형성되는 세번째 반도체의 전자공급층(13) ; 상기 전자 공급층(13)상과 상기 소오스 영역 및 드레인 영역에 걸쳐 형성된 네번째반도체의 중간층(14) ; 을 더 구비하고 여기서 금속과 비합금 오옴 콘택을 이루는 상기 두번째 반도체의 오옴 콘택트층(15, 24)은 상기 중간층(14)상에 형성되고, 상기 쇼트키 게이트 전극은 상기 전자 공급층(13)상에 형성되는 것을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
  15. 제14항에 있어서, 상기 소오스 및 드레인 전극(19S, 19D ; 26D, 26D)하에 놓인 액티브층(12, 22), 전자공급층(13) 및 중간층(14)을 포함하는 구조의 저항은 전자공급층(13)을 형성하는 세번째 반도체의 몰 단편을 선택함에 따라 1×10-6(Ω·㎠) 또는 그 이하로 설정되어짐을 특징으로 하는 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치.
KR1019880002843A 1987-03-18 1988-03-17 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치 KR920006875B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6109787 1987-03-18
JP62-61097 1987-03-18

Publications (2)

Publication Number Publication Date
KR880011902A KR880011902A (ko) 1988-10-31
KR920006875B1 true KR920006875B1 (ko) 1992-08-21

Family

ID=13161237

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880002843A KR920006875B1 (ko) 1987-03-18 1988-03-17 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치

Country Status (4)

Country Link
US (1) US4961194A (ko)
EP (1) EP0283278B1 (ko)
KR (1) KR920006875B1 (ko)
DE (1) DE3881922T2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302847B1 (ko) * 2011-09-28 2013-09-02 후지쯔 가부시끼가이샤 화합물 반도체 장치 및 그의 제조 방법

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285644A (ja) * 1989-04-27 1990-11-22 Mitsubishi Electric Corp 半導体装置およびその製造方法
US5231040A (en) * 1989-04-27 1993-07-27 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor
US5013685A (en) * 1989-11-02 1991-05-07 At&T Bell Laboratories Method of making a non-alloyed ohmic contact to III-V semiconductors-on-silicon
US5266818A (en) * 1989-11-27 1993-11-30 Kabushiki Kaisha Toshiba Compound semiconductor device having an emitter contact structure including an Inx Ga1 -x As graded-composition layer
US5168330A (en) * 1990-12-03 1992-12-01 Research Triangle Institute Semiconductor device having a semiconductor substrate interfaced to a dissimilar material by means of a single crystal pseudomorphic interlayer
JPH04260338A (ja) * 1991-02-14 1992-09-16 Mitsubishi Electric Corp 半導体装置の製造方法
JPH05198598A (ja) * 1992-01-22 1993-08-06 Mitsubishi Electric Corp 化合物半導体装置及びその製造方法
DE4211052C1 (en) * 1992-04-02 1993-06-03 Siemens Ag, 8000 Muenchen, De Power FET mfr. using angled ion implantation beam - forming asymmetrical insulation zone in contact layer applied to surface of channel layer beneath gate metallisation
JPH0661269A (ja) * 1992-08-11 1994-03-04 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP3502651B2 (ja) 1993-02-08 2004-03-02 トリクイント セミコンダクター テキサス、エルピー 電極形成法
JPH07183493A (ja) * 1993-12-24 1995-07-21 Mitsubishi Electric Corp 半導体装置
JP2606581B2 (ja) * 1994-05-18 1997-05-07 日本電気株式会社 電界効果トランジスタ及びその製造方法
JPH08107216A (ja) * 1994-10-04 1996-04-23 Fujitsu Ltd 半導体装置
JP3036404B2 (ja) * 1995-05-25 2000-04-24 株式会社村田製作所 半導体装置とその製造方法
US5940694A (en) * 1996-07-22 1999-08-17 Bozada; Christopher A. Field effect transistor process with semiconductor mask, single layer integrated metal, and dual etch stops
US5976920A (en) * 1996-07-22 1999-11-02 The United States Of America As Represented By The Secretary Of The Air Force Single layer integrated metal process for high electron mobility transistor (HEMT) and pseudomorphic high electron mobility transistor (PHEMT)
US5869364A (en) * 1996-07-22 1999-02-09 The United States Of America As Represented By The Secretary Of The Air Force Single layer integrated metal process for metal semiconductor field effect transistor (MESFET)
US5796131A (en) * 1996-07-22 1998-08-18 The United States Of America As Represented By The Secretary Of The Air Force Metal semiconductor field effect transistor (MESFET) device with single layer integrated metal
US5698900A (en) * 1996-07-22 1997-12-16 The United States Of America As Represented By The Secretary Of The Air Force Field effect transistor device with single layer integrated metal and retained semiconductor masking
US5698870A (en) * 1996-07-22 1997-12-16 The United States Of America As Represented By The Secretary Of The Air Force High electron mobility transistor (HEMT) and pseudomorphic high electron mobility transistor (PHEMT) devices with single layer integrated metal
JPH10178024A (ja) * 1996-12-18 1998-06-30 Matsushita Electric Ind Co Ltd 電界効果型トランジスタ及びその製造方法
JPH10335637A (ja) * 1997-05-30 1998-12-18 Sony Corp ヘテロ接合電界効果トランジスタ
US6020226A (en) * 1998-04-14 2000-02-01 The United States Of America As Represented By The Secretary Of The Air Force Single layer integrated metal process for enhancement mode field-effect transistor
US6222210B1 (en) 1998-04-14 2001-04-24 The United States Of America As Represented By The Secretary Of The Air Force Complementary heterostructure integrated single metal transistor apparatus
US6198116B1 (en) 1998-04-14 2001-03-06 The United States Of America As Represented By The Secretary Of The Air Force Complementary heterostructure integrated single metal transistor fabrication method
US6066865A (en) * 1998-04-14 2000-05-23 The United States Of America As Represented By The Secretary Of The Air Force Single layer integrated metal enhancement mode field-effect transistor apparatus
CA2456662A1 (en) * 2001-08-07 2003-02-20 Jan Kuzmik High electron mobility devices
US7084423B2 (en) 2002-08-12 2006-08-01 Acorn Technologies, Inc. Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US6833556B2 (en) 2002-08-12 2004-12-21 Acorn Technologies, Inc. Insulated gate field effect transistor having passivated schottky barriers to the channel
KR100876806B1 (ko) * 2006-07-20 2009-01-07 주식회사 하이닉스반도체 이중 패터닝 기술을 이용한 반도체 소자의 트랜지스터 형성방법
JP2012238809A (ja) * 2011-05-13 2012-12-06 Sharp Corp 電界効果トランジスタ
CN107578994B (zh) 2011-11-23 2020-10-30 阿科恩科技公司 通过插入界面原子单层改进与iv族半导体的金属接触
US20150372096A1 (en) * 2014-06-20 2015-12-24 Ishiang Shih High Electron Mobility Transistors and Integrated Circuits with Improved Feature Uniformity and Reduced defects for Microwave and Millimetre Wave Applications
JP2017533574A (ja) 2014-09-18 2017-11-09 インテル・コーポレーション シリコンcmos互換性半導体装置における欠陥伝播制御のための傾斜側壁カット面を有するウルツ鉱ヘテロエピタキシャル構造物
JP6376575B2 (ja) 2014-09-25 2018-08-22 インテル・コーポレーション 自立シリコンメサ上のiii−nエピタキシャル素子構造
EP3213350A4 (en) * 2014-10-30 2018-06-13 Intel Corporation Source/drain regrowth for low contact resistance to 2d electron gas in gallium nitride transistors
KR102423219B1 (ko) 2014-12-18 2022-07-20 인텔 코포레이션 N-채널 갈륨 질화물 트랜지스터들
US9620611B1 (en) 2016-06-17 2017-04-11 Acorn Technology, Inc. MIS contact structure with metal oxide conductor
WO2018094205A1 (en) 2016-11-18 2018-05-24 Acorn Technologies, Inc. Nanowire transistor with source and drain induced by electrical contacts with negative schottky barrier height
WO2019066953A1 (en) 2017-09-29 2019-04-04 Intel Corporation REDUCED CONTACT RESISTANCE GROUP III (N-N) NITRIDE DEVICES AND METHODS OF MAKING SAME
IT201900022506A1 (it) * 2019-11-29 2021-05-29 Univ Pisa Circuito integrato operante in regime di effetto hall quantistico per ottenere un predeterminato standard di resistenza

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932902B2 (ja) * 1980-06-12 1984-08-11 インターナシヨナルビジネス マシーンズ コーポレーシヨン 半導体オ−ミツク接点
US4325181A (en) * 1980-12-17 1982-04-20 The United States Of America As Represented By The Secretary Of The Navy Simplified fabrication method for high-performance FET
JPS5874084A (ja) * 1981-10-29 1983-05-04 Fujitsu Ltd 半導体装置
JPS59123272A (ja) * 1982-12-28 1984-07-17 Fujitsu Ltd 化合物半導体装置
JPS60164366A (ja) * 1984-02-06 1985-08-27 Fujitsu Ltd 半導体装置
JPS60189268A (ja) * 1984-03-08 1985-09-26 Fujitsu Ltd 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302847B1 (ko) * 2011-09-28 2013-09-02 후지쯔 가부시끼가이샤 화합물 반도체 장치 및 그의 제조 방법

Also Published As

Publication number Publication date
KR880011902A (ko) 1988-10-31
DE3881922D1 (de) 1993-07-29
EP0283278A3 (en) 1989-09-06
EP0283278A2 (en) 1988-09-21
DE3881922T2 (de) 1993-10-07
US4961194A (en) 1990-10-02
EP0283278B1 (en) 1993-06-23

Similar Documents

Publication Publication Date Title
KR920006875B1 (ko) 비합금 오옴 콘택트들을 가지고 있는 화합물 반도체 장치
US6703638B2 (en) Enhancement and depletion-mode phemt device having two ingap etch-stop layers
US4714948A (en) HEMT with epitaxial narrow bandgap source/drain contacts isolated from wide bandgap layer
US5350709A (en) Method of doping a group III-V compound semiconductor
US5162877A (en) Semiconductor integrated circuit device and method of producing same
US4768071A (en) Ballistic transport MESFET
US5770489A (en) Method of making a compound semiconductor field-effect transistor
US5336626A (en) Method of manufacturing a MESFET with an epitaxial void
JPH0324782B2 (ko)
US6278144B1 (en) Field-effect transistor and method for manufacturing the field effect transistor
KR920010671B1 (ko) 반도체장치
US5227644A (en) Heterojunction field effect transistor with improve carrier density and mobility
US5192701A (en) Method of manufacturing field effect transistors having different threshold voltages
EP0744773B1 (en) Method of manufacturing semiconductor device having a plasma-processed layer
JPH0750781B2 (ja) 化合物半導体集積回路装置
US5107314A (en) Gallium antimonide field-effect transistor
KR930000603B1 (ko) 반도체장치 및 그 제조방법
JPH07142706A (ja) ヘテロ接合半導体装置の製造方法およびヘテロ接合半導体装置
US6570194B2 (en) Compound semiconductor field effect transistor with improved ohmic contact layer structure and method of forming the same
JPH06120524A (ja) デュアルゲートの金属半導体電界効果トランジスタ及びその製造方法
JPH0797638B2 (ja) 電界効果トランジスタ
US5413947A (en) Method for manufacturing a semiconductor device with an epitaxial void
JP2002064183A (ja) 半導体装置およびその製造方法
JPS6115375A (ja) ヘテロ接合電界効果トランジスタ
JPH0243765A (ja) 化合物半導体装置の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E902 Notification of reason for refusal
J2X1 Appeal (before the patent court)

Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL

G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040809

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee