KR20210071079A - 다중 패싯 미러를 갖는 lidar 시스템들 - Google Patents

다중 패싯 미러를 갖는 lidar 시스템들 Download PDF

Info

Publication number
KR20210071079A
KR20210071079A KR1020217016004A KR20217016004A KR20210071079A KR 20210071079 A KR20210071079 A KR 20210071079A KR 1020217016004 A KR1020217016004 A KR 1020217016004A KR 20217016004 A KR20217016004 A KR 20217016004A KR 20210071079 A KR20210071079 A KR 20210071079A
Authority
KR
South Korea
Prior art keywords
light
optical
axis
lidar system
optical window
Prior art date
Application number
KR1020217016004A
Other languages
English (en)
Other versions
KR102579257B1 (ko
Inventor
블레즈 가상디
랄프 에이치. 셰퍼드
사무엘 레니우스
라이언 데이비스
Original Assignee
웨이모 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웨이모 엘엘씨 filed Critical 웨이모 엘엘씨
Publication of KR20210071079A publication Critical patent/KR20210071079A/ko
Application granted granted Critical
Publication of KR102579257B1 publication Critical patent/KR102579257B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)

Abstract

예시적인 실시예는 다중 패싯 미러를 갖는 LIDAR 시스템에 관한 것이다. 예시적인 실시예는 LIDAR 시스템을 포함한다. 이 시스템은 제1 회전 축을 중심으로 회전하는 복수의 반사 패싯을 포함하는 다중 패싯 미러를 포함한다. 이 시스템은 장면의 하나 이상의 영역을 향해 광 신호를 방출하도록 구성된 광 방출기를 또한 포함한다. 게다가, 이 시스템은 반사 광 신호를 검출하도록 구성된 광 검출기를 포함한다. 추가적으로, 이 시스템은 반사 패싯들 중 하나 이상으로부터 반사되는 광이 광학 창을 통해 투과되도록 다중 패싯 미러와 장면의 하나 이상의 영역 사이에 위치된 광학 창을 포함한다. 광학 창이, 다중 패싯 미러의 모든 각도에 대해, 광학 축을 따라 방출되는 광이 지향되는 방향에 수직이 아니도록 광학 창이 위치된다.

Description

다중 패싯 미러를 갖는 LIDAR 시스템들
관련 출원에 대한 상호 참조
본 출원은 이로써 참조로 미국 특허 출원 제16/235,564호, 미국 특허 출원 제15/445,971호, 미국 특허 출원 제13/790,934호, 미국 특허 출원 제14/668,452호, 미국 특허 출원 제15/455,009호, 미국 특허 출원 제15/493,066호, 미국 특허 출원 제15/383,842호, 미국 특허 출원 제15/951,491호 및 미국 특허 출원 제16/229,182호를 포함한다. 본 출원은 2018년 12월 28일에 출원된 미국 특허 출원 제16/235,564호 및 2018년 10월 31일에 출원된 미국 가특허 출원 제62/753,586호에 대한 우선권을 주장하며, 그 내용은 이로써 참조로 포함된다.
본 명세서에서 달리 지시되지 않는 한, 이 섹션에서 설명되는 자료는 본 출원에서의 청구항에 대한 종래 기술이 아니며, 이 섹션에 포함되는 것에 의해 종래 기술인 것으로 인정되지 않는다.
차량이 운전자로부터의 입력을 거의 또는 전혀 사용하지 않고 환경을 통해 운행하는 자율 주행 모드에서 동작하도록 차량이 구성될 수 있다. 그러한 자율 주행 차량은 차량이 동작하는 환경에 관한 정보를 검출하도록 구성되는 하나 이상의 센서를 포함할 수 있다.
LIDAR(light detection and ranging) 디바이스는 주어진 환경에 있는 대상체까지의 거리를 추정할 수 있다. 예를 들어, LIDAR 시스템의 방출기 서브시스템은 LIDAR 시스템의 환경에 있는 대상체들과 상호작용할 수 있는 근적외선 광 펄스들을 방출할 수 있다. 광 펄스들의 적어도 일 부분은 (예를 들면, 반사 또는 산란으로 인해) LIDAR를 향해 다시 방향 전환(redirect)되고 수신기 서브시스템에 의해 검출될 수 있다. 종래의 수신기 서브시스템은 높은 시간 분해능(예를 들면, ~ 400ps)으로 각자의 광 펄스의 도달 시간(arrival time)을 결정하도록 구성된 복수의 검출기 및 대응하는 제어기를 포함할 수 있다. LIDAR 시스템과 주어진 대상체 사이의 거리는 주어진 대상체와 상호작용하는 대응하는 광 펄스의 비행 시간에 기초하여 결정될 수 있다.
본 명세서에 설명된 실시예는 광 방출기(들) 및 광 검출기(들)는 물론, 광 방출기로부터의 광 신호를 광학 창을 통해 주변 환경을 향해 지향시키도록 구성된 회전 미러를 갖는 LIDAR 시스템을 포함할 수 있다. 주변 환경으로부터 반사 시에, 광 신호는 광학 창을 통해 광 검출기를 향해 다시 진행할 수 있다. 광 검출기에 의해 검출되는 스퓨리어스 광(spurious light)은 장면 내의 대상체까지의 결정된 거리 및/또는 장면 내의 대상체의 결정된 위치의 부정확성을 유발할 수 있다. 스퓨리어스 광이 LIDAR 시스템에 의해 검출되는 것을 방지하기 위해, 예시적인 실시예는 그렇지 않았으면 광 검출기에 의한 스퓨리어스 광 검출을 야기할 내부 반사를 감소시키는 배플(baffle)을 포함할 수 있다. 추가적으로 또는 대안적으로, 광학 창은 광학 창의 내부 측면으로부터의 반사가 광 검출기에 도달하는 것을 감소시키기 위해 회전 미러에 대해 각을 이루고 있을 수 있다. 또한, 스퓨리어스 광 신호를 흡수하고/하거나 회전 미러의 기계적 품질을 개선시키는 하나 이상의 배플이 회전 미러의 측면에 배치될 수 있다. 외부 광(예를 들면, 태양광)이 또한 LIDAR 시스템 내에 열 팽창을 일으킬 수 있다. LIDAR 시스템에 들어가는 외부 광의 양을 줄이기 위해, 일부 실시예는 광학 창의 외부 측면에 하나 이상의 광학 필터를 포함할 수 있다.
일 양태에서, LIDAR(light detection and ranging) 시스템이 제공된다. LIDAR 시스템은 복수의 반사 패싯을 포함하는 다중 패싯 미러를 포함한다. 다중 패싯 미러는 제1 회전 축을 중심으로 회전하도록 구성된다. LIDAR 시스템은 광학 축을 따라 광 신호를 방출하도록 구성된 광 방출기를 또한 포함한다. 광학 축을 따라 방출되는 광은 반사 패싯들 중 하나 이상으로부터 반사되어 장면의 하나 이상의 영역을 향해 지향된다. 게다가, LIDAR 시스템은 장면의 하나 이상의 영역에 의해 반사되는 반사 광 신호를 검출하도록 구성된 광 검출기를 포함한다. 광학 축을 따라 방출되는 광이 지향되는 방향은 제1 회전 축을 중심으로 한 다중 패싯 미러의 제1 각도에 기초한다. 게다가, LIDAR 시스템은, 반사 패싯들 중 하나 이상으로부터 반사되어 장면의 하나 이상의 영역을 향해 지향되는 광이 광학 창을 통해 투과되도록, 다중 패싯 미러와 장면의 하나 이상의 영역 사이에 위치된 광학 창을 포함한다. 다중 패싯 미러가 제1 회전 축을 중심으로 회전할 때 제1 회전 축을 중심으로 한 다중 패싯 미러의 제1 각도의 모든 값들에 대해, 광학 창이 광학 축을 따라 방출되는 광이 지향되는 방향에 대해 수직이 아니도록 광학 창이 위치된다.
다른 양태에서, LIDAR(light detection and ranging) 시스템이 제공된다. LIDAR 시스템은 복수의 반사 패싯을 포함하는 다중 패싯 미러를 포함한다. 다중 패싯 미러는 제1 회전 축을 중심으로 회전하도록 구성된다. LIDAR 시스템은 광학 축을 따라 광 신호를 방출하도록 구성된 광 방출기를 또한 포함한다. 광학 축을 따라 방출되는 광은 반사 패싯들 중 하나 이상으로부터 반사되어 장면의 하나 이상의 영역으로 지향된다. 게다가, LIDAR 시스템은 장면의 하나 이상의 영역에 의해 반사되는 반사 광 신호를 검출하도록 구성된 광 검출기를 포함한다. 광학 축을 따라 방출되는 광이 지향되는 방향은 제1 회전 축을 중심으로 한 다중 패싯 미러의 제1 회전 각도에 기초한다. 게다가, LIDAR 시스템은, 반사 패싯들 중 하나 이상으로부터 반사되어 장면의 하나 이상의 영역을 향해 지향되는 광이 광학 창을 통해 투과되도록, 다중 패싯 미러와 장면의 하나 이상의 영역 사이에 위치된 광학 창을 포함한다. 게다가, LIDAR 시스템은 광학 창의 외부 측면의 적어도 일 부분을 덮는 필터를 포함한다. 필터는 광 방출기에 의해 생성되지 않는 적어도 일부 파장들의 투과를 감소시킨다.
추가적인 양태에서, LIDAR(light detection and ranging) 시스템이 제공된다. LIDAR 시스템은 복수의 반사 패싯을 포함하는 다중 패싯 미러를 포함한다. 다중 패싯 미러는 제1 회전 축을 중심으로 회전하도록 구성된다. LIDAR 시스템은 광학 축을 따라 광 신호를 방출하도록 구성된 광 방출기를 또한 포함한다. 광학 축을 따라 방출되는 광은 반사 패싯들 중 하나 이상으로부터 반사되어 장면의 하나 이상의 영역으로 지향된다. 게다가, LIDAR 시스템은 장면의 하나 이상의 영역에 의해 반사되는 반사 광 신호를 검출하도록 구성된 광 검출기를 포함한다. 광학 축을 따라 방출되는 광이 지향되는 방향은 제1 회전 축을 중심으로 한 다중 패싯 미러의 제1 회전 각도에 기초한다. 게다가, LIDAR 시스템은, 반사 패싯들 중 하나 이상으로부터 반사되어 장면의 하나 이상의 영역을 향해 지향되는 광이 광학 창을 통해 투과되도록, 다중 패싯 미러와 장면의 하나 이상의 영역 사이에 위치된 광학 창을 포함한다. 게다가, LIDAR 시스템은 다중 패싯 미러의 하나 이상의 비반사 측면에 인접하게 위치된 하나 이상의 배플을 포함한다. 하나 이상의 배플은 제1 회전 축을 중심으로 다중 패싯 미러를 회전시키는 데 사용되는 전력량을 감소시키도록 구성된다.
또 다른 양태에서, LIDAR(light detection and ranging) 시스템이 제공된다. LIDAR 시스템은 복수의 반사 패싯을 포함하는 다중 패싯 미러를 포함한다. 다중 패싯 미러는 제1 회전 축을 중심으로 회전하도록 구성된다. LIDAR 시스템은 광학 축을 따라 광 신호를 방출하도록 구성된 광 방출기를 또한 포함한다. 광학 축을 따라 방출되는 광은 반사 패싯들 중 하나 이상으로부터 반사되어 장면의 하나 이상의 영역을 향해 지향된다. 게다가, LIDAR 시스템은 장면의 하나 이상의 영역에 의해 반사되는 반사 광 신호를 검출하도록 구성된 광 검출기를 포함한다. 광학 축을 따라 방출되는 광이 지향되는 방향은 제1 회전 축을 중심으로 한 다중 패싯 미러의 제1 각도에 기초한다. 게다가, LIDAR 시스템은, 반사 패싯들 중 하나 이상으로부터 반사되어 장면의 하나 이상의 영역을 향해 지향되는 광이 광학 창을 통해 투과되도록, 다중 패싯 미러와 장면의 하나 이상의 영역 사이에 위치된 광학 창을 포함한다. 다중 패싯 미러가 제1 회전 축을 중심으로 회전할 때 제1 회전 축을 중심으로 한 다중 패싯 미러의 제1 각도의 모든 값들에 대해, 광학 창이 광학 축을 따라 방출되는 광이 지향되는 방향에 대해 수직이 아니도록 광학 창이 위치된다. 게다가, LIDAR 시스템은 다중 패싯 미러의 하나 이상의 비반사 측면에 인접하게 위치된 하나 이상의 배플을 포함한다. 하나 이상의 배플은 제1 회전 축을 중심으로 다중 패싯 미러를 회전시키는 데 사용되는 전력량을 감소시키도록 구성된다.
이들은 물론 다른 양태, 장점, 및 대안은, 적절한 경우, 첨부 도면을 참조하여 이하의 상세한 설명을 읽어보면 본 기술 분야의 통상의 기술자에게는 명백하게 될 것이다.
도 1은 예시적인 실시예에 따른, 시스템의 예시이다.
도 2a는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 2b는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 2c는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 3a는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 3b는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 3c는 예시적인 실시예에 따른, 반사 광 각도 대 미러 요소 기준 각도 그래프의 예시이다.
도 3d는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 4는 예시적인 실시예에 따른, 미러 요소의 예시이다.
도 5는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 6은 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 7a는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 7b는 예시적인 실시예에 따른, 배플을 갖는 미러 요소의 예시이다.
도 7c는 예시적인 실시예에 따른, 배플의 예시이다.
도 7d는 예시적인 실시예에 따른, 배플의 예시이다.
도 7e는 예시적인 실시예에 따른, 배플의 예시이다.
도 7f는 예시적인 실시예에 따른, 배플의 예시이다.
도 8a는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 8b는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 8c는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 8d는 예시적인 실시예에 따른, 도로 표면을 모니터링하는 LIDAR 시스템의 예시이다.
도 8e는 예시적인 실시예에 따른, LIDAR 시스템으로부터 도로 표면을 향해 전송되는 광 신호의 예시이다.
도 8f는 예시적인 실시예에 따른, LIDAR 시스템으로부터 전송되는 광 신호에 기초한 도로 표면까지의 결정된 거리의 예시이다.
도 9a는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 9b는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 9c는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 10a는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 10b는 예시적인 실시예에 따른, LIDAR 시스템의 예시이다.
도 11은 예시적인 실시예에 따른, LIDAR 시스템에서 사용되는 필터의 반사율의 예시이다.
도 12는 예시적인 실시예에 따른, 방법의 예시이다.
예시적인 방법 및 시스템이 본 명세서에서 고려된다. 본 명세서에서 설명된 임의의 예시적인 실시예 또는 특징이 반드시 다른 실시예 또는 특징보다 바람직하거나 유리한 것으로 해석되는 것은 아니다. 본 명세서에서 설명된 예시적인 실시예가 제한적인 것으로 의도되지 않는다. 개시된 시스템 및 방법의 특정 양태가, 모두가 본 명세서에서 고려되는, 매우 다양한 상이한 구성으로 배열 및 조합될 수 있음을 쉽게 이해할 것이다.
게다가, 도면에 도시된 특정 배열이 제한적인 것으로 간주되어서는 안된다. 다른 실시예가 주어진 도면에 도시된 각각의 요소를 더 많거나 더 적게 포함할 수 있음을 이해해야 한다. 게다가, 예시된 요소들 중 일부는 조합되거나 생략될 수 있다. 게다가, 예시적인 실시예는 도면에 예시되지 않은 요소를 포함할 수 있다.
I. 개관
예시적인 LIDAR 시스템은 단일 광 방출기 및 단일 광 검출기를 포함할 수 있다(대안적인 실시예는 추가적인 광 방출기 및/또는 광 검출기를 포함할 수 있다). 단일 광 방출기는 회전 다중 패싯 미러(예를 들면, 3개의 패싯을 갖는 회전 삼각 미러)에 의해 주변 환경/장면을 향해 반사되는 광(대안적으로 "주 신호(primary signal)"라고 지칭됨)을 방출할 수 있다. 광은 환경/장면으로 전송되기 전에 광학 창(예를 들면, 두께가 대략 1 mm인 유리 또는 플라스틱 슬래브)을 통해 투과될 수 있다. LIDAR 시스템으로부터 전송된 광의 일 부분이 환경에 있는 대상체에 의해 반사되면, 반사 광(즉, "반사 주 신호(reflected primary signal)")이 광학 창을 통해 다시 투과될 수 있고 광 검출을 위해 단일 광 검출기로 지향될 수 있다. 반사 광을 단일 광 검출기로 다시 지향시키는 것은, 예를 들어, 단일 광 검출기를 향해 회전 다중 패싯 미러에서 광을 반사시키는 것을 포함할 수 있다. 검출된 광의 타이밍 및/또는 회전 다중 패싯 미러의 위치에 기초하여, 타깃까지의 거리 및/또는 타깃의 위치가 결정될 수 있다.
일부 경우에, 광이 단일 광 방출기로부터 방출된 후 방출 광이 광학 창을 통해 투과되기 전에, 방출 광의 일 부분이 광학 창의 내부 측면에서 반사될 수 있다. 예를 들어, 광학 창 재료가 0이 아닌 반사율을 갖는 경우 또는 하나 이상의 물질(예를 들면, 먼지 또는 물)이 광학 창의 내부 측면에 존재하는 경우, 이러한 일이 발생할 수 있다. 내부적으로 반사된 광(대안적으로 "고스트 신호(ghost signal)"라고 지칭됨)은 주 신호가 지향되는 장면의 영역이 아닌 장면의 상이한 영역으로 부주의하게 지향될 수 있다. 장면의 상이한 영역으로부터 반사될 때, 반사 고스트 신호는 이어서 (예를 들면, 다중 패싯 미러에서 반사된 후에) 단일 광 검출기로 다시 지향되고 검출될 수 있다. 장면의 상이한 영역이 주 신호가 지향되는 장면의 영역과 LIDAR 시스템으로부터 상이한 거리에 있을 수 있기 때문에, 검출된 고스트 신호는 결정된 타깃 거리에 오류를 유발할 수 있다. 예를 들어, 장면을 표현하는 것으로 의도된 3차원 포인트 클라우드가 고스트 신호의 검출에 기초하여 부정확할 수 있다.
광 검출기가 잘못된 또는 예상치 못한 시간에 광을 검출하기 때문에 오류가 발생할 수 있다. 이것은 타깃이 실제보다 LIDAR 시스템에 더 가깝거나 더 멀다는 잘못된 결정을 유발할 수 있다. 추가적으로 또는 대안적으로, (고스트 신호에 대응하는, 반사/검출된) 고스트 빔이 LIDAR 시스템 내의 추가적인 컴포넌트에서 내부적으로 반사될 수 있다. 예를 들어, LIDAR 시스템의 일부 실시예에서, (예를 들면, 그러한 광이 전면 패싯이 아닌 회전 다중 패싯 미러의 후면 패싯으로부터 반사될 때 방출 광을 장면을 향해 투과시키기 위해) 회전 다중 패싯 미러의 반대편에 제2 광학 창이 있을 수 있다. 게다가, 고스트 빔이 광학 창의 내부 측면으로부터 광학 창의 외부 측면을 향해 진행할 때, 고스트 빔은 광학 창의 한쪽 표면 또는 양쪽 표면으로부터 반사될 수 있다(예를 들면, 고스트 빔이 광학 창에 들어갈 때는 공기-유리 계면(air-to-glass interface)에서 또는 고스트 빔이 광학 창에서 빠져나갈 때는 유리-공기 계면(glass-to-air interface)에서 반사가 발생할 수 있다). 이러한 추가적인 내부 반사는 LIDAR 시스템에 대한 장면 내의 대상체의 부적절하게 결정된 거리(및 대응적으로, 장면 내에서의 부적절하게 결정된 수직 위치)를 유발할 수 있는데, 그 이유는 그러한 추가적인 반사가 고스트 빔의 왕복 진행 시간(round-trip travel time)을 증가시키고, 이에 의해 광 방출기에 의한 방출과 광 검출기에 의한 검출 사이의 시간을 증가시킨다(왕복 진행 시간이 대상체까지의 거리를 결정하는 데 사용됨). 또 다른 경우에, 고스트 빔은 장면으로 전송되기 전에 회전 미러 및/또는 광학 창의 내부 측면에서 여러 번 내부적으로 반사되고 궁극적으로 장면으로부터 LIDAR 시스템을 향해 다시 반사될 수 있다. 그러한 반사는 대상체까지의 잘못된 거리 또는 대상체의 잘못된 위치가 결정되게 할 수 있고/있거나 거짓 양성(false positive)(예를 들면, 대상체가 실제로는 주변 장면에 없을 때 대상체를 검출하는 것)을 결과할 수 있다.
본 명세서에서 개시된 실시예는 고스트 신호를 검출하는 것으로부터 발생하는 문제를 해결하기 위해 사용된다. 다양한 실시예에서, 고스트 신호는 강도가 감소되거나, 완전히 제거되거나, 또는 단일 광 검출기에 의해 검출되지 않도록 (전체적으로 또는 부분적으로) 차단될 수 있다. 하나의 접근법에서, 배플(예를 들면, 원형 배플)이 회전 다중 패싯 미러의 에지(들)에 위치된다. 그러한 배플은 흡수성일 수 있고(예를 들면, 색상이 흑색일 수 있고/있거나 광 방출기에 의해 방출되는 광의 파장을 흡수하도록 특별히 설계될 수 있음) 이에 의해 고스트 빔이 광 검출기로 전파되는 것을 감소시킬 수 있다. 배플은, 예를 들어, 흑화 처리된(blackened) 강철 또는 알루미늄으로 제조될 수 있다. 게다가, 배플은, 다양한 실시예에서, 회전 다중 패싯 미러의 에지로부터 0.5 mm 내지 3.0 mm(예를 들면, 1.0 mm) 떨어져 연장될 수 있다. 일부 실시예에서, 배플은 회전 다중 패싯 미러의 비-패싯 측면(non-faceted side)(즉, 단부 또는 베이스)에 부착된 디스크(예를 들면, 5.0 mm 내지 10.0 mm의 두께 및/또는 5.0 mm 내지 10.0 mm의 반경을 갖는 디스크)의 영역일 수 있으며, 여기서 디스크의 영역은 회전 다중 패싯 미러의 에지에 걸려 있다. 그와 같이, 배플은 회전 미러 패싯에 대해 원호 형상일 수 있다. 디스크가 아닌 다른 실시예에서, 배플은 회전 다중 패싯 미러의 비-패싯 측면에 부착된 반구 형상의 컴포넌트의 영역일 수 있다.
광학 기능 외에도, 배플은 회전 다중 패싯 미러 및/또는 LIDAR 시스템의 기계적 특성을 향상시킬 수 있다. 예를 들어, 배플은 다중 패싯 미러가 모터에 연결된 구동 샤프트를 중심으로 회전할 때 다중 패싯 미러의 진동을 감소시킬 수 있다(예를 들면, 이에 의해 다중 패싯 미러가 모터에 의해 구동될 때 생성되는 소리를 감소시킴). 추가적으로 또는 대안적으로, 배플은 (예를 들면, 공기가 다중 패싯 미러를 가로질러 유동하는 횡단 경로를 차단하는 것에 의해 및/또는 다중 패싯 미러의 회전 방향으로 유동하는 공기를 유선화(streamlining)하는 것에 의해) 다중 패싯 미러의 공기역학적 특성을 향상시킬 수 있다. 그러한 향상된 공기역학적 특성은 다중 패싯 미러에 대해 생성되는 항력(drag force)을 감소시켜, 이에 의해 다중 패싯 미러를 구동하기 위해 모터가 필요로 하는 전력량을 감소시킬 수 있다. LIDAR 시스템의 공기역학적 특성을 추가로 증대시키기 위해, 일부 실시예에서, 다중 패싯 미러가 회전하는 챔버가 배기되어, 이에 의해 진공을 생성하고 모든 항력을 제거할 수 있다. 회전 다중 패싯 미러의 기계적 특성을 향상시키는 다른 방법이 또한 가능하다.
회전 다중 패싯 미러의 에지(들)에 있는 배플에 추가적으로 또는 그 대신에, 고스트 빔이 단일 광 검출기로 전파되는 것을 감소시키기 위해 회전 다중 패싯 미러와 광학 창 사이에 하나 이상의 배플이 배치될 수 있다. 배플이 고스트 빔을 가로막지만 주 신호의 전파를 방해하지 않도록, 배플이 회전 미러의 중심으로부터 오프셋될 수 있다. 또 다른 실시예에서, 광학 창은 회전 다중 패싯 미러에 대해 수평으로 및/또는 수직으로 (예를 들면, 5° 내지 15°) 틸팅될 수 있다. 광학 창은 대칭적으로(예를 들면, 둘 모두 +5°임), 정확히 반대로(예를 들면, 하나는 +5°이고 하나는 -5°임), 또는 단순히 상이하게(예를 들면, 하나는 +5°이고 하나는 +2°임) 틸팅될 수 있다. 광학 창을 틸팅시키는 것은 내부 반사가 광학 검출기와 정렬되는 것을 방지하여, 이에 의해 광학 검출기에 의한 고스트 신호의 검출을 방지할 수 있다. 추가적으로 또는 대안적으로, 광학 창을 틸팅시키는 것은 반사 빔으로 인한 고스트 신호가 장면에 도달하는 것을 방지할 수 있다. 고스트 신호 검출을 감소시키거나 제거하는 다른 방법이 또한 가능하다.
광 방출기에 의해 방출되는 광에 추가적으로, 주변 광(예를 들면, LIDAR 시스템에 의해 전송되지 않은 LIDAR 시스템의 환경 내의 광)이 광학 창을 통해 LIDAR 시스템의 내부에 들어갈 수 있다. 주변 광은, 예를 들어, 태양광을 포함할 수 있다. 그러한 주변 광은 LIDAR 시스템 내의 하나 이상의 컴포넌트(예를 들면, 광 검출기, 광 방출기, 하나 이상의 미러, 광학 창, 광학 캐비티, 광학 렌즈 등)에 의해 흡수될 수 있다. LIDAR 시스템 내에서의 주변 광의 흡수는 LIDAR 시스템의 하나 이상의 컴포넌트의 가열을 유발할 수 있다. 결과적으로, 가열은 (예를 들면, 미러, 렌즈 또는 광학 창과 같은 하나 이상의 컴포넌트의 열 팽창을 통해) LIDAR 시스템의 정렬 또는 다른 광학 특성(예를 들면, 레이저의 라인 폭(linewidth) 또는 광학 캐비티의 공진 파장)에 악영향을 미칠 수 있다. 극단적인 경우에, 가열은 또한 LIDAR 시스템 내의 컴포넌트의 열화를 유발할 수 있다(예를 들면, LIDAR 시스템 내의 플라스틱 컴포넌트를 용융시킴).
LIDAR 시스템 내에서 미광(stray light)의 악영향을 완화시키는 한 가지 방법은 LIDAR 시스템의 외부 컴포넌트(예를 들면, 광학 창)를 광학 필터로 코팅하는 것을 포함한다. 광학 필터는 광 방출기에 의해 방출되는 파장 이외의 파장(예를 들면, 가시 스펙트럼의 파장)에 대해 미리 정의된 반사율(예를 들면, 25%, 50%, 75%, 90%, 95%, 99%, 99.9% 등)을 갖도록 최적화될 수 있다.
일부 실시예에서, 예를 들어, LIDAR 시스템의 외부의 하나 이상의 부분이 이색성 창에 의해 덮일 수 있다. 예를 들어, LIDAR 시스템의 하나 이상의 광학 창의 외부 측면이, 부분적으로 또는 전체적으로, 하나 이상의 이색성 창에 의해 덮일 수 있다. 일부 실시예에서, 이색성 창은 광 방출기에 의해 방출되는 파장의 광(예를 들면, 1.55 μm 또는 905 nm의 레이저 광)을 투과시키도록 최적화될 수 있고/있거나 광 방출기에 의해 방출되는 파장 이외의 파장을 갖는 광을 차단시키도록 최적화될 수 있다. 추가적으로 또는 대안적으로, 이색성 창은 가시 스펙트럼 및/또는 태양 스펙트럼 내의 광을 반사시키도록 최적화될 수 있다. 일부 실시예에서, 이색성 창은 가시 스펙트럼 전체에 걸쳐 평균 반사율 값(예를 들면, 50% 반사율)을 특징으로 할 수 있다. 일부 실시예에서, 그러한 이색성 창은 LIDAR 시스템의 내부 가열을 완화시키며, LIDAR 시스템 내부의 컴포넌트를 보이지 않게 폐색시키고/시키며 (예를 들면, 창 표면의 미러 같은 외관으로 인해) LIDAR 시스템의 미적 외관을 개선시키는 상대적으로 저렴한 기술을 구성할 수 있다. 바람직하지 않은 주변 광을 완화시키는 다른 기술이 또한 가능하다.
II. 예시적인 시스템
이하의 설명 및 첨부 도면은 다양한 예시적인 실시예의 특징을 설명할 것이다. 제공된 실시예는 예를 든 것이며 제한적인 것으로 의도되지 않는다. 이에 따라, 도면의 치수가 반드시 일정 축척으로 되어 있지는 않다.
도 1은 예시적인 실시예에 따른, 시스템(100)을 예시한다. 시스템(100)은 LIDAR 시스템일 수 있거나 그의 일 부분을 나타낼 수 있다. 예시적인 실시예에서, 시스템(100)은 환경에 관한 정보를 제공하도록 구성된 LIDAR 시스템일 수 있다. 예를 들어, 시스템(100)은 자율 주행 차량(예를 들면, 자가 운전 자동차, 자율 주행 드론, 자율 주행 트럭, 자율 주행 보트, 자율 주행 잠수함, 자율 주행 헬리콥터 등) 또는 자율 주행 모드 또는 반자율 주행 모드에서 동작 중인 차량을 위한 LIDAR 시스템일 수 있다. 다양한 실시예에서, 시스템(100)은 운행 및/또는 대상체 검출 및 회피를 위해 사용될 수 있다. 일부 실시예에서, 시스템(100)은 포인트 클라우드 정보, 대상체 정보, 매핑 정보, 지형 정보 또는 다른 정보를 차량에 제공할 수 있다. 대안적으로, 시스템(100)은 (예를 들면, 차량에 관련되지 않은) 다른 컴퓨터 비전 목적으로 사용될 수 있다.
시스템(100)은 광 방출기(110)를 포함한다. 다양한 실시예에서, 광 방출기(110)는 레이저(예를 들면, 레이저 다이오드), 발광 다이오드(LED), 또는 레이저 및/또는 LED의 어레이를 포함할 수 있다. 다른 광 방출기(110)가 또한 가능하다. 일부 실시예에서, 광 방출기(110)에 의해 방출되는 광이 미리 결정된 주파수에서 변조될 수 있다. 예시적인 실시예에서, 광 방출기(110)는 제1 축(예를 들면, 광학 축)을 따라 광을 방출하도록 동작 가능할 수 있다. 일부 실시예에서, 광 방출기(110)는 실질적으로 콜리메이팅된 및/또는 코히런트 광을 제공하도록 구성된 임의의 광 소스를 포함할 수 있다. 예를 들어, 광 방출기(110)는 반도체 도파관 레이저, 파이버 레이저, 엑시머 레이저, 레이저 다이오드, 가스 레이저, 수직 캐비티 표면 방출 레이저(VCSEL) 또는 다른 유형의 레이저 시스템일 수 있다. 콜리메이팅된 광을 생성하기 위해, 일부 실시예에서, 광 방출기(110)는 하나 이상의 렌즈(예를 들면, FAC(fast axis collimating) 렌즈)를 포함할 수 있다. 게다가, 광 방출기(110)는 하나 이상의 기판(예를 들면, 인쇄 회로 기판(PCB) 또는 가요성 PCB)에 배치될 수 있다.
예시적인 실시예에서, 광 방출기(110)로부터 방출되는 광은 레이저 광의 펄스를 포함할 수 있다. 예를 들어, 레이저 광 펄스는 1 내지 100 나노초 범위의 지속기간을 가질 수 있다. 그렇지만, 다른 레이저 광 펄스 지속기간이 또한 가능하다. 레이저 광 펄스의 에너지는, 예를 들어, 100 나노줄(nanojoule) 내지 200 나노줄일 수 있다. 다른 펄스 에너지가 또한 가능하다. 일부 실시예에서, 광 방출기(110)에 의해 방출되는 광의 피크 전력은 50 내지 100 나노와트일 수 있다. 다른 피크 전력이 또한 가능하다.
광 방출기(110)에 의해 방출되는 광은 적외선(IR) 파장 범위 내의 방출 파장을 가질 수 있지만, 다른 파장이 고려된다. 예를 들어, 방출 파장은 가시 파장 스펙트럼 또는 자외선(UV) 파장 스펙트럼에 있을 수 있다. 예시적인 실시예에서, 방출 파장은 약 905 나노미터일 수 있다. 대안적으로, 방출 파장은 약 1.55 마이크로미터일 수 있다. 게다가, 일부 실시예에서, 광 방출기(110)의 방출 파장 및 전력은 IEC(International Electrotechnical Commission) 60825-1 표준에 따라 클래스 1 레이저로서 사용하기 위한 조건을 충족시킬 수 있다(즉, 광 방출기(110)가 육안으로 또는 확대 광학장치의 도움으로 보일 때 최대 허용 노출(maximum permissible exposure, MPE)이 초과되지 않는다).
시스템(100)은 복수의 반사 표면(122)을 갖는 미러 요소(120)를 또한 포함한다. 미러 요소(120)는 대안적으로 본 명세서에서 "다중 패싯 미러"라고 지칭될 수 있다. 유사하게, 복수의 반사 표면(122)은 대안적으로 본 명세서에서 복수의 반사 패싯이라고 지칭될 수 있다. 반사 표면(122)은 방출 파장의 광을 반사시키도록 구성될 수 있다. 일부 실시예에서, 반사 표면(122)은, 알루미늄, 금, 은 또는 다른 반사 재료와 같은, 금속으로 형성되고/되거나 코팅될 수 있다. 추가적으로 또는 대안적으로, 반사 표면(122)은 고 반사율(HR) 코팅을 포함할 수 있다. 예시적인 실시예에서, HR 코팅은 방출 파장의 입사 광을 반사시키도록 구성된 유전체 스택을 포함할 수 있다. 유전체 스택은, 예를 들어, 상이한 굴절률을 갖는 2개의 재료 사이에 교호하는 주기적 층 시스템(periodic layer system)을 포함할 수 있다. 다른 유형의 HR 코팅이 가능하며 본 명세서에서 고려된다.
일부 예시적인 실시예에서, 미러 요소(120)는 3개의 반사 표면(122a, 122b 및 122c)을 포함할 수 있다. 더 많거나 더 적은 반사 표면(122)을 갖는 미러 요소(120)가 고려된다. 예를 들어, 미러 요소(120)는 4개 이상의 반사 표면을 포함할 수 있다.
미러 요소(120)는 제2 축을 중심으로 회전하도록 구성된다. 게다가, 일부 실시예에서, 복수의 반사 표면은 제2 축 주위에 배치될 수 있다. 그러한 시나리오에서, 미러 요소(120)는 프리즘 형상일 수 있고 프리즘 형상의 각각의 패싯은 반사 표면(122)일 수 있다. 환언하면, 미러 요소(120)가 삼각 프리즘 형상을 갖도록 반사 표면(122a, 122b 및 122c)이 제2 축을 중심으로 대칭적으로 배열될 수 있다. 예로서, 제1 축과 제2 축이 서로에 대해 수직일 수 있지만, 제1 축과 제2 축의 다른 배열이 고려된다. 일부 실시예에서, 제1 축은 제2 축과 교차할 수 있다.
시스템(100)은 베이스 구조체(base structure)(130)를 추가적으로 포함할 수 있다. 미러 요소(120) 및 광 방출기(110)는 베이스 구조체(130)에 결합될 수 있다. 일부 실시예에서, 베이스 구조체(130)는 제3 축을 중심으로 회전하도록 구성될 수 있다. 제3 축의 다양한 배열이 고려되지만, 예시적인 실시예는 제1 축과 평행하거나 동일 선상에 있는 제3 축을 포함한다.
시스템(100)은 하나 이상의 빔 차단부(beam stop)(140)를 추가로 포함한다. 빔 차단부(들)(140)는 레이저 광이 미리 결정된 방출 각도 범위를 벗어난 각도로 환경 내로 반사되는 것을 방지하도록 구성될 수 있다. 추가적으로 또는 대안적으로, 빔 차단부(들)(140)는 다수의 동시 판독치/신호를 방지하도록 위치될 수 있다. 예시적인 실시예에서, 방출 각도 범위는 시스템(100)으로부터 레이저 광 방출을 수신할 수 있는 미러 요소(120)에 대한 각도 범위로서 표현될 수 있다. 환언하면, 방출 각도 범위는 시스템(100) 주변의 환경으로부터 거리 측정 정보가 획득될 수 있는 각도를 나타낼 수 있다. 일부 실시예에서, 방출 각도 범위가 제2 축에 대해 정의될 수 있다. 그러한 시나리오에서, 방출 각도 범위는 240도 초과일 수 있다.
시스템(100)은 동작들을 수행하도록 구성된 제어기(150)를 포함한다. 예시적인 실시예에서, 제어기(150)는 하나 이상의 로직 블록, 프로그래머블 로직 디바이스(PLD), 필드 프로그래머블 게이트 어레이(FPGA) 및/또는 애플리케이션 특정 집적 회로(ASIC)를 포함할 수 있다. 다른 유형의 제어기 회로(예를 들면, 랩톱 컴퓨팅 디바이스, 데스크톱 컴퓨팅 디바이스, 서버 컴퓨팅 디바이스, 태블릿 컴퓨팅 디바이스, 모바일 컴퓨팅 디바이스, 클라우드 컴퓨팅 디바이스 등)가 본 개시에서 고려된다. 일부 실시예에서, 예를 들어, 제어기 회로는 시스템(100)으로부터 원격에 위치할 수 있다(예를 들면, 제어기 회로가 클라우드 컴퓨팅 디바이스 또는 모바일 컴퓨팅 디바이스에 포함될 때).
일부 실시예에서, 제어기(150)는 하나 이상의 프로세서(152)(예를 들면, 중앙 프로세싱 유닛(CPU), 디지털 신호 프로세서(DSP), 네트워크 프로세서 등) 및 메모리(154)(예를 들면, 클라우드 서버, RAM(random access memory), ROM(read-only memory), 하드 드라이브, PROM(programmable read-only memory), EPROM(erasable programmable read-only memory), EEPROM(electrically erasable programmable read-only memory), 비휘발성 메모리, SSD(solid state drive), HDD(hard disk drive), CD(compact disc), DVD(digital video disk), 디지털 테이프, RW(read/write) CD, RW DVD 등)를 포함할 수 있다. 그러한 시나리오에서, 프로세서(들)(152)는 동작들을 수행하기 위해 메모리(154)에 저장된 명령어들을 실행하도록 구성될 수 있다. 대안적으로, 프로세서(들)(152)에 의해 수행되는 동작들은 하드웨어, 펌웨어 및/또는 하드웨어, 펌웨어 및 소프트웨어의 임의의 조합에 의해 정의될 수 있다. 제어기(150)는 시스템(100)의 송신 부분 및/또는 시스템(100)의 수신 부분을 제어하도록 구성될 수 있다. 예를 들어, 시스템(100)이 하나 이상의 광 검출기를 포함하는 실시예에서, 제어기(150)는 하나 이상의 광 검출기로부터 데이터를 수신하고 데이터를 사용하여 시스템(100)을 둘러싼 환경에 관한 결정을 내릴 수 있다(예를 들면, 대상체 검출 및 환경에 존재하는 임의의 대상체의 회피를 수행함).
동작들은 미러 요소(120)가 제2 축을 중심으로 회전하게 하는 것을 포함할 수 있다. 예로서, 미러 요소(120)는 회전 주파수(Ω)로 제2 축을 중심으로 회전할 수 있다. 제2 축을 중심으로 한 회전은 제1 각도 범위 및 제2 각도 범위를 포함한다. 일부 실시예에서, 미러 요소(120)는 약 30 kRPM의 회전 주파수로 제2 축을 중심으로 회전할 수 있다. 미러 요소(120)의 다른 회전 주파수가 가능하다. 예를 들어, 미러 요소(120)는 100 RPM 내지 100 kRPM의 회전 주파수 범위 내에서 제2 축을 중심으로 회전할 수 있다.
동작들은 방출 레이저 광이 미러 요소(120)와 상호작용하도록 광 방출기(110)가 제1 축을 따라 레이저 광을 방출하게 하는 것을 또한 포함할 수 있다.
동작들은, 미러 요소(120)의 회전 각도가 제1 각도 범위 내에 있는 동안, 방출 레이저 광이 복수의 반사 표면(122) 중 제1 반사 표면(예를 들면, 122a)과 상호작용하게 하는 것을 추가적으로 포함할 수 있다. 제1 반사 표면과 상호작용할 때, 반사 레이저 광은 제1 반사 표면에 의해 환경 내로 반사된다.
동작들은, 미러 요소의 회전 각도가 제2 각도 범위 내에 있는 동안, 방출 레이저 광이 복수의 반사 표면(122) 중 제1 반사 표면(예를 들면, 122a) 및 제2 반사 표면(예를 들면, 122b) 둘 모두와 상호작용하게 하는 것을 또한 포함할 수 있다. 반사 레이저 광은 제1 및 제2 반사 표면에 의해 환경 내로 반사된다.
동작들은 베이스 구조체(130)가 제3 축을 중심으로 회전하게 하는 것을 또한 포함할 수 있다. 베이스 구조체는 회전 주파수(Φ)로 제3 축을 중심으로 회전할 수 있다. 예로서, 베이스 구조체(130)는 약 600 RPM의 회전 주파수로 제3 축을 중심으로 회전할 수 있다. 다른 회전 주파수가 가능하다. 예를 들어, 베이스 구조체(130)는 10 RPM 내지 10 kRPM의 회전 주파수로 제3 축을 중심으로 회전할 수 있다.
시스템(100)은 하나 이상의 액추에이터(160)를 또한 포함할 수 있다. 액추에이터(160)는 미러 요소(120) 및/또는 베이스 구조체(130)를 회전시키도록 구성된 DC(direct-current) 모터를 포함할 수 있다. 게다가, 액추에이터(160)는 광 방출기(110)의 위치 및/또는 각도를 조정하기 위한 액추에이터를 포함할 수 있다. 일부 실시예에서, 액추에이터(160)는 빔 차단부(들)(140)의 위치 및/또는 각도를 조정하도록 구성된 하나 이상의 액추에이터를 포함할 수 있다. 즉, 그러한 시나리오에서, 액추에이터(160)는 방출 각도 범위를 조정하고/하거나 다수의 동시 판독치를 피하기 위해 빔 차단부(140)를 이동시킬 수 있다.
임의로, 동작들은, 미러 요소의 회전 각도가 제3 각도 범위 내에 있는 동안, 방출 레이저 광이 복수의 반사 표면 중 제3 반사 표면(예를 들면, 122c)과 상호작용하게 하는 것을 또한 포함할 수 있다. 그러한 시나리오에서, 반사 레이저 광은 제3 반사 표면에 의해 환경 내로 반사될 수 있다.
일부 실시예에서, 동작들은 인터레이스된 조건(interlaced condition)에서 시스템을 동작시키는 것을 추가로 포함한다. 그러한 시나리오에서, Ω/Φ=2N+1일 때 인터레이스된 조건이 발생할 수 있으며, 여기서 N은 정수이다. 인터레이스된 조건은 시스템(100) 주위의 3차원 환경을 스캐닝하기 위한 원하는 레이저 스캐닝 패턴을 제공할 수 있다. 즉, 원하는 레이저 스캐닝 패턴은 중첩하는 스캐닝 영역을 포함할 수 있고/있거나 환경 내의 주어진 위치에 대한 후속 스캔들 사이에 더 적은 시간을 제공할 수 있다. 맵 데이터 및/또는 대상체 데이터와 같은, 환경에 관한 더 많은 최신 정보가 이용 가능할 수 있으므로 후속 스캔들 사이의 시간을 감소시키는 것이 더 나은 안전을 제공할 수 있다.
일부 실시예에서, 광 방출기(110)가 레이저 광을 방출하게 하는 것은 광 방출기(110)가 회전 주파수(Ω) 또는 회전 주파수(Φ) 중 적어도 하나에 기초하여 레이저 광 펄스를 방출하게 하는 것을 포함할 수 있다.
일부 실시예에서, 동작들은 시스템(100)으로부터의 결과적인 데이터를 하나 이상의 다른 디바이스(예를 들면, 다른 LIDAR 시스템 및/또는 원격 스토리지/제어 디바이스)로 통신하는 것을 포함할 수 있다. 하나 이상의 다른 디바이스와 통신하는 것은, 이더넷 연결, HDMI(high-definition multimedia interface) 연결 또는 USB(universal serial bus) 연결과 같은, 하나 이상의 유선 연결을 통해 수행될 수 있다. 추가적으로 또는 대안적으로, 하나 이상의 다른 디바이스와 통신하는 것은, IEEE(Institute of Electronics and Electrical Engineers) 표준 802.11(WIFI®), 블루투스®, BLE®(BLUETOOTH LOW ENERGY), 셀룰러 기술(예를 들면, GSM(global system for mobile communications), CDMA(code-division multiple access), UMTS(universal mobile telecommunications system), EV-DO(evolution-data optimized), WiMAX(worldwide interoperability for microwave access), LTE®(long-term evolution)), DSRC(dedicated short range communications), IEEE 표준 802.15.4(예를 들면, ZIGBEE®)에 기술된 통신 프로토콜, 또는 광역 무선 연결과 같은, 하나 이상의 무선 인터페이스를 통해 수행될 수 있다. 다른 형태의 물리 계층 연결 및 다른 유형의 표준 또는 독점 통신 프로토콜이 본 명세서에서 고려된다.
일부 실시예에서, 시스템(100)은 광학 창(들)(170)을 또한 포함한다. 광학 창(들)(170)은 시스템(100)의 내부를 주변 환경으로부터 분리시킬 수 있다. 게다가, 광학 창(들)(170)은 광 방출기(110)로부터 방출되고 미러 요소(120)로부터 반사되는 광을 환경을 향해 투과시키고/시키거나 주변 환경에 있는 대상체로부터 반사되는 광을 수신할 수 있다. 일부 실시예에서, 광학 창(들)(170)은 유리(예를 들면, GORILLA® 유리, 광학 유리, 폴리(메틸 메타크릴레이트) 등)로 제조될 수 있다. 추가적으로 또는 대안적으로, 광학 창(들)(170)은 하나 이상의 플라스틱(예를 들면, 광학 플라스틱 또는 사출 성형을 통해 형성된 플라스틱)으로 제조될 수 있다. 광학 창(들)(170)은 다양한 두께를 가질 수 있다. 예를 들어, 광학 창(들)(170)은 약 1 밀리미터 내지 약 2 밀리미터 두께일 수 있다.
시스템(100)은 광 검출기(180)를 또한 포함할 수 있다. 광 검출기(180)는 (예를 들면, 광학 창(들)(170)을 통해) 시스템(100) 주위의 환경으로부터 수신되는 광을 검출하도록 구성될 수 있다. 수신 광에 기초하여, 광 검출기(180)는 시스템(100) 주위의 환경의 장면에 관한 정보를 제공할 수 있다. 광 검출기(180)는 검출기 어레이를 포함할 수 있다. 검출기 어레이는 복수의 SPAD(single photon avalanche detector)를 포함할 수 있다. 추가적으로 또는 대안적으로, 검출기 어레이는 광을 검출하도록 구성된 다른 유형의 광 검출기(예를 들면, APD(avalanche photodiode), SiPM(silicon photomultiplier), 포토다이오드, 포토트랜지스터, 카메라, APS(active pixel sensor), CCD(charge-coupled device), 극저온 검출기 등)를 포함할 수 있다. 게다가, 검출기 어레이는 광 방출기(110)에 의해 방출되는 편광 또는 파장 범위에 민감할 수 있다.
도 2a, 도 2b 및 도 2c는 다양한 예시적인 실시예에 따른 광학 시스템을 예시한다. 도 2a, 도 2b 및 도 2c와 관련하여 기술된 광학 시스템은 도 1과 관련하여 예시되고 기술된 시스템(100)과 유사하거나 동일할 수 있다. 도 2a는 예시적인 실시예에 따른, 광학 시스템(200)을 예시한다. 일부 실시예에서, 광학 시스템(200)은 LIDAR 시스템의 일부일 수 있다.
광학 시스템(200)은 제1 축(214)을 따라 레이저 광을 방출하도록 동작 가능할 수 있는 광 방출기(210)를 포함한다. 도 2a에 예시된 바와 같이, 제1 축(214)은 묘사된 y 축을 따라 있을(또는 그에 평행할) 수 있다. 그와 같이, 광 방출기(210)는 y 축을 따라 광(212)을 방출할 수 있다. 광 방출기(110)와 관련하여 기술된 바와 같이, 광 방출기(210)는 반도체 레이저, 파이버 레이저, 레이저 다이오드, 가스 레이저, 또는 광의 코히런트 펄스를 제공하도록 구성된 다른 유형의 광 소스를 포함할 수 있다.
광학 시스템(200)은 미러 요소(220)를 또한 포함할 수 있다. 미러 요소(220)는 복수의 반사 표면(222a, 222b 및 222c)을 포함할 수 있다. 미러 요소(220)는 제2 축(224)을 중심으로 회전하도록 구성될 수 있다. 도 2a에 예시된 바와 같이, 제2 축(224)은 묘사된 z 축에 평행할 수 있다. 복수의 반사 표면(222)(즉, 반사 패싯)이 제2 축(224) 주위에 배치된다. 예를 들어, 복수의 반사 표면(222)은 미러 요소(220)가 삼각 프리즘 형상을 갖도록 제2 축을 중심으로 대칭적으로 배열된 3개의 반사 표면(222a, 222b 및 222c)을 포함할 수 있다.
일부 실시예에서, 제1 축(예를 들면, 그를 따라 광(212)이 방출되는 광학 축)은 제2 축(224)과 교차할 수 있다. 게다가, 제1 축(214)은 제2 축(224)에 수직일 수 있다.
예시적인 실시예에서, 광학 시스템(200)은 회전 주파수(Ω)로 제2 축을 중심으로 미러 요소(220)를 회전시키도록 구성된 미러 요소 액추에이터를 또한 포함할 수 있다. 미러 요소 액추에이터는 스테퍼 모터, 브러시드 또는 브러시리스 DC 모터, 또는 다른 유형의 회전 액추에이터를 포함할 수 있다. 환언하면, 미러 요소 액추에이터는 원하는 회전 주파수(Ω)로 원하는 방향(226)으로 미러 요소(220)를 회전시키도록 구성될 수 있다.
도 2a에 명확히 묘사되어 있지는 않지만, 미러 요소(220)와 광 방출기(210)는 베이스(230)에 결합된다. 일부 실시예에서, 베이스(230)는 제3 축을 중심으로 회전하도록 구성된다. 게다가, 예시적인 실시예에서, 제3 축은 제1 축(214)과 동축일 수 있다(예를 들면, 둘 모두 y 축과 동축임). 일부 실시예에서, 광학 시스템(200)은 회전 주파수(Φ)로 제3 축을 중심으로 원하는 방향(232)으로 베이스(230)를 회전시키도록 구성된 베이스 구조체 액추에이터를 포함한다. 베이스 구조체 액추에이터는 스테퍼 모터 또는 브러시드 또는 브러시리스 DC 모터와 같은 회전 액추에이터를 포함할 수 있다.
광학 시스템(200)은 적어도 하나의 빔 차단부(240)를 또한 포함한다. 빔 차단부(240)는 하나 이상의 빔 덤프(beam dump), 광학적으로 불투명한 재료, 및/또는 빔 차폐 재료를 포함할 수 있다. 빔 차단부(240)는 중합체, 금속, 직물 또는 다른 재료로 형성될 수 있다. 적어도 하나의 빔 차단부(240)는 레이저 광이 방출 각도 범위를 벗어난 각도로 환경 내로 방출되는 것을 방지하도록 구성될 수 있다. 예시적인 실시예에서, 방출 각도 범위는 제2 축(224)을 중심으로 240도 초과일 수 있다. 본 명세서에서 기술된 바와 같이, 빔 차단부(240)는 다중 동시 판독치/신호를 방지하도록 위치될 수 있다.
예시적인 광학 시스템에서, 미러 요소(220)의 회전 각도가 제1 각도 범위 내에 있는 동안, 방출 광(212)은 복수의 반사 표면(222) 중 제1 반사 표면(222a)과 상호작용하고 제1 반사 표면(222a)에 의해 반사 광(216)으로서 환경 내로 반사된다. 일부 실시예에서, 방출 광(212)은, 2 밀리미터와 같은, 빔 폭을 가질 수 있다. 다른 빔 폭이 가능하다.
게다가, 일부 실시예에서, 미러 요소(220)의 회전 각도가 제2 각도 범위 내에 있는 동안, 방출 광(212)은 복수의 반사 표면(222) 중 제1 반사 표면(222a) 및 제2 반사 표면(222b) 둘 모두와 상호작용한다. 그러한 시나리오에서, 방출 광(212)은 제1 및 제2 반사 표면(222a 및 222b)에 의해 반사 광(216)으로서 환경 내로 반사된다. 달리 말하면, 위에서 기술된 바와 같이, 방출 광(212)은 2 밀리미터의 빔 폭을 가질 수 있다. 방출 광(212)의 제1 부분(예를 들면, 빔 폭의 전반부)은 제1 반사 표면(222a)과 상호작용할 수 있고, 방출 광(212)의 제2 부분(예를 들면, 빔 폭의 후반부)은 제2 반사 표면(222b)과 상호작용할 수 있다.
도 2b는 예시적인 실시예에 따른, 광학 시스템(250)을 예시한다. 광학 시스템(250)은, 도 2a를 참조하여 예시되고 기술된, 광학 시스템(200)과 유사하거나 동일할 수 있다. 광학 시스템(250)은 하우징(252)을 포함할 수 있다. 하우징(252)은 방출 광(212) 및 반사 광(216)의 파장(들)에 대해 광학적으로 투명할 수 있다. 예를 들어, 하우징(252)은 반사 광(216)에 대해 90% 초과 투명할 수 있다. 예시적인 실시예에서, 하우징(252)은 빔 차단부(240) 및 미러 요소(220)에 결합될 수 있다. 일부 실시예에서, 하우징(252)은, 방출 광(212) 및 반사 광(216)이 하우징(252)에 들어가고/그로부터 나갈 수 있게 하는 하우징(252) 내에 규정된 하나 이상의 광학 창을 제외하고는, 방출 광(212) 및 반사 광(216)의 파장(들)에 대해 완전히 불투명할 수 있다. 게다가, 일부 실시예에서, 하우징 내부의 컴포넌트의 광학적 및/또는 기계적 특성을 개선시키기 위해(예를 들면, 미러 요소(220)가 제2 축(224)을 중심으로 회전할 때 미러 요소(220)에 대한 공기 저항을 감소시키기 위해) 하우징(252)이 배기될 수 있다(예를 들면, 하우징(252) 내부에 공기가 거의 또는 전혀 존재하지 않을 수 있다).
도 2c는 예시적인 실시예에 따른, 광학 시스템(260)을 예시한다. 광학 시스템(260)은 도 2a 및 도 2b를 참조하여 예시되고 기술된 바와 같은 광학 시스템(200 및 250)과 유사하거나 동일할 수 있다. 예시적인 실시예에서, 입사 광(212)이 미러 요소(220)의 2개의 반사 표면과 상호작용하도록 미러 요소(220)가 제2 축(224)에 대해 주어진 각도로 배향될 수 있다. 즉, 방출 광(212)은 제1 반사 표면(222a) 및 제2 반사 표면(222b)과 상호작용할 수 있다. 방출 광(212)이 제1 부분에서는 반사 광(264)으로서 그리고 제2 부분에서는 반사 광(266)으로서 반사될 수 있다. 반사 광(264)과 반사 광(266) 사이의 각도 범위는 방출 각도 범위(268)를 정의할 수 있다. 방출 각도 범위(268)는 240도 초과일 수 있다.
도 3a 및 도 3b는 광학 시스템(300)에서의 미러 요소(220)의 2개의 상이한 배향을 예시한다. 광학 시스템(300)은 도 2a, 도 2b 및 도 2c를 참조하여 예시되고 기술된 바와 같은 광학 시스템(200, 250 및 260)과 유사하거나 동일할 수 있다.
즉, 도 3a에 예시된 바와 같이, 기준 마커(302)와 제1 축(214) 사이의 각도(303)가 대략 15 도이도록 미러 요소(220)가 배향될 수 있다. 그러한 시나리오에서, 광 방출기(210)로부터 방출되는 광(212)은 반사 표면(222a)과 상호작용하여 반사 광(304)을 형성할 수 있다. 예를 들어, 반사 표면(222a)과 상호작용할 때, 반사 광(304)은 제1 축(214)에 대해 +90도 각도로 지향될 수 있다.
도 3b에 예시된 바와 같이, 기준 마커(312)가 제1 축(214)을 따라 배향되도록 미러 요소(220)가 배향될 수 있다. 그러한 시나리오에서, 광 방출기(210)로부터 방출되는 광(212)은 반사 표면(222a) 및 반사 표면(222c) 둘 모두와 상호작용하여 2개의 상이한 반사 광선을 제공할 수 있다. 예를 들어, 반사 표면(222a) 및 반사 표면(222c)과 상호작용할 때, 방출 광(212)은 반사 광(314) 및 반사 광(316)으로서 반사될 수 있다. 일부 실시예에서, 반사 광(314)과 반사 광(316) 사이의 방출 각도 범위는 240도 초과일 수 있다.
도 3c는 예시적인 실시예에 따른, 반사 광 각도 대 미러 요소 기준 각도 그래프(330)를 예시한다. 그래프(330)는 미러 요소(220)가 제2 축(224)을 중심으로 회전할 때 반사 광 각도가 어떻게 변하는지를 보여준다. 예시적인 실시예에서, 반사 광 각도는 반사 광선(예를 들면, 반사 광(304))과 제1 축(214) 사이의 각도로서 정의될 수 있다. 그래프(330)는 미러 요소(220)가 삼각 프리즘과 같은 형상으로 되어 있을 때의 3중 대칭성(three-fold symmetry)을 예시한다. 미러 요소(220)가 상이한 형상(예를 들면, 직사각형 중실체(rectangular solid))을 취하는 경우, 각도 대칭성 및 방출 각도 범위가 그에 따라 변할 수 있음을 이해할 것이다.
그래프 포인트(332)는 도 3a에서 기술된 시나리오를 예시한다. 즉, 미러 요소 기준 각도(303)가 대략 15도일 때, 반사 광(304)의 반사 광 각도는 대략 +90도일 수 있다.
게다가, 그래프 포인트(334 및 336)는 도 3b를 참조하여 기술된 시나리오를 예시한다. 즉, 미러 요소 기준 각도가 0도일 때, 방출 광(212)은 2개의 반사 표면(222a 및 222b)을 통해 반사될 수 있다. 그러한 시나리오에서, 반사 광(314)은 그래프 포인트(334)(예를 들면, +120도의 반사 광 각도)에 관련될 수 있고 반사 광(316)은 그래프 포인트(336)(예를 들면, -120도의 반사 광 각도)에 관련될 수 있다. 그래프(330)가 예시적인 실시예를 예시하고 많은 다른 반사 광 각도와 미러 요소 기준 각도 관계가 가능하다는 것을 이해할 것이다. 모든 그러한 다른 관계가 본 명세서에서 고려된다.
일부 실시예에서, 그래프(330)에 예시된 바와 같이, 방출 광은 중첩 범위 내에서 2개의 상이한 방향으로 반사될 수 있다. 예로서, 중첩 범위(338)는 방출 광이 상이한 방향으로 반사되는 미러 요소 기준 각도 범위를 나타낼 수 있다. 이 중첩 범위(338)는 레이저 광이 미러 요소(220)의 2개의 반사 표면과 상호작용하는 미러 요소(220)의 각도 범위를 나타낸다. 이 중첩 범위(338) 밖에서, 레이저 광은 미러 요소(220)의 단지 하나의 반사 표면과 상호작용한다. 이 중첩 범위(338)는 미러 요소(220)의 대칭성에 기초하여 반복될 수 있다. 그래프(330)에서, 중첩 범위(338)는 대략 10도 폭일 수 있지만, 다른 중첩 범위가 가능하다. 일부 실시예에서, 중첩 범위(338)는 방출 빔 스폿 크기, 미러 요소 패싯 기하학적 형태 및/또는 빔 차단부 위치에 기초하여 조정될 수 있다.
도 3d는 예시적인 실시예에 따른, 광학 시스템(340)을 예시한다. 구체적으로, 도 3d는 미러 요소(220)의 추가의 가능한 배향을 예시한다. 예를 들어, 미러 요소(220)는 도 3b에 예시된 시나리오와 관련하여 반시계 방향으로 회전할 수 있다. 즉, 기준 마커(342)가 제1 축(214)에 대해 반시계 방향으로 대략 1도로 배향되도록 미러 요소(220)가 배향될 수 있다. 그러한 시나리오에서, 광 방출기(210)로부터 방출되는 광(212)은 반사 표면(222a) 및 반사 표면(222c) 둘 모두와 상호작용하여 2개의 상이한 반사 광선(344 및 346)을 제공할 수 있다. 그렇지만, 도 3b와 대조적으로, 반사 광선(344 및 346)은 제1 축(214)에 대해 동일한 각도로 반사될 필요가 없고 유사한 빔 폭 또는 빔 크기를 가질 필요가 없다. 예를 들어, 반사 표면(222a) 및 반사 표면(222c)과 상호작용할 때, 방출 광(212)은 반사 광(344) 및 반사 광(346)으로서 반사될 수 있다. 그러한 시나리오에서, 광(212)의 더 큰 부분이 반사 표면(222a)과 상호작용하는 것에 적어도 기초하여, 반사 광(344)은 더 큰 빔 크기를 가질 수 있다. 반대로, 광(212)의 더 작은 부분이 반사 표면(222c)과 상호작용하기 때문에 반사 광(346)은 더 작은 빔 크기를 가질 수 있다. 게다가, 빔 차단부(240)의 위치에 기초하여, 반사 광(344)은 광학 시스템(340) 주위의 환경 내로 방출될 수 있는 반면, 반사 광(346)은 빔 차단부(240)에 의해 "차단"되거나, 흡수되거나, 또는 달리 감쇠될 수 있다.
도 2a, 도 2b, 도 2c, 도 3a, 도 3b 및 도 3d가 광(212)을 특정 빔 폭을 갖는 것으로 예시하지만, 광(212)이 미러 요소(220)와 관련하여 더 크거나 더 작은 빔 폭을 가질 수 있음을 이해할 것이다. 예시적인 실시예에서, 광(212)은 미러 크기의 더 큰 분율인 빔 폭을 가질 수 있다. 그러한 시나리오에서, 도 3c를 참조하면, 광(212)이 2개의 반사 빔으로 분할되는 경우 전체 미러 회전은 더 큰 각도 범위를 포함할 수 있다.
게다가, 도 2a, 도 2b, 도 2c, 도 3a, 도 3b 및 도 3d는 광 방출기(210)를 제2 축(224)과 교차하는 제1 축(214)을 따라 광(212)을 방출하도록 배열된 것으로 예시하지만, 다른 배열이 가능하다. 예를 들어, 일부 실시예에서, 광 방출기(210)는 제2 축(224)과 교차하지 않는 축을 따라 광(212)을 방출하도록 배열될 수 있다. 예를 들어, 광 방출기(210)는 축을 벗어나게, 틸팅되게 또는 제1 축(214) 및/또는 제2 축(224)으로부터 멀리 시프트되게 배열될 수 있다. 그러한 비대칭 배열은 다른 측면에 비해 미러 요소(220)의 일 측면을 따라 더 큰 각도 커버리지 및/또는 더 높은 분해능 커버리지를 제공할 수 있다. 예시적인 실시예에서, 광 방출기(210)는 특히 바람직한 각도 범위(예를 들면, 수평으로부터 -45도 내지 +20도) 내에 위치한 환경의 일 부분에 대해 더 큰 각도 커버리지를 제공하도록 미러 요소(220)에 대해 위치될 수 있다. 광 방출기(210)의 다른 배열 및 그러한 배열에 관한 설계 고려사항이 가능하며 본 명세서에서 고려된다.
도 4는 예시적인 실시예에 따른, 미러 요소(400)를 예시한다. 미러 요소(400)는 도 1, 도 2a, 도 2b, 도 2c, 도 3a 및 도 3b를 참조하여 예시되고 기술된 미러 요소(120 또는 220)와 유사할 수 있다. 미러 요소(400)는 반사 표면(422a, 422b 및 422c)을 포함할 수 있다. 반사 표면(422a, 422b 및 422c)은 주어진 방출 파장에서 또는 그 주위에서 입사 레이저 광(450)에 대해 고 반사성이도록 구성될 수 있다. 예를 들어, 반사 표면(422a, 422b 및 422c)은 입사 광의 90% 초과를 반사시킬 수 있다.
미러 요소(400)는 스핀들(430)을 추가적으로 포함할 수 있다. 스핀들(430)은 대안적으로 본 명세서에서 액슬(axle), 샤프트 또는 구동 샤프트라고 지칭될 수 있다. 미러 요소(400)는, 회전 축(432)을 따라 있을 수 있는, 스핀들(430)을 중심으로 회전하도록 구성될 수 있다. 회전 축(432)은 도 2a, 도 2b, 도 2c, 도 3a 및 도 3b에 예시되고 본 명세서의 다른 곳에서 기술된 바와 같은 제2 축(224)과 유사하거나 동일할 수 있다. 즉, 스핀들(430) 및 미러 요소(400)는 회전 축(432)에 대해 시계방향 및/또는 반시계방향으로 회전하도록 구성될 수 있다. 일부 실시예에서, 스핀들(430)은 미러 요소 액추에이터(예를 들면, DC 모터 또는 스테퍼 모터)를 통해 회전될 수 있다.
일부 실시예에서, 미러 요소(400)는, 적어도 부분적으로, 중공일 수 있다. 즉, 미러 요소(400)의 내부 부분(410) 내의 적어도 일부 재료가 제거될 수 있다. 즉, 내부 부분(410)이 비어 있을 수 있거나 공기를 포함할 수 있다.
미러 요소(400)가 회전 축(432)을 중심으로 회전할 때, 입사 광은 미러 요소(400)의 환경을 향해 미러 요소의 하나 이상의 반사 표면으로부터 반사될 수 있다. 예를 들어, 도 4에 예시된 바와 같이, 입사 레이저 광(450)은 상호작용 위치(424)에서 제1 반사 표면(422a)과 상호작용할 수 있다. 반사 표면(422a)에 대한 입사 레이저 광(450)의 입사각은 반사 광(452)에 대한 반사각을 결정할 수 있다.
도 5는 예시적인 실시예에 따른, 광학 시스템(500)을 예시한다. 광학 시스템(500)은 도 2a, 도 2b, 도 2c, 도 3a, 도 3b 및 도 4와 관련하여 예시되고 기술된 바와 같은 광학 시스템(200, 250, 260 및 300) 및 미러 요소(400)와, 적어도 부분적으로, 유사하거나 동일할 수 있다. 예를 들어, 광학 시스템(500)은 반사 표면(510a, 510b 및 510c)을 갖는 미러 요소(508)를 포함할 수 있다. 미러 요소(508)는 회전 축(514)을 중심으로 회전하도록 구성될 수 있는 스핀들(512)에 결합될 수 있다.
광학 시스템(200)과 유사하게, 광학 시스템(500)은 빔 차단부(520) 및 광 방출기(530)를 포함할 수 있다. 예시적인 실시예에서, 광 방출기(530)는 광학 요소(532)(예를 들면, 렌즈 및/또는 확산기)를 통해 광(534)을 방출할 수 있다. 예를 들어, 광학 요소(532)는 FAC 렌즈(예를 들면, 광 방출기(530)가 레이저 다이오드를 포함하는 경우, 예를 들면, 광 방출기(530) 상에 위치된 성형 플라스틱 FAC 렌즈)를 포함할 수 있다. 방출 광(534)은 반사 표면(510a)과 상호작용하고 광학 시스템의 환경 내로 반사될 수 있다.
광학 시스템(500)은 광 검출기(540)를 또한 포함할 수 있다. 광 검출기(540)는 광학 요소(542)(예를 들면, 집속 렌즈(condenser lens) 또는 FAC 렌즈)를 통해 광학 시스템(200) 주위의 환경으로부터 광(544)을 수신하도록 구성될 수 있다. 광학 요소(542)는 광 검출기(540)의 단면 치수와 대략 매칭하는 단면 치수를 가질 수 있다(예를 들면, 광 검출기(540)가 약 1.3 mm의 단면 폭 및 약 1.3mm의 단면 높이를 갖는 SiPM을 포함하는 경우, 광학 요소(542)도 약 1.3 mm의 단면 폭 및 약 1.3 mm의 단면 높이를 가질 수 있다). 일부 실시예에서, 광 검출기(540)는 광의 특정 편광(예를 들면, 수평 편광 광(horizontally polarized light))을 차단하도록 구성되는 편광 필터를 통해 광(544)을 수신할 수 있으며, 여기서 광의 특정 편광(예를 들면, 수직 편광 광(vertically polarized light))만이 광 방출기(530)에 의해 방출된다. 추가적으로 또는 대안적으로, 광 검출기(540)는 광 방출기(530)에 의해 방출되는 해당 파장 이외의 모든 파장을 필터링 제거하도록 구성된 하나 이상의 광학 필터(예를 들면, 대역 통과 색 필터(bandpass chromatic filter))를 통해 광(544)을 수신할 수 있다. 그러한 기술을 사용하여, 광 검출기(540)는 광 방출기(530) 이외의 소스로부터 나오는 미광으로 인해 발생하는 노이즈를 제거할 수 있다. 일부 실시예(예를 들면, 광 방출기(530)가 주어진 주파수에서 변조되는 실시예)에서, 광 검출기(540)는 광 방출기(530)의 변조 주파수에 대응하는 주파수에서 변조된 광을 검출하도록 구성될 수 있다.
수신 광(544)에 기초하여, 광 검출기(540)는 광학 시스템(200) 주위의 환경의 장면에 관한 정보를 제공할 수 있다. 광 검출기(540)는 검출기 어레이를 포함할 수 있다. 검출기 어레이는 복수의 SPAD(single photon avalanche detector)를 포함할 수 있다. 추가적으로 또는 대안적으로, 검출기 어레이는 광(544)을 검출하도록 구성된 다른 유형의 광 검출기(예를 들면, APD(avalanche photodiode), SiPM, 포토다이오드, 포토트랜지스터, 카메라, APS(active pixel sensor), CCD(charge-coupled device), 극저온 검출기 등)를 포함할 수 있다. 게다가, 검출기 어레이는 광 방출기(530)에 의해 방출되는 편광 또는 파장 범위에 민감할 수 있다.
광 방출기(530) 및 방출 광(534)이 입사되는 미러 요소(508)의 부분은 송신 경로라고 지칭될 수 있다. 수신 광(544)과 상호작용하는 미러 요소(508)의 부분 및 광 검출기(540)는 수신 경로라고 지칭될 수 있다. 본 명세서에서 예시된 실시예에서, 송신 경로와 수신 경로는 평행할 수 있다. 그러한 시나리오에서, 송신 경로와 수신 경로는 레이저 광 펄스가 환경 내로 전송되고, (예를 들면, 대상체로부터의 반사를 통해) 환경과 상호작용하며, 수신기로 다시 반사되도록 배열될 수 있다. 노이즈를 감소시키고 크로스토크 및/또는 잘못된 신호(false signal)를 피하기 위해 송신 경로와 수신 경로가 분리될 수 있다. 따라서, 광학 시스템(200)은 송신 경로와 수신 경로 사이에 위치될 수 있는 광 배플(550)을 포함할 수 있다.
광학 시스템(500)은 광 검출기(540)에 결합될 수 있는 베이스 부분(560), 광 방출기(530), 빔 차단부(520) 및 미러 요소(508)를 회전시키도록 구성된 액추에이터를 포함할 수 있다. 즉, 베이스 부분(560)은, 송신 경로 및/또는 수신 경로에 평행할 수 있는, 제3 축(562)을 중심으로 회전하도록 구성될 수 있다.
도 6은 예시적인 실시예에 따른, LIDAR 시스템(600)의 예시이다. LIDAR 시스템(600)은 도 5에 예시된 광학 시스템(500)과 유사할 수 있다. 예를 들어, LIDAR 시스템(600)은 스핀들(512)에 결합된 미러 요소(508)는 물론, 광 방출기(530) 및 광 검출기(540)를 포함할 수 있다. 그렇지만, 도 5에 예시된 컴포넌트에 추가적으로, LIDAR 시스템(600)은, 개구(604)가 그 내에 규정되어 있는, 광학 캐비티(602)를 또한 포함할 수 있다. 광학 캐비티(602)는 광학 요소(542)(예를 들면, 집속 렌즈)와 광 검출기(540) 사이에 광학적으로 위치될 수 있다. 광학 캐비티(602)는 (예를 들면, 광 검출기(540)를 향해 수신 광(544)을 안내하기 위해) 대상체로부터 반사된 후에 환경으로부터 수신되는 광(544)에 대한 도파관으로서 역할할 수 있다. 일부 실시예에서, 광학 캐비티(602)는 광 검출기(540)를 향해 수신 광(544)을 안내하는 것을 돕기 위해 특정 형상을 가질 수 있다. 추가적으로 또는 대안적으로, 광학 캐비티(602)의 내부와 상호작용하는 수신 광(544)이 (광학 캐비티(602)에 의해 흡수되어 검출 불가능하게 되는 것이 아니라) 광 검출기(540)를 향해 반사되도록, 광학 캐비티(602)의 내부는 반사성일 수 있다. 일부 실시예에서, 광학 캐비티(602)의 내부는, 예를 들어, 은 도금된 유리 미러(silvered-glass mirror)일 수 있다. 대안적으로, 광학 캐비티(602)의 내부는 광 방출기(530)에 의해 생성되는 방출 광(534)의 파장을 포함하는 파장 범위를 제외한 모든 파장에 대해 흡수성인 재료로 코팅될 수 있다.
개구(604)는 광 검출기(540)에 도달하는 외부 광의 양을 감소시킬 수 있다. 예를 들어, 개구(604)는 개구(604)를 가로채도록 광학 캐비티(602) 내에 적절하게 정렬된 해당 광만이 광 검출기(540)에 도달할 수 있게 할 수 있다. 이에 따라, 개구(604)는 LIDAR 시스템(600) 내에서의 검출 노이즈를 감소시킬 수 있다. 추가적으로 또는 대안적으로, 개구(604)는 LIDAR 시스템(600)에 대한 초점 심도를 설정하는 데 사용될 수 있다. 일부 실시예에서, (예를 들면, LIDAR 시스템(600)의 초점 심도를 조정하기 위해 및/또는 광 검출기(540), 광학 요소(542), 광학 캐비티(602), 미러 요소(508) 등에서의 제조 결함을 고려하기 위해) 광 검출기(540)에 대한 및/또는 광학 캐비티(602) 내에서의 개구(604)의 위치가 수평으로 및/또는 수직으로 조정 가능할 수 있다. 그러한 조정은 (예를 들면, 제어기에 의해 제어되는) 스테이지에 의해 이루어질 수 있다.
도 7a는 예시적인 실시예에 따른, LIDAR 시스템(700)의 예시이다. LIDAR 시스템(700)은 도 6에 예시된 LIDAR 시스템(600)과 유사할 수 있다. 예를 들어, LIDAR 시스템(700)은 스핀들(512)에 결합된 미러 요소(508), 광 방출기(530), 광 검출기(540), 및 개구(604)가 그 내에 규정되어 있는 광학 캐비티(602)를 포함할 수 있다.
그렇지만, 도 6에 예시된 컴포넌트에 추가적으로, LIDAR 시스템(700)은 하나 이상의 배플(702)을 또한 포함할 수 있다. 배플(702)은, 예를 들어, 디스크 형상일 수 있다. 예시된 바와 같이, 배플(702)은 스핀들(512)을 따라 미러 요소(508)에 인접하여(그리고 반사 표면(510a/510b/510c) 각각에 수직으로) 위치될 수 있다. 또한 예시된 바와 같이, 배플(702)은 스핀들(512)에서 미러 요소(508)의 대향 단부에 위치될 수 있다(즉, 배플(702) 둘 모두가 스핀들(512)에서 상이한 z 위치에 위치되고, 하나의 z 위치는 미러 요소(508) 전체의 z 위치보다 작고 하나의 z 위치는 미러 요소(508) 전체의 z 위치보다 크다). 환언하면, 배플(702)이 스핀들(512)을 따라 미러 요소(508)의 측면에 배치될 수 있다. 도 7b는 도 7a와 상이한 시점으로부터의 미러 요소(508), 스핀들(512) 및 배플(702)의 예시를 제공한다. 일부 실시예에서, 배플(702)은 (예를 들면, 제어기에 의해 제어되는 스테이지를 사용하여) 이동 가능/재배향 가능할 수 있다. 예를 들어, 일부 실시예에서, 스핀들(512)은 나사형 로드(threaded rod)일 수 있고 배플(702)은 각각 스핀들(512)의 나사형 로드와 교합(mate)하는 나사형 중심 섹션을 가질 수 있다. 이에 따라, 배플(702)은 (예를 들면, 스핀들(512)을 회전 정지된 상태로 유지하면서) 스핀들(512)을 중심으로 배플(702)을 회전시키는 것에 의해 스핀들(512)을 따라 선형으로 병진 이동될 수 있다. 따라서, 스핀들(512)을 따라 배플(702)을 이동/재배향시키기 위해, 하나 이상의 전기 모터(예를 들면, 서보)는 (예를 들면, 배플(702)의 주변부를 따라 규정된 치형부와 교합되는 전기 모터의 샤프트 상의 기어를 사용하여) 배플(702)이 스핀들(512)을 중심으로 회전하게 할 수 있다.
다른 실시예에서, 2개 초과 또는 2개 미만의 배플(702)이 있을 수 있다(예를 들면, 1개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개 등의 배플이 있을 수 있다). 게다가, 일부 실시예에서, 배플(702) 및/또는 임의의 추가적인 배플은 스핀들(512)을 따라 다양한 위치에 위치될 수 있다. 일부 실시예에서, 배플(702)은 (예를 들면, 송신 경로와 수신 경로를 서로 광학적으로 분리시키기 위해) 송신 경로와 수신 경로 사이에 위치된 광 배플(550)과 동일하거나 유사한 재료로 제조될 수 있다.
일부 실시예에서, 배플(702)은 광 검출기(540)에 도달하는 미광(예를 들면, LIDAR 시스템(700)의 컴포넌트로부터의 내부 반사)의 양을 감소시킬 수 있다. 예를 들어, 배플(702)은 LIDAR 시스템(700)의 하나 이상의 광학 창으로부터의 내부 반사를 감쇠시키도록(예를 들면, 이에 의해 고스트 신호를 감쇠시키거나 제거하도록) 구성될 수 있다. 일부 실시예에서, 스핀들(512)을 따라 위치되기보다는, 하나 이상의 배플이 다중 패싯 미러(즉, 미러 요소(508))와 LIDAR 시스템(700)의 하나 이상의 광학 창 사이에 위치될 수 있다.
추가적으로, 배플들(702) 중 하나 이상은 (예를 들면, 내부 반사를 흡수/감쇠시키기 위해) 광 방출기(530)에 의해 방출되는 광의 파장을 흡수하는 재료를 포함할(예를 들면, 재료로 제조될) 수 있다. 예를 들어, 배플들(702) 중 하나 이상은 흑화 처리된 강철로 제조된 표면을 포함할 수 있다. 다양한 실시예에서, 배플들(702) 중 하나 이상은 플라스틱, 알루미늄, 강철, 또는 BoPET(biaxially-oriented polyethylene terephthalate)로 제조될 수 있다(예를 들면, 배플(702)은 플라스틱, 알루미늄, 강철 또는 BoPET로 제조된 원형 디스크일 수 있다). 게다가, 일부 실시예에서, 배플(702)은 약 0.5 mm 내지 약 1.0 mm 두께이거나 약 0.1 mm 내지 약 2.0 mm 두께일 수 있다. 추가적으로, 배플(702)은 직경이 약 1 센티미터 내지 약 3 센티미터일 수 있다. 대안적인 실시예에서, 배플(702)은 원형 디스크 이외의 다른 형상 및/또는 다른 두께/직경을 가질 수 있다. 예를 들어, 일부 실시예에서, 반구형 배플이 사용될 수 있다(예를 들면, 반구(hemisphere)의 로브(lobe)가 스핀들(512)을 따라 미러 요소(508)로부터 떨어져 배향됨).
LIDAR 시스템(700)의 광학적 특성을 수정하는 것에 추가적으로 또는 그 대신에, 배플(702)은 LIDAR 시스템(700)의 하나 이상의 기계적 특성을 수정할 수 있다. 예를 들어, 미러 요소(508)가 스핀들(512)을 중심으로 회전할 때(예를 들면, 스핀들(512)이, DC 모터와 같은, 액추에이터에 의해 구동될 때) 배플(702)은 미러 요소(508)의 진동을 감소시킬 수 있다. 미러 요소(508)의 진동을 감소시키는 것은 미러 요소(508)가 스핀들(512)을 중심으로 회전할 때 생성되는 소리를 감소시킬 수 있다. 추가적으로 또는 대안적으로, 배플(702)은 (예를 들면, 공기가 미러 요소(508)의 반사 표면(510a/510b/510c)을 가로질러 유동하는 횡단 경로를 차단하는 것에 의해, 공기 유동을 유선화하는 것/미러 요소(508)의 회전 방향에서의 층류(laminar airflow)를 개선시키는 것에 의해, 및/또는 미러 요소(508) 근방에서의 난류(turbulent airflow)를 감소시키는 것에 의해) 미러 요소(508)의 공기역학적 특성을 향상시킬 수 있다. 그러한 향상된 공기역학적 특성은 미러 요소(508)에 생성된 드래그 토크(drag torque)를 감소시킬 수 있고, 이에 의해 미러 요소(508)를 회전시키기 위해 (예를 들면, 스핀들(512)을 구동하는 모터에 의해) 소비되는 전력량을 감소시킬 수 있다. LIDAR 시스템의 공기역학적 특성을 추가로 증대시키기 위해, 일부 실시예에서, 미러 요소(508)가 회전하는 챔버(예를 들면, 하우징(252))가 배기될 수 있거나(예를 들면, 하우징(252) 내에 더 낮은 대기압을 생성하기 위해 공기가 제거될 수 있음) 또는 저밀도 가스(예를 들면, 헬륨)가 챔버 내에 삽입되어, 이에 의해 진공 또는 거의 진공을 생성하고 모든 또는 거의 모든 항력/드레드 토크를 제거할 수 있다. 미러 요소(508) 또는 LIDAR 시스템(700)의 다른 부분의 기계적 특성을 향상시키는 다른 방법이 또한 가능하고 본 명세서에서 고려된다.
도 7c는 예시적인 실시예에 따른, 배플(732)의 예시이다. 일부 실시예에서, 배플(732)은 도 7a에 예시된 LIDAR 시스템(700)의 배플들(702) 중 하나 이상으로서 사용될 수 있다. LIDAR 시스템(700)의 기계적 특성을 수정하는 것에 추가적으로 또는 그 대신에, 배플(732)은 스핀들(512) 및, 대응적으로, 미러 요소(508)를 위한 로터리 인코더(rotary encoder)로서 사용될 수 있다. 배플(732)은 일련의 비트(예를 들면, 가장 안쪽의 비트로부터 가장 바깥쪽의 비트까지)에 의해 표현되는 광학 로터리 인코더로서 작용할 수 있다. 예를 들어, 도 7c에서 백색으로 예시된 비트는 광 투과를 허용할 수 있는 반면(예를 들면, 백색 비트는 배플(732) 내에 규정된 광학 개구에 대응할 수 있음), 도 7c에서 흑색으로 예시된 비트는 광 투과를 차단하거나 감소시킬 수 있다(예를 들면, 흑색 비트는 배플(732)의 중실 영역에 대응할 수 있음). 배플(732)의 주어진 영역(예를 들면, 주어진 슬리버(sliver)) 후방에서 광을 방출하고 결과적인 비트 배열(예를 들면, 투과 및 비투과)을 검출하는 것에 의해, 배플(732)의 각도 배향의 결정이 (예를 들어, 모터 및/또는 LIDAR 시스템(700)의 제어기에 의해) 이루어질 수 있다. 대안적인 실시예에서, (예를 들면, 투과형 로터리 인코더에 추가적으로 또는 그 대신에) 반사형 로터리 인코더가 배플(732)에 통합될 수 있다.
배플(732)의 각도 배향의 결정은 물론, 배플(732)에 대한 회전 축(514)을 중심으로 한 미러 요소(508)의 반사 표면(510a/510b/510c)의 미리 결정된 각도 오프셋 및 제3 축(562)을 중심으로 한 베이스 부분(560)의 각도 위치에 기초하여, 방출 광(534)이 환경/장면의 어느 영역을 향해 지향될 것인지에 관한 결정이 (예를 들면, 모터 및/또는 LIDAR 시스템(700)의 제어기에 의해) 이루어질 수 있다. 장면의 그러한 영역은, 예를 들어, "타깃 영역"이라고 지칭될 수 있다. 타깃 영역에 대한 평가된 범위와 결합된 일련의 타깃 영역에 기초하여(예를 들면, 방출 광(534)이 광 방출기(530)에 의해 방출되는 때와 광 검출기(540)에 의해 검출되는 때 사이의 방출 광(534)의 통과 시간(transit time)에 기초하여), 주변 환경의 맵(예를 들면, 3차원 포인트 클라우드)이 LIDAR 시스템(700)에 의해 생성될 수 있다.
도 7c에 예시된 바와 같이, 광학 로터리 인코더로서 역할하기 위해, 배플(732)은 5개의 동심 링으로 분할될 수 있으며, 각각의 링은 32개의 인접 섹션으로 분할된다. 이것은 32개의 슬리버 영역을 규정하며, 각각의 슬리버 영역은 하나의 5 비트 세트에 대응한다. 예를 들어, 제1 슬리버 영역(734)은 다음과 같은 일련의 비트에 대응할 수 있다: [0 0 0 0 0]. 배플(732)에 대한 인코딩 스킴은 반사 이진 코드(reflected binary code)(즉, 그레이 코드(Gray code))일 수 있다. 이에 따라, 제1 슬리버 영역(734)에 인접한 슬리버 영역에 있는 일련의 비트는 제1 슬리버 영역(734)의 일련의 비트와 하나의 비트만 달라질 수 있다. 예를 들어, 예시된 바와 같이, 제1 슬리버 영역(734)에 대해 반시계방향으로 11.25°(360°/32개의 슬리버 영역) 회전된 제2 슬리버 영역(736)은 [1 0 0 0 0]일 수 있고, 제1 슬리버 영역(734)에 대해 시계방향으로 11.25° 회전된 제3 슬리버 영역(738)은 [0 0 0 0 1]일 수 있다. 일부 실시예에서, 가장 안쪽의 비트는 최상위 비트에 대응할 수 있고 가장 바깥쪽의 비트는 최하위 비트에 대응할 수 있다. 다른 실시예에서, 가장 안쪽의 비트는 최하위 비트에 대응할 수 있고 가장 바깥쪽의 비트는 최상위 비트에 대응할 수 있다. 다른 비트 배열이 또한 가능하다.
반사 이진 코드는 11.25° 슬리버 영역들 각각을 고유하게 식별해 주는 5 비트 인코딩 스킴을 완료하기 위해 배플(732) 둘레에서 계속될 수 있다. 다양한 실시예에서, 11.25° 초과의 각도 분해능(예를 들면, 10° 각도 분해능, 5.625° 각도 분해능, 5° 각도 분해능, 2.8125° 각도 분해능, 1.40625° 각도 분해능, 1° 각도 분해능, 0.703125° 각도 분해능 등) 또는 11.25° 미만의 각도 분해능(예를 들면, 15° 각도 분해능, 20° 각도 분해능, 22.5° 각도 분해능, 30° 각도 분해능, 45° 각도 분해능, 90° 각도 분해능)을 제공하는 인코딩 스킴이 배플(732)에 대해 사용될 수 있다.
도 7d는 예시적인 실시예에 따른, 배플(742)의 예시이다. 일부 실시예에서, 배플(742)은 도 7a에 예시된 LIDAR 시스템(700)의 하나 이상의 배플(702)로서 사용될 수 있다. 도 7c에 예시된 배플(732)과 유사하게, 배플(742)은 스핀들(512) 및, 대응적으로, 미러 요소(508)를 위한 로터리 인코더로서 사용될 수 있다. 도 7c에 예시된 배플(732)에서와 같이, 배플(742)은 광학 로터리 인코더로서 작용할 수 있다. 그렇지만, 도 7c에 예시된 배플(732)과 달리, 도 7d에 예시된 배플(742)은 나선형 인코더일 수 있다. 배플(742)은 배플(742)/스핀들(512)의 각도 배향을 결정하는 데 사용되는 나선형 부분(744)을 포함할 수 있다. 예를 들어, (예를 들면, 배플(742) 후방에 있고 배플(742)이 회전할 때 배플(742)에 대해 정지해 있는) 광이 하나의 라인(746)을 따라 조명될 수 있고, 이어서 나선형 부분(744)을 통해 투과되는 광의 검출에 기초하여(예를 들면, 배플(742)의 중심으로부터 검출된 광까지의 거리에 기초하여), 배플(742)의 각도 배향이 (예를 들면, 모터 및/또는 LIDAR 시스템(700)의 제어기에 의해) 결정될 수 있다. 나선형 부분의 대안적인 형상/크기는 물론, 다른 유형의 인코더(나선형 및 비나선형 둘 모두)가 가능하며 본 명세서에서 고려된다. 예를 들어, 일부 실시예에서, 하나 이상의 광학 개구가 나선형 배열로 배열될 수 있으며, 이에 의해 로터리 광학 인코더를 규정할 수 있다. 일부 실시예에서, (예를 들면, 각도 배향을 결정하기 위해 투과 광보다는 반사 광이 검출되는 경우) 투과 인코더보다는, 배플(732/742)은 반사형 인코더일 수 있다.
도 7e는 예시적인 실시예에 따른, 배플(752)의 예시이다. 일부 실시예에서, 배플(752)은 도 7a에 예시된 LIDAR 시스템(700)의 하나 이상의 배플(702)로서 사용될 수 있다. 도 7c에 예시된 배플(732)과 유사하게, 배플(752)은 스핀들(512) 및, 대응적으로, 미러 요소(508)를 위한 로터리 인코더로서 사용될 수 있다. 도 7c에 예시된 배플(732)에서와 같이, 배플(752)은 광학 로터리 인코더로서 작용할 수 있다.
도 7f는 예시적인 실시예에 따른, 배플(762)의 예시이다. 일부 실시예에서, 배플(762)은 도 7a에 예시된 LIDAR 시스템(700)의 하나 이상의 배플(702)로서 사용될 수 있다. 도 7c에 예시된 배플(732)과 유사하게, 배플(762)은 스핀들(512) 및, 대응적으로, 미러 요소(508)를 위한 로터리 인코더로서 사용될 수 있다. 도 7c에 예시된 배플(732)에서와 같이, 배플(762)은 광학 로터리 인코더로서 작용할 수 있다. 도 7e에 예시된 배플(752) 및 도 7f에 예시된 배플(762)은 각자의 배플(752/762)이 회전할 때 개방 영역의 개수를 카운트하는 부수적인 광학 인코더 모듈을 가질 수 있다. 이러한 방식으로, 광학 인코더 모듈은 (예를 들어, 연관된 다중 패싯 미러의 형상/배향에 기초하여 광 신호가 지향되는 방향을 결정하는 데 사용될 수 있는) 주어진 배플(752/762)의 각도 배향을 측정하도록 구성될 수 있다.
도 8a는 예시적인 실시예에 따른, LIDAR 시스템(800)의 예시이다. LIDAR 시스템(800)은 도 2a에 예시된 광학 시스템(200)과 유사할 수 있다(예를 들면, 미러 요소(220)가 도 2a에 예시된 것과 약간 상이한 각도 배향으로 있어, 방출 광(212)과 반사 광(216) 사이에 상이한 각도를 결과함). 이에 따라, LIDAR 시스템(800)은 미러 요소(220), 광 방출기(210), 베이스(230), 빔 차단부(240) 등을 포함할 수 있다. 그렇지만, 도 8a에 예시된 LIDAR 시스템(800)은 광 검출기(예를 들면, 도 6에 예시된 광 검출기(540)와 유사하고 도 8a의 예시에서 광 방출기(210) 및 베이스(230) 후방에 있어 이들에 의해 폐색되도록 하는 z 위치에 위치된 광 검출기)를 또한 포함할 수 있다. 게다가, 도 2a의 광학 시스템(200)과 달리, LIDAR 시스템(800)은 하나 이상의 광학 창을 포함할 수 있으며 이를 통해 반사 광(216)이 LIDAR 시스템(800)의 장면/주변 환경을 향해 투과된다. 대안적인 실시예에서, 광 검출기에 추가적으로, LIDAR 시스템(800)은 (예를 들면, 도 6에 예시된 LIDAR 시스템(600)과 유사하게) 광 검출기(540)로 광을 전송하기 위해 광학 요소(542) 및 개구(604)가 그 내에 규정되어 있는 광학 캐비티(602)를 또한 포함할 수 있다.
일부 실시예에서, 예시된 바와 같이, LIDAR 시스템(800)은 제1 광학 창(802)을 포함할 수 있다. 또한 예시된 바와 같이, LIDAR 시스템(800)은 제2 광학 창(804)을 포함할 수 있다. 게다가, 제1 광학 창(802)과 제2 광학 창(804)은 미러 요소(220)의 양측에 위치될 수 있다. 대안적인 실시예에서, LIDAR 시스템(800)은 단일 광학 창만을 포함할 수 있거나 3개 이상의 광학 창(예를 들면, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개 또는 그 이상의 광학 창)을 포함할 수 있다. 예를 들어, 일부 실시예에서, LIDAR 시스템(800)은 각각이 베이스(230)의 원주부 둘레에 각도적으로 위치되고 제1 축(214)을 중심으로 서로에 대해 90°만큼 이격된 4개의 광학 창을 포함할 수 있다. 제1 광학 창(802) 및/또는 제2 광학 창(804)는 베이스(230)와 함께 제1 축(214)을 중심으로 회전하도록 베이스(230)에, 직접 또는 간접적으로, 결합될 수 있다. 대안적으로, 베이스(230)가 제1 광학 창(802) 및/또는 제2 광학 창(804)과 독립적으로 회전할 수 있도록, 제1 광학 창(802) 및/또는 제2 광학 창(804)이 베이스(230)로부터 분리될 수 있다.
일부 실시예에서, LIDAR 시스템(800)에서의 광학 창들 중 하나 이상이 곡면일 수 있다(예를 들면, 도 2b에 예시된 하우징(252)의 곡률과 유사한 곡률을 가질 수 있다). 예를 들어, 광학 창들 중 하나 이상은 수직 곡률(예를 들면, 도 8a에 예시된 y 축에 대한 곡률) 또는 수평 곡률(예를 들면, 도 8a에 예시된 z 축에 대한 곡률)을 가질 수 있다. 그러한 곡률은 광이 LIDAR 시스템(800) 주위의 환경에 도달하기 전에 반사 광을 디포커싱하는 역할을 할 수 있다. 따라서, 그러한 기술은 생성된 임의의 고스트 빔의 강도를 제한하여, 이에 의해 고스트 신호의 검출 가능성 및 고스트 신호에 의해 야기되는 오류를 제한할 수 있다.
제1 광학 창(802) 및 제2 광학 창(804)은 동일한 재료 또는 상이한 재료로 제조될 수 있다. 일부 실시예에서, 광학 창들(802/804) 중 하나 이상은 유리(예를 들면, GORILLA® 유리, 광학 유리, 폴리(메틸 메타크릴레이트) 등)로 제조될 수 있다. 추가적으로 또는 대안적으로, 광학 창들(802/804) 중 하나 이상은 하나 이상의 플라스틱(예를 들면, 광학 플라스틱 또는 사출 성형을 통해 형성된 플라스틱)으로 제조될 수 있다. 또 다른 실시예에서, 광학 창들(802/804) 중 하나 이상은 하나 이상의 유형의 필터 유리(예를 들면, 가시 파장 내에서 입사 광의 무시할 수 없는 부분을 반사 및/또는 흡수하는 유리)로 제조될 수 있다. 그러한 실시예에서 광학 창(802/804)은 LIDAR 시스템(800) 내부의 컴포넌트를 외부 관측자에 보이지 않게 가리는 역할을 할 수 있으며, LIDAR 시스템(800)의 미적 품질을 향상시킬 수 있고/있거나 입사 광으로 인한 LIDAR 시스템(800) 내의 컴포넌트의 내부 가열을 방지할 수 있다. 게다가, 제1 광학 창(802) 및 제2 광학 창(804)은 동일하거나 상이한 두께를 가질 수 있다. 예를 들어, 제1 광학 창(802) 및 제2 광학 창(804)은 약 1 밀리미터 내지 약 4 밀리미터 두께일 수 있다.
도 8b는 예시적인 실시예에 따른, 도 8a에 예시된 LIDAR 시스템(800)의 예시이다. 도 8b에서의 미러 요소(220) 및 따라서 반사 광(216)의 각도 배향이 도 8a에 예시된 각도 배향과 상이하다. 위에서 기술된 바와 같이, 하나 이상의 광학 창에서의(예를 들면, 제1 광학 창(802)에서의) 내부 반사는 고스트 빔(812)을 야기할 수 있다. 고스트 빔(812)은 파선을 사용하여 도 8b에 예시되어 있다. 아래에서 추가로 설명되는 바와 같이, 고스트 빔(812)이 LIDAR 시스템(800)을 사용하여 생성되는 매핑에 부정확성을 야기하는 경우가 있을 수 있다. 따라서, 고스트 빔(812)이 강도가 감쇠되거나 완전히 제거될 수 있는 경우 LIDAR 시스템(800)을 사용하여 만들어진 3차원 포인트 클라우드 또는 다른 맵의 정확도가 증가될 수 있다. 추가적으로 또는 대안적으로, 고스트 빔(812)은 환경 내의 대상체가 LIDAR 시스템(800)에 의해 검출될 수 있는 최소 범위를 증가시킬 수 있다. 이에 따라, 고스트 빔(812)의 제거 또는 완화는 LIDAR 시스템(800) 근처에 있는 주변 환경 내의 대상체의 검출 가능성을 증가시킬 수 있다.
도 8b에 예시된 바와 같이, 고스트 빔(812)은 반사 광(216)의 일 부분이 광학 창의 내부 측면 및/또는 외부 측면(예를 들면, 제1 광학 창(802)의 내부 측면 및/또는 외부 측면)에서 반사되는 것으로부터 결과될 수 있다. 고스트 빔(812)은 제1 광학 창(802)의 내부 측면 및/또는 외부 측면 상의 하나 이상의 결함(예를 들면, 표면 거칠기와 같은 제조 결함) 또는 제1 광학 창(802) 자체 내의 하나 이상의 결함(예를 들면, 제1 광학 창(802)의 유리 내의 기포)로부터 반사될 수 있다. 추가적으로 또는 대안적으로, 고스트 빔(812)이 제1 광학 창(802)의 내부 측면 및/또는 외부 측면의 표면 상에 위치한 하나 이상의 이물질(예를 들면, 먼지, 오물, 물 등)로부터 반사될 수 있다. 추가적으로, 고스트 빔(812)이 프레넬 반사의 결과로서 제1 광학 창(802)의 내부 측면 및/또는 외부 측면으로부터 반사될 수 있다.
제1 광학 창(802)의 내부 측면 및/또는 외부 측면으로부터 반사될 때, 고스트 빔(812)은 제1 반사 표면(222a)에서 반사되고 이어서, 제1 광학 창(802)을 통해, LIDAR 시스템(800)을 둘러싼 환경으로 투과될 수 있다. 다양한 실시예에서, 양 신호가 LIDAR 시스템(800)에서 빠져나갈 때 고스트 빔(812)은 주 신호(814)에 대해 다양한 강도를 가질 수 있다. 예를 들어, 다양한 실시예에서, 고스트 빔(812)은 주 신호(814)의 강도의 0.1%, 1%, 2%, 3%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 또는 100%인 강도를 가질 수 있다. LIDAR 시스템(800)에서 빠져나간 후에, 고스트 빔(812)은 환경 내의 대상체에 의해 반사될 수 있고 이어서 다시 LIDAR 시스템(800)으로, 그리고 궁극적으로 LIDAR 시스템(800)의 광 검출기로 그의 경로를 되돌아갈 수 있다. 광 검출기는 의도된 타깃(즉, 주 신호(814)가 지향되고 있는 위치에 위치한 환경 내의 타깃)으로부터 반사되는 주 신호(814) 외에도 고스트 빔(812)을 검출할 수 있다. 반사 고스트 빔(812)이 반사 주 신호(814)와 비교하여 무시할 수 없는 강도를 갖는 경우, 광 검출기(예를 들면, 광 검출기/LIDAR 시스템(800)의 연관된 제어기)는 고스트 빔(812)에 기초한 거짓 양성을 등록할 수 있다.
도 8c는 예시적인 실시예에 따른, LIDAR 시스템(800)의 예시이다. LIDAR 시스템(800)은, 미러 요소(220)가 상이한 각도 배향으로 있어, 이에 의해 반사 광(216) 및 대응하는 주 신호(824)를 도 8b에 예시된 각도와 상이한 각도로 지향시키는, 도 8a 및 도 8b에 도시된 바와 동일한 LIDAR 시스템(800)일 수 있다. 유사하게, 도 8c에 예시된 고스트 빔(822)은 도 8b에서 고스트 빔(812)이 반사된 각도와 상이한 각도로 제1 광학 창(802)의 내부 측면으로부터 반사된다. 예시된 바와 같이, 도 8b에서의 고스트 빔(812)과 유사하게, 도 8c에서의 고스트 빔(822)은 제1 광학 창(802)의 내부 측면에서의 반사 광(216)의 일 부분의 반사로 인해 발생할 수 있다. 그렇지만, 도 8b에 예시된 고스트 빔(812)과 달리, 도 8c에서의 고스트 빔(822)은 (도 8b에서의 고스트 빔(812)과 같이, 제1 반사 표면(222a)에서 재반사되고 이어서 제1 광학 창(802)를 통해 환경으로 투과되지 않고) 제2 광학 창(804)을 통해 LIDAR 시스템(800)을 둘러싼 환경으로 투과될 수 있다. 따라서, 도 8b 및 도 8c에 예시된 고스트 빔(812/822)은 LIDAR 시스템(800)의 광 검출기에서의 고스트 빔, 그리고, 어쩌면 궁극적으로, 스퓨리어스 검출(예를 들면, 고스트 신호)이 이루어지는 2개의 가능한 메커니즘을 나타낼 수 있다. 두 가지 유형의 고스트 빔(812/822) 중 어느 것이 더 우세한지는 미러 요소(220)로부터의 반사 광(216)의 반사 각도, 따라서 제1 광학 창(802)에 대한 반사 광(216)의 각도에 의존할 수 있다. 다른 실시예에서, 추가적인 또는 대안적인 메커니즘(예를 들면, 추가적인 유형의 내부 반사)은 다른 유형의 고스트 빔을 발생시킬 수 있다. 예를 들어, 도 8c에 예시된 고스트 빔(822)은 제2 광학 창(804)의 내부 측면에서의 추가적인 반사를 경험할 수 있어 추가적인 고스트 빔을 결과할 수 있다. 도 8b 및 도 8c에 예시된 두 가지 유형의 고스트 빔(812/822)은 단지 예시적인 고스트 빔으로서 제공된다.
도 8d는 예시적인 실시예에 따른, LIDAR 시스템(800)이 도로 표면을 모니터링하기 위해 사용되는 것의 예시이다. 도 8d 내지 도 8f는 고스트 빔(예를 들면, 도 8c에 예시된 고스트 빔(822))이 장면 내의 대상체에 대한 잘못된 거리 결정을 유발할 수 있는 무수한 방식들 중 하나를 예시하기 위해 제공된다. 도 8d에 예시된 LIDAR 시스템(800)은 도 8a 내지 도 8c를 참조하여 도시되고 기술된 LIDAR 시스템(800)의 컴포넌트를 포함할 수 있다.
일부 실시예에서, 도 8d에 예시된 LIDAR 시스템(800)은 자율 주행 또는 반자율 주행 모드에서 동작하는 차량 또는 자율 주행 차량 상에서의 대상체 검출 및 회피 및/또는 운행을 위해 사용될 수 있다. 이에 따라, LIDAR 시스템(800)은 도로 표면(840)을 따라(예를 들면, 도 8d에서 가는 파선 화살표로 표시된 진행 방향을 따라) 진행할 수 있다. LIDAR 시스템(800)이 도로 표면(840)을 따라 진행할 때, LIDAR 시스템(800)은 적어도 2개의 위치(예를 들면, LIDAR 시스템(800)의 실선 예시에 의해 나타내어진 제1 위치 및 LIDAR 시스템(800)의 파선 예시에 의해 나타내어진 제2 위치)에 위치할 수 있다. 도로 표면(840)은 도로 표면(840)의 대략적인 중심을 표시하는 차선 마커(842)(예를 들면, 차선 라인) 및 도로 표면(840) 상의 차선의 대략적인 에지를 표시하는 에지 라인(844)을 포함할 수 있다. 게다가, 차선 마커(842)는 (예를 들면, 도로 표면(840) 상을 주행하는 교통의 헤드라이트로부터의 광을 밝게 반사하도록 되어 있는) 역반사체 또는 역반사 부분을 포함할 수 있다. 반대로, 에지 라인(844)은 역반사체 또는 역반사 부분을 포함하지 않을 수 있다.
도 8d에 예시되고 도 8e에 더 상세히 설명된 바와 같이, LIDAR 시스템(800)이 도 8d에 예시된 제1 위치에 있을 때, LIDAR 시스템(800) 내의 제1 광학 창(802)에서의 내부 반사에 기초하여, 고스트 빔(822)이 차선 마커들(842) 중 하나(예를 들면, 도 8e에 예시된 바와 같은 차선 마커(842)의 역반사체)를 향해 지향될 수 있다. 추가적으로, 주 신호(824)가 도로 표면(840) 상의 에지 라인들(844) 중 하나를 향해 지향될 수 있다. 이것은 주 신호(824)가 여전히 도로 표면(840) 상의 에지 라인들(844) 중 하나를 향해 지향될 수 있지만, 고스트 빔(822)이 도로 표면(840)의 장식되지 않은 부분을 향해 지향될 수 있는 도 8d에 예시된 제2 위치와 대조된다. 도로 표면(840)의 장식되지 않은 부분은 타르 또는 아스팔트의 섹션일 수 있으며, 따라서 역반사적이지 않을 수 있다. LIDAR 시스템(800)이 도 8d에 나타내어진 진행 방향을 따라 진행할 때, 주 신호(824)는 에지 라인들(844) 중 하나를 향해 지속적으로 지향될 수 있는 반면, 고스트 빔(822)은 차선 마커(842)를 향해 지향되는 것과 도로 표면(840)의 장식되지 않은 부분을 향해 지향되는 것 사이에서 교호할 수 있음을 이해한다.
도 8f는 예시적인 실시예에 따른, 도 8d에 예시된 LIDAR 시스템(800)에 의해 전송되는 광 신호에 기초한 도로 표면(840)까지의 결정된 거리의 예시이다. 결정된 거리는 결정된 거리를 진행 방향을 따른 위치의 함수로서 묘사하는 그래프(860)로 제시된다. LIDAR 시스템(800)이 고스트 빔(822)의 존재를 확인하고 이를 보상하기 위한 기술을 포함하지 않는 경우, 에지 라인(844)이 주 신호(824)가 지향되고 있는 도로 표면(840)의 영역이기 때문에, LIDAR 시스템(800)의 제어기는 진행 방향을 따라 임의의 주어진 위치에서 결정되는 거리가 에지 라인(844)까지의 거리라고 가정할 수 있다. 따라서, 고스트 빔(822)의 존재가 알려져 있지 않거나 고려되지 않는 경우, LIDAR 시스템(800)의 제어기는, (주 신호(824) 뿐만 아니라) 임의의 광학 신호의 복귀 시간에 기초하여, 주 신호(824)가 지향되고 있는 도로 표면(840)의 영역까지의 거리를 결정할 수 있다. 그렇지만, 고스트 빔(822)이 환경 내의 대상체(예를 들면, 차선 마커(842))에 의해 반사되고 반사 주 신호(824)의 검출 이전에 LIDAR 시스템(800)의 광 검출기에 의해 검출되는 경우 및/또는 반사 고스트 빔(822)의 강도가 반사 주 신호(824)의 강도를 초과하는 경우, LIDAR 시스템(800) 및/또는 광 검출기의 제어기가 (반사 고스트 빔(822)의 타이밍에 기초하여) 잘못하여 차선 마커(842)까지의 거리를 주 신호(824)가 지향되고 있는 도로 표면(840)의 영역까지의 거리(예를 들면, 에지 라인(844)까지의 거리)와 동일시할 수 있다. LIDAR 시스템(800)의 프로세싱 알고리즘에 따라, 반사 고스트 빔(822)은 추가적인 복귀가 LIDAR 시스템(800)에 의해 검출되는 것을 유발할 수 있다(예를 들면, 부정확한 포인트 클라우드를 유발함). 추가적으로 또는 대안적으로, 차선 마커(842)까지의 거리가 주 신호(824)가 지향되고 있는 도로 표면(840)의 영역까지의 거리와 반드시 동일한 것은 아니기 때문에 반사 고스트 빔(822)이 오류를 유발할 수 있다. 추가로, LIDAR 시스템(800) 내에서의 내부 반사가 그렇지 않았으면 동일할 거리에 대해서도 주 신호(824)에 비해 고스트 빔(822)의 통과 시간을 증가시키기 때문에 반사 고스트 빔(822)이 오류를 유발할 수 있다.
역반사 대상체가 장면에 있는 대상체로부터의 고강도 반사를 보장하기 때문에, 그러한 오류 있는 검출 이벤트는 고스트 빔(822)이 역반사 대상체(예를 들면, 차선 마커(842), 정지 표지판, 교통 표지판, 공사 표지판, 보행자 또는 자전거 타는 사람이 착용하는 역반사 안전복, 자전거 상의 역반사체, 다른 차량의 역반사 부분 등)를 향해 지향될 때 가장 두드러질 수 있다(또는 심지어 그 때에만 존재할 수 있다). 고스트 빔(822)이 초기에 주 신호(824)의 강도의 분율인 강도를 가질 수 있기 때문에, LIDAR 시스템(800)의 광 검출기에서 반사 고스트 빔(822)의 강도가 반사 주 신호(824)의 강도와 대략 동등하거나 그보다 커야 하는 경우 고스트 빔(822)의 고강도 반사가 필요할 수 있다. 이에 따라, 일부 실시예에서, 고스트 빔(822)과 주 신호(824) 둘 모두가 역반사 대상체로부터 반사되는 경우, 반사 주 신호(824)의 강도는 LIDAR 시스템(800)의 광 검출기에 의해 검출될 때 여전히 상당히 더 클 수 있다. 따라서, 주 신호(824)와 고스트 빔(822)이 역반사 대상체로부터 반사되는 일부 상황에서(예를 들면, 연관된 제어기가 검출된 최고 강도 복귀에 기초하여 거리를 결정하는지 또는 검출된 임계 강도 초과의 첫 번째 복귀에 기초하여 거리를 결정하는지에 따라), 오류 있는 거리 검출이 발생하지 않을 수 있다.
도 8d 및 도 8e의 고스트 빔(822)의 결과로서의 예시적인 오류 있는 거리 검출이 도 8f의 그래프(860)에 예시되어 있다. 도 8f에서, 진행 방향을 따라 2개의 결정된 거리가 도시되어 있다. 일부 실시예에서, 결정된 거리는 포인트 클라우드에 사용하기 위한 에지 라인(844)의 결정된 위치에 대응할 수 있다. 결정된 거리는 LIDAR 시스템(800)에 대한 제1 결정된 거리(862) 및 제2 결정된 거리(864)를 포함할 수 있다. 예시된 바와 같이, 제1 결정된 거리(862)는 제2 결정된 거리(864)보다 클 수 있다. 게다가, 제1 결정된 거리(862)는 고스트 빔(822)이 차선 마커(842)를 향해 지향되어 있는 경우의 진행 방향을 따라 있는 위치에 대응할 수 있고, 제2 결정된 거리(864)는 고스트 빔(822)이 도로 표면(840)의 장식되지 않은 부분을 향해 지향되는 경우의 진행 방향을 따라 있는 위치에 대응할 수 있다. 위에서 기술된 바와 같이, 일부 실시예에서, 고스트 빔(822)이 역반사 대상체(예를 들면, 차선 마커(842))로 지향될 때에만, 반사 고스트 빔(822)의 강도가 반사 주 신호(824)의 강도에 필적할 만큼 충분히 높을 수 있다. 이에 따라, 결정된 거리는 고스트 빔(822)이 차선 마커(842)로부터 반사될 때만 잘못된 것일 수 있다(즉, 에지 라인(844)까지의 거리는 제2 결정된 거리(864)와 실제로 동일할 수 있으며, 이는 결정된 거리가 제1 결정된 거리(862)일 때에만 결정된 거리가 잘못된 것임을 의미한다.
도 8f에 예시된 바와 같이, 고스트 빔(822)이 차선 마커들(842) 중 하나를 향해 지향되는 것과 도로 표면(840)의 장식되지 않은 섹션을 향해 지향되는 것 사이를 왔다갔다할 때 결정된 거리는 주기적일 수 있다. LIDAR 시스템(800)(예를 들면, 연관된 자율 주행 차량)이 진행 방향을 따라 이동할 때 고스트 빔(822)은 전자와 후자 사이를 왔다갔다할 수 있다. 예시된 바와 같이, 그래프(860)에서 결정된 거리의 주기, 제1 결정된 거리(862)의 값, 제2 결정된 거리(864)의 값, 각각의 제1 결정된 거리(862) 섹션의 폭, 및 각각의 제2 결정된 거리(864) 세션의 폭은 일정하다. 도 8f에 예시된 진행 방향에 대한 결정된 거리의 그래프(860)는 단지 예로서 제시된다. 도 8f에서의 예시는 차선 마커(842)가 도로 표면(840)을 따라 균등하게 이격되고, LIDAR 시스템(800)이 일정한 속도로 진행하며, 도로 표면(840)(차선 마커(842) 아래 및 에지 라인(844) 아래 둘 모두에 있음)이 평평한 실시예에서의 실제 검출에 대응할 수 있다. 그렇지만, LIDAR 시스템(800)이 진행하는 동안 가속 또는 감속하거나, 차선 마커(842)가 불균등하게 이격되거나, 또는 도로 표면(840)이 평평하지 않은 경우, 그래프(860)는 예시된 것과 상이하게 보일 수 있다.
잘못 결정된 거리에 추가적으로 또는 그 대신에, 고스트 빔(예를 들면, 도 8c 내지 도 8e에 예시된 고스트 빔(822))은 LIDAR 시스템(800)의 광 검출기에 의한 다른 스퓨리어스 검출을 결과할 수 있다. 일부 실시예에서, 고스트 빔은 주어진 주 신호(824)에 대한 다수의 복귀를 결과할 수 있다. 예를 들어, LIDAR 시스템(800)이 주어진 주파수로 펄싱되는 변조된 주 신호를 방출하는 경우, LIDAR 시스템(800)은 (고스트 빔이 없는 경우) 각각의 주 신호 펄스에 대한 단일 복귀 신호를 평가하는 것에 의해 대상체 검출을 수행할 수 있다. 그렇지만, 단일 주 신호 펄스의 결과로서, 다수의 복귀가 생성되고 결과적으로 검출되는 경우, 추가적인 검출 오류가 결과할 수 있다. 예를 들어, 다수의 복귀를 사용하여 생성되는 포인트 클라우드 데이터는 고스트 빔의 결과로서 플로팅하는 대상체(예를 들면, 플로팅하는 차선 마커)를 갖는 것처럼 보일 수 있다. 일부 실시예에서, 그러한 플로팅하는 대상체가 생성된 포인트 클라우드에서 간헐적으로 나타날 수 있다.
고스트 빔(812/822) 및 잘못 결정된 거리와 관련하여 위에서 설명된 잠재적 문제를 완화시키는 예시적인 기술이 도 9a 내지 도 10a에 제시되어 있다. 도 9a는 고스트 빔으로부터의 잘못된 거리 검출을 완화시키기 위한 제1 기술을 예시한다. 도 9a는 예시적인 실시예에 따른, LIDAR 시스템(900)의 예시이다. LIDAR 시스템(900)은, 예를 들어, 도 8a 내지 도 8c에 예시된 LIDAR 시스템(800)과 유사할 수 있다. 위에서 기술된 LIDAR 시스템(800)에서와 같이, 도 9a에 예시된 LIDAR 시스템(900)은 도 2a에 예시된 광학 시스템(200)의 컴포넌트(예를 들면, 미러 요소(220), 광 방출기(210), 베이스(230), 빔 차단부(240) 등)는 물론, 광 검출기(예를 들면, 도 6에 예시된 광 검출기(540)와 유사하고 도 9a에 예시된 광 방출기(210) 및 베이스(230) 후방에 있어 이들에 의해 폐색되도록 하는 z 위치에 위치된 광 검출기)를 포함할 수 있다. 게다가, 도 9a에서의 LIDAR 시스템(900)은 광학 창(802/804)을 포함할 수 있다. 그렇지만, 도 8a 내지 도 8c에서의 LIDAR 시스템(800)과 달리, LIDAR 시스템(900)에서의 광학 창은 미러 요소(220)에 대해 각을 이루고 있을 수 있다.
일부 실시예에서, LIDAR 시스템(900)은 제1 각진(angled) 광학 창(902) 및 제2 각진 광학 창(904)를 포함할 수 있다. 스퓨리어스 거리 결정을 결과하는 고스트 빔을 감소시키거나 제거하는 하나의 기술은, 도 9a에 예시된 바와 같이, 광학 창들 중 하나 또는 둘 모두를 미러 요소(220)에 대해 각을 이루게 하는 것을 포함할 수 있다. 다중 패싯 미러(즉, 미러 요소(220))가 제2 축(224)을 중심으로 회전할 때 복수의 반사 패싯(즉, 반사 표면(222a/222b/222c))의 각각의 반사 패싯(즉, 반사 표면)이 각진 광학 창(902/904)에 평행하지 않게 유지되도록 제1 각진 광학 창(902) 및 제2 각진 광학 창(904)은 각을 이루고 있을 수 있다. 다양한 실시예에서, 각진 광학 창(902/904)에 "평행하지 않게" 유지되는 것은, 제2 축(224)을 중심으로 한 미러 요소(220)의 각각의 각도 위치에 대해, 복수의 반사 패싯이 각진 광학 창(902/904)에 대해 적어도 0.01°, 0.1°, 1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 9°, 10° 등의 각도를 갖도록 하는 각진 광학 창(902/904)의 각도(예를 들면, 9.5° 내지 10.5°의 각도와 같은, 5° 내지 15°의 각도)를 포함할 수 있다. 환언하면, 각진 광학 창들(902/904)은 각각 다중 패싯 미러(즉, 미러 요소(220))의 회전 평면에 대해 평행하지 않을(예를 들면, 9.5° 내지 10.5°의 각도와 같은, 5° 내지 15°의 각도일) 수 있다. 다중 패싯 미러의 회전 평면에 대해 평행하지 않은 것은 각진 광학 창(902/904)이 다중 패싯 미러의 회전 평면 내에 놓인 임의의 축을 중심으로 회전되는 것을 포함할 수 있다. 예를 들어, 도 9a에 예시된 바와 같이, 다중 패싯 미러의 회전 평면은 x-y 평면이다. 따라서, 각진 광학 창(902/904)이 회전 평면에 대해 평행하지 않은 것은 x 축(또는 x 축에 평행한 축)을 중심으로 한 각진 광학 창(902/904)의 회전, y 축(또는 y 축에 평행한 축)을 중심으로 한 회전, 또는 x 축과 y 축의 중첩(superposition)(또는 x 축과 y 축에, 제각기, 평행한 축들의 중첩)을 중심으로 한 회전을 포함할 수 있다. 게다가, 일부 실시예에서, 다중 패싯 미러가 제2 축(224)을 중심으로 회전할 때, 다중 패싯 미러의 모든 각도에 대해, 각진 광학 창(902/904)이 복수의 반사 패싯에 평행하지 않게 유지될 수 있다. 그렇지만, 다른 실시예에서, 다중 패싯 미러가 제2 축(224)을 중심으로 회전할 때, 다중 패싯 미러의 일부 각도들에 대해서만, 각진 광학 창(902/904)이 복수의 반사 패싯에 평행하지 않게 유지될 수 있다.
예시된 바와 같이, 일부 실시예에서, 제1 각진 광학 창(902) 및 제2 각진 광학 창(904)은 각진 광학 창(902/904)이 각자의 축을 중심으로 회전하도록 위치될 수 있다. 일부 실시예에서, 그러한 축은 제1 축(214)에 평행할 수 있다(예를 들면, 각진 광학 창(902/904)이 예시된 x-z 평면에 수직인 축을 중심으로 회전될 수 있다). 일부 실시예에서, 각진 광학 창(902/904)은 (예를 들면, 제어기에 의해 제어되는 스테이지를 사용하여) 이동 가능/재배향 가능/회전 가능할 수 있다.
광학 창들 중 하나 또는 둘 모두를 각을 이루게 하는 것은 고스트 빔이 환경으로 전송되기 전에 고스트 빔을 감쇠시키거나 제거할 수 있다. 예를 들어, 반사 광(216)이 제1 각진 광학 창(902)로부터 반사될 때, 반사의 강도(즉, 고스트 빔의 강도)는 반사 광(216)이 각지지 않은 광학 창(예를 들면, 도 8a 내지 도 8c에 예시된 제1 광학 창(802))으로부터 반사된 경우의 반사의 강도보다 작을 수 있다. 추가적으로 또는 대안적으로, 반사 광(216)이 제1 각진 광학 창(902)으로부터 반사된 결과로서 생성되는 임의의 고스트 빔은 (도 8c에 예시된 바와 같이, 제2 광학 창(804)을 통해 LIDAR 시스템 주위의 환경으로 지향되지 않고) LIDAR 시스템(900)의 비반사 내부 부분을 향해 지향되어 이에 의해 흡수될 수 있다. 고스트 빔의 강도를 감소시키고/시키거나 고스트 빔을 방향 전환시키는 것에 추가적으로, 각진 광학 창(예를 들면, 제1 각진 광학 창(902))의 사용은 LIDAR 시스템(900)을 둘러싼 환경으로의 반사 광(216)의 전송을 개선시킬 수 있다(즉, 도 8b 및 도 8c에 예시된 주 신호(814/824)와 유사하게, 주 신호의 강도를 증가시킬 수 있다). LIDAR 시스템(900)을 둘러싼 환경으로의 반사 광(216)의 전송을 향상시키는 것에 의해, 주 신호 대 고스트 신호의 강도의 비가 (예를 들면, 도 8b 및 도 8c의 LIDAR 시스템(800)에서 발생할 동일한 비와 비교할 때) 개선될 수 있어, 이에 의해 (예를 들면, LIDAR 시스템(900) 및/또는 LIDAR 시스템(900)의 광 검출기의) 제어기가 잘못하여 장면 내의 타깃 대상체까지의 거리를 결정하기 위해 주 신호가 아닌 고스트 신호를 사용할 가능성을 감소시킬 수 있다.
일부 실시예에서, 제1 각진 광학 창(902) 및 제2 각진 광학 창(904)이 각을 이루고 있는 정도는 약 4° 내지 약 6°일 수 있다(각도는, 예를 들어, 도 8a에 예시된, 0°에 대해 측정됨). 다른 각도(예를 들면, 약 9.5° 내지 약 10.5°와 같은, 약 5° 내지 약 15°)가 또한 가능하다. 예를 들어, 각진 광학 창(902/904)을 제조하는 데 사용되는 재료의 임계각보다 작은 임의의 각도(즉, 각진 광학 창(902/904)에서의 반사 광(216)의 입사각에 기초하여 광학 창/외부 환경 계면에서 내부 전반사가 발생하기 시작하는 각도보다 작은 임의의 각도)가 사용될 수 있다. 일부 실시예(예를 들면, 방출 광(212) 및/또는 반사 광(216)의 편광이 미리 결정된 실시예)에서, 제1 각진 광학 창(902)의 각도 및/또는 제2 각진 광학 창(904)의 각도는 반사 광(216)의 투과를 최대화하기 위해 광학 창/외부 환경 계면의 브루스터 각으로 설정될 수 있다.
도 9a에 예시된 바와 같이, 제1 각진 광학 창(902)과 제2 각진 광학 창(904)은 서로 실질적으로 평행할 수 있다(즉, 제1 각진 광학 창(902)의 내부 표면에 수직인 벡터는 제2 각진 광학 창(904)의 내부 표면에 수직인 벡터에 거의 평행할 수 있다). 다양한 실시예에서, 서로 "실질적으로 평행한" 2개의 각진 광학 창은 정확히 평행한 것으로부터 0.01°, 0.1°, 1°, 2° 또는 3° 이내에 있는 광학 창에 대응할 수 있다.
대안적인 실시예에서, 광학 창들은 서로 실질적으로 평행하지 않도록 각을 이루고 있을 수 있다. 예를 들어, 도 9b는 실질적으로 평행하지 않은 광학 창들을 갖는 LIDAR 시스템(910)의 예시이다. 도 9b의 LIDAR 시스템(910)에서의 광학 창(912/914)이 도 9a의 LIDAR 시스템(900)에서의 광학 창(902/904)과 동일한 방식으로 배향되지 않는다는 점을 제외하고는, 도 9b에 예시된 LIDAR 시스템(910)은 도 9a를 참조하여 예시되고 설명된 LIDAR 시스템(900)과 동일할 수 있다.
도 9b에 예시된 바와 같이, 광학 창(912/914)은 서로 반대로 각을 이루고 있을 수 있다(예를 들면, 제1 각진 광학 창(912)은 미러 요소(220)에 대해 5°로 각을 이루고 있을 수 있는 반면, 제2 각진 광학 창(914)은 미러 요소(220)에 대해 -5°로 각을 이루고 있을 수 있다). 다양한 실시예에서, 광학 창(912/914)은 미러 요소(220)에 대해, 제각기, +1°/-1°, -1°/+1°, +2°/-2°, -2°/+2°, +3°/-3°, -3°/+3°, +4°/-4°, -4°/+4°, +5°/-5°, -5°/+5°, +6°/-6°, -6°/+6°, +7°/-7°, -7°/+7°, +8°/-8°, -8°/+8°, +9°/-9°, -9°/+9°, +10°/-10°, 또는 -10°/+10°의 각도로 배향될 수 있다. 다른 각도 배향이 또한 가능하다.
다른 실시예에서, LIDAR 시스템에서의 광학 창이 비대칭 각도 배향을 가질 수 있다. 예를 들어, 하나의 광학 창은 미러 요소(220)에 대해 약 5°로 각을 이루고 있을 수 있는 반면, 다른 광학 창은 미러 요소(220)에 대해 약 -3°로 각을 이루고 있을 수 있다. 다른 예에서, 하나의 광학 창은 미러 요소(220)에 대해 약 6°로 각을 이루고 있을 수 있는 반면, 다른 광학 창은 미러 요소(220)에 대해 약 4°로 각을 이루고 있을 수 있다. 또 다른 예에서, 하나의 광학 창은 미러 요소(220)에 대해 -7°로 각을 이루고 있을 수 있는 반면, 다른 광학 창은 미러 요소(220)에 대해 약 -3°로 각을 이루고 있을 수 있다. LIDAR 시스템 내의 광학 창에 대한 대안적인 각도 배향 세트가 또한 가능하며 본 명세서에서 고려된다. 실질적으로 평행하지 않은 광학 창 배열을 사용하는 것은 내부 반사를 더욱 감소시켜, 이에 의해 생성된 고스트 빔의 개수를 감소시킬 수 있다.
각진 광학 창에 추가적으로 또는 그 대신에, LIDAR 시스템 내에서의 내부 반사의 전파를 방지하거나 감쇠시켜, 이에 의해 고스트 신호가 검출되는 것을 방지하고/하거나 고스트 신호가 잘못된 거리 결정을 유발하는 것을 방지하기 위해 LIDAR 시스템 내에서 광 흡수 구조체가 사용될 수 있다. LIDAR 시스템에서 사용되는 예시적인 광 흡수 구조체는 도 7a 및 도 7b에 예시된 스핀들(512)에 있는 배플(702)을 포함할 수 있다.
광 흡수 구조체의 다른 예는 수직으로 배향된 배플을 포함한다. 수직으로 배향된 배플(922)을 포함하는 예시적인 LIDAR 시스템(920)이 도 9c에 예시되어 있다. 도 9c에 예시된 LIDAR 시스템(920)은 도 8a 내지 도 8c를 참조하여 예시되고 기술된 LIDAR 시스템(800)과 동일할 수 있으며, 수직으로 배향된 배플(922)이 추가되어 있다. 예시된 바와 같이, 수직으로 배향된 배플(922)은 y-z 평면에 평행하고 광 방출기(210)에 인접하게 위치될 수 있다(예를 들면, 방출 광(212)은 미러 요소(220)에 도달하도록 허용되지만 제1 광학 창(802)으로부터 반사된 고스트 빔(822)은 수직으로 배향된 배플(922)에 의해 흡수되도록 광 방출기(210)의 측면에 배치됨).
수직으로 배향된 배플(922)은 흡수성일 수 있다(예를 들면, 수직으로 배향된 배플(922)은 광 방출기(210)에 의해 방출되는 파장의 광을 흡수하도록 특별히 설계된 재료를 포함할 수 있다). 예를 들어, 수직으로 배향된 배플(922)은 흑화 처리된 강철로 제조된 표면을 포함할 수 있다. 추가적으로 또는 대안적으로, 수직으로 배향된 배플(922)은 플라스틱, 알루미늄, 강철 또는 BoPET로 제조될 수 있다. 일부 실시예에서, 추가적인 또는 대안적인 흡수성 배플이 LIDAR 시스템(920)에 포함될 수 있다. 이에 따라, 2개보다 많거나 적은 흡수성 배플(922)이 포함될 수 있다(예를 들면, 1개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개 등의 흡수성 배플이 LIDAR 시스템(920)에 포함될 수 있다).
추가적으로 또는 대안적으로, 내부 반사를 흡수/고스트 빔을 감쇠시키기 위한 LIDAR 시스템(920) 내의 배플의 다른 위치가 또한 가능하다. 예를 들어, 하나 이상의 배플이 LIDAR 시스템(920)의 상단 근처에서 y-z 평면에 평행하게 위치할 수 있다(예를 들면, 미러 요소(220)와 제1 광학 창(802) 사이의 x 위치에 및 제2 축(224)보다 큰 y 위치에 위치되거나 또는 미러 요소(220)와 제2 광학 창(804) 사이의 x 위치에 및 제2 축(224)보다 큰 y 위치에 위치됨). 추가적으로 또는 대안적으로, 2개의 흡수성 배플이 수직으로 배향되고 제1 광학 창(802)에 실질적으로 평행하게 위치되며 반사 광(216)의 측면에 배치될 수 있다(즉, 하나의 흡수성 배플은 반사 광(216)의 z 위치보다 작은 z 위치에 위치되고 다른 흡수성 배플은 반사 광(216)의 z 위치보다 큰 z 위치에 위치됨).
추가적으로, 일부 실시예에서, 각자의 광학 창에서의 반사의 결과로서 생성되는 고스트 빔이 고스트 빔을 흡수하거나 산란시키는 배플을 향해 지향되도록, 미러 요소(220)에 대한 광학 창들(예를 들면, 제1 광학 창(802) 및/또는 제2 광학 창(804)) 중 하나 이상의 각도 배향이 선택될 수 있다. 그러한 흡수 또는 산란은 각자의 고스트 빔이 장면 내의 대상체로 지향되고 그로부터 반사되는 것을 방지할 수 있다. 그러한 흡수성/산란성(scattering) 배플들은 각각, 각자의 배플이 광 방출기(210)에 의해 미러 요소(820)를 향해 방출되는 빔(즉, 방출 광(212)) 또는 미러 요소(820)에 의해 반사되어 장면을 향해 지향되는 빔(즉, 반사 광(216))을 방해하지 않도록, x-y 평면에 대해 실질적으로 평행할 수 있다(예를 들면, x-y 평면과 평행한 것으로부터 1°, 5°, 10° 또는 15° 이내에 있다). 환언하면, 각각의 배플은 배플이 LIDAR 시스템(920)에 의해 전송되는 주 신호(824)를 방해하지 않도록 배향될 수 있다. 일부 실시예에서, 그러한 흡수성/산란성 배플이 베이스(230) 또는 미러 요소(220)에 대해 고정될 수 있다. 게다가, 그러한 흡수성/산란성 배플들은 방출 광(212) 및/또는 반사 광(216)의 광학 축의 양측에 배치될 수 있다. 추가적으로 또는 대안적으로, 그러한 흡수성/산란성 배플이 수신 빔 경로와 송신 빔 경로 사이에 배치될 수 있다. 예로서, 광 배플(550)은 베이스(230)에 대해 고정되고 수신 빔 경로와 송신 빔 경로 사이에 있으며, 배플(702)은 미러 요소(220)에 대해 고정되고 빔 경로의 양측에 배치된다(따라서 배플(702)은, 광 방출기(210)와 같은, LIDAR 시스템(920) 내의 다른 요소에 대해 회전한다). 다양한 실시예에서, 미러 요소(220)는 흡수성/산란성 배플(예를 들면, 배플(702))에 대해 고정될 수 있거나, 또는 흡수성/산란성 배플(예를 들면, 광 배플(550))에 대해 움직일 수 있다(예를 들면, 회전할 수 있다). 미러 요소(220)에 대한 흡수성/산란성 배플의 다른 배향, 위치 및 움직임이 또한 가능하며 본 명세서에서 고려된다.
광학 창의 내부 측면(예를 들면, 제1 광학 창(802)의 내부 측면 및/또는 제2 광학 창(804)의 내부 측면)에서의 반사를 완화시키기 위한 추가적인 기술은 하나 이상의 반사 방지 코팅의 사용을 포함할 수 있다. 도 10a는 LIDAR 시스템(1000) 내에서의 내부 반사를 감쇠시키거나 제거하기 위해 반사 방지 코팅(1002)을 포함할 수 있는, 예시적인 실시예에 따른, LIDAR 시스템(1000)의 예시이다.
도 10a에 예시된 바와 같이, LIDAR 시스템(1000)은 제1 광학 창(802) 및 제2 광학 창(804)의 내부 측면 상에 반사 방지 코팅(1002)을 포함할 수 있다. 다양한 실시예에서, 반사 방지 코팅(1002)은 광학 창(802/804)의 내부 측면의 부분 또는 광학 창(802/804)의 내부 측면 전체를 덮을 수 있다. 게다가, 일부 실시예에서, 제1 광학 창(802)의 내부 측면 상의 반사 방지 코팅(1002)은 제2 광학 창(804)의 내부 측면 상의 반사 방지 코팅(1002)과 상이한 크기일 수 있다. 일부 실시예에서, 제1 광학 창(802) 및 제2 광학 창(804)의 내부 측면 상의 반사 방지 코팅(1002)에 추가적으로 또는 그 대신에, LIDAR 시스템(1000)은 제1 광학 창(802) 및/또는 제2 광학 창(804)의 외부 측면 상의 반사 방지 코팅을 포함할 수 있다. 반사 방지 코팅(1002)은 제1 광학 창(802) 및 제2 광학 창(804)의 내부 측면에서의 반사 광(216)의 내부 반사를 감소시키도록 설계될 수 있다. (예를 들면, 도 8a 내지 도 8c에 예시된 LIDAR 시스템(800)에서와 같은) 반사 방지 코팅(1002)이 없는 일부 실시예에서, 제1 광학 창(802) 및 제2 광학 창(804)에서의 내부 반사는 (예를 들면, 제1 반사 표면(222a) 및 제1 광학 창(802)과의 입사각에 따라) 입사 광 신호의 강도의 약 4% 내지 약 100%의 범위일 수 있다. 반대로, 반사 방지 코팅(1002)(예를 들면, 도 10a에 예시된 LIDAR 시스템(1000))을 갖는 다양한 실시예에서, 제1 광학 창(802) 및 제2 광학 창(804)에서의 내부 반사는 (예를 들면, 작은 입사각의 경우) 입사 광 신호의 강도의 약 2% 미만, (예를 들면, 중간 입사각의 경우) 입사 광 신호의 강도의 2% 내지 10%, 및/또는 (예를 들면, 큰 입사각의 경우) 입사 광 신호의 강도의 10% 내지 30%일 수 있다. 게다가, 일부 실시예에서, 반사 방지 코팅(1002)은 큰 입사각(예를 들면, 약 30° 초과, 약 45° 초과, 약 60° 초과 또는 약 75° 초과의 입사각)에 대한 반사를 감소시키도록 설계될 수 있다. 고스트 빔의 강도를 감소시키는 것에 추가적으로, 반사 방지 코팅(1002)을 포함시키는 것은 LIDAR 시스템(1000)을 둘러싼 환경으로의 반사 광(216)의 전송을 개선시킬 수 있다(즉, 도 8b 및 도 8c에 예시된 주 신호(814/824)와 유사하게, 주 신호의 강도를 증가시킬 수 있다). LIDAR 시스템(1000)을 둘러싼 환경으로의 주 신호의 전송을 향상시키는 것에 의해, 주 신호 대 고스트 신호의 강도의 비가 (예를 들면, 도 8b 및 도 8c의 LIDAR 시스템(800)에서 발생할 동일한 비와 비교할 때) 개선될 수 있어, 이에 의해 (예를 들면, LIDAR 시스템(1000) 및/또는 LIDAR 시스템(1000)의 광 검출기의) 제어기가 잘못하여 장면 내의 타깃 대상체까지의 거리를 결정하기 위해 주 신호가 아닌 고스트 신호를 사용할 가능성을 감소시킬 수 있다.
도 9a 내지 도 10a를 참조하여 설명된 기술을 사용하는 것에 추가적으로 또는 그 대신에, 고스트 빔을 감쇠 및/또는 제거하기 위해(예를 들면, 이에 의해 고스트 신호로부터 결과되는 잘못된 거리 검출을 제거하기 위해) 대안적인 기술이 사용될 수 있다. 예를 들어, 하나의 대안적인 기술은 LIDAR 시스템에서의 광학 창의 개수를 감소시키는 것(예를 들면, 도 9c에 예시된 제2 광학 창(804)을 제거하는 것)을 포함할 수 있다. 광학 창의 개수를 감소시키는 것은 고스트 빔이 취할 수 있는 LIDAR 시스템의 내부로부터 외부 환경으로의 경로의 개수를 감소시킬 수 있다. 이에 따라, 고스트 빔이 LIDAR 시스템을 둘러싼 환경으로 전파되는 것이 방지될 수 있다(예를 들면, 도 8c에 예시된 고스트 빔(822)이 LIDAR 시스템(800)을 둘러싼 환경으로 전송되지 않을 것이고, 결과적으로 LIDAR 시스템(800)의 광 검출기에 의해 검출되지 않을 것이다). 그렇지만, 광학 창들 중 하나 이상을 제거하는 것은 베이스(230)의 주어진 각도 위치에 대한 광 방출기(210)의 (예를 들면, 도 2c에 예시된 바와 같은) 방출 각도 범위(268)를 제한할 수 있다.
도 10b는 예시적인 실시예에 따른, LIDAR 시스템(1010)의 예시이다. LIDAR 시스템(1010)은, 예를 들어, 도 8a 내지 도 8c에 예시된 LIDAR 시스템(800)과 유사할 수 있다. 위에서 기술된 LIDAR 시스템(800)에서와 같이, 도 10b에 예시된 LIDAR 시스템(1010)은 도 2a에 예시된 광학 시스템(200)의 컴포넌트(예를 들면, 미러 요소(220), 광 방출기(210), 베이스(230), 빔 차단부(240) 등)는 물론, 광 검출기(예를 들면, 도 6에 예시된 광 검출기(540)와 유사하고 도 10b에 예시된 광 방출기(210) 및 베이스(230) 후방에 있어 이들에 의해 폐색되도록 하는 z 위치에 위치된 광 검출기)를 포함할 수 있다. 게다가, 도 10b에서의 LIDAR 시스템(1010)은 광학 창(802/804)을 포함할 수 있다. 그렇지만, 도 8a 내지 도 8c에서의 LIDAR 시스템(800)과 달리, LIDAR 시스템(1010)은 광학 필터(1012)를 또한 포함할 수 있다. 광학 필터(1012)는 각자의 광학 창(802/804)의 외부 측면의 일 부분을 덮을 수 있다. 일부 실시예에서, 광학 필터(1012)는 각자의 광학 창(802/804)의 외부 측면 전체를 덮을 수 있다. 게다가, 일부 실시예에서, 제1 광학 창(802)의 외부 측면 상의 광학 필터(1012)는 제2 광학 창(804)의 외부 측면 상의 광학 필터(1012)와 상이한 크기일 수 있다. 추가적으로 또는 대안적으로, 일부 실시예는 각자의 광학 창(802/804)의 내부 측면의 적어도 일 부분을 덮는 광학 필터를 포함할 수 있다.
도 10b에 예시된 광학 필터(1012)는 LIDAR 시스템(1010)에 들어가는 주변 광(예를 들면, 광 방출기(210)에 의해 방출되는 파장 이외의 파장의 광)을 감소시키기 위해 사용될 수 있다. 일부 실시예에서, 주변 광은 LIDAR 시스템(1010) 내의 컴포넌트의 열 팽창(예를 들면, 미러 요소(220), 광 방출기(210), 광 검출기 등의 열 팽창)을 야기할 수 있다. 열 팽창은 측정치의 부정확성을 유발할 수 있다. 예를 들어, 열 팽창의 결과로서 LIDAR 시스템(1010) 내의 하나 이상의 광학 컴포넌트가 오정렬될 수 있다(예를 들면, 광 방출기(210)가 미러 요소(220)와 더 이상 정렬되지 않거나 또는 미러 요소(220)가 광 검출기 및/또는 광학 창(802/804)과 더 이상 정렬되지 않는다). 이것은 LIDAR 시스템(1010)의 다양한 컴포넌트가 상이한 재료로 제조되는 경우 특히 부정확한 결과를 산출할 수 있다(이에 의해 상이한 열 팽창 계수를 갖는 것은 가열의 결과로서 비합치 팽창(incongruent expansion)을 결과함).
다른 유해한 열 효과가 또한 주변 광으로 인해 야기될 수 있다. 예를 들어, LIDAR 시스템(1010) 내의 광 검출기의 가열은 (예를 들면, 광 검출기가 하나 이상의 SiPM, APD 또는 다른 반도체 디바이스를 포함하는 경우) 광 검출기의 광학 감도의 수정을 결과할 수 있다. 추가적으로 또는 대안적으로, 광 방출기(210)의 가열은 (예를 들면, 광 방출기(210)가 레이저 다이오드인 경우) 광 방출기(210)의 이득 매질 및/또는 공진기의 열 드리프트를 결과할 수 있으며, 이는 차례로 광 방출기(210)의 출력 파장의 변화를 유발할 수 있다. (예를 들면, 대응하는 광 검출기가 상이한 파장에 민감하도록 튜닝되기 때문에 및/또는, 광학 필터와 같은, LIDAR 시스템(1010)의 하나 이상의 광학 컴포넌트가 광 방출기(210)에 의해 방출되는 원래 파장 이외의 파장, 즉 임의의 열 변화 이전에 방출되는 광 방출기(210)의 파장을 필터링 제거하도록 튜닝되기 때문에) 광 방출기(210) 파장의 변화는 부정확한 검출을 유발할 수 있다. 주변 광이 고강도 태양광을 포함하는 경우 전술한 문제들 전부가 특히 해로울 수 있다.
적어도 전술한 이유들로 인해, 일부 실시예는 LIDAR 시스템에 들어가는 주변 광의 양을 완화시키기 위한 하나 이상의 기술을 포함할 수 있다. 예를 들어, 도 10b에 예시된 LIDAR 시스템(1010)은 광학 필터(1012)를 포함한다. 광학 필터(1012)는 LIDAR 시스템(1010)에 들어가는 주변 광을 감소시키는 데 사용되는 다양한 유형의 필터(예를 들면, 편광 필터, 이색성 필터, 중성 밀도 필터(neutral-density filter) 등)를 포함할 수 있다. 예시적인 실시예에서, 파장에 대한 광학 필터들(1012) 중 하나 이상의 반사율은 도 11을 참조하여 예시되고 기술된 반사율 플롯에 대응할 수 있다.
도 11은 예시적인 실시예에 따른, LIDAR 시스템에 사용되는 필터(예를 들면, 도 10b에 예시된 광학 필터들(1012) 중 하나)의 반사율의 예시이다. 이 예에서, 필터는 하나 이상의 이색성 필터를 포함한다. 예시된 바와 같이, 필터의 반사율은 약 400 나노미터 내지 약 900 나노미터의 파장에 대해 0이 아닐 수 있다. 이에 따라, 필터는 가시 스펙트럼(예를 들면, 약 400 나노미터 내지 약 700 나노미터의 파장) 내의 파장의 광의 투과를 감소시킬 수 있다. 일부 실시예에서, 가시 파장들에 걸친 평균 반사율은 약 40% 내지 약 60%(예를 들면, 약 50% 또는 적어도 약 50%)일 수 있다. 대안적인 실시예에서, 가시 파장들에 걸친 평균 반사율은 다른 값(예를 들면, 95% 초과, 90% 초과, 85% 초과, 80% 초과, 75% 초과, 70% 초과, 65% 초과, 60% 초과, 55% 초과, 50% 초과, 45% 초과, 40% 초과, 35% 초과, 30% 초과, 25% 초과, 20% 초과, 15% 초과, 10% 초과 또는 5% 초과)을 가질 수 있다. 추가적으로, 대안적인 실시예에서, 가시 스펙트럼에 걸친 반사율은 실질적으로 일정(예를 들면, 예시된 것보다 덜 가변적)할 수 있다. 다양한 실시예에서, 가시 스펙트럼에 걸친 "실질적으로 일정한" 반사율은 가시 스펙트럼 전체에 걸쳐 서로로부터 0.1%, 1%, 2%, 3%, 4%, 5%, 10%, 15% 또는 20% 이내에 있는 반사율만을 포함할 수 있다. 가시 스펙트럼에 걸쳐 실질적으로 일정한 반사율을 갖는 실시예에서, 광학 필터(1012)는 가시 스펙트럼 내의 광에 대해 지각적으로 틴팅되지 않은 미러(perceptually un-tinted mirror)로서 작용할 수 있다(예를 들면, 광학 필터(1012)는 LIDAR 시스템 외부의 관측자에게 표준 미러로 보일 수 있다). 지각적으로 틴팅되지 않은 미러를 달성하는 다른 기술(예를 들면, 가시 스펙트럼에 걸쳐 실질적으로 일정하지는 않지만 관측자의 눈에 있는 색 수용체(color receptor)에 기초하여 여전히 틴팅되지 않은 것으로 보이는 반사율)이 또한 가능하다. LIDAR 시스템 내의 광학 필터(예를 들면, 도 10b에 예시된 광학 필터(1012))의 사양이 각자의 광학 필터를 제조하는 데 사용되는 유전체 층의 개수에 의존할 수 있음이 이해된다. 예를 들어, 가시 스펙트럼에 걸친 반사율의 값과 가시 스펙트럼에 걸친 반사율 값의 변동량은 유전체 층의 개수에 의존할 수 있다. 따라서, 광학 필터의 스펙트럼 반사율을 평탄화하기 위해 또는 스펙트럼 내의 임의의 주어진 반사율 값을 증가시키기 위해, 추가적인 유전체 층이 광학 필터에 포함될 수 있다. 추가적인 유전체 층을 추가하는 것은 광학 필터를 제조함에 있어서의 추가적인 시간 및/또는 어려움에 대응할 수 있다.
게다가, 도 11에서의 플롯이 생성되는 필터는 LIDAR 시스템의 광 방출기에 의해 방출되는 광의 파장(즉, 레이저 방출 파장)에 대응하는 파장에 대해 높은 투과율(예를 들면, 75% 초과, 80% 초과, 85% 초과, 90% 초과, 95% 초과, 99% 초과 또는 99.9% 초과)을 갖도록 설계될 수 있다. 예시된 바와 같이, 약 905 nm의 파장(그러나 다른 레이저 방출 파장이 가능함)에 대해 이것은 낮은 반사율에 대응할 수 있다. 일부 실시예에서, 필터는 가시 스펙트럼 내의 모든 파장의 투과를 거의 동일하게 감소시키는(그러나, 예를 들면, 적외선에서의 파장을 감쇠 없이 통과시키는) 하나 이상의 가시 스펙트럼 중성 밀도 필터를 포함할 수 있다.
III. 예시적인 프로세스
도 12는 예시적인 실시예에 따른, 방법(1200)의 플로차트 다이어그램이다. 다양한 실시예에서, 방법(1200)의 하나 이상의 블록은 LIDAR 시스템에 의해(예를 들면, 도 9a 내지 도 10a에 예시된 LIDAR 시스템들(900/910/920/1000) 또는 본 명세서에서 기술되거나 고려되는 다른 LIDAR 시스템들 중 임의의 것에 의해) 수행될 수 있다. 일부 실시예에서, 방법(1200)의 블록들 중 하나 이상은 컴퓨팅 디바이스(예를 들면, LIDAR 시스템의 하나 이상의 컴포넌트의 제어기)에 의해 수행될 수 있다. 컴퓨팅 디바이스는 비휘발성 메모리(예를 들면, 하드 드라이브 또는 ROM), 휘발성 메모리(예를 들면, DRAM(dynamic random-access memory) 또는 SRAM(static random-access memory)과 같은, RAM(random-access memory)), 사용자 입력 디바이스(예를 들면, 마우스 또는 키보드), 디스플레이(예를 들면, LED 디스플레이 또는 LCD(liquid-crystal display)) 및/또는 네트워크 통신 제어기(예를 들면, IEEE 802.11 표준에 기초한 WIFI® 제어기 또는 이더넷 제어기)와 같은 컴퓨팅 컴포넌트를 포함할 수 있다. 예를 들어, 컴퓨팅 디바이스는 본 명세서에서 고려되는 동작들 중 하나 이상을 수행하기 위해 비일시적 컴퓨터 판독 가능 매체(예를 들면, 하드 드라이브)에 저장된 명령어들을 실행할 수 있다.
블록(1202)에서, 방법(1200)은, LIDAR(light detection and ranging) 시스템의 광 방출기에 의해, 광학 축을 따라 광 신호를 방출하는 단계를 포함할 수 있다.
블록(1204)에서, 방법(1200)은, 제1 회전 축을 중심으로 회전하도록 구성된 다중 패싯 미러의 복수의 반사 패싯 중 하나에 의해, 광 신호를 장면의 하나 이상의 영역을 향해 반사시키는 단계를 포함할 수 있다.
블록(1206)에서, 방법(1200)은 반사 광 신호를 장면의 하나 이상의 영역을 향해, LIDAR 시스템의 광학 창을 통해, 투과시키는 단계를 포함할 수 있다. 일부 실시예에서, 다중 패싯 미러가 제1 회전 축을 중심으로 회전할 때 복수의 반사 패싯의 각각의 반사 패싯이 광학 창에 평행하지 않게 유지되도록 광학 창이 위치될 수 있다. 일부 실시예에서, 필터는 광학 창의 외부 측면의 적어도 일 부분을 덮을 수 있다. 그러한 필터는 광 방출기에 의해 생성되지 않는 적어도 일부 파장들의 투과를 감소시킬 수 있다. 일부 실시예에서, 하나 이상의 배플이 다중 패싯 미러의 하나 이상의 비반사 측면에 인접하게 위치될 수 있다. 그러한 배플은 제1 회전 축을 중심으로 다중 패싯 미러를 회전시키는 데 사용되는 전력량을 감소시키도록 구성될 수 있다.
블록(1208)에서, 방법(1200)은, LIDAR 시스템의 광 검출기에 의해, 장면의 하나 이상의 영역으로부터 반사되는 광 신호를 검출하는 단계를 포함할 수 있다. 장면의 하나 이상의 영역으로부터 반사되는 광 신호는 반사 패싯으로부터 반사되어 광학 창을 통해 투과된 광 신호의 반사일 수 있다.
블록(1210)에서, 방법(1200)은 다중 패싯 미러에 결합된 베이스, 광 방출기 및 광 검출기를, 제2 회전 축을 중심으로, 회전시키는 단계를 포함할 수 있다. 광 신호가 지향된 장면의 하나 이상의 영역은 제1 회전 축을 중심으로 한 다중 패싯 미러의 제1 회전 각도 및 제2 회전 축을 중심으로 한 제2 회전 각도에 기초했을 수 있다.
IV. 결론
본 개시가, 다양한 양태의 예시로서 의도되는, 본 출원에 설명된 특정의 실시예와 관련하여 제한되어서는 안된다. 본 기술 분야의 통상의 기술자에게 명백할 것인 바와 같이, 본 개시의 사상 및 범위를 벗어나지 않으면서 많은 수정 및 변형이 이루어질 수 있다. 본 명세서에서 열거된 것에 추가적으로, 본 개시의 범위 내의 기능적으로 동등한 방법 및 장치가 전술한 설명으로부터 본 기술 분야의 통상의 기술자에게 명백할 것이다. 그러한 수정 및 변형은 첨부된 청구항의 범위 내에 속하는 것으로 의도된다.
이상의 상세한 설명은 개시된 시스템, 디바이스, 및 방법의 다양한 특징 및 기능을 첨부 도면을 참조하여 기술한다. 도면에서, 문맥이 달리 언급하지 않는 한, 유사한 심벌은 전형적으로 유사한 컴포넌트를 식별한다. 본 명세서에 및 도면에 기술되는 예시적인 실시예는 제한적인 것으로 의도되지 않는다. 본 명세서에서 제시된 주제(subject matter)의 범위를 벗어나지 않으면서, 다른 실시예가 이용될 수 있고, 다른 변경이 이루어질 수 있다. 본 명세서에 전반적으로 기술되고 도면에 예시되는 바와 같은, 본 개시의 양태가, 그 전부가 본 명세서에서 명시적으로 고려되는, 아주 다양한 상이한 구성으로 배열, 대체, 조합, 분리, 및 설계될 수 있음을 쉽게 이해할 것이다.
도면에서의 메시지 흐름 다이어그램, 시나리오 및 플로차트의 일부 또는 전부와 관련하여 그리고 본 명세서에서 논의된 바와 같이, 각각의 단계, 블록, 동작 및/또는 통신은 예시적인 실시예에 따른 정보의 프로세싱 및/또는 정보의 전송을 나타낼 수 있다. 대안적인 실시예는 이러한 예시적인 실시예의 범위 내에 포함된다. 이러한 대안적인 실시예에서, 예를 들어, 단계, 블록, 전송, 통신, 요청, 응답, 및/또는 메시지로서 기술된 동작들은, 포함된 기능에 따라, 실질적으로 동시에 또는 역순을 포함하여, 도시되거나 논의된 것과 상이한 순서로 실행될 수 있다. 게다가, 본 명세서에서 논의된 메시지 흐름 다이어그램, 시나리오, 및 플로차트 중 임의의 것에서 더 많은 또는 더 적은 블록 및/또는 동작이 사용될 수 있으며, 이러한 메시지 흐름 다이어그램, 시나리오, 및 플로차트는, 부분적으로 또는 전체적으로, 서로 조합될 수 있다.
정보의 프로세싱을 나타내는 단계, 블록 또는 동작은 본 명세서에서 설명된 방법 또는 기술의 특정의 논리적 기능을 수행하도록 구성될 수 있는 회로에 대응할 수 있다. 대안적으로 또는 추가적으로, 정보의 프로세싱을 나타내는 단계 또는 블록은 프로그램 코드(관련 데이터를 포함함)의 모듈, 세그먼트, 또는 부분에 대응할 수 있다. 프로그램 코드는 방법 또는 기술에서의 특정 논리적 동작 또는 액션을 구현하기 위해 프로세서에 의해 실행 가능한 하나 이상의 명령어를 포함할 수 있다. 프로그램 코드 및/또는 관련 데이터는 RAM, 디스크 드라이브, 솔리드 스테이트 드라이브 또는 다른 저장 매체를 포함한 저장 디바이스와 같은 임의의 유형의 컴퓨터 판독 가능 매체에 저장될 수 있다.
컴퓨터 판독 가능 매체는 레지스터 메모리 및 프로세서 캐시와 같이 짧은 시간 기간 동안 데이터를 저장하는 컴퓨터 판독 가능 매체와 같은 비일시적 컴퓨터 판독 가능 매체를 또한 포함할 수 있다. 컴퓨터 판독 가능 매체는 더 긴 시간 기간 동안 프로그램 코드 및/또는 데이터를 저장하는 비일시적 컴퓨터 판독 가능 매체를 추가로 포함할 수 있다. 따라서, 컴퓨터 판독 가능 매체는, 예를 들어, ROM, 광학 또는 자기 디스크, 솔리드 스테이트 드라이브, CD-ROM(compact-disc read only memory)과 같은, 보조 또는 영구 장기 스토리지를 포함할 수 있다. 컴퓨터 판독 가능 매체는 또한 임의의 다른 휘발성 또는 비휘발성 저장 시스템일 수 있다. 컴퓨터 판독 가능 매체는, 예를 들어, 컴퓨터 판독 가능 저장 매체 또는 유형적 저장 디바이스로 간주될 수 있다.
더욱이, 하나 이상의 정보 전송을 나타내는 단계, 블록 또는 동작은 동일한 물리적 디바이스 내의 소프트웨어 및/또는 하드웨어 모듈들 간의 정보 전송에 대응할 수 있다. 그렇지만, 상이한 물리적 디바이스 내의 소프트웨어 모듈들 및/또는 하드웨어 모듈들 사이에 다른 정보 전송이 있을 수 있다.
도면에 도시된 특정 배열이 제한적인 것으로 간주되어서는 안된다. 다른 실시예가 주어진 도면에 도시된 각각의 요소를 더 많이 또는 더 적게 포함할 수 있음을 이해해야 한다. 게다가, 예시된 요소들 중 일부가 조합되거나 생략될 수 있다. 게다가, 예시적인 실시예는 도면에 예시되지 않은 요소를 포함할 수 있다.
다양한 양태 및 실시예가 본 명세서에 개시되어 있지만, 다른 양태 및 실시예가 본 기술 분야의 통상의 기술자에게 명백할 것이다. 본 명세서에 개시되는 다양한 양태 및 실시예는 예시를 위한 것이고 제한적인 것으로 의도되지 않으며, 진정한 범위는 이하의 청구항에 의해 나타내어진다.
본 개시 전반에 걸쳐 "제1", "제2", "제3" 등의 용어의 사용이 예시적인 실시예에 대한 이해를 돕기 위해 사용되는 것으로 의도되고 제한적인 것으로 의도되지 않음이 이해된다. 게다가, 본 개시의 한 부분에서의 "제1 축" 또는 "제1 광학 창"이 본 개시 또는 청구 범위의 제2 부분에서의 "제1 축" 또는 "제1 광학 창"에 반드시 대응하는 것은 아님이 이해된다. 예를 들어, 본 개시의 일 부분에서의 "제2 축"은 청구 범위에서의 "제1 회전 축"에 대응할 수 있다. 그렇지만, "제1", "제2", "제3" 등의 사용이 사용의 주변 문맥으로부터 명확해질 것이다.

Claims (25)

  1. LIDAR(light detection and ranging) 시스템으로서,
    복수의 반사 패싯을 포함하는 다중 패싯 미러 - 상기 다중 패싯 미러는 제1 회전 축을 중심으로 회전하도록 구성됨 -;
    광학 축을 따라 광 신호를 방출하도록 구성된 광 방출기 - 상기 광학 축을 따라 방출되는 광은 상기 반사 패싯들 중 하나 이상으로부터 반사되어 장면의 하나 이상의 영역을 향해 지향됨 -;
    상기 장면의 상기 하나 이상의 영역에 의해 반사되는 반사 광 신호를 검출하도록 구성된 광 검출기 - 상기 광학 축을 따라 방출되는 상기 광이 지향되는 방향은 상기 제1 회전 축을 중심으로 한 상기 다중 패싯 미러의 제1 각도에 기초함 -; 및
    상기 반사 패싯들 중 하나 이상으로부터 반사되어 상기 장면의 상기 하나 이상의 영역을 향해 지향되는 광이 상기 광학 창을 통해 투과되도록, 상기 다중 패싯 미러와 상기 장면의 상기 하나 이상의 영역 사이에 위치된 광학 창 - 상기 다중 패싯 미러가 상기 제1 회전 축을 중심으로 회전할 때 상기 제1 회전 축을 중심으로 한 상기 다중 패싯 미러의 상기 제1 각도의 모든 값들에 대해, 상기 광학 창이 상기 광학 축을 따라 방출되는 상기 광이 지향되는 상기 방향에 대해 수직이 아니도록 상기 광학 창이 위치됨 -
    을 포함하는, LIDAR 시스템.
  2. 제1항에 있어서, 베이스를 추가로 포함하고, 상기 다중 패싯 미러, 상기 광 방출기 및 상기 광 검출기는 상기 베이스에 결합되고, 상기 베이스는 제2 회전 축을 중심으로 회전하도록 구성되며, 상기 광학 축을 따라 방출되는 상기 광이 지향되는 상기 방향은 상기 제2 회전 축을 중심으로 한 상기 베이스의 제2 각도에 기초하는, LIDAR 시스템.
  3. 제1항에 있어서, 상기 광학 창으로부터 상기 다중 패싯 미러의 반대편 측면에 위치되는 추가적인 광학 창을 추가로 포함하고, 상기 반사 패싯들 중 하나 이상으로부터 반사되어 상기 장면의 상기 하나 이상의 영역 중 적어도 하나를 향해 지향되는 광이 상기 추가적인 광학 창을 통해 투과되도록, 상기 추가적인 광학 창이 상기 다중 패싯 미러와 상기 장면의 상기 하나 이상의 영역 중 상기 적어도 하나 사이에 위치되며, 상기 다중 패싯 미러가 상기 제1 회전 축을 중심으로 회전할 때 상기 제1 회전 축을 중심으로 한 상기 다중 패싯 미러의 상기 제1 각도의 모든 값들에 대해, 상기 추가적인 광학 창이 상기 광학 축을 따라 방출되는 상기 광이 지향되는 상기 방향에 대해 수직이 아니도록 상기 추가적인 광학 창이 위치되는, LIDAR 시스템.
  4. 제3항에 있어서, 상기 광학 창과 상기 추가적인 광학 창은 서로 평행하지 않은, LIDAR 시스템.
  5. 제1항에 있어서, 상기 광학 창의 내부 측면의 적어도 일 부분 상에 위치되는 반사 방지 코팅을 추가로 포함하는, LIDAR 시스템.
  6. 제1항에 있어서, 하나 이상의 배플을 추가로 포함하고, 상기 하나 이상의 배플은 상기 광학 창으로부터의 내부 반사들을 감쇠시키도록 구성되는, LIDAR 시스템.
  7. 제6항에 있어서, 상기 하나 이상의 배플은 상기 다중 패싯 미러와 상기 광학 창 사이에 위치되는, LIDAR 시스템.
  8. 제6항에 있어서, 상기 하나 이상의 배플은 상기 다중 패싯 미러의 비반사 측면들에 인접하게 위치되는, LIDAR 시스템.
  9. 제6항에 있어서, 상기 하나 이상의 배플은 상기 광 방출기에 의해 방출되는 파장의 광을 흡수하는 재료를 포함하는, LIDAR 시스템.
  10. 제1항에 있어서, 상기 광학 창은 상기 다중 패싯 미러의 회전 평면에 대해 5° 내지 15°의 각도로 위치되는, LIDAR 시스템.
  11. 제10항에 있어서, 상기 각도는 9.5° 내지 10.5°인, LIDAR 시스템.
  12. LIDAR(light detection and ranging) 시스템으로서,
    복수의 반사 패싯을 포함하는 다중 패싯 미러 - 상기 다중 패싯 미러는 제1 회전 축을 중심으로 회전하도록 구성됨 -;
    광학 축을 따라 광 신호를 방출하도록 구성된 광 방출기 - 상기 광학 축을 따라 방출되는 광은 상기 반사 패싯들 중 하나 이상으로부터 반사되어 장면의 하나 이상의 영역을 향해 지향됨 -;
    상기 장면의 상기 하나 이상의 영역에 의해 반사되는 반사 광 신호를 검출하도록 구성된 광 검출기 - 상기 광학 축을 따라 방출되는 상기 광이 지향되는 방향은 상기 제1 회전 축을 중심으로 한 상기 다중 패싯 미러의 제1 회전 각도에 기초함 -;
    상기 반사 패싯들 중 하나 이상으로부터 반사되어 상기 장면의 상기 하나 이상의 영역을 향해 지향되는 광이 상기 광학 창을 통해 투과되도록, 상기 다중 패싯 미러와 상기 장면의 상기 하나 이상의 영역 사이에 위치된 광학 창; 및
    상기 광학 창의 외부 측면의 적어도 일 부분을 덮는 필터 - 상기 필터는 상기 광 방출기에 의해 생성되지 않는 적어도 일부 파장들의 투과를 감소시킴 -
    를 포함하는, LIDAR 시스템.
  13. 제12항에 있어서, 베이스를 추가로 포함하고, 상기 다중 패싯 미러, 상기 광 방출기 및 상기 광 검출기는 상기 베이스에 결합되고, 상기 베이스는 제2 회전 축을 중심으로 회전하도록 구성되며, 상기 광학 축을 따라 방출되는 상기 광이 지향되는 상기 방향은 상기 제2 회전 축을 중심으로 한 상기 베이스의 제2 회전 각도에 기초하는, LIDAR 시스템.
  14. 제12항에 있어서, 상기 필터는 이색성 필터를 포함하는, LIDAR 시스템.
  15. 제12항에 있어서, 상기 필터는 가시 스펙트럼 내의 파장들의 투과를 감소시키는, LIDAR 시스템.
  16. 제12항에 있어서, 상기 필터는 중성 밀도 필터를 포함하는, LIDAR 시스템.
  17. 제15항에 있어서, 상기 필터는 상기 가시 스펙트럼 전체에 걸친 평균 반사율 값에 의해 특징지어지는, LIDAR 시스템.
  18. 제17항에 있어서, 상기 가시 스펙트럼 전체에 걸친 상기 평균 반사율 값은 적어도 25%인, LIDAR 시스템.
  19. 제15항에 있어서, 상기 필터가 상기 가시 스펙트럼 내의 광에 대해 틴팅되지 않은 미러(un-tinted mirror)로서 작용하도록 상기 가시 스펙트럼에 걸친 상기 필터의 반사율은 실질적으로 일정한, LIDAR 시스템.
  20. LIDAR(light detection and ranging) 시스템으로서,
    복수의 반사 패싯을 포함하는 다중 패싯 미러 - 상기 다중 패싯 미러는 제1 회전 축을 중심으로 회전하도록 구성됨 -;
    광학 축을 따라 광 신호를 방출하도록 구성된 광 방출기 - 상기 광학 축을 따라 방출되는 광은 상기 반사 패싯들 중 하나 이상으로부터 반사되어 장면의 하나 이상의 영역을 향해 지향됨 -;
    상기 장면의 상기 하나 이상의 영역에 의해 반사되는 반사 광 신호를 검출하도록 구성된 광 검출기 - 상기 광학 축을 따라 방출되는 상기 광이 지향되는 방향은 상기 제1 회전 축을 중심으로 한 상기 다중 패싯 미러의 제1 회전 각도에 기초함 -;
    상기 반사 패싯들 중 하나 이상으로부터 반사되어 상기 장면의 상기 하나 이상의 영역을 향해 지향되는 광이 상기 광학 창을 통해 투과되도록, 상기 다중 패싯 미러와 상기 장면의 상기 하나 이상의 영역 사이에 위치된 광학 창; 및
    상기 다중 패싯 미러의 하나 이상의 비반사 측면에 인접하게 위치되는 하나 이상의 배플 - 상기 하나 이상의 배플은 상기 제1 회전 축을 중심으로 상기 다중 패싯 미러를 회전시키는 데 사용되는 전력량을 감소시키도록 구성됨 -
    을 포함하는, LIDAR 시스템.
  21. 제20항에 있어서, 베이스를 추가로 포함하고, 상기 다중 패싯 미러, 상기 광 방출기 및 상기 광 검출기는 상기 베이스에 결합되고, 상기 베이스는 제2 회전 축을 중심으로 회전하도록 구성되며, 상기 광학 축을 따라 방출되는 상기 광이 지향되는 상기 방향은 상기 제2 회전 축을 중심으로 한 상기 베이스의 제2 회전 각도에 기초하는, LIDAR 시스템.
  22. 제20항에 있어서, 상기 하나 이상의 배플은 적어도 2개의 배플을 포함하고, 적어도 하나의 배플이 상기 다중 패싯 미러의 각각의 비반사 측면에 인접하며, 상기 다중 패싯 미러가 상기 제1 회전 축을 중심으로 회전될 때 상기 하나 이상의 배플은 상기 다중 패싯 미러에 작용하는 항력을 감소시키는, LIDAR 시스템.
  23. 제20항에 있어서, 상기 하나 이상의 배플은 각각 그 내에 규정된 하나 이상의 광학 개구를 가지며, 상기 광학 개구들은 상기 다중 패싯 미러의 배향을 위한 로터리 광학 인코더를 규정하는, LIDAR 시스템.
  24. 제23항에 있어서, 상기 하나 이상의 광학 개구는 나선형 배열로 배열되는, LIDAR 시스템.
  25. 제20항에 있어서, 상기 다중 패싯 미러와 상기 하나 이상의 배플은 샤프트에 부착되고, 상기 샤프트는 모터에 의해 구동되도록 구성되며, 상기 샤프트가 상기 모터에 의해 구동될 때, 상기 다중 패싯 미러와 상기 하나 이상의 배플이 상기 제1 회전 축을 중심으로 회전하는, LIDAR 시스템.
KR1020217016004A 2018-10-31 2019-10-07 다중 패싯 미러를 갖는 lidar 시스템들 KR102579257B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862753586P 2018-10-31 2018-10-31
US62/753,586 2018-10-31
US16/235,564 US11536845B2 (en) 2018-10-31 2018-12-28 LIDAR systems with multi-faceted mirrors
US16/235,564 2018-12-28
PCT/US2019/054982 WO2020091955A1 (en) 2018-10-31 2019-10-07 Lidar systems with multi-faceted mirrors

Publications (2)

Publication Number Publication Date
KR20210071079A true KR20210071079A (ko) 2021-06-15
KR102579257B1 KR102579257B1 (ko) 2023-09-18

Family

ID=70325230

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217016004A KR102579257B1 (ko) 2018-10-31 2019-10-07 다중 패싯 미러를 갖는 lidar 시스템들

Country Status (9)

Country Link
US (3) US11536845B2 (ko)
EP (1) EP3853631A4 (ko)
JP (2) JP7209823B2 (ko)
KR (1) KR102579257B1 (ko)
CN (1) CN113227826A (ko)
AU (1) AU2019373056B2 (ko)
CA (1) CA3117320C (ko)
IL (1) IL282536A (ko)
WO (1) WO2020091955A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048533A1 (ko) * 2021-09-27 2023-03-30 주식회사 유진로봇 라이다 센서

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11415676B2 (en) * 2017-10-09 2022-08-16 Luminar, Llc Interlaced scan patterns for lidar system
US11415675B2 (en) 2017-10-09 2022-08-16 Luminar, Llc Lidar system with adjustable pulse period
US10802221B1 (en) * 2019-10-23 2020-10-13 Ii-Vi Delaware, Inc. Dynamically optimized tunable filters for optical sensing systems
JP7363606B2 (ja) * 2020-03-12 2023-10-18 株式会社デンソー 光測距装置
US20210356601A1 (en) 2020-05-13 2021-11-18 Luminar, Llc Lidar system with locally retraced scan lines
EP4184203A1 (en) * 2021-11-22 2023-05-24 Yandex Self Driving Group Llc Two-channel lidar system
EP4202478A1 (en) * 2021-12-22 2023-06-28 Veoneer US, LLC A lidar system for a motor vehicle
WO2023178108A1 (en) * 2022-03-18 2023-09-21 Motional Ad Llc False signal reducing lidar window
CN116560073B (zh) * 2023-07-07 2023-12-22 南通唐人电子科技有限公司 一种高功率激光的杂散光消除方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060227317A1 (en) * 2005-04-06 2006-10-12 Henderson Sammy W Efficient lidar with flexible target interrogation pattern
JP2011149760A (ja) * 2010-01-20 2011-08-04 Topcon Corp 光波距離測定装置
JP2012141191A (ja) * 2010-12-28 2012-07-26 Sanyo Electric Co Ltd レーザレーダ
JP2012225821A (ja) * 2011-04-21 2012-11-15 Ihi Corp レーザセンサ装置
JP2013546009A (ja) * 2010-10-08 2013-12-26 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 光学測定装置用の偏向ミラー部品および対応する光学測定装置
US20140332676A1 (en) * 2011-11-29 2014-11-13 Valeo Schalter Und Sensoren Gmbh Optical measuring device
US20180172804A1 (en) * 2016-12-19 2018-06-21 Waymo Llc Mirror assembly

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622221A (en) 1969-06-04 1971-11-23 Bell Telephone Labor Inc Spring structure for producing small displacements
US3668409A (en) 1971-02-26 1972-06-06 Computer Indentics Corp Scanner/decoder multiplex system
BE787649A (fr) 1971-09-20 1973-02-19 Blount & George Inc Systeme de poursuite ou de depistage a l'aide d'un instrument d'optiqu
US3824000A (en) 1973-01-08 1974-07-16 Bausch & Lomb Coiled spring mirror mount for optical stabilizer
US4043632A (en) 1975-05-27 1977-08-23 Data General Corporation Scanning polygon with adjustable mirrors
US4099591A (en) 1976-09-02 1978-07-11 Westinghouse Electric Corp. Vehicle control scanning system
JPS6010282B2 (ja) 1976-11-09 1985-03-16 キヤノン株式会社 光偏向装置
JPS5337587Y2 (ko) 1977-02-24 1978-09-12
US4700301A (en) 1983-11-02 1987-10-13 Dyke Howard L Method of automatically steering agricultural type vehicles
US4601554A (en) 1985-01-10 1986-07-22 The United States Of America As Represented By The Secretary Of The Air Force Vibration isolator actuator for a segmented mirror
US4709195A (en) 1986-09-12 1987-11-24 Spectra-Physics, Inc. Bar code scanner with DC brushless motor
US4875764A (en) 1988-07-29 1989-10-24 Eastman Kodak Company Assembly for correction of distortions of a mirror
US4993823A (en) 1989-06-29 1991-02-19 Eastman Kodak Company Method for correction of distortions of an imaging device
US4966427A (en) 1989-07-21 1990-10-30 Hughes Aircraft Company Flexible scanwheel
US4967076A (en) 1989-12-08 1990-10-30 Ncr Corporation Optical scanner producing multiple scan patterns
US5006721A (en) * 1990-03-23 1991-04-09 Perceptron, Inc. Lidar scanning system
US5173797A (en) 1990-05-08 1992-12-22 Xerox Corporation Rotating mirror optical scanner with grooved grease bearings
US5162951A (en) 1990-07-31 1992-11-10 Eastman Kodak Company Method for designing an optical system
US5202742A (en) 1990-10-03 1993-04-13 Aisin Seiki Kabushiki Kaisha Laser radar for a vehicle lateral guidance system
US5793491A (en) 1992-12-30 1998-08-11 Schwartz Electro-Optics, Inc. Intelligent vehicle highway system multi-lane sensor and method
NO301191B1 (no) 1993-05-13 1997-09-22 Cargoscan As Anordning ved måling av gjenstanders dimensjoner
KR0144427B1 (ko) 1994-11-30 1998-10-01 이형도 광 주사장치
JPH08262361A (ja) 1995-03-17 1996-10-11 Ebara Corp ポリゴンミラーの取付構造
JP3060912B2 (ja) 1995-09-11 2000-07-10 富士通株式会社 回転多面鏡およびその製造方法
JP3446466B2 (ja) 1996-04-04 2003-09-16 株式会社デンソー 車間距離制御装置用の反射測定装置及びこれを利用した車間距離制御装置
JP3404495B2 (ja) 1998-03-02 2003-05-06 富士通株式会社 ポリゴンミラー、光走査装置及びバーコードリーダ
US6069726A (en) 1998-10-20 2000-05-30 Lockheed Martin Corporation Optical scanner
US6260309B1 (en) 1998-12-02 2001-07-17 Ethan W. Cliffton Split-sphere observatory dome with a rotating oculus window
US6219168B1 (en) 1999-12-20 2001-04-17 Xerox Corporation Single rotating polygon mirror with adjacent facets having different tilt angles
JP3965882B2 (ja) 2000-08-04 2007-08-29 コニカミノルタホールディングス株式会社 光偏向装置、光偏向装置の製造方法及び画像形成装置
US7187445B2 (en) 2001-07-19 2007-03-06 Automotive Distance Control Systems Gmbh Method and apparatus for optically scanning a scene
JP2003035880A (ja) * 2001-07-24 2003-02-07 Fuji Photo Optical Co Ltd 回転多面鏡
US6542227B2 (en) 2001-09-04 2003-04-01 Rosemount Aerospace, Inc. System and method of measuring flow velocity in three axes
US6650407B2 (en) 2001-09-04 2003-11-18 Rosemount Aerospace Inc. Wide field scanning laser obstacle awareness system
US7248342B1 (en) 2003-02-14 2007-07-24 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Three-dimension imaging lidar
US7089114B1 (en) 2003-07-03 2006-08-08 Baojia Huang Vehicle collision avoidance system and method
US7135672B2 (en) * 2004-12-20 2006-11-14 United States Of America As Represented By The Secretary Of The Army Flash ladar system
US7255275B2 (en) 2005-09-12 2007-08-14 Symbol Technologies, Inc. Laser power control arrangements in electro-optical readers
US20070201027A1 (en) 2006-02-07 2007-08-30 Doushkina Valentina V Innovative Raster-Mirror Optical Detection System For Bistatic Lidar
US8050863B2 (en) 2006-03-16 2011-11-01 Gray & Company, Inc. Navigation and control system for autonomous vehicles
US20100026555A1 (en) 2006-06-09 2010-02-04 Whittaker William L Obstacle detection arrangements in and for autonomous vehicles
US8139109B2 (en) 2006-06-19 2012-03-20 Oshkosh Corporation Vision system for an autonomous vehicle
TWI311681B (en) 2006-07-04 2009-07-01 Coretronic Corporatio Reflective mirror module and projection apparatus using the same
US7969558B2 (en) 2006-07-13 2011-06-28 Velodyne Acoustics Inc. High definition lidar system
JP2008131828A (ja) 2006-11-24 2008-06-05 Victor Co Of Japan Ltd モータ
US8072581B1 (en) 2007-01-19 2011-12-06 Rockwell Collins, Inc. Laser range finding system using variable field of illumination flash lidar
CN201035148Y (zh) 2007-01-19 2008-03-12 南京德朔实业有限公司 激光测距仪
JP2009058341A (ja) 2007-08-31 2009-03-19 Sanyo Electric Co Ltd ビーム照射装置およびレーザレーダ
US8027029B2 (en) 2007-11-07 2011-09-27 Magna Electronics Inc. Object detection and tracking system
CN101514909B (zh) * 2008-02-22 2011-07-27 鸿富锦精密工业(深圳)有限公司 光学编码盘以及相应的光学编码器
JP5150329B2 (ja) * 2008-03-26 2013-02-20 株式会社トプコン 測量装置及び測量システム
JP5116559B2 (ja) * 2008-05-08 2013-01-09 キヤノン株式会社 光走査装置及びそれを用いた画像形成装置
US9041915B2 (en) 2008-05-09 2015-05-26 Ball Aerospace & Technologies Corp. Systems and methods of scene and action capture using imaging system incorporating 3D LIDAR
JP5688876B2 (ja) * 2008-12-25 2015-03-25 株式会社トプコン レーザスキャナ測定システムの較正方法
US8810796B2 (en) 2009-04-21 2014-08-19 Michigan Aerospace Corporation Light processing system and method
TWI403690B (zh) 2009-10-26 2013-08-01 Ind Tech Res Inst 自我定位裝置及其方法
US8600606B2 (en) 2010-02-11 2013-12-03 GM Global Technology Operations LLC Vehicle safety systems and methods
TWI543264B (zh) 2010-03-31 2016-07-21 應用材料股份有限公司 雷射光束定位系統
US9019503B2 (en) 2010-04-19 2015-04-28 The United States Of America, As Represented By The Secretary Of The Navy MEMS microdisplay optical imaging and sensor systems for underwater and other scattering environments
US9086488B2 (en) 2010-04-20 2015-07-21 Michigan Aerospace Corporation Atmospheric measurement system and method
EP3786668A1 (en) 2010-05-17 2021-03-03 Velodyne Lidar, Inc. High definition lidar system
US20120236379A1 (en) 2010-08-23 2012-09-20 Lighttime, Llc Ladar using mems scanning
US8686899B2 (en) 2010-08-26 2014-04-01 Hemisphere GNSS, Inc. GNSS smart antenna and receiver system with weatherproof enclosure
WO2012036075A1 (ja) 2010-09-16 2012-03-22 シャープ株式会社 屈折率測定装置、及び屈折率測定方法
EP2434312B1 (de) 2010-09-24 2013-01-16 Sick AG Laserscanner mit einstückiger Lichtablenkeinheit mit Winkelmaßverkörperung
JP2012083267A (ja) 2010-10-13 2012-04-26 Japan Aerospace Exploration Agency マルチライダーシステム
DE102010061382B4 (de) * 2010-12-21 2019-02-14 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
US9194949B2 (en) 2011-10-20 2015-11-24 Robert Bosch Gmbh Methods and systems for precise vehicle localization using radar maps
EP2639549A1 (en) * 2012-03-15 2013-09-18 Leica Geosystems AG Laser receiver
US9329269B2 (en) 2012-03-15 2016-05-03 GM Global Technology Operations LLC Method for registration of range images from multiple LiDARS
US9760092B2 (en) 2012-03-16 2017-09-12 Waymo Llc Actively modifying a field of view of an autonomous vehicle in view of constraints
US10247812B2 (en) * 2012-03-22 2019-04-02 Apple Inc. Multi-mirror scanning depth engine
GB2501466A (en) 2012-04-02 2013-10-30 Univ Oxford Localising transportable apparatus
KR102038533B1 (ko) 2012-06-14 2019-10-31 한국전자통신연구원 레이저 레이더 시스템 및 목표물 영상 획득 방법
US9063549B1 (en) * 2013-03-06 2015-06-23 Google Inc. Light detection and ranging device with oscillating mirror driven by magnetically interactive coil
US9618742B1 (en) 2013-03-08 2017-04-11 Google Inc. Rotatable mirror assemblies
US9164511B1 (en) 2013-04-17 2015-10-20 Google Inc. Use of detected objects for image processing
WO2014190208A2 (en) 2013-05-22 2014-11-27 Neurala, Inc. Methods and apparatus for early sensory integration and robust acquisition of real world knowledge
US9886636B2 (en) 2013-05-23 2018-02-06 GM Global Technology Operations LLC Enhanced top-down view generation in a front curb viewing system
US8836922B1 (en) 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path
US10203399B2 (en) 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
US9910155B2 (en) * 2014-09-29 2018-03-06 ARETé ASSOCIATES Tilted image plane lidar
US9378554B2 (en) 2014-10-09 2016-06-28 Caterpillar Inc. Real-time range map generation
US20160307447A1 (en) 2015-02-13 2016-10-20 Unmanned Innovation, Inc. Unmanned aerial vehicle remote flight planning system
US9625582B2 (en) 2015-03-25 2017-04-18 Google Inc. Vehicle with multiple light detection and ranging devices (LIDARs)
DE102015105263A1 (de) 2015-04-08 2016-10-13 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
KR101674062B1 (ko) * 2015-11-09 2016-11-08 주식회사 오토시스 광 스캐너
US10539661B2 (en) * 2015-11-25 2020-01-21 Velodyne Lidar, Inc. Three dimensional LIDAR system with targeted field of view
CN206019574U (zh) * 2016-07-22 2017-03-15 武汉海达数云技术有限公司 带有倾斜式窗口镜的三维激光扫描仪
CN105973150A (zh) 2016-07-22 2016-09-28 武汉海达数云技术有限公司 带有倾斜式窗口镜的三维激光扫描仪
WO2018071043A1 (en) 2016-10-14 2018-04-19 Osram Opto Semiconductors Gmbh Optoelectronic system and lidar systems
DE102016221292A1 (de) 2016-10-28 2018-05-03 Robert Bosch Gmbh Lidar-Sensor zur Erfassung eines Objektes
KR101814135B1 (ko) 2017-08-23 2018-01-02 (주)엠제빈 라이다 시스템
US10663585B2 (en) * 2017-11-22 2020-05-26 Luminar Technologies, Inc. Manufacturing a balanced polygon mirror
US10578720B2 (en) * 2018-04-05 2020-03-03 Luminar Technologies, Inc. Lidar system with a polygon mirror and a noise-reducing feature

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060227317A1 (en) * 2005-04-06 2006-10-12 Henderson Sammy W Efficient lidar with flexible target interrogation pattern
JP2011149760A (ja) * 2010-01-20 2011-08-04 Topcon Corp 光波距離測定装置
JP2013546009A (ja) * 2010-10-08 2013-12-26 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 光学測定装置用の偏向ミラー部品および対応する光学測定装置
JP2012141191A (ja) * 2010-12-28 2012-07-26 Sanyo Electric Co Ltd レーザレーダ
JP2012225821A (ja) * 2011-04-21 2012-11-15 Ihi Corp レーザセンサ装置
US20140332676A1 (en) * 2011-11-29 2014-11-13 Valeo Schalter Und Sensoren Gmbh Optical measuring device
US20180172804A1 (en) * 2016-12-19 2018-06-21 Waymo Llc Mirror assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048533A1 (ko) * 2021-09-27 2023-03-30 주식회사 유진로봇 라이다 센서

Also Published As

Publication number Publication date
US20200132851A1 (en) 2020-04-30
AU2019373056A1 (en) 2021-05-20
EP3853631A4 (en) 2022-06-15
EP3853631A1 (en) 2021-07-28
JP2022510102A (ja) 2022-01-26
US20240085564A1 (en) 2024-03-14
US20230103212A1 (en) 2023-03-30
CN113227826A (zh) 2021-08-06
CA3117320A1 (en) 2020-05-07
JP7474881B2 (ja) 2024-04-25
JP7209823B2 (ja) 2023-01-20
KR102579257B1 (ko) 2023-09-18
CA3117320C (en) 2023-12-19
IL282536A (en) 2021-06-30
WO2020091955A1 (en) 2020-05-07
JP2023036981A (ja) 2023-03-14
US11536845B2 (en) 2022-12-27
AU2019373056B2 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
KR102579257B1 (ko) 다중 패싯 미러를 갖는 lidar 시스템들
KR102191592B1 (ko) 비행 시간법을 기반으로 하는 레이저 레이더 시스템
US10191146B2 (en) Mirror assembly
US11879998B2 (en) Mirror assembly
JP6737296B2 (ja) 対象物検出装置
CN110850437B (zh) 激光雷达
JP6907947B2 (ja) 光走査型の対象物検出装置
JP2019138675A (ja) 対象物検出装置
JP6676974B2 (ja) 対象物検出装置
JP7500697B2 (ja) 分割窓及びバッフリング
CN114930188A (zh) Lidar遮挡检测方法和系统
JP2023500601A (ja) 多層光学デバイスおよびシステム
JP2019152588A (ja) 対象物検出装置
WO2023060374A1 (zh) 一种扫描系统、探测系统及终端设备
CN115079136B (zh) 固态激光雷达系统及车辆
JP2019138837A (ja) 対象物検出装置
US20240118391A1 (en) Optical Redirector Device
CN113227825A (zh) 镜组件
KR20200056369A (ko) 라이다 센서 조립체
JPH09304609A (ja) 光強度分布制御素子とそれを用いた投光装置及び光電センサ
NZ755482B2 (en) Mirror assembly

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant