WO2023060374A1 - 一种扫描系统、探测系统及终端设备 - Google Patents

一种扫描系统、探测系统及终端设备 Download PDF

Info

Publication number
WO2023060374A1
WO2023060374A1 PCT/CN2021/122995 CN2021122995W WO2023060374A1 WO 2023060374 A1 WO2023060374 A1 WO 2023060374A1 CN 2021122995 W CN2021122995 W CN 2021122995W WO 2023060374 A1 WO2023060374 A1 WO 2023060374A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanner
light
flange
scanning
detection
Prior art date
Application number
PCT/CN2021/122995
Other languages
English (en)
French (fr)
Inventor
邱孙杰
安凯
郭家兴
韩伟
章浩亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/122995 priority Critical patent/WO2023060374A1/zh
Priority to CN202180101967.7A priority patent/CN117999495A/zh
Publication of WO2023060374A1 publication Critical patent/WO2023060374A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present application relates to the field of optical technology, in particular to a scanning system, a detection system and a terminal device.
  • LiDAR light detection and ranging
  • LiDAR usually includes a light source, a transmitting optical system, a scanner, a detector, a receiving optical system, etc.
  • the emission optical system is mainly used to shape the laser beam emitted by the light source into the detection light required by the laser radar, and reflect the detection light to the detection area through the scanner, and the target in the detection area will reflect the detection light back to the scanner, and then the scanning Reflected by the detector to the receiving optical system (the reflected light obtained by the target reflecting the detection light is called an echo signal), the receiving optical system collects the echo signal reflected from the target and propagates to the detector to realize the detection of the detection area .
  • the emission optical system is mainly used to shape the laser beam emitted by the light source into the detection light required by the laser radar, and reflect the detection light to the detection area through the scanner, and the target in the detection area will reflect the detection light back to the scanner, and then the scanning Reflected by the detector to the receiving optical system (the reflected light obtained by the
  • stray light may be generated in the lidar, and these stray light may be received by the detector, thereby affecting the detection accuracy of the lidar.
  • these stray lights may cause greater interference to the echo signal received by the detector, thereby reducing the detection accuracy of the lidar.
  • the present application provides a scanning system, a detection system and a terminal device, which are used to suppress or eliminate stray light.
  • the present application provides a scanning system, the scanning system includes a scanning module and an optical processing module, the optical processing module includes a light-shielding component, and the light-shielding component includes a first flange and/or a second Two flanges, the scanning module includes a scanner, the scanner is divided into a first sub-scanner and a second sub-scanner based on the light-shielding component, and the first flange faces the side of the first sub-scanner On one side, the second flange faces a side of the second sub-scanner.
  • the first sub-scanner is used to reflect the detection light from the transmitting module to the detection area
  • the second sub-scanner is used to reflect the echo signal obtained by reflecting the detection light from the target in the detection area to the receiving mode.
  • the light-shielding component includes a first flange facing one side of the first sub-scanner, and/or , the second flange included in the light-shielding component faces one side of the second sub-scanner, therefore, the first stray light generated by reflection and/or scattering of the scanner can be propagated to the first flange and/or the second flange Further, the first flanging and/or the second flanging can reflect and/or scatter and/or absorb the incident first stray light again, based on the propagating light path, part or even all of the energy of the first stray light will be is lost, so that the first stray light generated by the scanner can be suppressed or eliminated through the first flange and/or the second flange.
  • the light-shielding component further includes a bottom plate, the bottom plate can be arranged between the first sub-scanner and the second sub-scanner, and the first flange and/or the The second flange surrounds the bottom plate. Further, the first flange and/or the second flange surrounds the periphery of the bottom plate.
  • the light-shielding component and the scanner can be fixed together through the bottom plate, and the energy of the first stray light generated by the scanner can be lost by surrounding the first flange and/or the second flange and/or the bottom plate, thereby Helps reduce first stray light.
  • the first surface of the first flange has a matting function, and/or the first surface of the bottom plate has a matting function, and the first surface of the first flange is the The surface of the first flange facing the scanner, the first surface of the bottom plate is the surface of the bottom plate facing the side of the first flange.
  • the first stray light toward the first surface of the bottom plate helps to further reduce the first stray light in the system.
  • the reflectance of the first surface of the first flange with the matting function is not greater than 10%, or not greater than 8%, or not greater than 4%. Further, the reflectance of the first surface of the bottom plate with matting function is not greater than 10%, or not greater than 8%, or not greater than 4%.
  • the scanning module further includes a bracket for supporting the scanner, and the light-shielding component is disposed between the scanner and the bracket.
  • the scanner may reflect part of the detection light to the bracket to generate second stray light, which can be eliminated or suppressed by setting the light-shielding component between the scanner and the bracket The second stray light.
  • the first surface of the bracket has a matting function
  • the second surface of the second flange has a matting function
  • the first flange of the first flange has a matting function.
  • the two sides have a matting function; wherein, the first side of the bracket is the side of the bracket facing the second flange, and the second side of the second flange is the side of the second flange facing the bracket
  • the second surface of the first flange is the surface of the first flange facing the bracket.
  • the first surface of the bracket has a light extinction function
  • the second surface of the second flange has a light extinction function
  • the second surface of the first flange has a light extinction function
  • the second stray light Some or all of it can be absorbed, helping to reduce secondary stray light in the system.
  • the reflectance of the first surface of the bracket with the matting function is not greater than 10%, or not greater than 8%, or not greater than 4%. Further, the reflectance of the second surface of the second flange with matting function is not greater than 10%, or not greater than 8%, or not greater than 4%. Further, the reflectance of the second surface of the first flange with matting function is not greater than 10%, or not greater than 8%, or not greater than 4%.
  • the scanner includes a polygon mirror
  • the projection of the light-shielding component on the first plane is a circumscribed circle of the projection of the scanner on the first plane
  • the first A plane is a plane perpendicular to the scanning axis of the scanner.
  • the projection of the light-shielding component on the first plane is the circumscribed circle of the projection of the scanner on the first plane, it is helpful to reduce the volume of the optical processing module, so that the scanning system can be miniaturized.
  • the scanner and the light isolation component share a scanning axis of the scanner.
  • the scanner and the light blocking assembly can rotate synchronously around the scanning axis of the scanner.
  • the light-shielding component By digging a relatively shallow groove on the scanner, the light-shielding component can be inserted (or called embedded) into the groove to fix the scanner and the light-shielding component, so that the light-shielding component and the scanner can rotate synchronously , which in turn helps to improve the reliability of the scanner.
  • the scanning module further includes a motor, the motor is fixed to the bracket, and the motor is used to drive the scanner to rotate around the scanning axis.
  • a soft material is filled between the bottom plate of the light-shielding component and the scanner.
  • stray light (such as the first stray light and/or the second Stray light) enters the receiving module through the slit, thereby preventing stray light from interfering with useful echo signals.
  • the scanning system further includes a window
  • the optical processing module further includes at least two sheet structures, the at least two sheet structures form a first structure having at least one opening, A size of a first included angle between the opening direction of the first structure and the viewing window belongs to [0°, 90°], and the first included angle is an included angle in a direction toward the scanner.
  • the window may not be able to achieve 100% transmission, a small portion of the probe light will be reflected back by the window to generate third stray light, which can be confined to the first structure by the first structure having at least one opening and is reflected and/or scattered multiple times, thereby losing the energy of the third stray light, thereby helping to reduce the third stray light in the system.
  • At least one of the at least two sheet-like structures has a matting function.
  • the reflectance of the sheet-like structure with light extinction function may be less than 10%, or less than 8%, or less than 4%.
  • the incident third stray light can be absorbed or transmitted through the flake structure with small reflectivity, thereby helping to reduce the third stray light in the system.
  • the scanning system further includes a first side wall, the first side wall is a side wall connected to the window, and the first structure is arranged between the scanner and the first side wall or, the first structure is disposed on the first side wall.
  • the first structure is disposed between the scanner and the first side wall, or the first structure is disposed on the first side wall, which helps to limit the third stray light to the first side as far as possible. structure, thereby reducing the third stray light.
  • the first structure is a half-opening component, and an opening direction of the half-opening component faces the viewing window.
  • the third stray light generated by the reflection and/or scattering of the window can be collected into the semi-aperture component as much as possible, and the third stray light is limited to reflect and/or Scattering can deplete the tertiary stray light, thereby reducing the tertiary stray light in the system.
  • the shape of the semi-open component includes a ⁇ -shape, a U-shape, or a semi-closed rectangle.
  • the inner surface of the semi-open component has a matting function.
  • the third stray light in the system can be further reduced by the third stray light being absorbed by the inner surface of the semi-aperture component with light extinction function.
  • the reflectance of the inner surface of the semi-opening component with light extinction function is not greater than 10%, or not greater than 8%, or not greater than 4%.
  • the first structure is a grating-like structure, and a surface of the grating-like structure has a light extinction function.
  • the third stray light can be limited to be reflected and/or scattered in the grating-like, thereby losing the third stray light, thereby reducing the third stray light in the system. Furthermore, the third stray light can be further absorbed by having a light extinction function on the grating-like surface, and the third stray light in the system can be further reduced.
  • the reflectance of the grating-like surface with the extinction function is not greater than 10%, or not greater than 8%, or not greater than 4%.
  • the optical processing module further includes a perforated structural member, the perforated structural member includes a perforated area and a non-perforated area, and the perforated area faces the scanner .
  • the third stray light can be transmitted, and the transmitted third stray light can be reflected and/or scattered between the non-aperture area and the side wall of the scanning system to lose the third stray light , thereby reducing the third stray light in the system.
  • the outer surface of the non-aperture area has a matting function
  • the outer surface of the non-aperture area is a side facing away from the scanner.
  • Part or all of the third stray light can be absorbed through the non-aperture area with the light extinction function on the outer surface, so that the third stray light in the system can be further reduced.
  • the reflectance of the outer surface of the non-perforated region with the matting function is not greater than 10%, or not greater than 8%, or not greater than 4%.
  • the present application provides a scanning system, which includes a scanning module, an optical processing module, and a window; the scanning module is used to reflect the detection light from the emitting module to the window and return the echo The signal is reflected to the receiving module, and the echo signal includes the reflected light obtained by reflecting the detection light through the target in the detection area; the optical processing module includes at least two sheet structures, and the at least Two sheet structures form a first structure with at least one opening, the size of the first included angle between the opening direction of the first structure and the viewing window belongs to [0°, 90°], and the first included angle The corners are clips towards the direction of the scanning module.
  • the window in the scanning system may not be able to achieve 100% transmission, a small part of the probe light will be reflected back by the window to generate the third stray light, through the first structure having at least one opening, the third stray light can be The stray light is confined within the first structure and is reflected and/or scattered multiple times, thereby depleting the energy of the third stray light, thereby helping to reduce the third stray light in the system.
  • At least one of the at least two sheet structures has a matting function.
  • the reflectance of the sheet-like structure with light extinction function may be less than 10%, or less than 8%, or less than 4%.
  • the incident third stray light can be absorbed or transmitted through the flake structure with small reflectivity, thereby helping to reduce the third stray light in the system.
  • the scanning system may further include a first side wall, the first side wall is a side wall connected to the window, the first structure is arranged on the first side wall, or, the The first structure is disposed between the first side wall and the scanning module.
  • the first structure is disposed between the scanning module and the first side wall, or the first structure is disposed on the first side wall, which helps to limit the third stray light to the first structure as much as possible In this way, the third stray light can be reduced.
  • the first structure is a half-opening component, and an opening direction of the half-opening component faces the viewing window.
  • the third stray light generated by the reflection and/or scattering of the window can be collected into the semi-aperture component as much as possible, and the third stray light is limited to reflect and/or Scattering can deplete the tertiary stray light, thereby reducing the tertiary stray light in the system.
  • the shape of the semi-open component includes a ⁇ -shape, a U-shape, or a semi-closed rectangle.
  • the inner surface of the semi-open component has a matting function.
  • the third stray light in the system can be further reduced by the third stray light being absorbed by the inner surface of the semi-aperture component with light extinction function.
  • the reflectance of the inner surface of the semi-opening component with light extinction function is not greater than 10%, or not greater than 8%, or not greater than 4%.
  • the first structure is a grating-like structure, and a surface of the grating-like structure has a light extinction function.
  • the third stray light can be limited to reflect and/or scatter within the grating-like, thereby depleting the third stray light, thereby reducing the third stray light in the system; further, through the grating-like surface having an extinction function, The third stray light can be further absorbed, and the third stray light in the system can be further reduced.
  • the reflectance of the grating-like surface with the matting function is not greater than 10%, or not greater than 8%, or not greater than 4%.
  • the optical processing module further includes a perforated structural member, the perforated structural member includes a perforated area and a non-perforated area, and the perforated area faces the scanner .
  • the third stray light can be transmitted, and the transmitted third stray light can be reflected and/or scattered between the non-aperture area and the side wall of the scanning system to lose the third stray light .
  • the outer surface of the non-aperture area has a matting function
  • the outer surface of the non-aperture area is a side facing away from the scanner.
  • Part or all of the third stray light can be absorbed through the non-aperture area with the light extinction function on the outer surface, so that the third stray light in the system can be further reduced.
  • the reflectance of the outer surface of the non-perforated region with the matting function is not greater than 10%, or not greater than 8%, or not greater than 4%.
  • the present application provides a detection system, which may include a transmitting module, a receiving module, and any scanning system in the above-mentioned first aspect or the first aspect.
  • the transmitting module is used for emitting the detection light
  • the receiving module is used for receiving the echo signal reflected from the second sub-scanner.
  • the detection system further includes a detection module; the detection module is used to receive the echo signal from the receiving module and perform photoelectric conversion on the echo signal , to obtain an associated information electrical signal for determining the target.
  • the present application provides a detection system, which may include a transmitting module, a receiving module, and any scanning system in the above-mentioned second aspect or the second aspect.
  • the transmitting module is used for emitting the detection light
  • the receiving module is used for receiving the echo signal reflected from the scanning module.
  • the detection system further includes a detection module; the detection module is used to receive the echo signal from the receiving module and perform photoelectric conversion on the echo signal , to obtain an associated information electrical signal for determining the target.
  • the present application provides a terminal device, which may include the third aspect or any scanning system in the third aspect.
  • the terminal device may further include a controller, configured to determine the associated information of the target according to the electrical signal.
  • the associated information of the target includes but not limited to the distance information of the target, the orientation of the target, the speed of the target, and/or the gray scale information of the target.
  • the present application provides a terminal device, which may include the fourth aspect or any scanning system in the fourth aspect.
  • the terminal device may further include a controller, the controller is configured to determine the associated information of the target according to the electrical signal.
  • the associated information of the target includes but not limited to the distance information of the target, the orientation of the target, the speed of the target, and/or the gray scale information of the target.
  • Figure 1a is a schematic diagram of a possible application scenario provided by the present application.
  • Figure 1b is a schematic diagram of the position of a laser radar provided in the present application on a vehicle
  • Fig. 2 is a kind of optical path diagram that produces stray light provided by the present application
  • Fig. 3 is a schematic structural diagram for eliminating stray light provided by the present application.
  • FIG. 4 is a schematic structural diagram of a scanning system provided by the present application.
  • Fig. 5a is a schematic structural diagram of a light-shielding component provided by the present application.
  • Fig. 5b is a propagation optical path diagram of a first stray light provided by the present application.
  • Fig. 5c is a schematic structural diagram of another light-shielding component provided by the present application.
  • Fig. 5d is a schematic structural diagram of another light-shielding component provided by the present application.
  • Fig. 5e is a schematic structural diagram of another light-shielding component provided by the present application.
  • Fig. 5f is a schematic diagram of filling soft material between a light-shielding component and a scanner provided by the present application;
  • Fig. 6a is a schematic structural diagram of another light-shielding component provided by the present application.
  • Fig. 6b is a propagation light path diagram of a second stray light provided by the present application.
  • Fig. 6c is a schematic structural diagram of another light-shielding component provided by the present application.
  • Fig. 7a is a schematic structural diagram of another light-shielding component provided by the present application.
  • Fig. 7b is a diagram of a propagation optical path of the first stray light and a propagation optical path of the second stray light provided by the present application;
  • Fig. 8a is a schematic projection diagram of a scanner and a light-shielding assembly provided by the present application;
  • Fig. 8b is a schematic projection diagram of another scanner and light-shielding assembly provided by the present application.
  • Fig. 9a is a schematic structural diagram of a semi-open assembly provided by the present application.
  • FIG. 9b is a schematic structural diagram of a scanning system including a half-opening component provided by the present application.
  • FIG. 9c is a schematic structural diagram of another scanning system including a half-opening component provided by the present application.
  • Fig. 9d is a schematic structural diagram of another semi-open assembly provided by the present application.
  • Figure 10a is a schematic structural diagram of a type of grating provided by the present application.
  • FIG. 10b is a schematic structural diagram of a scanning system including gratings provided by the present application.
  • Fig. 11a is a structural schematic diagram of a perforated structural member provided by the present application.
  • Fig. 11b is a schematic structural diagram of a scanning system including a perforated structure provided by the present application.
  • FIG. 12 is a schematic structural diagram of another scanning system provided by the present application.
  • FIG. 13 is a schematic diagram of the architecture of a detection system provided by the present application.
  • Fig. 14a is a schematic structural diagram of a light source assembly provided by the present application.
  • Fig. 14b is a schematic structural diagram of a transmitting optical system provided by the present application.
  • FIG. 15 is a schematic structural diagram of a receiving optical system provided by the present application.
  • FIG. 16 is a schematic structural diagram of a pixel array provided by the present application.
  • FIG. 17 is a schematic diagram of the positional relationship between a laser radar and a vehicle provided by the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by the present application.
  • Flanging refers to the use of molds to form a straight wall or flange with a certain angle along the closed or unclosed curved edge on a flat or curved surface.
  • the flanging means that the plane part (ie the bottom plate) of the light-insulating component is formed with a certain angle of side wall or flange along the edge of the bottom plate by the action of the mold.
  • Pitting is a defect that affects the surface quality of the product. It is manifested as an uneven rough surface on the surface of the product, also known as pockmarked surface. Most of them are continuous sheets, and some are locally dotted or periodically distributed.
  • the reflection of light refers to the phenomenon that when light travels to different substances, it changes the propagation direction on the interface and returns to the original substance. Reflection in this application refers to specular reflection, ie light from a single incoming direction is reflected to a single outgoing direction.
  • Scattering of light is when light hits a rough or grainy surface and is reflected in all directions due to the microscopic irregularities of the interface.
  • FIG. 1a schematically shows a possible application scenario of the present application.
  • the laser radar is installed on the vehicle as an example.
  • the vehicle may be, for example, an unmanned vehicle, a smart vehicle, an electric vehicle, or a digital vehicle.
  • LiDAR can be deployed in various positions of the vehicle (see Figure 1b).
  • lidar can be deployed in any direction or multiple directions in the front, rear, left and right directions of the vehicle to capture information about the surrounding environment of the vehicle.
  • Figure 1a is an example where the lidar is deployed in front of the vehicle.
  • the lidar can perceive the fan-shaped area shown in the dotted box shown in Figure 1a, and this fan-shaped area can be called the detection area of the lidar (or the field of view of the lidar).
  • the laser radar can acquire the latitude and longitude, speed, orientation, or related information (such as the distance of the target, the target’s speed of movement, attitude of the target or grayscale image of the target, etc.).
  • the lidar or the vehicle can determine the vehicle's position and/or path planning, etc. based on this associated information. For example, use the latitude and longitude to determine the position of the vehicle, or use the speed and orientation to determine the driving direction and destination of the vehicle in the future, or use the distance of surrounding objects to determine the number and density of obstacles around the vehicle.
  • an advanced driving assistant system advanced driving assistant system, ADAS
  • ADAS advanced driving assistant system
  • the lidar emits detection light in a certain direction, if there is a target in the detection area of the lidar, the target can reflect the received detection light back to the lidar (reflected The detection light can be called the echo signal), and the laser radar determines the relevant information of the target according to the echo signal.
  • lidar can also be mounted on drones as airborne radar.
  • lidar can also be installed in a roadside unit (RSU), as a roadside traffic lidar, which can realize intelligent vehicle-road collaborative communication.
  • lidar can be installed on an automated guided vehicle (AGV).
  • AGV automated guided vehicle
  • the AGV is equipped with an automatic navigation device such as electromagnetic or optical, and can drive along a prescribed navigation path. It has safety protection and various Transporter with transfer function. They are not listed here.
  • the above application scenarios can be applied to areas such as unmanned driving, automatic driving, assisted driving, intelligent driving, connected vehicles, security monitoring, remote interaction, surveying and mapping, or artificial intelligence.
  • the laser radar is taken as an example below to exemplarily show possible situations where stray light is generated in the laser radar.
  • the scanner scatters part of the detection light to generate first stray light.
  • the scanner may scatter part of the detection light, and this part of the scattered detection light cannot reach the detector.
  • the region, which is the stray light in lidar, can be called the first stray light, and the first stray light may enter the detector. After the first stray light enters the detector, it will affect the detection of the actual echo signal by the detector, thereby reducing the accuracy of lidar detection.
  • the lidar may mistakenly detect the first stray light as an echo signal reflected by a target that is closer to the lidar, thus causing the lidar to detect Therefore, the first stray light will affect the accuracy of lidar detection, especially when the lidar is used in short-distance detection scenes.
  • the scanner reflects part of the detection light to some structural parts in the lidar, generating second stray light.
  • the scanner may reflect part of the detection light to some structural parts in the lidar.
  • the scanner may reflect part of the detection light to the scanner bracket to generate second stray light.
  • These second stray lights will also affect the accuracy of lidar detection.
  • the lidar since the propagation time of the second stray light in the lidar is also relatively short, the lidar may mistakenly detect the second stray light as a The echo signal reflected by the target closer to the laser radar, therefore, the second stray light will affect the accuracy of the laser radar detection, especially for the scene where the laser radar is used for short-distance detection.
  • the window reflects and/or scatters the probe light, generating third stray light.
  • the detection light travels to the scanner, it is reflected to the window by the scanner, and most of the detection light is transmitted to the detection area through the window to realize the scanning of the detection area, but because the window may not be able to achieve 100% Transmission, so a small part of the detection light will be reflected back to the lidar by the window, resulting in the third stray light.
  • the third stray light may enter the detector, which will affect the detection of the actual echo signal by the detector, thereby reducing the detection accuracy of the lidar.
  • the propagation time of the third stray light in the lidar is also short, and the lidar may mistakenly detect that the third stray light is also an echo signal reflected back from a target that is closer to the lidar, thus causing the lidar to detect Therefore, the third stray light also has a great influence on the scene detected by LiDAR at close range.
  • a large partition can be added between the receiving optical path and the emitting optical path to separate the emitting optical path and the receiving optical path isolation (see Figure 3).
  • the method of increasing the large partition to isolate the transmitting light path and the receiving light path will block more detection light and echo signals, resulting in insufficient transceiver efficiency of the lidar, which will reduce the detection capability of the lidar (such as reducing the distance measurement capability) ).
  • the present application proposes two scanning systems, which can suppress or even eliminate stray light as much as possible. Further, when the scanning system is applied to a detection system (eg, laser radar, etc.), the detection accuracy of the detection system can be improved.
  • a detection system eg, laser radar, etc.
  • the scanning system hereinafter may also be referred to as a stray light elimination system
  • the optical processing module may also be referred to as a stray light elimination module.
  • the names of the system and each functional module in the embodiments of the present application are just examples, and the names of the system and each functional module may be other names in a specific implementation, which is not specifically limited in this application.
  • the scanning system includes a scanning module 401 and an optical processing module 402, the scanning module 401 includes a scanner 4011, the optical processing module 402 includes a light isolation component 4021, and the scanner 4011 is divided into a first sub-scanner based on the light isolation component 4021 And the second sub-scanner, the first sub-scanner is used to reflect the detection light from the transmitting module to the detection area, the second sub-scanner is used to reflect the echo signal to the receiving module, the echo signal includes The reflected light obtained by reflecting the detection light on the target, the light-shielding component includes a first flange 40211 and/or a second flange 40212, the first flange 40211 faces the side of the first sub-scanner, and the second flange 40212 The side facing the second subscanner.
  • the light-shielding component includes a first flange 40211 and/or a second flange 40212, the first flange 40211 faces the side of the first sub-scanner
  • the light-shielding component includes a first flange facing one side of the first sub-scanner, and/or , the second flange included in the light-shielding component faces one side of the second sub-scanner, therefore, the stray light generated by reflection and/or scattering and/or absorption of the scanner (such as the first stray light or The second stray light in the above case 2) can be transmitted to the first flange and/or the second flange, and further, the first flange and/or the second flange can reflect and/or scatter the incident stray light again Astigmatism, based on the propagating optical path, part or even all of the energy of the stray light will be lost, so that the stray light generated by the scanner can be suppressed or eliminated through the first flange and/or the second flange
  • the scanning angle of the scanner can be changed to change the propagation direction of the detection light, so that the detection light can be reflected to the detection area in different directions, thereby realizing the scanning of the detection area. It can also be understood that when the scanner is at a scanning angle, it can reflect the detection light to one direction of the detection area; when the scanner is at a different scanning angle, it can reflect the detection light to different directions of the detection area, so that the detection can be realized. area scan. It should be understood that the scanner realizes the scanning of the detection area by using the principle of geometric optics (such as the law of reflection), and has a large scanning field of view and high scanning efficiency. It should be noted that the scanner can rotate in a continuous operation mode, or in a step operation mode, which is not limited in this application. In practical applications, which mode of rotation is used can be preset.
  • the scanner includes a rotating mirror or an oscillating mirror.
  • the rotating mirror can be a polyhedron rotating mirror, for example, a tetrahedron rotating mirror, a hexahedron rotating mirror or an octahedron rotating mirror, etc.; Oscillating mirror with reflective function.
  • the scanner may also include other structures enabling the scanner to realize the scanning function, which is not limited in this application.
  • the scanning module may further include a motor, which can drive the scanner to rotate around the scanning axis, so that the scanner can be positioned at different scanning angles.
  • each functional module shown in FIG. 4 is introduced and described below to give an exemplary specific implementation solution.
  • the scanning module, the optical processing module, the first flange and the second flange are not identified below.
  • the optical processing module is used to suppress or eliminate stray light generated by the system.
  • the structures of three possible optical processing modules are exemplarily shown as follows.
  • the optical processing module includes a light-shielding component.
  • the scanner is taken as an example of a tetrahedral rotating mirror
  • the optical path of stray light is introduced as an example of the propagation optical path corresponding to one surface of the tetrahedral rotating mirror.
  • the light-shielding component includes a bottom plate and a first flange.
  • FIG. 5 a is a schematic structural diagram of a light-shielding component provided in the present application.
  • the light-shielding assembly includes a base plate and a first flange, the first flange surrounds the periphery of the base plate (that is, the first flange is provided along the edge of the base plate), and the first flange faces one side of the first sub-scanner,
  • the bottom plate is arranged (eg, fixed) between the first sub-scanner and the second sub-scanner.
  • the base plate may be embedded in a groove between the first sub-scanner and the second sub-scanner.
  • the bottom plate can be embedded (or referred to as inserted) into a shallow groove in the middle area of the scanner, as can be seen in FIG. 5c, a protruding structure is provided in the middle area of the bottom plate, and the middle area formed by these protruding structures is a hole.
  • These protruding structures can be nested in the corresponding grooves in the middle area of the scanner, so as to realize the arrangement of the bottom plate between the first sub-scanner and the second sub-scanner.
  • the scanner and the light-shielding component rotate synchronously around the scanning axis of the scanner, that is, the scanner and the light-shielding component share the scanning axis of the scanner.
  • the base plate is nested between the first sub-scanner and the second sub-scanner. Specifically, a middle area of the scanner may be dug through, so as to embed the base plate into the dug-out area. Based on this prescribed method, the light shielding assembly may not rotate with the rotation of the scanner. Further, the bottom plate can also be further fixed by means of screws or glue. It should be noted that Fig. 5a is only an example given by this embodiment, and this embodiment does not limit the specific shape of the bottom plate, any shape that can realize the bottom plate being arranged between the first sub-scanner and the second sub-scanner All within the scope of protection of this application.
  • the first flange includes a first surface (see FIG. 5 b below), and the first surface of the first flange is a surface of the first flange facing the scanner. In other words, the first surface of the first flange is opposite to the surface of the scanner for emitting detection light.
  • the first surface of the first flange has a matting function.
  • the matting function can be realized by spraying matting material (such as matting paint), electrophoresis, anodic oxidation, or coating.
  • the reflectance of the first surface of the first flange with matting function is no more than 10%, or no more than 8%, or no more than 4%. It can also be understood that the reflectivity of the first surface of the first flange with the matting function is relatively low.
  • the bottom plate also includes a first surface (see FIG. 5b below), the first surface of the bottom plate is the surface facing the first flange side of the bottom plate, and the first surface of the bottom plate may also have a matt surface.
  • Function For the introduction of having a light extinction function, please refer to the relevant description above, which will not be repeated here.
  • the first flange can completely surround the periphery of the bottom edge, as shown in FIG. 5 c , that is, the first flanges are provided on the four surfaces surrounding the tetrahedral rotating mirror.
  • the first flanging can also be partially surrounded by the periphery of the base plate, that is, one, two or three of the four faces of the tetrahedron mirror are provided with the first flanging, please refer to FIG. 5d, to First flanges are provided around the two faces of the tetrahedron mirror.
  • the first flanging can also surround at least one face of the tetrahedral mirror with uniform intervals or non-uniform intervals (similar to the fence type) surrounding the periphery of the base plate, see Figure 5e, to surround the four faces of the tetrahedral mirror
  • the first flanges formed at uniform intervals are arranged to surround the periphery of the bottom plate. It should be noted that the heights of the first flanges disposed around the tetrahedron rotating mirror may be the same or different, which is not limited in this application.
  • the angle formed between the first flange and the bottom plate belongs to (0°, 180°).
  • the angle between the first flange and the bottom plate is equal to 90° (such as a downward “L shape”), that is, the first flange is perpendicular to the bottom plate.
  • the angle between the first flange and the bottom plate is equal to 30°, 45°, 60°, or 120°, etc., which will not be listed here.
  • the first flanging can be a plane (such as a plane thin plate) or a curved surface, which is not limited in this application. It should be understood that the above-mentioned Fig. 5a is an example in which the first flange is perpendicular to the bottom plate and the first flange is a plane.
  • the base plate and the first flange can be integrally formed, or the first flange can also be fixed to the base plate by gluing (such as point glue) or screws.
  • the propagation optical path of the first stray light can be seen in Figure 5b, specifically: through the first sub-scanner Scattering to the first surface of the first flange, reflected by the first surface of the first flange and/or scattered to the first surface of the bottom plate, further, the first stray light can also be reflected and/or reflected by the first surface of the bottom plate Scattering loses more energy.
  • the first stray light is reflected and/or scattered between the first face of the first flange and the first face of the bottom plate.
  • the energy loss is relatively large, and even the remaining energy can be ignored; further, the first surface of the bottom plate and/or the first surface of the first flange have a matting function (such as coated with extinction material with smaller reflectivity), therefore, the energy loss of the first stray light is greater, so that the first stray light can be suppressed or even eliminated.
  • a matting function such as coated with extinction material with smaller reflectivity
  • the light-shielding component can The space between the scanner and the scanner is filled with soft material, see Figure 5f for details. In this way, the first stray light can be prevented from entering the receiving module through the gap between the scanner and the light-shielding component, thereby further suppressing or eliminating the interference caused by the first stray light.
  • the soft material includes but not limited to silicone rubber or glue. It should be noted that a soft material can be filled between part of the optical isolation component and the scanner. Referring to Figure 5f, a soft material can be filled between the tetrahedral rotating mirror and part of the light isolation component. All gaps between the rotating mirror and the light-shielding component are filled with soft materials.
  • the soft material may be filled in the gap between the scanner and the bottom plate of the light-shielding component through secondary injection molding or glue dispensing.
  • the light-shielding component includes a bottom plate and a second flange.
  • the angle formed between the second flange and the bottom plate belongs to (0°, 180°), in other words, the angle formed between the second flange and the bottom plate is (0° , 180°) one of the values.
  • the angle between the second flange and the bottom plate is equal to 90° (such as an upward "L shape"), that is, the second flange is perpendicular to the bottom plate, or the angle between the second flange and the bottom plate Equal to 30°, 45°, 60°, 120°, or 145° etc.
  • the second flange can be a plane (for example, a plane thin plate) or a curved surface, which is not limited in the present application.
  • the base plate and the second flange can be integrally formed, or the second flange can also be fixed to the base plate by gluing (such as point glue) or screws.
  • the second flange can be completely surrounded by the periphery of the bottom edge.
  • the periphery of the bottom plate can also be partially surrounded by the periphery of the bottom plate, referring to Figure 6a, that is, one, two or three sides of the four sides of the tetrahedron mirror are provided with a second flange; or the tetrahedron mirror can also be turned around At least one surface of the base plate is surrounded by the periphery of the bottom plate at uniform intervals or non-uniform intervals (similar to a fence type).
  • FIG. 6 a is a schematic structural diagram of another light-shielding component provided by the present application.
  • the light-shielding component includes a bottom plate and a second flange, the second flange surrounds the periphery of the bottom plate (that is, the second flange is arranged along the edge of the bottom plate), and the second flange faces one of the second sub-scanners.
  • the bottom plate is arranged between the first sub-scanner and the second sub-scanner (for details, please refer to the introduction in the above structure 1.1).
  • the second flange includes a second surface, and the second surface of the second flange is a surface of the second flange facing the bracket. It can also be understood that the second surface of the second flange is opposite to the surface of the bracket used to reflect and/or scatter the detection light. Further, optionally, the second surface of the second flange has a matting function. For the introduction of having a light extinction function, refer to the above description, which will not be repeated here.
  • the scanning module can also include a bracket, which is used to support the scanner, or can also be understood as a bracket used to fix the scanner. Exemplarily, the brackets can be distributed around the scanner to fix the scanner. It should be noted that the bracket is fixed and does not rotate with the scanning rotation. For example, the bracket may be secured to a motor for driving the scanner in rotation.
  • the first surface of the bracket facing the second flange also has a matting function.
  • the first surface of the bracket is opposite to the second surface of the second flange.
  • the second flange can completely surround the periphery of the bottom edge, please refer to the above-mentioned FIG. 6 a , that is, the second flange is provided on the four surfaces surrounding the tetrahedral rotating mirror.
  • the second flange can also partially surround the periphery of the bottom plate, that is, the second flange is provided around one, two or three of the four faces of the tetrahedron mirror.
  • the second flanging can also surround at least one face of the tetrahedral rotating mirror at evenly spaced or non-uniformly spaced (similar to fence type) surrounding the periphery of the base plate, referring to Fig.
  • the second flanges formed at uniform intervals are arranged to surround the periphery of the bottom plate. It should be noted that the heights of the second flanges disposed around the tetrahedron rotating mirror may be the same or different, which is not limited in the present application.
  • the angle formed between the second flange and the bottom plate belongs to (0°, 180°).
  • the angle between the second flange and the bottom plate is equal to 90° (such as an upward “L shape”), that is, the second flange is perpendicular to the bottom plate.
  • the angle between the second flange and the bottom plate is equal to 30°, 45°, 60°, or 120°, etc., which will not be listed here.
  • the second flanging can be a plane or a curved surface, which is not limited in this application. It should be understood that the above-mentioned Fig. 6a is an example in which the second flange is perpendicular to the bottom plate and the second flange is a plane.
  • the base plate and the second flange can be integrally formed, or the second flange can also be fixed to the base plate by gluing (such as point glue) or screws.
  • the propagation optical path of the second stray light can be seen in FIG.
  • the first sub-scanner is reflected to the first surface of the support, and reflected and/or scattered by the first surface of the support to the second surface of the second flange.
  • the second stray light is scattered and/or reflected between the first face of the bracket and the second face of the second flange.
  • first side of the bracket and/or the second side of the second flange have a matting function (such as being coated with a reflective extinction material with a smaller efficiency), therefore, the energy loss of the second stray light is greater, so as to suppress or even eliminate the second stray light.
  • the space between the light-shielding component and the scanner can also be filled with soft material (see figure 6b).
  • soft materials such as filling methods, specific materials, etc.
  • the light-insulating component includes a bottom plate, a first flange and a second flange.
  • FIG. 7 a is a schematic structural diagram of another light-shielding component provided by the present application.
  • the light-shielding assembly includes a base plate, a first flange and a second flange, the first flange surrounds the periphery of the base plate on the side facing the first sub-scanner, and the second flange surrounds the periphery of the base plate on the side facing the second sub-scanner.
  • the side is surrounded by the periphery of the bottom plate (that is, the first flange and the second flange are arranged along the edge of the bottom plate, and the directions of the first flange and the second flange are opposite to each other), and the bottom plate is arranged on the first sub-scanner and the second sub-scanner. Between the two sub-scanners (for details, please refer to the introduction in the above structure 1.1).
  • the first flange includes a first surface and a second surface, the first surface of the first flange is the surface of the first flange facing the scanner, and the second surface of the first flange is Face facing the bracket.
  • the first surface of the first flange is opposite to the surface of the scanner for emitting and/or scattering the probe light
  • the second surface of the first flange is opposite to the first surface of the support.
  • both the first surface and the second surface of the first flange may have a matting function
  • the second surface of the second flange may also have a matting function
  • the first surface of the base plate may have a matting function.
  • the surface can also have a matting function, and the related introduction can refer to the above description, and will not be repeated here.
  • the angle formed between the first flange and the bottom plate belongs to (0°, 180°), and the angle formed between the second flange and the bottom plate also belongs to (0°, 180°). °, 180°), for details, please refer to the relevant description above, and will not repeat them here.
  • the second flange is perpendicular to the bottom plate
  • the first flange is perpendicular to the bottom plate (such as “T shape”). It should be understood that the angle formed between the first flange and the bottom plate is the same as or different from the angle formed between the second flange and the bottom plate, which is not limited in the present application.
  • the bottom plate, the first flange and the second flange can be integrally formed, or the first flange and the second flange can be glued (such as point glue) or screws etc. fixed on the bottom plate.
  • the fixing method of the first flange and the bottom plate may be the same as that of the second flange and the bottom plate, or may not be the same, and this application is not limited thereto.
  • the manner in which the first flange surrounds the periphery of the bottom plate may be the same as the manner in which the second flange surrounds the periphery of the bottom plate, and the present application does not limit this.
  • the first flange surrounds the bottom plate refer to the relevant introduction in the aforementioned structure 1.1
  • the second flange surrounds the bottom plate refer to the related introduction of the aforementioned structure 1.2, which will not be repeated here.
  • the first sub-scanner may scatter the detection light to generate first stray light, and may also reflect the detection light to the support to generate second stray light.
  • the propagation optical path of the first stray light and the second stray light can be referred to in Fig. 7b, specifically: the first stray light is scattered to the first surface of the first flange, reflected and/or scattered by the first surface of the first flange To the first surface of the bottom plate, that is, the first stray light is reflected and/or scattered between the first surface of the first flange and the first surface of the bottom plate, further, the first surface of the bottom plate and/or the first surface of the first flange
  • the first surface has a extinction function (such as being coated with a extinction material with a small reflectivity), and the energy loss to the first stray light is greater, so that the first stray light can be suppressed or eliminated; the second stray light passes through the first sub-
  • the scanner is reflected to the first surface of the support, scattered and/or reflected to the second surface of the second flange through the first surface of the support, that is, the second stray light is on
  • the gap between the scanner and the light-isolation component there may be a certain gap between the scanner and the light-isolation component.
  • the gap between the light-proof component and the scanner The space may be filled with a soft material (see Figure 7b).
  • soft materials such as filling methods, specific materials, etc.
  • the first sub-scanner may also reflect part of the detection light to the bracket, thereby generating the fourth stray light, which can be detected in the first scattering and/or reflection between the second surface of the flange and the first surface of the bracket, and/or, the fourth stray light is scattered and/or between the second surface of the second flange and the first surface of the bracket Reflection to suppress or even eliminate fourth stray light.
  • the projection of the light shielding component on the first plane is a circumscribed circle of the projection of the scanner on the first plane, where the first plane is a plane perpendicular to the scanning axis. In this way, it helps to reduce the volume of the optical processing module, so that the scanning system can be miniaturized.
  • FIG. 8 a taking the scanner as a tetrahedron rotating mirror as an example, a schematic diagram of the projection of the scanner and the light-shielding component on the first plane is given.
  • FIG. 8 b taking the scanner as an example of a hexahedron, it shows a schematic diagram of the projection of the scanner and the light-shielding component on the first plane.
  • the material of the above-mentioned light-shielding component may be, for example, a plastic with a low reflectivity (eg, less than 10%), such as silica gel.
  • first flange and/or the second flange surrounds the periphery of the bottom plate. It should be understood that the first flange and/or the second flange may also be disposed on the base plate, that is, the first flange and/or the second flange may be disposed at any position between the center and the edge of the base plate.
  • the optical processing module includes at least two sheet structures.
  • At least two sheet structures form a first structure with at least one opening, and a first angle ⁇ between the opening direction of the first structure and the viewing window is in [0°, 90°]
  • the first included angle is an included angle in a direction toward the scanner.
  • at least one of the at least two sheet-like structures has a light extinction function, for example, the reflectance of the sheet-like structure is less than a reflectance threshold, wherein the reflectance threshold may be, for example, 10% or 8%. or 4% etc. In other words, the sheet-like structure has lower reflectivity.
  • the material of the sheet structure may be plastic with low reflectivity (eg, less than 10%), such as silica gel. It should be noted that the material of the sheet-like structure may be the same as that of the light-shielding component, or may also be different, which is not limited in this application.
  • the shapes of at least two sheet-like structures may be the same, or may not be the same, or may also be partly the same.
  • the shape of the sheet-like structure is not limited to being a rectangle, for example, the shape of the sheet-like structure may also be "L-shaped", or other irregular figures.
  • the lengths of at least two sheet-like structures may be all the same, or different from each other, or partly the same; the thicknesses of at least two sheet-like structures may be all the same, or different from each other, or partly the same. Applications are not limited to this either.
  • the first structure formed by at least two sheet-like structures is a semi-open assembly.
  • the first structure formed by at least two sheet structures is a semi-open component.
  • the opening direction of the semi-opening component faces the viewing window (see FIG. 9b or FIG. 9c below).
  • the scanning system may further include a window.
  • FIG. 9 a is a schematic structural diagram of a semi-open assembly provided by the present application.
  • the semi-open assembly includes three sheet structures (such as sheet structure A, sheet structure B and sheet structure C) as an example, sheet structure A and sheet structure C are spliced together, and sheet structure B is also combined with sheet structure
  • the sheet-like structure C is spliced together, and the sheet-like structure A and the sheet-like structure B are arranged at intervals to form an opening, and the direction of the opening faces the window.
  • the sheet-like structure may be a baffle.
  • the sheet-like structure A, the sheet-like structure B and the sheet-like structure C can be molded together, or spliced into a semi-open assembly.
  • the shape formed by splicing three sheet-like structures may also be, for example, " ⁇ ", “n”, “ ⁇ ”, or “U”, or a semi-closed rectangle. It should be understood that Fig. 9a is an example where three sheet-like structures are spliced to form a semi-closed rectangle.
  • sheet-like structure A and the sheet-like structure B may or may not be parallel, which is not limited in this application.
  • the semi-opening component is disposed between the scanner and the first side wall of the scanning system, see FIG. 9b.
  • the first side wall of the scanning system includes two opposite side walls connected to the window
  • FIG. 9 b is an example in which the half-opening component is arranged between one of the first side walls and the scanner.
  • the propagation optical path of the third stray light is specifically: part of the probe light is reflected and/or scattered by the window to form the third stray light, and the third stray light is reflected and/or scattered by the window and enters the semi-aperture component.
  • the third stray light is reflected and/or scattered to the inner surface of the sheet-like structure A, and reflected and/or scattered to the inner surface of the sheet-like structure B by the inner surface of the sheet-like structure A
  • the inner surface is then reflected and/or scattered by the inner surface of the sheet-like structure B to the inner surface of the sheet-like structure A, and reflected and/or scattered back and forth in turn.
  • the inner surface of the sheet structure A or the inner surface of the sheet structure B can also reflect and/or scatter the third stray light to the inner surface of the sheet structure C, and the inner surface of the sheet structure C can reflect the third stray light.
  • Astigmatic light is reflected and/or scattered to the inner surface of the sheet-like structure B or to the inner surface of the sheet-like structure A.
  • the third stray light is reflected and/or scattered on the inner surface of the semi-aperture component. Based on the propagating light path, the energy loss of the third stray light is relatively large, and even the remaining energy is negligible, so that the suppression or even elimination of the third stray light can be achieved. Three stray light.
  • the opening direction of the semi-opening component faces the viewing window. It can be understood that the size of the first included angle between the opening direction of the semi-opening component and the viewing window belongs to (0° ⁇ 90°], that is, the first included angle is ( 0° ⁇ 90°], Figure 9b is an example where the first angle between the opening direction and the window is 90°, and Figure 9c is that the first angle between the opening direction and the window is greater than 0° and less than 90° example.
  • FIG. 9d is a schematic structural diagram of another semi-open assembly provided by the present application.
  • the semi-open assembly includes two sheet structures (sheet structure a and sheet structure b) as an example, one end of sheet structure a is spliced together with one end of sheet structure b, the other end of sheet structure a is connected to sheet The other end of the shape structure b is separated to form an opening, and the direction of the opening faces the window. Further, optionally, the size of the angle formed between the two sheet structures belongs to (0° ⁇ 90°), in other words, the size of the angle formed between the two sheet structures is (0° ⁇ 90°). 90°). It should be noted that the sheet-like structure a and the sheet-like structure b can be molded together, or spliced into a semi-open assembly.
  • the propagation optical path of the third stray light is specifically: part of the probe light is reflected and/or scattered by the window to form the third stray light, and the third stray light is reflected and/or scattered by the window and enters the half-opening component. Reflection and/or scattering between the inner surfaces of the components, i.e. the third stray light is reflected and/or scattered to the inner surface of the sheet structure a, reflected and/or scattered to the sheet structure b by the inner surface of the sheet structure a The inner surface of the sheet-like structure b is reflected and/or scattered to the inner surface of the sheet-like structure a, and reflected and/or scattered back and forth in turn.
  • the energy loss is relatively large, and even the remaining energy is negligible, so that the third stray light can be suppressed or even eliminated.
  • the present application does not limit the number of sheet-like structures forming the semi-open assembly, and it may be two or more than two.
  • Fig. 9a or Fig. 9d there is only one sheet-like structure on one side, and it can also be formed by splicing multiple sheet-like structures on one side.
  • the inner surface of the semi-open component may have a matting function.
  • the inner surface of the opening assembly includes the surface of the sheet structure A facing the sheet structure B, the surface of the sheet structure B facing the sheet structure A, and the sheet structure C facing On the surface of the opening, at least one of the three surfaces has a matting function.
  • the inner surface of the opening component includes a surface facing the sheet structure b in the sheet structure a, and a surface facing the sheet structure a in the sheet structure b, at least one of the two surfaces has a matting function .
  • having a light extinction function please refer to the above related descriptions, which will not be repeated here.
  • Structure 2.2 the first structure formed by at least two sheet structures is grating-like (or called grating teeth).
  • the first structure formed by at least two sheet structures is a grating-like structure.
  • the grating-like optical device is an optical device composed of at least two sheet-like structures arranged at intervals, and the intervals formed by the arrangement of the at least two sheet-like structures may or may not be equal.
  • the scope of interval can be (0-5mm] for example.
  • sheet-like structure can be arranged periodically, also can be non-periodically arranged, the application is not limited to this. It should be understood that, in this example, sheet-like structure Also called teeth.
  • FIG. 10 a is a schematic structural diagram of a type of grating provided in this application.
  • This type of grating includes 8 sheet structures as an example, and some of the 7 intervals formed by the 8 sheet structures are the same and some are different.
  • 8 sheet-like structures are arranged in parallel as an example.
  • the grating-like surface may have a extinction function.
  • having a extinction function please refer to the above-mentioned related descriptions, which will not be repeated here.
  • the grating-like can be disposed on the first sidewall, please refer to FIG. 10b.
  • the first side wall of the scanning system includes two opposite side walls connected to the window, and Fig. 10b is an example where a grating-like arrangement is made between one of the first side walls and the scanner.
  • the opening direction of the grating-like is toward the field of view or the scanner.
  • the first angle between the opening direction of the grating-like and the viewing window is 0°, that is, the opening direction of the grating-like is facing the scanner in this example.
  • the propagation optical path of the third stray light is specifically: part of the probe light is reflected and/or scattered by the window to form the third stray light, the third stray light is reflected and/or scattered by the window into the grating-like, and reflected in the grating-like and/or scatter.
  • the third stray light is confined to multiple reflections and/or scattering within the grating-like. After the third stray light propagates through the propagation optical path, the energy loss is relatively large, and even the remaining energy is negligible, so that the third stray light can be suppressed or even eliminated.
  • the optical processing module includes a perforated structural member.
  • the perforated structural member may be obtained by perforating the structural member in the scanning system, or may be an additional perforated structural member added to the scanning system.
  • Structural components in the scanning system include, but are not limited to, mechanical structural components that function as supports and covers, for example, the above-mentioned brackets for fixing the scanner, or structural components such as visors.
  • the structural member in the scanning system may be drilled by mechanical drilling.
  • FIG. 11 a is a structural schematic diagram of a perforated structural member provided in the present application.
  • the perforated structural member includes a perforated area and a non-apertured area.
  • the hole in the hole area can allow the third stray light to pass through, and the non-open area is used to reflect and/or scatter the third stray light, so as to suppress or eliminate the third stray light.
  • the perforated structural member shown in FIG. 11a is just an example.
  • the present application does not limit the shape of the hole of the perforated structural member, which may be a regular pattern or an irregular pattern, and any shape that can transmit the third stray light is within the protection scope of the present application.
  • the present application does not limit the position of the opening area, and any position where the third stray light can be transmitted is within the protection scope of the present application.
  • the present application does not limit the size of the hole, and any size that can realize the transmission of the third stray light is within the protection scope of the present application.
  • the outer surface of the non-perforated area of the perforated structural member has a matting function
  • the outer surface of the non-perforated area is the side facing away from the scanner, which can also be understood as , the outer surface of the non-opening area is a surface facing the first side wall and/or the second side wall.
  • the perforated structural member may be disposed between the scanner, the first side wall and/or the second side wall, see FIG. 11 b .
  • the propagation optical path of the third stray light is specifically: the third stray light is transmitted to the first side wall and/or the second side wall of the detection system through the opening area of the perforated structural member, and then passes through the first Sidewalls and/or second sidewalls, etc.
  • the optical processing module based on the above structure 2 and structure 3 can eliminate the third stray light generated by the window reflection and/or scattered detection light.
  • the structures of the above-mentioned optical processing modules can be used alone or in combination.
  • the combination of structure 1 and structure 2 that is, the optical processing module includes a light-shielding component and at least two sheet-like structures, wherein the light-shielding component can suppress or eliminate the first stray light and the second stray light, and at least two chip-like structures
  • the structure can suppress or eliminate the third stray light.
  • the combination of structure 1 and structure 2 may be a combination of any one of the three structures of structure 1 and any one of the two structures of structure 2 .
  • structure 1 and structure 3 are combined, and the optical processing module includes a light-shielding component and a perforated structural member, wherein the light-shielding component can suppress or eliminate the first stray light and the second stray light, and the perforated structural member can Suppress or eliminate third stray light.
  • the combination of structure 1 and structure 3 may be a combination of any of the three structures of structure 1 and structure 3 .
  • the combination of structure 1, structure 2 and structure 3 that is, the optical processing module includes a light-shielding component, at least two sheet structures and a perforated structural member, wherein the light-shielding component can suppress or eliminate the first stray light and the second stray light, the at least two sheet structures and the perforated structural member can suppress or eliminate the third stray light.
  • the combination of structure 1, structure 2 and structure 3 may be any one of the three structures of structure 1, any one of the two structures of structure 2, and a combination of structure 3.
  • optical processing module in this application may also be other possible combinations, which will not be listed here.
  • FIG. 12 it is a schematic structural diagram of another scanning system provided by the present application.
  • the scanning system includes a scanning module 1201 , an optical processing module 1202 and a window 1203 , further, the scanning system may further include a first side wall 1204 .
  • the scanning module 1201 is used to reflect the detection light from the transmitting module to the window 1203, and reflect the echo signal to the receiving module, and the echo signal includes Reflected light obtained by reflecting the probe light;
  • the optical processing module 1202 includes at least two sheet structures, the at least two sheet structures form a first structure with at least one opening, and the first structure
  • the size of the first angle between the opening direction of the opening and the window 1203 belongs to [0°, 90°], the first angle is the angle toward the direction of the scanning module 1201, and the first side wall 1204 is The side wall connected with the window 1203.
  • the window in the scanning system may not be able to achieve 100% transmission, a small part of the probe light will be reflected back by the window to generate the third stray light, through the first structure having at least one opening, the third stray light can be The stray light is confined within the first structure and is reflected and/or scattered multiple times, thereby depleting the energy of the third stray light, thereby helping to reduce the third stray light in the system.
  • optical processing module 1202 in the scanning system is exemplarily shown.
  • the optical processing module is not identified below.
  • Structure A the first structure formed by at least two sheet-like structures is a semi-open assembly.
  • the first structure formed by at least two sheet structures is a grating-like structure (or called grating teeth).
  • the scanning system may further include a perforated structural member, for details, please refer to the introduction of the above-mentioned structure 3 .
  • the scanning system can be the above-mentioned Figure 4, Figure 5a- Figure 5f, Figure 6a- Figure 6c, Figure 7a- Figure 7b, Figure 8a- Figure 8b, Figure 9a- Figure 9d, Figure 10a-
  • the optical processing module in the scanning system may be any one of the above-mentioned structure 1, structure 2 or structure 3 or a combination of any multiple structures.
  • the scanning system can also be the scanning system shown in FIG. A combination of structure 3.
  • the present application may also provide a detection system.
  • the detection system may include a transmitting module 1301 , a receiving module 1302 and a scanning system 1303 in any of the above-mentioned embodiments.
  • the transmitting module 1301 is used for emitting the detection light
  • the receiving module 1302 is used for receiving the echo signal reflected from the scanning module or the second sub-scanner.
  • the detection system may further include a control module 1304 .
  • the detection system may also include a viewing window 1305 .
  • the detection system may further include a first side wall 1306 and a second side wall 1307, wherein the first side wall 1306 and the second side wall 1307 are mainly used to isolate the influence of the external environment.
  • the emission module may include a light source component and an emission optical system, wherein the light source is used to emit detection light, and the emission optical system is used to transmit the detection light to the detection area.
  • the probe light can be a line beam or also a surface beam.
  • the light source component may be a light source array with M rows and N columns, where M and N are both positive integers. If both M and N are equal to 1, the light source component may be a single light source. If M is equal to 1, and N is an integer greater than 1, the light source component is a light source array with 1 row and M columns. If M is an integer greater than 1 and N is equal to 1, the light source assembly may be a light source array with M rows and 1 column. If both M and N are integers greater than 1, the light source assembly may be a light source array with M rows and N columns.
  • Fig. 14a it is a schematic structural diagram of a light source assembly provided by the present application.
  • the shape of the light source shown in FIG. 14a is only an example, which is not limited in the present application.
  • the shape of the light source may also be a square or an ellipse or other possible shapes.
  • the light source in the light source array can be, for example, a vertical cavity surface emitting laser (vertical cavity surface emitting laser, VCSEL), an edge emitting laser (edge emitting laser, EEL), an all-solid-state semiconductor laser (diode pumped solid state laser, DPSS ) or fiber lasers, etc.
  • VCSEL vertical cavity surface emitting laser
  • EEL edge emitting laser
  • DPSS all-solid-state semiconductor laser
  • fiber lasers etc.
  • the light sources in the light source array can be independently addressed.
  • the so-called independent addressing means that the light sources in the light source array can be independently gated (or called on or turned on or energized).
  • a light source may be used to emit probe light.
  • the addressing mode of the light source array is related to the physical connection relationship of the light source.
  • the light source array may time-gate the light sources by row or column.
  • the so-called time-division strobing of light sources by row refers to strobing at least one row of light sources in the light source array at the same time.
  • the time-divisional strobing of light sources by column refers to the strobing of at least one column of light sources in the light source array at the same time.
  • the light source row gated by row may be one row of light sources or multiple rows of light sources
  • the column of light sources gated by column may be one column of light sources or multiple columns of light sources, which is not limited in this application.
  • the first row of light sources in the light source array is selected at the first time
  • the second row of light sources in the light source array is selected at the second time
  • the third row of light sources in the light source array is selected at the third time.
  • a light source, a row of light sources gated at each moment emits detection light.
  • the first column of light sources in the light source array is selected at the first time
  • the second column of light sources in the light source array is selected at the second time
  • the third column of light source arrays is selected at the third time.
  • a light source, a column of light sources gated at each moment emits probe light.
  • the emitting optical system can also be used to shape and/or collimate and/or homogenize the probe light emitted by the light source component.
  • FIG. 14b is a schematic structural diagram of a transmitting optical system provided in the present application.
  • the transmitting optical system is used to shape and/or collimate and/or homogenize the signal emitted by the light source component, and reflect the shaped and/or collimated and/or homogenized probe light to the detector through the first sub-scanner area.
  • the emitting optical system may include at least one emitting mirror, and the emitting mirror may be a spherical lens, or may also be an aspheric lens.
  • the transmitting optical system may include a single spherical lens, or may include a combination of multiple spherical lenses, or may include a single aspherical lens, or may also include a combination of multiple aspheric lenses.
  • the combination of multiple spherical lenses and/or aspheric lenses helps to improve the imaging quality of the emitting optical system and reduce the aberration of the emitting optical system.
  • Fig. 14b is an example in which the emitting optical system includes three lenses.
  • the present application does not limit the number of reflectors included in the launch optical system, which may be more than the above-mentioned figure 14b, or may be less than the above-mentioned figure 14b, and the type of the reflector is not limited, the reflector For example, it may be a plano-convex lens, a plano-concave lens, a meniscus lens, a bi-concave lens, or a bi-convex lens.
  • the material of the emitting mirror in the emitting optical system may be an optical material such as glass, resin, or crystal, and this application does not limit the material of the emitting optical system.
  • the material of the emitting mirror in the emitting optical system may be an optical material such as glass, resin, or crystal, and this application does not limit the material of the emitting optical system.
  • usually at least one emitting mirror made of glass is included in the emitting optical system.
  • the receiving module may include a receiving optical system and a detection component, the receiving optical system is used to receive the echo signal reflected by the second sub-scanner, and converge the received echo signal to the detection component (See also Figure 15).
  • the detection component is used for photoelectric conversion of the echo signal to obtain the associated information electrical signal for determining the target.
  • the associated information of the target includes but not limited to the distance information of the target, the orientation of the target, the speed of the target, and/or the gray scale information of the target.
  • the receiving optical system can converge the echo signal from the second sub-scanner to the photosensitive surface of the detection component.
  • FIG. 15 is a schematic structural diagram of a receiving optical system provided in this application.
  • the receiving optical system may include at least one receiving mirror, and the receiving mirror may be a spherical lens, or may also be a plurality of aspheric lenses.
  • the receiving optical system may include a single spherical lens, or may include a combination of multiple spherical lenses, or may include a single aspheric lens, or may also include a combination of multiple aspheric lenses.
  • the combination of multiple spherical lenses and/or aspheric lenses helps to improve the imaging quality of the receiving optical system and reduce the aberration of the receiving optical system. It should be understood that Fig. 15 is an example where the receiving optical system includes 4 lenses.
  • the present application does not limit the structure of the receiving optical system, and the structure of the receiving optical system shown in FIG. 15 is only an example.
  • the present application does not limit the number of receiving mirrors included in the receiving optical system, which may be more than the above-mentioned FIG. 15 , or may be less than the above-mentioned FIG. 15 .
  • the application does not limit the type of the receiving mirror, and the receiving mirror can be a convex lens, or a concave lens, or a combination of a convex lens and a concave lens, wherein, the convex lens is such as a biconvex lens, a plano-convex lens and a concave-convex lens, and the concave lens is such as a biconcave lens, a plano-concave lens and Bump lens.
  • the material of the receiving mirror in the receiving optical system may be an optical material such as glass, resin, or crystal, and this application does not limit the material of the receiving optical system.
  • the receiving optical system includes at least one receiving mirror made of glass material.
  • the detection component may be, for example, a photon detector (photon detector, PD), a P-type semiconductor-intrinsic layer-N-type semiconductor (positive intrinsic negative, PIN) type photodiode (also known as a PIN junction diode), an avalanche Photodiode (avalanche photodiode, APD), or pixel array, each pixel in the pixel array can include one or more single-photon avalanche diode (single-photon avalanche diode, SPAD), or silicon photomultiplier tube (silicon photomultiplier, SiMP), or PIN photodiode, or APD, etc.
  • a photon detector photon detector
  • PD P-type semiconductor-intrinsic layer-N-type semiconductor (positive intrinsic negative, PIN) type photodiode
  • PIN photodiode also known as a PIN junction diode
  • avalanche Photodiode avalanche photodiode, A
  • the pixel array may include H rows and K columns, where both H and K are positive integers.
  • the pixel component may be a single pixel. If H is equal to 1, K is an integer greater than 1, and the pixel component is a pixel array with 1 row and H columns. If H is an integer greater than 1 and K is equal to 1, the pixel component may be a pixel array with H rows and 1 column. If both H and K are integers greater than 1, the pixel component may be a pixel array of H rows and K columns.
  • FIG. 16 it is a schematic structural diagram of a pixel array provided by the present application.
  • the shape of the pixel given above is only an example, which is not limited in the present application.
  • the shape of the pixel may also be a direction or an ellipse or other possible shapes.
  • control module can receive the electrical signal from the detection component, and determine the relevant information of the target according to the electrical signal. Further, optionally, the control module can also plan the driving route according to the determined associated information of the target, such as avoiding obstacles on the driving route.
  • control module can also be used to control the scanning module and its rotation, further, it can also be used to control the synchronization between the scanning module and the light source assembly, and to control the synchronization between the scanning module and the pixel array, etc.
  • control module may include a controller, and the controller may be, for example, a general-purpose controller, a field programmable gate array (field programmable gate array, FPGA), a signal data processing (digital signal processing, DSP) circuits, application specific integrated circuits (ASICs), or other programmable logic devices.
  • controller may be, for example, a general-purpose controller, a field programmable gate array (field programmable gate array, FPGA), a signal data processing (digital signal processing, DSP) circuits, application specific integrated circuits (ASICs), or other programmable logic devices.
  • FPGA field programmable gate array
  • DSP digital signal processing
  • ASICs application specific integrated circuits
  • the controller may send a control signal to the pixel array to enable the pixel array to gate at least one row or at least one column or other pixels that need to be gated.
  • the controller may send a control signal to the light source array, so that the light source array selects the light sources by row or by column. They are not listed here.
  • the detection system may be, for example, a laser radar.
  • the detection system can be installed on a vehicle, please refer to Figure 17.
  • the location of the lidar on the vehicle in this example is just an example, and the lidar can also be arranged at any possible location around the body of the vehicle (refer to FIG. 1b above), which is not limited in the present application.
  • the detection system may also send the determined related information of the target to the vehicle, and the vehicle may plan the driving route according to the determined related information of the target, such as avoiding obstacles on the route to be driven, etc. .
  • the shape of the lidar shown in FIG. 17 is only an example, and the appearance of the lidar can also have other shapes, such as a cuboid or other regular or irregular shapes, which are not limited in this application. .
  • the present application may also provide a terminal device.
  • FIG. 18 it is a schematic structural diagram of a terminal device provided by the present application.
  • the terminal device 1800 may include the detection system 1801 in any of the foregoing embodiments. Further, optionally, the terminal device may also include a controller 1802, and the controller 1802 is used to call a program or command to control the detection system 1801 to obtain detection information (such as an electrical signal used to determine the associated information of the target or the associated information of the target). wait). If the detection system acquires an electrical signal for determining the associated information of the target, the controller 1802 may also receive the electrical signal from the detection system 1801 and determine the associated information of the target according to the electrical signal.
  • detection information such as an electrical signal used to determine the associated information of the target or the associated information of the target.
  • the controller 1802 may also plan the driving route of the terminal device according to the determined associated information of the target, such as avoiding obstacles on the driving route. If the detection system acquires the relevant information of the target, the controller 1802 can also be used to receive the relevant information of the target from the detection system 1801, and perform further processing based on the relevant information of the target. route planning, etc.
  • the terminal device may further include a memory 1803, and the memory 1803 is used to store programs or instructions.
  • the terminal device may also include other components, such as a wireless control device, etc., which will not be listed here.
  • Controller 1802 may include one or more processing units.
  • the controller 1802 may include an application processor (application processor, AP), a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), a controller, a digital signal processor (digital signal processor, DSP) and so on.
  • application processor application processor
  • GPU graphics processing unit
  • ISP image signal processor
  • DSP digital signal processor
  • different processing units may be independent devices, or may be integrated in one or more processors.
  • the memory 1803 includes but not limited to random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable only Read memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the controller such that the controller can read information from, and write information to, the storage medium.
  • the storage medium can also be a component of the controller.
  • the controller and storage medium can be located in the ASIC.
  • the terminal device can be, for example, a vehicle (such as an unmanned car, a smart car, an electric car, or a digital car, etc.), a robot, a surveying and mapping device, a drone, a smart home device (such as a TV, a sweeping robot, a smart desk lamp, etc.) , audio system, intelligent lighting system, electrical control system, home background music, home theater system, intercom system, or video surveillance, etc.), intelligent manufacturing equipment (such as industrial equipment), intelligent transportation equipment (such as AGV, unmanned transport vehicle , or trucks, etc.), or smart terminals (mobile phones, computers, tablets, handheld computers, desktops, headphones, audio, wearable devices, vehicle-mounted devices, virtual reality devices, augmented reality devices, etc.), etc.
  • a vehicle such as an unmanned car, a smart car, an electric car, or a digital car, etc.
  • a robot such as a robot, a surveying and mapping device, a drone, a smart home device (such as a TV, a
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • the character “/” indicates that the front and rear related objects are in a "division" relationship.
  • the symbol “(a, b)” means an open interval, the range is greater than a and less than b; "[a, b]” means a closed interval, the range is greater than or equal to a and less than or equal to b; "(a , b]” means a half-open and half-closed interval, the range is greater than a and less than or equal to b; "(a, b]” means a half-open and half-closed interval, the range is greater than a and less than or equal to b.
  • the word “exemplarily” is used to mean an example, illustration or illustration.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种扫描系统、探测系统及终端设备,可应用于自动驾驶、智能驾驶、辅助驾驶或测绘等领域。扫描系统包括扫描模组和光学处理模组,光学处理模组包括隔光组件,隔光组件包括第一翻边和/或第二翻边,扫描模组包括基于隔光组件分为第一子扫描器和第二子扫描器的扫描器,第一翻边朝向第一子扫描器的一侧,第二翻边朝向第二子扫描器的一侧;第一子扫描器用于将来自发射模组的探测光反射至探测区域,第二子扫描器用于将回波信号反射至接收模组,回波信号包括经由探测区域中的目标对探测光进行反射得到的反射光。杂散光经第一翻边和/或第二翻边的反射和/或散射和/或吸收,部分甚至全部能量会被损耗,从而可抑制或消除因扫描器产生的杂散光。

Description

一种扫描系统、探测系统及终端设备 技术领域
本申请涉及光学技术领域,尤其涉及一种扫描系统、探测系统及终端设备。
背景技术
通常,杂散光会对正常的探测光产生影响。以激光雷达(light detection and ranging,LiDAR)为例,激光雷达通常包括光源、发射光学系统,扫描器、探测器、接收光学系统等。发射光学系统主要用于将光源发射的激光束整形成激光雷达所需的探测光,并经扫描器将探测光反射至探测区域,探测区域中的目标将探测光反射回扫描器,再由扫描器反射至接收光学系统(目标对探测光进行反射得到的反射光称为回波信号),接收光学系统收集从目标反射回的回波信号,并传播至探测器,以实现对探测区域的探测。但是探测光从光源向探测区域传播的过程中可能会在激光雷达内产生杂散光,这些杂散光可能会被探测器接收到,从而影响激光雷达的探测准确度。特别是,当激光雷达探测近距离的目标时,这些杂散光可能会对探测器接收到的回波信号产生较大的干扰,从而降低激光雷达的探测准确度。
发明内容
本申请提供一种扫描系统、探测系统及终端设备,用于抑制或消除杂散光。
第一方面,本申请提供一种扫描系统,该扫描系统包括扫描模组和光学处理模组,所述光学处理模组包括隔光组件,所述隔光组件包括第一翻边和/或第二翻边,所述扫描模组包括扫描器,扫描器基于所述隔光组件分为第一子扫描器和第二子扫描器,所述第一翻边朝向所述第一子扫描器的一侧,所述第二翻边朝向所述第二子扫描器的一侧。其中,所述第一子扫描器用于将来自发射模组的探测光反射至探测区域,所述第二子扫描器用于将经由探测区域中的目标反射探测光得到的回波信号反射至接收模组。
基于该扫描系统,由于扫描器基于所述隔光组件分为第一子扫描器和第二子扫描器,隔光组件包括的第一翻边朝向第一子扫描器的一侧,和/或,隔光组件包括的第二翻边朝向第二子扫描器的一侧,因此,因扫描器反射和/或散射产生的第一杂散光可被传播至第一翻边和/或第二翻边,进一步,第一翻边和/或第二翻边可再次反射和/或散射和/或吸收射入的第一杂散光,基于该传播光路后,第一杂散光的部分甚至全部能量会被损耗,从而可实现经第一翻边和/或第二翻边抑制或消除因扫描器产生的第一杂散光。
在一种可能的实现方式中,所述隔光组件还包括底板,所述底板可设置于所述第一子扫描器和所述第二子扫描器之间,第一翻边和/或所述第二翻边包围于底板。进一步,所述第一翻边和/或所述第二翻边包围于所述底板的外围。
通过底板可将隔光组件与扫描器固定在一起,通过包围于底板的第一翻边和/或第二翻边和/或底板,可损耗因扫描器产生的第一杂散光的能量,从而有助于减少第一杂散光。
在一种可能的实现方式中,所述第一翻边的第一面具有消光功能,和/或,所述底板的第一面具有消光功能,所述第一翻边的第一面为所述第一翻边朝向所述扫描器的面,所述底板的第一面为所述底板朝向所述第一翻边一侧的面。
通过在第一翻边的第一面具有消光功能,有助于吸收射向第一翻边的第一面的第一杂散光;通过在底板的第一面具有消光功能,有助于吸收射向底板的第一面的第一杂散光,从而有助于进一步减少系统中的第一杂散光。
在一种可能的实现方式中,具有消光功能的第一翻边的第一面的反射率不大于10%、或不大于8%、或不大于4%。进一步,具有消光功能的底板的第一面的反射率不大于10%、或不大于8%、或不大于4%。
在一种可能的实现方式中,所述扫描模组还包括用于支撑所述扫描器的支架,所述隔光组件设置于所述扫描器与所述支架之间。
当由于工程误差等因素的影响,扫描器可能将部分探测光反射至支架产生第二杂散光,通过设置所述隔光组件设置于所述扫描器与所述支架之间,可以实现消除或抑制该第二杂散光。
在一种可能的实现方式中,所述支架的第一面具有消光功能,和/或,所述第二翻边的第二面具有消光功能,和/或,所述第一翻边的第二面具有消光功能;其中,所述支架的第一面为所述支架朝向所述第二翻边的面,所述第二翻边的第二面为所述第二翻边朝向所述支架的面,所述第一翻边的第二面为所述第一翻边朝向所述支架的面。
通过支架的第一面具有消光功能,和/或,所述第二翻边的第二面具有消光功能,和/或,所述第一翻边的第二面具有消光功能,第二杂散光中的部分或全部可被吸收,从而有助于减少系统中的第二杂散光。
在一种可能的实现方式中,具有消光功能的支架的第一面的反射率不大于10%、或不大于8%、或不大于4%。进一步,具有消光功能的第二翻边的第二面的反射率不大于10%、或不大于8%、或不大于4%。进一步,具有消光功能的第一翻边的第二面的反射率不大于10%、或不大于8%、或不大于4%。
在一种可能的实现方式中,所述扫描器包括多面体转镜,所述隔光组件在第一平面的投影为所述扫描器在所述第一平面的投影的外接圆,所述第一平面为垂直于所述扫描器的扫描轴的平面。
通过设置隔光组件在第一平面的投影为所述扫描器在所述第一平面的投影的外接圆,有助于减少光学处理模组的体积,从而可小型化扫描系统。
在一种可能的实现方式中,所述扫描器与所述隔光组件共用扫描器的扫描轴。换言之,扫描器和隔光组件可以绕扫描器的扫描轴同步转动。
通过在扫描器上挖相对较浅的凹槽,可将隔光组件插入(或称为嵌入)凹槽中,以实现扫描器与隔光组件固定,从而可使隔光组件与扫描器同步转动,进而有助于提高扫描器的可靠性。
在一种可能的实现方式中,所述扫描模组还包括电机,所述电机与所述支架固定,所述电机用于驱动所述扫描器绕扫描轴转动。
在一种可能的实现方式中,所述隔光组件的底板与所述扫描器之间填充有软性材料。
由于扫描器和隔光组件之间可能会存在一定的缝隙,通过在隔光组件与扫描器之间填充有软性材料,可以尽可能的防止杂散光(如第一杂散光和/或第二杂散光)经缝隙进入接收模组,从而可防止杂散光干扰有用的回波信号。
在一种可能的实现方式中,所述扫描系统还包括视窗,所述光学处理模组还包括至少两个片状结构,所述至少两个片状结构形成具有至少一个开口的第一结构,所述第一结构 的开口方向与所述视窗之间的第一夹角的大小属于[0°,90°],所述第一夹角为朝向所述扫描器的方向的夹角。
由于视窗可能无法实现100%的透射,因此会有少部分探测光被视窗反射回产生第三杂散光,通过具有至少一个开口的第一结构,可将第三杂散光被限制在该第一结构内并被多次反射和/或散射,从而会损耗第三杂散光的能量,进而有助于减少系统中的第三杂散光。
在一种可能的实现方式中,所述至少两个片状结构中的至少一个片状结构具有消光功能。
进一步,可选的,具有消光功能的片状结构的反射率可以小于10%、或者小于8%、或者小于4%等。
通过反射率较小的片状结构,可吸收或透射射入的第三杂散光,从而有助于减少系统中的第三杂散光。
在一种可能的实现方式中,扫描系统还包括第一侧壁,第一侧壁为与视窗连接的侧壁,所述第一结构设置于所述扫描器和所述第一侧壁之间;或者,所述第一结构设置于所述第一侧壁。
通过第一结构设置于所述扫描器和所述第一侧壁之间,或者,所述第一结构设置于所述第一侧壁,有助于尽可能将第三杂散光限制在第一结构中,从而可减少第三杂散光。
在一种可能的实现方式中,所述第一结构为半开口组件,所述半开口组件的开口方向朝向所述视窗。
通过开口方向朝向视窗的半开口组件,可以实现尽可能的将视窗反射和/或散射产生的第三杂散光收集至半开口组件内,第三杂散光被限制在半开口组件内反射和/或散射,可损耗第三杂散光,从而可减少系统中的第三杂散光。
在一种可能的实现方式中,所述半开口组件的形状包括π型、U型或半封闭矩形。
在一种可能的实现方式中,所述半开口组件的内表面具有消光功能。
通过第三杂散光被具有消光功能的半开口组件的内表面吸收,可进一步减少系统中的第三杂散光。
在一种可能的实现方式中,具有消光功能的半开口组件的内表面的反射率不大于10%、或不大于8%、或不大于4%。
在一种可能的实现方式中,所述第一结构为类光栅,所述类光栅的表面具有消光功能。
通过类光栅,可将第三杂散光限制在类光栅内反射和/或散射,从而损耗第三杂散光,进而可减少系统中的第三杂散光。进一步,通过在类光栅表面具有消光功能,可进一步吸收第三杂散光,可进一步减少系统中的第三杂散光。
在一种可能的实现方式中,具有消光功能的类光栅的表面的反射率不大于10%、或不大于8%、或不大于4%。
在一种可能的实现方式中,所述光学处理模组还包括打孔的结构件,所述打孔的结构件包括开孔区域和非开孔区域,所述开孔区域朝向所述扫描器。
通过朝向扫描器的开孔区域,可将第三杂散光透射,透射出去的第三杂散光可在非开孔区域和扫描系统的侧壁之间反射和/或散射,以损耗第三杂散光,从而可减少系统中的第三杂散光。
在一种可能的实现方式中,所述非开孔区域的外表面具有消光功能,所述非开孔区域的外表面为背向所述扫描器的一侧的面。
通过外表面具有消光功能的非开孔区域,可吸收部分或全部的第三杂散光,从而可进一步减少系统中的第三杂散光。
在一种可能的实现方式中,具有消光功能的非开孔区域的外表面的反射率不大于10%、或不大于8%、或不大于4%。
第二方面,本申请提供一种扫描系统,该扫描系统包括扫描模组、光学处理模组和视窗;所述扫描模组用于将来自发射模组的探测光反射至视窗,并将回波信号反射至接收模组,所述回波信号包括经由所述探测区域中的目标对所述探测光进行反射得到的反射光;所述光学处理模组包括至少两个片状结构,所述至少两个片状结构形成具有至少一个开口的第一结构,所述第一结构的开口方向与所述视窗之间的第一夹角的大小属于[0°,90°],所述第一夹角为朝向所述扫描模组的方向的夹。
基于该扫描系统,由于扫描系统中的视窗可能无法实现100%的透射,因此会有少部分探测光被视窗反射回产生第三杂散光,通过具有至少一个开口的第一结构,可将第三杂散光被限制在该第一结构内并被多次反射和/或散射,从而会损耗第三杂散光的能量,进而有助于减少系统中的第三杂散光。
在一种可能的实现方式中,至少两个片状结构中的至少一个片状结构具有消光功能。
进一步,可选的,具有消光功能的片状结构的反射率可以小于10%、或者小于8%、或者小于4%等。
通过反射率较小的片状结构,可吸收或透射射入的第三杂散光,从而有助于减少系统中的第三杂散光。
在一种可能的实现方式中,扫描系统还可包括第一侧壁,第一侧壁为与所述视窗连接的侧壁,所述第一结构设置于所述第一侧壁,或者,所述第一结构设置于所述第一侧壁与所述扫描模组之间。
通过第一结构设置于扫描模组和所述第一侧壁之间,或者,所述第一结构设置于所述第一侧壁,有助于尽可能将第三杂散光限制在第一结构中,从而可减少第三杂散光。
在一种可能的实现方式中,所述第一结构为半开口组件,所述半开口组件的开口方向朝向所述视窗。
通过开口方向朝向视窗的半开口组件,可以实现尽可能的将视窗反射和/或散射产生的第三杂散光收集至半开口组件内,第三杂散光被限制在半开口组件内反射和/或散射,可损耗第三杂散光,从而可减少系统中的第三杂散光。
在一种可能的实现方式中,所述半开口组件的形状包括π型、U型或半封闭矩形。
在一种可能的实现方式中,所述半开口组件的内表面具有消光功能。
通过第三杂散光被具有消光功能的半开口组件的内表面吸收,可进一步减少系统中的第三杂散光。
在一种可能的实现方式中,具有消光功能的半开口组件的内表面的反射率不大于10%、或不大于8%、或不大于4%。
在一种可能的实现方式中,所述第一结构为类光栅,所述类光栅的表面具有消光功能。
通过类光栅,可将第三杂散光限制在类光栅内反射和/或散射,从而损耗第三杂散光,进而可减少系统中的第三杂散光;进一步,通过类光栅表面的具有消光功能,可进一步吸收第三杂散光,可进一步减少系统中的第三杂散光。
在一种可能的实现方式中,具有消光功能的类光栅的表面的反射率不大于10%、或不 大于8%、或不大于4%。
在一种可能的实现方式中,所述光学处理模组还包括打孔的结构件,所述打孔的结构件包括开孔区域和非开孔区域,所述开孔区域朝向所述扫描器。
通过朝向扫描器的开孔区域,可将第三杂散光透射,透射出去的第三杂散光可在非开孔区域和扫描系统的侧壁之间反射和/或散射,以损耗第三杂散光。
在一种可能的实现方式中,所述非开孔区域的外表面具有消光功能,所述非开孔区域的外表面为背向所述扫描器的一侧的面。
通过外表面具有消光功能的非开孔区域,可吸收部分或全部的第三杂散光,从而可进一步减少系统中的第三杂散光。
在一种可能的实现方式中,具有消光功能的非开孔区域的外表面的反射率不大于10%、或不大于8%、或不大于4%。
第三方面,本申请提供一种探测系统,该探测系统可包括发射模组、接收模组、以及上述第一方面或第一方面中的任意一种扫描系统。其中,所述发射模组用于发射所述探测光,所述接收模组用于接收来自所述第二子扫描器反射的所述回波信号。
在一种可能的实现方式中,所述探测系统还包括探测模组;所述探测模组用于接收来自所述接收模组的所述回波信号,并对所述回波信号进行光电转化,得到用于确定所述目标的关联信息电信号。
第四方面,本申请提供一种探测系统,该探测系统可包括发射模组、接收模组、以及上述第二方面或第二方面中的任意一种扫描系统。其中,所述发射模组用于发射所述探测光,所述接收模组用于接收来自所述扫描模组反射的所述回波信号。
在一种可能的实现方式中,所述探测系统还包括探测模组;所述探测模组用于接收来自所述接收模组的所述回波信号,并对所述回波信号进行光电转化,得到用于确定所述目标的关联信息电信号。
第五方面,本申请提供一种终端设备,该终端设备可包括上述第三方面或第三方面中的任意一种扫描系统。
进一步,可选的,该终端设备还可包括控制器,控制器用于根据所述电信号确定所述目标的关联信息。
其中,目标的关联信息包括但不限于目标的距离信息、目标的方位、目标的速度、和/或目标的灰度信息等。
第六方面,本申请提供一种终端设备,该终端设备可包括上述第四方面或第四方面中的任意一种扫描系统。
进一步,可选的,该终端设备还可包括控制器,所述控制器用于根据所述电信号确定所述目标的关联信息。
其中,目标的关联信息包括但不限于目标的距离信息、目标的方位、目标的速度、和/或目标的灰度信息等。
上述第三方面和第五方面中任一方面可以达到的技术效果可以参照上述第一方面中有益效果的描述,此处不再重复赘述。上述第四方面和第六方面中任一方面可以达到的技术效果可以参照上述第一方面中有益效果的描述,此处不再重复赘述。
附图说明
图1a为本申请提供的一种可能应用场景示意图;
图1b为本申请提供的一种激光雷达在车辆上的位置示意图;
图2为本申请提供的一种产生杂散光的光路图;
图3为本申请提供的一种消除杂散光的结构示意图;
图4为本申请提供的一种扫描系统的架构示意图;
图5a为本申请提供的一种隔光组件的结构示意图;
图5b为本申请提供的一种第一杂散光的传播光路图;
图5c为本申请提供的另一种隔光组件的结构示意图;
图5d为本申请提供的又一种隔光组件的结构示意图;
图5e为本申请提供的又一种隔光组件的结构示意图;
图5f为本申请提供的一种隔光组件与扫描器之间填充软性材料的示意图;
图6a为本申请提供的另一种隔光组件的结构示意图;
图6b为本申请提供的一种第二杂散光的传播光路图;
图6c为本申请提供的又一种隔光组件的结构示意图;
图7a为本申请提供的又一种隔光组件的结构示意图;
图7b为本申请提供的一种第一杂散光的传播光路及第二杂散光的传播光路图;
图8a为本申请提供的一种扫描器与隔光组件的投影示意图;
图8b为本申请提供的另一种扫描器与隔光组件的投影示意图;
图9a为本申请提供的一种半开口组件的结构示意图;
图9b为本申请提供的一种包括半开口组件的扫描系统的架构示意图;
图9c为本申请提供的另一种包括半开口组件的扫描系统的架构示意图;
图9d为本申请提供的另一种半开口组件的结构示意图;
图10a为本申请提供的一种类光栅的结构示意图;
图10b为本申请提供的一种包括类光栅的扫描系统的架构示意图;
图11a为本申请提供的一种打孔的结构件的结构示意图;
图11b为本申请提供的一种包括打孔的结构件的扫描系统的架构示意图;
图12为本申请提供的另一种扫描系统的架构示意图;
图13为本申请提供的一种探测系统的架构示意图;
图14a为本申请提供的一种光源组件的结构示意图;
图14b为本申请提供的一种发射光学系统的结构示意图;
图15为本申请提供的一种接收光学系统的结构示意图;
图16为本申请提供的一种像素阵列的结构示意图;
图17为本申请提供的一种激光雷达与车辆的位置关系示意图;
图18为本申请提供的一种终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
以下,对本申请中的部分用语进行解释说明。需要说明的是,这些解释是为了便于本 领域技术人员理解,并不是对本申请所要求的保护范围构成限定。
一、翻边
翻边指的是在平面部分或曲面部分上,利用模具的作用,使之沿封闭或不封闭的曲线边缘形成有一定角度的直壁或凸缘。本申请中,翻边是指隔光组件的平面部分(即底板)利用模具的作用,沿底板的边缘形成有一定角度的侧壁或凸缘。
二、麻点
麻点是一种对产品表面质量有影响的缺陷,表现为产品表面形成凹凸不平的粗糙面,又称为麻面。多连续成片,也有局部点状或呈周期性分布的。
三、散射和反射
光的反射指光在传播到不同物质时,在分界面上改变传播方向又返回原来物质中的现象。本申请中的反射是指镜面反射,即来自单个传入方向的光被反射到单个传出方向。
光的散射是指当光线照射到粗糙或颗粒状表面时,由于界面的微观不规则形,光会在各个方向上反射。
基于上述内容,下面示例性地的示出了本申请可能的一些应用场景。
请参阅图1a,示例性的示出了本申请可能的一种应用场景示意图。该应用场景中以激光雷达安装于车辆上为例。车辆例如可以是无人车、智能车、电动车、或数字汽车等。激光雷达可以部署于车辆的各个位置(可参阅图1b)。例如,激光雷达可以部署于车辆前、后、左、右四个方向中任一方向或任多个方向,以实现对车辆周围环境信息的捕获。图1a是以激光雷达部署于车辆的前方为例的。激光雷达可感知到如图1a所示的虚线框所示的扇形区域,该扇形区域可称为激光雷达的探测区域(或称为激光雷达的视场)。
在一种可能的实现方式中,激光雷达可以实时或周期性地获取自车的经纬度、速度、朝向、或一定范围内的目标(例如周围其它车辆)的关联信息(例如目标的距离、目标的移动速度、目标的姿态或目标的灰度图等)。激光雷达或车辆可根据这些关联信息确定车辆的位置和/或路径规划等。例如,利用经纬度确定车辆的位置,或利用速度和朝向确定车辆在未来一段时间的行驶方向和目的地,或利用周围物体的距离确定车辆周围的障碍物数量、密度等。进一步,可选地,还可结合高级驾驶辅助系统(advanced driving assistant system,ADAS)的功能可以实现车辆的辅助驾驶或自动驾驶等。应理解,激光雷达探测目标的关联信息的原理是:激光雷达以一定方向发射探测光,若在该激光雷达的探测区域内存在目标,目标可将接收到的探测光反射回激光雷达(被反射的探测光可以称为回波信号),激光雷达再根据回波信号确定目标的关联信息。
需要说明的是,如上应用场景只是举例,本申请所提供的激光雷达(该激光雷达包括本申请所提供的接收光学系统)还可以应用在多种其它可能场景,而不限于上述示例出的场景。例如,激光雷达还可以安装在无人机上,作为机载雷达。再比如,激光雷达也可以安装在路侧单元(road side unit,RSU),作为路边交通激光雷达,可以实现智能车路协同通信。再比如,激光雷达可以安装在自动导引运输车(automated guided vehicle,AGV)上,其中,AGV指装备有电磁或光学等自动导航装置,能够沿规定的导航路径行驶,具有安全保护以及各种移载功能的运输车。此处不再一一列举。应理解,本申请所描述的应用场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着新的应用场景的出现,本申请提供的技术方案对于类似的技 术问题,同样适用。
基于上述内容,上述应用场景可应用于无人驾驶、自动驾驶、辅助驾驶、智能驾驶、网联车、安防监控、远程交互、测绘或人工智能等领域。
下面以激光雷达为例,示例性的示出了激光雷达中产生杂散光的可能的情形。
情形一,扫描器散射部分探测光产生第一杂散光。
由于扫描器的反射面可能会比较粗糙、存在划痕、或存在麻点等,探测光射向扫描器后,扫描器可能会对部分探测光散射,被散射的这部分探测光无法射向探测区域,在激光雷达中即为杂散光,可称为第一杂散光,该第一杂散光可能会进入探测器。这些第一杂散光进入探测器后,会影响探测器检测实际的回波信号,从而会降低激光雷达探测的准确度。应理解,由于第一杂散光在激光雷达中的传播时间较短,激光雷达可能会误将该第一杂散光检测为是距离激光雷达较近的目标反射的回波信号,从而造成激光雷达探测到鬼像,因此,第一杂散光会影响激光雷达探测的准确度,特别是对激光雷达应用于近距离探测场景时影响更大。
情形二,扫描器将部分探测光反射至激光雷达内的部分结构件上,产生第二杂散光。
由于工程误差等因素的影响,扫描器可能会将部分探测光反射至激光雷达内的部分结构件上,例如扫描器可能将部分探测光反射到扫描器的支架上,产生第二杂散光。这些第二杂散光也会对激光雷达探测的准确度造成影响,具体的,由于第二杂散光在激光雷达中的传播时间也较短,激光雷达可能会误将该第二杂散光检测为是距离激光雷达较近的目标反射的回波信号,因此,第二杂散光会影响激光雷达探测的准确度,特别是对激光雷达应用于近距离探测的场景影响较大。
情形三,视窗反射和/或散射探测光,产生第三杂散光。
请参阅图2,探测光传播至扫描器后,经扫描器反射至视窗,绝大部分的探测光经视窗透射至探测区域,以实现对探测区域的扫描,但是由于视窗可能无法实现100%的透射,因此会有少部分探测光被视窗反射回激光雷达,产生第三杂散光。该第三杂散光可能进入探测器,会影响探测器检测实际的回波信号,从而会降低激光雷达探测的准确度。应理解,第三杂散光在激光雷达中的传播时间也较短,激光雷达会误检到该第三杂散光也是距离激光雷达距离较近的目标反射回的回波信号,从而造成激光雷达探测到鬼像,因此,第三杂散光对激光雷达近距离探测的场景也影响较大。
需要说明的是,上述给出的可能的产生杂散光的情形仅是示例,本申请对如何产生杂散光不作限定。
由于杂散光可能会对携带有效信息的光(例如回波信号)产生干扰,在一种可能的实现方式,可以在接收光路和发射光路之间增加一个大隔板,以将发射光路和接收光路隔离(可参见图3)。但是采用增加大隔板隔离发射光路和接收光路的方式,会遮挡较多的探测光和回波信号,从而导致激光雷达的收发效率不足,进而会降低激光雷达的探测能力(例如降低测距能力)。
鉴于此,本申请提出两种扫描系统,扫描系统可以尽可能的抑制甚至消除杂散光。进一步,当将该扫描系统应用于探测系统(如激光雷达等)时,可提高探测系统探测的准确度。
基于上述内容,下面结合图4、图5a-图5f、图6a-图6c、图7a-图7b、图8a-图8b、图9a-图9d、图10a-图10b、图11a-图11b以及图12,对本申请提出的扫描系统进行具体阐述。
需要说明的是,下文中的扫描系统也可以称为消杂散光系统,光学处理模组也可以称为消杂散光模组。应理解,本申请实施例中系统及各个功能模组的名字仅是一个示例,具体实现中系统及各个功能模组名字可能为其他,本申请对此不作具体限定。
如图4所示,为本申请提供的一种扫描系统的架构示意图。该扫描系统包括扫描模组401和光学处理模组402,扫描模组401包括扫描器4011,光学处理模组402包括隔光组件4021,扫描器4011基于隔光组件4021分为第一子扫描器和第二子扫描器,第一子扫描器用于将来自发射模组的探测光反射至探测区域,第二子扫描器用于将回波信号反射至接收模组,回波信号包括经由探测区域中的目标对探测光进行反射得到的反射光,隔光组件包括第一翻边40211和/或第二翻边40212,第一翻边40211朝向第一子扫描器的一侧,第二翻边40212朝向第二子扫描器的一侧。
基于上述扫描系统,由于扫描器基于所述隔光组件分为第一子扫描器和第二子扫描器,隔光组件包括的第一翻边朝向第一子扫描器的一侧,和/或,隔光组件包括的第二翻边朝向第二子扫描器的一侧,因此,因扫描器反射和/或散射和/或吸收产生的杂散光(如上述情形一中的第一杂散光或上述情形二中的第二杂散光)可被传播至第一翻边和/或第二翻边,进一步,第一翻边和/或第二翻边可再次反射和/或散射射入的杂散光,基于该传播光路后,杂散光的部分甚至全部能量会被损耗,从而可实现经第一翻边和/或第二翻边抑制或消除因扫描器产生的杂散光。
在一种可能的实现方式中,可通过改变扫描器的扫描角度,以改变来自探测光的传播方向,从而可将探测光按不同的方向反射至探测区域,进而可实现对探测区域的扫描。也可以理解为,扫描器处于一个扫描角度,可将探测光反射至探测区域的一个方向,扫描器处于不同的扫描角度,可将探测光反射至探测区域的不同的方向,从而可实现对探测区域的扫描。应理解,扫描器通过利用几何光学(比如反射定律)的原理实现对探测区域的扫描,具有大扫描视场和较高的扫描效率。需要说明的是,扫描器可以按连续运转模式转动,或者也可以按步进运转模式转动,本申请对此不作限定。在实际应用中,具体采用哪种模式转动,可以预先设置。
示例性地,扫描器包括是转镜或摆镜。其中,转镜例如可以是多面体转镜,具体例如可以是四面体转镜、六面体转镜或八面体转镜等;摆镜例如可以是单面具有反射功能的摆镜,或者也可以是两面均具有反射功能的摆镜。需要说明的是,扫描器还可以包括其它使得扫描器实现扫描功能的结构,本申请对此不做限定。
在一种可能的实现方式中,扫描模组还可包括电机,电机可驱动扫描器绕扫描轴转动,从而可使得扫描器处于不同的扫描角度。
下面对图4所示的各个功能模组分别进行介绍说明,以给出示例性的具体实现方案。为方便说明,下文中的扫描模组、光学处理模组、第一翻边和第二翻边均未加标识。
一、光学处理模组
在一种可能的实现方式中,光学处理模组用于抑制或消除系统产生的杂散光。如下示例性的示出了三种可能的光学处理模组的结构。
结构1,光学处理模组包括隔光组件。
下面示例性的给出了三种可能的隔光组件的结构。在下文的介绍中,以扫描器为四面体转镜为例,杂散光的光路以四面体转镜的一个面的对应的传播光路为例介绍。
结构1.1,隔光组件包括底板和第一翻边。
请参阅图5a,为本申请提供的一种隔光组件的结构示意图。该隔光组件包括底板和第一翻边,第一翻边包围于底板的外围(即沿底板的边缘围设有第一翻边),第一翻边朝向第一子扫描器的一侧,底板设置(如固定)于第一子扫描器和第二子扫描器之间。例如,底板可嵌于第一子扫描器和第二子扫描器之间的凹槽内。示例性的,可将底板嵌入(或称为插入)扫描器的中间区域的浅的凹槽,可参见图5c,底板的中间区域设置凸出结构,这些凸出结构形成的中间区域为孔,可将这些凸出结构嵌套于扫描器的中间区域对应的凹槽,以实现将底板设置于第一子扫描器和第二子扫描器之间。基于该固定方式,扫描器与所述隔光组件绕所述扫描器的扫描轴同步转动,也就是说,扫描器与隔光组件共用扫描器的扫描轴。基于此,扫描器的可靠性也较高。再比如,底板嵌套于第一子扫描器和第二子扫描器之间,具体的,可以在扫描器的中间区域挖通,以将底板嵌入该挖通的区域。基于该规定方式,隔光组件可以不随扫描器的转动而转动。进一步,还可通过螺钉或胶粘等方式对底板做进一步的固定。需要说明的是,图5a只是本实施例给出的一个示例,本实施例对底板的具体形状不作限定,凡是可以实现将底板设置于第一子扫描器和第二子扫描器之间的形状均在本申请的保护范围内。
在一种可能的实现方式中,第一翻边包括第一面(可参阅下述图5b),第一翻边的第一面为第一翻边朝向扫描器的面。换言之,第一翻边的第一面与扫描器用于发射探测光的面相对设置。进一步,可选的,第一翻边的第一面具有消光功能。例如,可通过喷消光材料(如消光漆)工艺、或电泳工艺、或阳极氧化工艺、或镀膜工艺等,实现具有消光功能。具有消光功能的第一翻边的第一面的反射率不大于10%、或者不大于8%、或者不大于4%等。也可以理解为,具有消光功能的第一翻边的第一面的反射率较低。
在一种可能的实现方式中,底板也包括第一面(可参阅下述图5b),底板的第一面为底板朝向第一翻边一侧的面,底板的第一面也可具有消光功能。关于具有消光功能的介绍可参见上述相关描述,此处不再赘述。
需要说明的是,第一翻边可以全包围于底边的外围,请参阅图5c,即围绕四面体转镜的四个面均设置有第一翻边。或者,第一翻边也可以部分包围于底板的外围,即围绕四面体转镜的四个面中的一个面、两个面或三个面设置有第一翻边,请参阅图5d,以围绕四面体转镜的两个面设置有第一翻边。或者,第一翻边也可以绕四面体转镜的至少一个面按均匀间隔或非均匀间隔(类似栅栏型)包围于底板的外围,请参阅图5e,以围绕四面体转镜的四个面设置有均匀间隔形成的第一翻边包围于底板的外围。需要说明的是,围绕四面体转镜设置的第一翻边的高度可以相同,也可以不相同,本申请对此不作限定。
在一种可能的实现方式中,第一翻边与底板之间的形成的夹角的大小属于(0°,180°)。例如,第一翻边与底板之间的夹角大小等于90°(如向下的“L型”),即第一翻边垂直于底板。再比如,第一翻边与底板之间的夹角等于30°、45°、60°、或120°等,此处不再一一列举。需要说明的是,第一翻边可以是平面(例如平面薄板)或者也可以是曲面,本申请对此不作限定。应理解,上述图5a是以第一翻边垂直于底板、且第一翻边为平面示例的。
在一种可能的实现方式中,底板与第一翻边可以一体成型,或者第一翻边也可以是通 过胶粘(如点胶粘)或螺钉等固定于底板。
当第一子扫描器对入射的探测光散射产生第一杂散光,基于上述图5a所示的隔光组件,第一杂散光的传播光路可参见图5b,具体为:经第一子扫描器散射至第一翻边的第一面,经第一翻边的第一面反射和/或散射至底板的第一面,进一步,第一杂散光还可经底板的第一面反射和/或散射损耗掉较多的能量。换言之,第一杂散光在第一翻边的第一面和底板的第一面之间反射和/或散射。由于第一杂散光经过该传播光路后,能量损耗较大,甚至剩余的能量可以忽略不计;进一步,底板的第一面和/或第一翻边的第一面具有消光功能(如涂覆有反射率较小的消光材料),因此,对第一杂散光的能量损耗更大,从而可实现抑制甚至消除第一杂散光。
由于扫描器和隔光组件均为硬性材料,因此,扫描器和隔光组件之间可能会存在一定的缝隙,为了尽可能的防止第一杂散光经缝隙进入接收模组,可在隔光组件与扫描器之间填充软性材料,具体可参阅图5f。如此,可以阻止第一杂散光经扫描器和隔光组件之间缝隙进入接收模组,从而进一步抑制或消除第一杂散光造成的干扰。示例性地,软性材料包括但不限于硅橡胶或胶水等。需要说明的是,可以在部分隔光组件与扫描器之间填充软件性材料,结合图5f,可以在四面体转镜与隔光组件的部分缝隙之间填充软性材料,也可以在四面体转镜与隔光组件之间全部缝隙均填充软性材料。
在一种可能的实现方式中,可通过二次注塑方式或点胶方式等将软性材料填充于扫描器和隔光组件的底板之间的缝隙中。
结构1.2,隔光组件包括底板和第二翻边。
在一种可能的实现方式中,第二翻边与底板之间的形成的夹角属于(0°,180°),换言之,第二翻边与底板之间的形成的夹角为(0°,180°)中的一个值。示例性地,第二翻边与底板之间的夹角大小等于90°(如向上的“L型”),即第二翻边垂直于底板,或者第二翻边与底板之间的夹角等于30°、45°、60°、120°、或145°等。需要说明的是,第二翻边可以是平面(例如平面薄板)或者也可以是曲面,本申请对此不作限定。
进一步,可选的,底板与第二翻边可以一体成型,或者第二翻边也可以是通过胶粘(如点胶粘)或螺钉等固定于底板。
在一种可能的实现方式中,第二翻边可以全包围于底边的外围,结合图6a,即围绕四面体转镜的四个面均设置有第二翻边;或者,第二翻边也可以部分包围于底板的外围,结合图6a,即围绕四面体转镜的四个面中的一个面、两个面或三个面设置有第二翻边;或者也可以绕四面体转镜的至少一个面按均匀间隔或非均匀间隔(类似栅栏型)包围于底板的外围。
请参阅图6a,为本申请提供的另一种隔光组件的结构示意图。该隔光组件包括底板和第二翻边,第二翻边包围于底板的外围(即沿底板的边缘围设有第二翻边),第二翻边朝向所述第二子扫描器的一侧,底板设置于第一子扫描器和第二子扫描器之间(具体可参见上述结构1.1中的介绍)。
在一种可能的实现方式中,第二翻边包括第二面,第二翻边的第二面为第二翻边朝向支架的面。也可以理解为,第二翻边的第二面与支架用于反射和/或散射探测光的面相对设置。进一步,可选的,第二翻边的第二面具有消光功能。关于具有消光功能的介绍可参见上述描述,此处不再赘述。应理解,扫描模组还可包括支架,支架用于支撑扫描器,或者 也可以理解为支架用于固定扫描器。示例性地,支架可分布于扫描器的周围,以实现对扫描器的固定。需要说明的是,支架是固定不动的,不随扫描的转动而转动。例如,支架可与用于驱动扫描器转动的电机固定。
在一种可能的实现方式中,支架朝向第二翻边的第一面(可参阅下述图6b)也具有消光功能。关于具有消光功能的介绍可参见上述描述,此处不再赘述。换言之,支架的第一面与第二翻边的第二面相对设置。
需要说明的是,第二翻边可以全包围于底边的外围,请参阅上述图6a,即围绕四面体转镜的四个面均设置有第二翻边。或者,第二翻边也可以部分包围于底板的外围,即围绕四面体转镜的四个面中的一个面、两个面或三个面设置有第二翻边。或者,第二翻边也可以围绕四面体转镜的至少一个面按均匀间隔或非均匀间隔(类似栅栏型)包围于底板的外围,请参阅图6c,以围绕四面体转镜的四个面设置有均匀间隔形成的第二翻边包围于底板的外围。需要说明的是,围绕四面体转镜设置的第二翻边的高度可以相同,也可以不相同,本申请对此不作限定。
在一种可能的实现方式中,第二翻边与底板之间的形成的夹角大小属于(0°,180°)。例如,第二翻边与底板之间的夹角大小等于90°(如向上的“L型”),即第二翻边垂直于底板。再比如,第二翻边与底板之间的夹角大小等于30°、45°、60°、或120°等,此处不再一一列举。需要说明的是,第二翻边可以是平面或者也可以是曲面,本申请对此不作限定。应理解,上述图6a是以第二翻边垂直于底板、且第二翻边为平面示例的。
在一种可能的实现方式中,底板与第二翻边可以一体成型,或者第二翻边也可以是通过胶粘(如点胶粘)或螺钉等固定于底板。
当第一子扫描器将探测光反射至支架的第一面产生第二杂散光,基于上述图6a的隔离组件,第二杂散光的传播光路可参见图6b,具体为:第二杂散光经第一子扫描器反射至支架的第一面,经支架的第一面反射和/或散射至第二翻边的第二面。换言之,第二杂散光在支架的第一面与第二翻边的第二面之间散射和/或反射。第二杂散光经过该传播光路后,能量损耗较大,甚至剩余的能量可以忽略不计,进一步,支架的第一面和/或第二翻边的第二面具有消光功能(如涂覆有反射率较小的消光材料),因此,对第二杂散光的能量损耗更大,从而以实现抑制甚至消除第二杂散光。
扫描器和隔光组件之间可能会存在一定的缝隙,为了尽可能的防止第二杂散光经缝隙进入接收模组,隔光组件与扫描器之间也可填充有软性材料(可参见图6b)。关于软性材料的相关介绍(如填充方式、具体的材料等)可参见前述相关描述,此处不再赘述。
结构1.3,隔光组件包括底板、第一翻边和第二翻边。
请参阅图7a,为本申请提供的又一种隔光组件的结构示意图。该隔光组件包括底板、第一翻边和第二翻边,第一翻边在朝向第一子扫描器的一侧包围于底板的外围,第二翻边在朝向第二子扫描器的一侧包围于底板的外围(即沿底板的边缘围设有第一翻边和第二翻边,第一翻边和第二翻边的朝向相背),底板设置于第一子扫描器和第二子扫描器之间(具体可参见上述结构1.1中的介绍)。
在一种可能的实现方式中,第一翻边包括第一面和第二面,第一翻边的第一面为第一翻边朝向扫描器的面,第一翻边的第二面为朝向支架的面。换言之,第一翻边的第一面与扫描器用于发射和/或散射探测光的面相对设置,第一翻边的第二面与支架的第一面相对设置。进一步,可选的,第一翻边的第一面和第二面可均具有消光功能,和/或,第二翻边的 第二面也可具有消光功能,和/或,底板的第一面也可具有消光功能,相关介绍可参见上述描述,此处不再赘述。
在一种可能的实现方式中,第一翻边与底板之间的形成的夹角大小属于(0°,180°),第二翻边与底板之间的形成的夹角大小也属于(0°,180°),具体可参见前述相关描述,此处不再赘述。图7b是以第二翻边垂直于底板,且第一翻边垂直于底板(如“T型”)。应理解,第一翻边与底板之间形成的夹角与第二翻边与底板之间形成的夹角相同、或者也可以不相同,本申请对此不作限定。
在一种可能的实现方式中,底板、第一翻边和第二翻边可以是一体成型的,或者也可以是第一翻边和第二翻边通过胶粘(如点胶粘)或螺钉等固定于底板。需要说明的是,第一翻边与底板的固定方式可以与第二翻边与底板的固定方式相同,或者也可以不相同,本申请对此也不作限定。
需要说明的是,第一翻边包围于底板的外围的方式可以与第二翻边包围于底板的外围的方式相同,也可以不相同,本申请对此不作限定。具体的,第一翻边包围于底板的方式可参见前述结构1.1中的相关介绍,第二翻边包围于底板的方式可参见前述结构1.2的相关介绍,此处均不在赘述。
第一子扫描器可能会对探测光散射产生第一杂散光,还可能会将探测光反射至支架产生第二杂散光。
第一杂散光及第二杂散光的传播光路可参见图7b,具体为:第一杂散光被散射至第一翻边的第一面,经第一翻边的第一面反射和/或散射至底板的第一面,即第一杂散光在第一翻边的第一面和底板的第一面之间反射和/或散射,进一步,底板的第一面和/或第一翻边的第一面具有消光功能(如涂覆有反射率较小的消光材料),对第一杂散光的能量损耗更大,从而可实现抑制或消除第一杂散光;第二杂散光经第一子扫描器反射至支架的第一面,经支架的第一面散射和/或反射至第二翻边的第二面,即第二杂散光在支架的第一面与第二翻边的第二面之间散射和/或反射,进一步,支架的第一面和/或第二翻边的第二面具有消光功能(如涂覆有反射率较小的消光材料),因此,对第二杂散光的能量损耗更大,从而可实现抑制或消除第二杂散光。
基于该结构1.3,扫描器和隔光组件之间可能会存在一定的缝隙,为了尽可能的防止第一杂散光和/或第二杂散光经缝隙进入接收模组,隔光组件与扫描器之间可填充有软性材料(可参见图7b)。关于软性材料的相关介绍(如填充方式、具体的材料等)可参见前述相关描述,此处不再赘述。
需要说明的是,结合上述图7b,当第一翻边的长度较短时,第一子扫描器还可能将部分探测光反射至支架,产生第四杂散光,第四杂散光可在第一翻边的第二面与支架的第一面之间散射和/或反射,和/或,该第四杂散光在第二翻边的第二面与支架的第一面之间散射和/或反射,以抑制甚至消除第四杂散光。
在一种可能的实现方式中,隔光组件在第一平面的投影为扫描器在第一平面的投影的外接圆,其中,第一平面为垂直于扫描轴的平面。如此,有助于减少光学处理模组的体积,从而可小型化扫描系统。请参阅图8a,以扫描器为四面体转镜为例,给出了扫描器与隔光组件在第一平面上的投影示意图。请参阅图8b,以扫描器为六面体为例,给出了扫描器与隔光组件在第一平面上的投影示意图。
在一种可能的实现方式中,上述隔光组件的材料例如可以反射率较低(如小于10%) 的塑料,如硅胶等。
上述实施例是以第一翻边和/或第二翻边包围于底板的外围示例的。应理解,第一翻边和/或第二翻边也可以设置于底板上,即第一翻边和/或第二翻边可以设置于底板的中心与边缘之间的任意位置。
结构2,光学处理模组包括至少两个片状结构。
在一种可能的实现方式中,至少两个片状结构形成具有至少一个开口的第一结构,第一结构的开口方向与视窗之间的第一夹角θ为[0°,90°]中的一个,第一夹角为朝向扫描器的方向的夹角。进一步,可选的,至少两个片状结构中的至少一个片状结构具有消光功能,例如,片状结构的反射率小于反射率阈值,其中,反射率阈值例如可以为10%、或8%或4%等。换言之,片状结构具有较低的反射率。
示例性地,片状结构的材料可以是反射率较低(如小于10%)的塑料,如硅胶等。需要说明的是,片状结构的材料可以与隔光组件的材料相同,或者也可以不相同,本申请对此不作限定。
需要说明的,至少两个片状结构的形状可以相同、或者也可以不相同,或者也可以部分相同。片状结构的形状也不限于是矩形,例如片状结构的形状也可以是“L型”,或者,其他不规则的图形等。另外,至少两个片状结构的长度可以均相同,或互不相同,或者也可以部分相同;至少两个片状结构的厚度可以均相同、也可以互不相同、或者也可以部分相同,本申请对此也不作限定。
下面,基于至少两个片状结构形成的结构,示例性的示出了两种可能的第一结构。
结构2.1,至少两个片状结构形成的第一结构为半开口组件。
在一种可能的实现方式中,至少两个片状结构形成的第一结构为半开口组件。其中,半开口组件的开口方向朝向视窗(可参见下述图9b或图9c)。应理解,为了防止外界环境对扫描系统的干扰,该扫描系统还可包括视窗。
请参阅图9a,为本申请提供的一种半开口组件的结构示意图。该半开口组件以包括三个片状结构(如片状结构A、片状结构B和片状结构C)为例,片状结构A与片状结构C拼接在一起,片状结构B也和片状结构C拼接在一起,片状结构A与片状结构B间隔排列形成开口,开口方向朝向视窗。该示例中,片状结构可以是挡板。其中,片状结构A、片状结构B和片状结构C可以一起成型、或者也可以拼接成半开口组件。
在一种可能的实现方式中,三个片状结构拼接形成的形状例如还可以是“Π”型、“η”型、“π”型、或“U”型、或半封闭矩形等。应理解,图9a是以三个片状结构拼接形成半封闭矩形示例的。
需要说明的是,片状结构A、片状结构B可以平行,也可以不平行,本申请对此不作限定。
在一种可能的实现方式中,半开口组件设置于扫描器和扫描系统的第一侧壁之间,可参见图9b。应理解,扫描系统的第一侧壁包括与视窗连接的两个相对的侧壁,图9b是以半开口组件设置于其中一个第一侧壁与扫描器之间为例的。基于此,第三杂散光的传播光路具体为:部分探测光被视窗反射和/或散射形成第三杂散光,第三杂散光经视窗反射和/或散射进入半开口组件内,在半开口组件的内表面之间反射和/或散射,即第三杂散光被反射和/或散射至片状结构A的内表面,经片状结构A的内表面反射和/或散射至片状结构B的内表面,再经片状结构B的内表面反射和/或散射至片状结构A的内表面,依次来回 反射和/或散射。进一步,片状结构A的内表面或片状结构B的内表面也可将第三杂散光反射和/或散射至片状结构C的内表面,片状结构C的内表面可将第三杂散光反射和/或散射至片状结构B的内表面或片状结构A的内表面。换言之,第三杂散光在半开口组件的内表面反射和/或散射,基于该传播光路后,第三杂散光的能量损耗较大,甚至剩余的能量可以忽略不计,从而可实现抑制甚至消除第三杂散光。
需要说明的是,半开口组件的开口方向朝向视窗可以理解为,半开口组件的开口方向与视窗之间的第一夹角的大小属于(0°~90°],即第一夹角为(0°~90°]中的一个,图9b是以开口方向与视窗的第一夹角为90°为例的,图9c是以开口方向与视窗的第一夹角大于0°且小于90°示例的。
请参阅图9d,为本申请提供的另一种半开口组件的结构示意图。该半开口组件以包括两个片状结构(片状结构a和片状结构b)为例,片状结构a一端与片状结构b的一端拼接在一起,片状结构a的另一端与片状结构b的另一端分开形成开口,开口方向朝向视窗。进一步,可选的,两个片状结构之间的形成的夹角的大小属于(0°~90°),换言之,两个片状结构之间的形成的夹角的大小为(0°~90°)中的一个。需要说明的是,片状结构a和片状结构b可以一起成型、或者也可以拼接成半开口组件。
基于图9d,第三杂散光的传播光路具体为:部分探测光被视窗反射和/或散射形成第三杂散光,第三杂散光经视窗反射和/或散射进入半开口组件内,在半开口组件的内表面之间反射和/或散射,即第三杂散光被反射和/或散射至片状结构a的内表面,经片状结构a的内表面反射和/或散射至片状结构b的内表面,再经片状结构b的内表面反射和/或散射至片状结构a的内表面,依次来回反射和/或散射。第三杂散光经该传播光路传播后,能量损耗较大,甚至剩余的能量可以忽略不计,从而可实现抑制甚至消除第三杂散光。
需要说明的是,本申请对形成半开口组件的片状结构的数量不作限定,可以是两个,也可以是两个以上。结合上述图9a或图9d,一个边上只有一个片状结构,也可以一个边上有多个片状结构拼接而成。
在一种可能的实现方式中,半开口组件的内表面可具有消光功能。结合上述图9a、图9b或图9c,开口组件的内表面包括片状结构A中朝向片状结构B的面、片状结构B中朝向片状结构A的面、以及片状结构C中朝向开口的面,这三个面中至少一个面具有消光功能。结合上述图9d,开口组件的内表面包括片状结构a中朝向片状结构b的面、及片状结构b中朝向片状结构a的面,这两个面中的至少一个面具有消光功能。关于具有消光功能的介绍可参见前述相关描述,此处不再赘述。
结构2.2,至少两个片状结构形成的第一结构为类光栅(或称为光栅齿)。
在一种可能的实现方式中,至少两个片状结构形成的第一结构为类光栅。换言之,类光栅是由至少两个片状结构间隔排列构成的光学器件,至少两个片状结构排列形成的间隔可以相等也可以不相等。其中,间隔的范围例如可为(0-5mm]。换言之,片状结构可以是周期排列的,也可以是非周期排列的,本申请对此不作限定。应理解,在该示例中,片状结构也可以称为齿。
需要说明的是,至少两个片状结构可以平行排列,也可以非平行排列,本申请对此不作限定。
请参阅图10a,为本申请提供的一种类光栅的结构示意图。该类光栅以包括8个片状结构为例,这8个片状结构形成的7个间隔中部分相同,部分不相同。该示例中是以8个 片状结构平行排列为例的。进一步,可选的,类光栅的表面可具有消光功能,关于具有消光功能的更详细的介绍可参见前述相关描述,此处不再赘述。
在一种可能的实现方式中,类光栅可以设置于第一侧壁,请参阅图10b。应理解,扫描系统的第一侧壁包括与视窗连接的两个相对的侧壁,图10b是以类光栅设置于其中一个第一侧壁与扫描器之间为例的。类光栅的开口方向朝向视场或扫描器,该示例中以类光栅的开口方向与视窗之间的第一夹角为0°示例的,即该示例中类光栅的开口方向朝向扫描器。
基于图10b,第三杂散光的传播光路具体为:部分探测光被视窗反射和/或散射形成第三杂散光,第三杂散光经视窗反射和/或散射进入类光栅,在类光栅内反射和/或散射。换言之,第三杂散光被限制在类光栅内多次反射和/或散射。第三杂散光经该传播光路传播后,能量损耗较大,甚至剩余的能量可以忽略不计,可实现抑制甚至消除第三杂散光。
结构3,光学处理模组包括打孔的结构件。
在一种可能的实现方式中,打孔的结构件可以是对扫描系统中结构件进行打孔得到的,或者也可以是在扫描系统中额外增加一个打孔的结构件。扫描系统中的结构件包括但不限于起支撑、遮盖等作用的机械结构部件,例如,上述用于固定扫描器的支架、或遮光板等结构件。示例性地,可以通过机械钻孔方式在扫描系统中的结构件上打孔。
请参阅图11a,为本申请提供的一种打孔的结构件的结构示意图。该打孔的结构件包括开孔区域和非开孔区域。开孔区域的孔可允许第三杂散光透过,非开孔区域用于反射和/或散射第三杂散光,以实现抑制或消除第三杂散光。
需要说明的是,上述图11a所示的打孔的结构件仅是示例。本申请对打孔的结构件的孔的形状均不作限定,可以是规则的图形,或者也可以不规则图形,凡是可以实现将第三杂散光透射出去的形状均在本申请的保护范围内。另外,本申请对开孔区域的位置也不作限定,凡是可以实现将第三杂散光透射出去的位置均在本申请的保护范围内。本申请对孔的大小也不作限定,凡是可以实现将第三杂散光透射出去的大小均在本申请的保护范围内。
在一种可能的实现方式中,打孔的结构件的非开孔区域的外表面具有消光功能,非开孔区域的外表面为背向所述扫描器的一侧的面,也可以理解为,非开孔区域的外表面为朝向第一侧壁和/或第二侧壁的面。
在一种可能的实现方式中,打孔的结构件可设置于扫描器、第一侧壁和/或第二侧壁之间,可参见图11b。基于此,第三杂散光的传播光路具体为:第三杂散光经打孔的结构件的开孔区域透射至探测系统的第一侧壁和/或第二侧壁等结构上,经第一侧壁和/或第二侧壁等反射和/或散射至非开孔区域的外表面,经非开孔区域的外表面反射和/或散射探测系统的第一侧壁和/或第二侧壁等结构上,再经第一侧壁和/或第二侧壁等结构反射和/或散射至非开孔区域的外表面,依次反射和/或散射,以使第三杂散光的能量被消耗掉,甚至剩余的能量可以忽略不计,以实现抑制甚至消除第三杂散光。
基于上述结构2和结构3的光学处理模组,可以消除视窗反射和/或散射探测光产生的第三杂散光。
需要说明的是,上述给出的光学处理模组的结构可以是单独使用,或者也可以组合使用。例如,结构1和结构2组合,即光学处理模组包括隔光组件和至少两个片状结构,其中,隔光组件可以抑制或消除第一杂散光和第二杂散光,至少两个片状结构可以抑制或消除第三杂散光。应理解,结构1和结构2的组合可以是结构1的三个结构中任一个与结构2的两个结构中的任一个的组合。
再比如,结构1和结构3组合,光学处理模组包括隔光组件和打孔的结构件,其中,隔光组件可以抑制或消除第一杂散光和第二杂散光,打孔的结构件可以抑制或消除第三杂散光。应理解,结构1和结构3的组合可以是结构1的三个结构中任一个与结构3的组合。
再比如,结构1、结构2和结构3的组合,即光学处理模组包括隔光组件、至少两个片状结构和打孔的结构件,其中,隔光组件可以抑制或消除第一杂散光和第二杂散光,至少两个片状结构和打孔的结构件可以抑制或消除第三杂散光。应理解,结构1、结构2和结构3的组合可以是结构1的三个结构中任一个、结构2的两个结构中的任一个、及结构3的组合。
当然,本申请中的光学处理模组的结构也可以是其它可能的组合,此处不再一一列举。
如图12所示,为本申请提供的另一种扫描系统的架构示意图。该扫描系统包括扫描模组1201、光学处理模组1202和视窗1203,进一步,该扫描系统还可包括第一侧壁1204。其中,所述扫描模组1201用于将来自发射模组的探测光反射至所述视窗1203,并将回波信号反射至接收模组,所述回波信号包括经由所述探测区域中的目标对所述探测光进行反射得到的反射光;所述光学处理模组1202包括至少两个片状结构,所述至少两个片状结构形成具有至少一个开口的第一结构,所述第一结构的开口方向与所述视窗1203之间的第一夹角的大小属于[0°,90°],所述第一夹角为朝向扫描模组1201的方向的夹角,第一侧壁1204为与所述视窗1203连接的侧壁。
基于该扫描系统,由于扫描系统中的视窗可能无法实现100%的透射,因此会有少部分探测光被视窗反射回产生第三杂散光,通过具有至少一个开口的第一结构,可将第三杂散光被限制在该第一结构内并被多次反射和/或散射,从而会损耗第三杂散光的能量,进而有助于减少系统中的第三杂散光。
下面,示例性的示出了在该扫描系统中光学处理模组1202的可能的两种结构,为了便于方案的说明,下文中光学处理模组未加标识。
结构A,至少两个片状结构形成的第一结构为半开口组件。
该结构A可参见上述结构2.1的介绍,此处不再赘述。
结构B,至少两个片状结构形成的第一结构为类光栅(或称为光栅齿)。
该结构B可参见上述结构2.2的介绍,此处不再赘述。
在一种可能的实现方式中,该扫描系统还可以包括打孔的结构件,具体可参见上述结构3的介绍。
需要说明的是,本申请中,扫描系统可以是上述图4、图5a-图5f、图6a-图6c、图7a-图7b、图8a-图8b、图9a-图9d、图10a-图10b、图11a-图11b任一所示的扫描系统,该扫描系统中的光学处理模组可以是上述结构1、结构2或结构3中的任一个结构或任多个结构的组合。或者,扫描系统也可以上述图12所示的扫描系统,该扫描系统中的光学处理模组可以是上述结构2中的任一个、或者是上述结构3,或者是上述结构2中的任一个与结构3的组合。
基于上述任意实施例描述的扫描系统的架构和功能原理,本申请还可以提供一种探测系统。如图13所示,该探测系统可包括发射模组1301、接收模组1302和上述任一实施例中的扫描系统1303。其中,发射模组1301用于发射探测光,接收模组1302用于接收来自 扫描模组或第二子扫描器反射的回波信号。进一步,该探测系统还可包括控制模组1304。进一步,该探测系统还可包括视窗1305。进一步,该探测系统还可包括第一侧壁1306和第二侧壁1307,其中,第一侧壁1306和第二侧壁1307主要用于隔离外界环境的影响。
下面对图13所示的部分功能模组分别进行介绍说明,以给出示例性的具体实现方案。为方便说明,下文中的发射模组、接收模组及控制模组均未加标识。
二、发射模组
在一种可能的实现方式中,发射模组可包括光源组件和发射光学系统,其中,光源用于发射探测光,发射光学系统用于将探测光传播至探测区域。该探测光可以为线光束或者也可以为面光束。
示例性的,光源组件可以是M行N列的光源阵列,其中,M和N均为正整数。若M和N均等于1,该光源组件可以是单个光源。若M等于1,N为大于1的整数,该光源组件是1行M列的光源阵列。若M为大于1的整数,N等于1,该光源组件可以是M行1列的光源阵列。若M和N均为大于1的整数,该光源组件可以是M行和N列的光源阵列。
如图14a所示,为本申请提供的一种光源组件的结构示意图。该光源组件以M=5、N=5为例,即该光源组件为5×5光源阵列。需要说明的是,上述图14a给出的光源的形状仅是示例,本申请对此不作限定,例如光源的形状也可以是方形或椭圆形或其它可能的形状。
示例性地,光源阵列中的光源例如可以是垂直腔面发射激光器(vertical cavity surface emitting laser,VCSEL)、边缘发射激光器(edge emitting laser,EEL)、全固态半导体激光器(diode pumped solid state laser,DPSS)或光纤激光器等。
在一种可能的实现方式中,光源阵列中的光源可实现独立寻址,所谓独立寻址是指可独立选通(或称为点亮或开启或通电)光源阵列中的光源,选通的光源可用于发射探测光。光源阵列的寻址方式与光源的物理连接关系相关。示例性地,光源阵列可以按行分时或按列分时选通光源。所谓按行分时选通光源是指同一时刻选通光源阵列中的至少一行光源。按列分时选通光源是指同一时刻选通光源阵列中的至少一列光源。换言之,按行选通的光源行可以是一行光源也可以是多行光源,按列选通的光源列可以是一列光源也可以是多列光源,本申请对此不作限定。以同一时刻选通一行光源为例,第一时刻选通光源阵列中的第一行光源,第二时刻选通光源阵列中的第二行光源,第三时刻选通光源阵列中的第三行光源,每个时刻选通的一行光源发射探测光。以同一时刻选通一列光源为例,第一时刻选通光源阵列中的第一列光源,第二时刻选通光源阵列中的第二列光源,第三时刻选通光源阵列中的第三列光源,每个时刻选通的一列光源发射探测光。
在一种可能的实现方式中,发射光学系统还可用于对光源组件发射的探测光进行整形和/或准直和/或匀光。请参阅图14b,为本申请提供的一种发射光学系统的结构示意图。发射光学系统用于对光源组件发射的信号进行整形和/或准直和/或匀光,并将整形和/或准直和/或匀光后的探测光经第一子扫描器反射至探测区域。该发射光学系统可包括至少一片发射镜,发射镜可以是球面透镜,或者也可以是非球面透镜。换言之,发射光学系统可以包括单片的球面透镜,或者也可以包括多片球面透镜的组合、或者也可以包括单片的非球面透镜、或者也可以包括多片的非球面透镜的组合。通过多片球面透镜和/或非球面透镜的组合,有助于提高发射光学系统的成像质量,降低发射光学系统的像差。应理解,图14b以发射光学系统包括三个透镜为例示例性的。
需要说明的是,本申请对发射光学系统包括的发射镜的数量不作限定,可以比上述图 14b更多,或者也可以比上述图14b更少,且对发射镜的类型也不作限定,发射镜例如可以是平凸透镜、平凹透镜、凹凸透镜、双凹透镜、或双凸透镜等。
在一种可能的实现方式中,发射光学系统中的发射镜的材料可以是玻璃、树脂或者晶体等光学材料,本申请对发射光学系统的材料不作限定。为了有效抑制温漂,通常发射光学系统中包括至少一个玻璃材料的发射镜。
三、接收模组
在一种可能的实现方式中,接收模组可包括接收光学系统和探测组件,接收光学系统用于接收第二子扫描器反射的回波信号,并将接收到的回波信号会聚至探测组件(可参见图15)。探测组件用于对回波信号进行光电转化,得到用于确定目标的关联信息电信号。其中,目标的关联信息包括但不限于目标的距离信息、目标的方位、目标的速度、和/或目标的灰度信息等。示例性地,接收光学系统可将来自第二子扫描器的回波信号会聚至探测组件的光敏面。
请参阅图15,为本申请提供的一种接收光学系统的结构示意图。该接收光学系统可包括至少一片接收镜,接收镜可以是球面透镜、或者也可以是多片非球面透镜。换言之,接收光学系统可以包括单片的球面透镜,或者也可以包括多片球面透镜的组合、或者也可以包括单片的非球面透镜,或者也可以包括多片的非球面透镜的组合。通过多片球面透镜和/或非球面透镜的组合,有助于提高接收光学系统的成像质量,降低接收光学系统的像差。应理解,图15是以接收光学系统包括4片透镜为例的。
需要说明的,本申请对接收光学系统的结构不作限定,上述图15给出的接收光学系统的结构仅是示例。本申请对接收光学系统包括的接收镜的数量不作限定,可以比上述图15更多,或者也可以比上述图15更少。另外,本申请对接收镜的类型也不作限定,接收镜可以是凸透镜、或凹透镜、或凸透镜和凹透镜的组合,其中,凸透镜例如双凸透镜,平凸透镜以及凹凸透镜,凹透镜例如双凹透镜,平凹透镜以及凹凸透镜。
在一种可能的实现方式中,接收光学系统中的接收镜的材料可以是玻璃、树脂或者晶体等光学材料,本申请对接收光学系统的材料不作限定。为了有效抑制温漂,通常接收光学系统中包括至少一个玻璃材料的接收镜。
示例性地,探测组件例如可以是光电探测器(photon detector,PD)、P型半导体-本征层-N型半导体(positive intrinsic negative,PIN)型光电二极管(亦称为PIN结二极管)、雪崩光电二极管(avalanche photodiode,APD),或者也可以是像素阵列,像素阵列中的每个像素可以包括一个或多个单光子雪崩二极管(single-photon avalanche diode,SPAD)、或硅光电倍增管(silicon photomultiplier,SiMP)、或PIN型光电二极管、或APD等。
在一种可能的实现方式中,像素阵列可包括H行K列,H和K均为正整数。其中,若H和K均等于1,该像素组件可以是单个像素。若H等于1,K为大于1的整数,该像素组件是1行H列的像素阵列。若H为大于1的整数,K等于1,该像素组件可以是H行1列的像素阵列。若H和K均为大于1的整数,该像素组件可以是H行和K列的像素阵列。
如图16所示,为本申请提供的一种像素阵列的结构示意图。图16以H=5、K=5为例,即像素阵列以包括5×5个像素为例。若光源阵列是按行选通的,像素阵列可以选通其中的至少一行;若光源阵列是按列选通,像素阵列可以选通其中的至少一列。
需要说明的是,上述给出的像素的形状仅是示例,本申请对此不作限定,例如像素的 形状也可以是方向或椭圆形或其它可能的形状。
四、控制模组
在一种可能的实现方式中,控制模组可接收来自探测组件的电信号,并根据电信号确定目标的关联信息。进一步,可选的,控制模组还可根据确定出的目标的关联信息,进行行驶路径规划等,例如躲避将要行驶的路径上的障碍物等。
进一步,可选的,控制模组还可用于控制扫描模组和转动,进一步,还可用于控制扫描模组与光源组件进行同步、以及用于控制扫描模组与像素阵列进行同步等。
在一种可能的实现方式中,控制模组可以包括控制器,控制器例如可以是通用控制器、现场可编程门阵列(field programmable gate array,FPGA)、信号数据处理(digital signal processing,DSP)电路、专门应用的集成电路(application specific integrated circuit,ASIC)、或者其他可编程逻辑器件。
示例性地,控制器可向像素阵列发送控制信号,使像素阵列选通至少一行或至少一列或其它需要选通的像素。再比如,控制器可向光源阵列发送控制信号,使光源阵列按行或按列选通光源。此处不再一一列举。
在一种可能的实现方式中,探测系统例如可以是激光雷达。该探测系统可安装于车辆上,请参见图17。该示例中激光雷达在车辆上的位置仅是示例,激光雷达还可以设置于车辆的车身周围的任意可能的位置(可参见上述图1b),本申请对此不作限定。进一步,可选地,探测系统也可以将确定出的目标的关联信息发送给车辆,车辆可根据确定出的目标的关联信息,进行行驶路径的规划,例如躲避将要行驶的路径上的障碍物等。
需要说明的是,图17所示的激光雷达的形状仅是示例,激光雷达的外观上也可以呈现其他形状,例如还可以是长方体或其他规则或不规则的形状等,本申请对此不作限定。
基于上述描述的探测系统的架构和功能原理,本申请还可以提供一种终端设备。如图18所示,为本申请提供的一种终端设备的结构示意图。该终端设备1800可以包括上述任一实施例中的探测系统1801。进一步,可选地,该终端设备还可包括控制器1802,控制器1802用于调用程序或指令控制上述探测系统1801获取探测信息(例如用于确定目标的关联信息的电信号或目标的关联信息等)。若探测系统获取的是用于确定目标的关联信息的电信号,控制器1802还可接收来自探测系统1801的电信号,并根据电信号确定目标的关联信息。进一步,控制器1802还可根据确定出的目标的关联信息,对终端设备的行驶路径进行规划,例如躲避行驶路径上的障碍物等。若探测系统获取的是目标的关联信息,控制器1802还可用于接收来自探测系统1801的目标的关联信息,并基于目标的关联信息做进一步的处理,例如基于目标的关联信息对终端设备的行驶路径进行规划等。可选地,该终端设备还可包括存储器1803,存储器1803用于存储程序或指令。当然,该终端设备还可以包括其他器件,例如无线控制装置等,此处不再一一列举。
其中,探测系统1801可参见上述探测系统的描述,此处不再赘述。
控制器1802可以包括一个或多个处理单元。例如:控制器1802可以包括应用处理器(application processor,AP)、图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processor,ISP)、控制器、数字信号处理器(digital signal processor,DSP)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
存储器1803包括但不限于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至控制器,从而使控制器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是控制器的组成部分。控制器和存储介质可以位于ASIC中。
示例性地,该终端设备例如可以是车辆(例如无人车、智能车、电动车、或数字汽车等)、机器人、测绘设备、无人机、智能家居设备(例如电视、扫地机器人、智能台灯、音响系统、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、或视频监控等)、智能制造设备(例如工业设备)、智能运输设备(例如AGV、无人运输车、或货车等)、或智能终端(手机、计算机、平板电脑、掌上电脑、台式机、耳机、音响、穿戴设备、车载设备、虚拟现实设备、增强现实设备等)等。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“均匀”不是指绝对的均匀,可以允许有一定工程上的误差。“垂直”不是指绝对的垂直,可以允许有一定工程上的误差。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。本申请中,符号“(a,b)”表示开区间,范围为大于a且小于b;“[a,b]”表示闭区间,范围为大于或等于a且小于或等于b;“(a,b]”表示半开半闭区间,范围为大于a且小于或等于b;“(a,b]”表示半开半闭区间,范围为大于a且小于或等于b。另外,在本申请中,“示例性地”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。或者可理解为,使用示例的一词旨在以具体方式呈现概念,并不对本申请构成限定。
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。术语“第一”、“第二”等类似表述,是用于分区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的 精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的方案进行示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (31)

  1. 一种扫描系统,其特征在于,包括扫描模组和光学处理模组,所述光学处理模组包括隔光组件,所述扫描模组包括扫描器,所述扫描器基于所述隔光组件分为第一子扫描器和第二子扫描器;
    所述第一子扫描器,用于将来自发射模组的探测光反射至探测区域;
    所述第二子扫描器,用于将回波信号反射至接收模组,所述回波信号包括经由所述探测区域中的目标对所述探测光进行反射得到的反射光;
    所述隔光组件包括第一翻边和/或第二翻边,所述第一翻边朝向所述第一子扫描器的一侧,所述第二翻边朝向所述第二子扫描器的一侧。
  2. 如权利要求1所述的系统,其特征在于,所述隔光组件还包括底板,所述底板设置于所述第一子扫描器和所述第二子扫描器之间;
    所述第一翻边和/或所述第二翻边包围于所述底板。
  3. 如权利要求1或2所述的系统,其特征在于,所述第一翻边的第一面具有消光功能,所述第一翻边的第一面为所述第一翻边朝向所述第一子扫描器的面;和/或,
    所述底板的第一面具有消光功能,所述底板的第一面为所述底板朝向所述第一翻边一侧的面。
  4. 如权利要求1至3任一项所述的系统,其特征在于,所述扫描模组还包括支架,所述支架用于支撑所述扫描器,所述隔光组件设置于所述扫描器与所述支架之间。
  5. 如权利要求4所述的系统,其特征在于,所述支架的第一面具有消光功能,和/或,所述第二翻边的第二面具有消光功能,和/或,所述第一翻边的第二面具有消光功能;
    其中,所述支架的第一面为所述支架朝向所述第二翻边的面,所述第二翻边的第二面为所述第二翻边朝向所述支架的面,所述第一翻边的第二面为所述第一翻边朝向所述支架的面。
  6. 如权利要求1至5任一项所述的系统,其特征在于,所述扫描器包括多面体转镜,所述隔光组件在第一平面的投影为所述扫描器在所述第一平面的投影的外接圆,所述第一平面为垂直于所述扫描器的扫描轴的平面。
  7. 如权利要求1至6任一项所述的系统,其特征在于,所述扫描器与所述隔光组件共用所述扫描器的扫描轴。
  8. 如权利要求4至7任一项所述的系统,其特征在于,所述扫描模组还包括电机,所述电机与所述支架固定;
    所述电机用于驱动所述扫描器绕扫描轴转动。
  9. 如权利要求1至6任一项所述的系统,其特征在于,所述隔光组件的底板与所述扫描器之间填充有软性材料。
  10. 如权利要求1至9任一项所述的系统,其特征在于,所述扫描系统还包括视窗;
    所述光学处理模组还包括至少两个片状结构,所述至少两个片状结构形成具有至少一个开口的第一结构,所述第一结构的开口方向与所述视窗之间的第一夹角的大小属于[0°,90°],所述第一夹角为朝向所述扫描器的方向的夹角。
  11. 如权利要求10所述的系统,其特征在于,所述至少两个片状结构中的至少一个片状结构具有消光功能。
  12. 如权利要求10或11所述的系统,其特征在于,所述扫描系统还包括第一侧壁,所述第一侧壁为与所述视窗连接的侧壁;
    所述第一结构设置于所述扫描器和所述第一侧壁之间;或者,所述第一结构设置于所述第一侧壁。
  13. 如权利要求10至12任一项所述的系统,其特征在于,所述第一结构为半开口组件,所述半开口组件的开口方向朝向所述视窗。
  14. 如权利要求13所述的系统,其特征在于,所述半开口组件的形状包括π型、U型或半封闭矩形。
  15. 如权利要求13或14所述的系统,其特征在于,所述半开口组件的内表面具有消光功能。
  16. 如权利要求10至12任一项所述的系统,其特征在于,所述第一结构为类光栅,所述类光栅的表面具有消光功能。
  17. 如权利要求1至16任一项所述的系统,其特征在于,所述光学处理模组还包括打孔的结构件;
    所述打孔的结构件包括开孔区域和非开孔区域,所述开孔区域朝向所述扫描器。
  18. 如权利要求17所述的系统,其特征在于,所述非开孔区域的外表面具有消光功能,所述非开孔区域的外表面为背向所述扫描器的一侧的面。
  19. 如权利要求3、5、15、16或18所述的系统,其特征在于,所述系统满足以下属性中的一个或多个:
    具有消光功能的第一翻边的第一面的反射率不大于10%;
    具有消光功能的第一翻边的第二面的反射率不大于10%;
    具有消光功能的第二翻边的第二面的反射率不大于10%;
    具有消光功能的底板的第一面的反射率不大于10%;或
    具有消光功能的支架的第一面的反射率不大于10%。
  20. 一种扫描系统,其特征在于,包括扫描模组、光学处理模组和视窗;
    所述扫描模组,用于将来自发射模组的探测光反射至所述视窗,并将回波信号反射至接收模组,所述回波信号包括经由所述探测区域中的目标对所述探测光进行反射得到的反射光;
    所述光学处理模组包括至少两个片状结构,所述至少两个片状结构形成具有至少一个开口的第一结构,所述第一结构的开口方向与所述视窗之间的第一夹角的大小属于[0°,90°],所述第一夹角为朝向所述扫描模组的方向的夹角。
  21. 如权利要求20所述的系统,其特征在于,所述至少两个片状结构中的至少一个片状结构具有消光功能。
  22. 如权利要求21所述的系统,其特征在于,具有消光功能的所述片状结构的反射率不大于10%。
  23. 如权利要求20至22任一项所述的系统,其特征在于,所述扫描系统还包括第一侧壁,所述第一侧壁与为所述视窗连接的侧壁;
    所述第一结构设置于所述第一侧壁;或者,所述第一结构设置于所述第一侧壁与所述扫描模组之间。
  24. 如权利要求20至23任一项所述的系统,其特征在于,所述第一结构为半开口组件, 所述半开口组件的开口方向朝向所述视窗。
  25. 如权利要求24所述的系统,其特征在于,所述半开口组件的形状包括π型、U型或半封闭矩形。
  26. 如权利要求25所述的系统,其特征在于,所述半开口组件的内表面具有消光功能。
  27. 如权利要求20至23任一项所述的系统,其特征在于,所述第一结构为类光栅,所述类光栅的表面具有消光功能。
  28. 如权利要求20至27任一项所述的系统,其特征在于,所述光学处理模组还包括打孔的结构件;
    所述打孔的结构件包括开孔区域和非开孔区域,所述开孔区域朝向所述扫描器。
  29. 如权利要求28所述的系统,其特征在于,所述非开孔区域的外表面具有消光功能,所述非开孔区域的外表面为背向所述扫描器的一侧的面。
  30. 一种探测系统,其特征在于,包括发射模组、接收模组、以及如权利要求1至19任一项所述的扫描系统或如权利要求20至29任一项所述的扫描系统;
    所述发射模组,用于发射所述探测光;
    所述接收模组,用于接收来自所述扫描模组反射的所述回波信号。
  31. 一种终端设备,其特征在于,包括如权利要求30所述的探测系统。
PCT/CN2021/122995 2021-10-11 2021-10-11 一种扫描系统、探测系统及终端设备 WO2023060374A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/122995 WO2023060374A1 (zh) 2021-10-11 2021-10-11 一种扫描系统、探测系统及终端设备
CN202180101967.7A CN117999495A (zh) 2021-10-11 2021-10-11 一种扫描系统、探测系统及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122995 WO2023060374A1 (zh) 2021-10-11 2021-10-11 一种扫描系统、探测系统及终端设备

Publications (1)

Publication Number Publication Date
WO2023060374A1 true WO2023060374A1 (zh) 2023-04-20

Family

ID=85987129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122995 WO2023060374A1 (zh) 2021-10-11 2021-10-11 一种扫描系统、探测系统及终端设备

Country Status (2)

Country Link
CN (1) CN117999495A (zh)
WO (1) WO2023060374A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873125A (zh) * 2018-09-03 2018-11-23 上海禾赛光电科技有限公司 遮光件、具有遮光结构的透镜组及激光雷达
CN110333511A (zh) * 2019-07-22 2019-10-15 西安知微传感技术有限公司 一种收发同步激光雷达光学系统
JP2020063970A (ja) * 2018-10-17 2020-04-23 パイオニア株式会社 投受光装置及び測距装置
CN111580114A (zh) * 2020-04-29 2020-08-25 上海禾赛光电科技有限公司 用于激光雷达的转镜单元、相应的激光雷达和使用方法
CN113075680A (zh) * 2020-01-06 2021-07-06 宁波舜宇车载光学技术有限公司 激光雷达和激光雷达的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873125A (zh) * 2018-09-03 2018-11-23 上海禾赛光电科技有限公司 遮光件、具有遮光结构的透镜组及激光雷达
JP2020063970A (ja) * 2018-10-17 2020-04-23 パイオニア株式会社 投受光装置及び測距装置
CN110333511A (zh) * 2019-07-22 2019-10-15 西安知微传感技术有限公司 一种收发同步激光雷达光学系统
CN113075680A (zh) * 2020-01-06 2021-07-06 宁波舜宇车载光学技术有限公司 激光雷达和激光雷达的制造方法
CN111580114A (zh) * 2020-04-29 2020-08-25 上海禾赛光电科技有限公司 用于激光雷达的转镜单元、相应的激光雷达和使用方法

Also Published As

Publication number Publication date
CN117999495A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
JP7474881B2 (ja) 多面ミラーをともなうlidarシステム
CN112703418A (zh) 具有对应的光学元件阵列的光检测器阵列
WO2022141534A1 (zh) 探测装置、扫描单元、可移动平台及探测装置的控制方法
US20220390603A1 (en) Lidar, method for controlling the same, and apparatus including lidar
US20240210528A1 (en) Receiving Optical System, Lidar System, and Terminal Device
US20240159885A1 (en) Spatial Light Modulator Retroreflector Mitigation
WO2023060374A1 (zh) 一种扫描系统、探测系统及终端设备
WO2024036582A1 (zh) 一种发射模组、接收模组、探测装置及终端设备
WO2023015562A1 (zh) 一种激光雷达及终端设备
WO2023225963A1 (zh) 一种扫描装置、激光雷达和终端
WO2024044905A1 (zh) 一种探测装置及终端设备
WO2022147652A1 (zh) 激光雷达及具有激光雷达的设备
WO2023123447A1 (zh) 一种扫描模组、探测装置及终端设备
WO2024044997A1 (zh) 一种光学接收模组、接收系统、探测装置及终端设备
US20230194669A1 (en) Split Window and Baffling
WO2023056848A1 (zh) 一种控制探测方法、控制装置、激光雷达及终端设备
CN217425676U (zh) 一种混合固态激光雷达
WO2024130642A1 (zh) 一种发射装置、探测装置及终端
WO2023225902A1 (zh) 一种发射模组、探测装置及终端设备
WO2023019442A1 (zh) 一种探测系统、终端设备及探测控制方法
CN115079136B (zh) 固态激光雷达系统及车辆
WO2023056585A1 (zh) 一种探测系统、终端设备、控制探测方法及控制装置
WO2023201596A1 (zh) 一种探测装置及终端设备
WO2022040937A1 (zh) 激光扫描装置和激光扫描系统
US20240014899A1 (en) Transmitter, transmission device, communication device, and communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960128

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101967.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021960128

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021960128

Country of ref document: EP

Effective date: 20240412

NENP Non-entry into the national phase

Ref country code: DE