WO2023225902A1 - 一种发射模组、探测装置及终端设备 - Google Patents

一种发射模组、探测装置及终端设备 Download PDF

Info

Publication number
WO2023225902A1
WO2023225902A1 PCT/CN2022/094966 CN2022094966W WO2023225902A1 WO 2023225902 A1 WO2023225902 A1 WO 2023225902A1 CN 2022094966 W CN2022094966 W CN 2022094966W WO 2023225902 A1 WO2023225902 A1 WO 2023225902A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
divergence angle
module
collimating element
optical
Prior art date
Application number
PCT/CN2022/094966
Other languages
English (en)
French (fr)
Inventor
安凯
陈宇峰
邱孙杰
韩伟
郭家兴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/094966 priority Critical patent/WO2023225902A1/zh
Publication of WO2023225902A1 publication Critical patent/WO2023225902A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present application relates to the field of optical shaping technology, and in particular to a transmitting module, a detection device and a terminal equipment.
  • lidar can sense the surrounding environment, it can identify and track moving targets based on the perceived environmental information, as well as identify stationary targets such as lane lines and signboards, and can be combined with navigators and map data for path planning, etc. . Therefore, lidar plays an increasingly important role in smart terminals.
  • lidar Based on the different application requirements of lidar, there are different shaping requirements for the beam emitted by the light source in lidar, so that lidar can form an outgoing beam with a specific energy density distribution. This process can also be called the beam shaping process.
  • micro-nano optical elements such as microlens array (MLA) or diffractive optical elements (DOE), etc.
  • MLA microlens array
  • DOE diffractive optical elements
  • This application provides a transmitting module, a detection device and a terminal device for achieving beam shaping through an optical shaping component with a simple preparation process.
  • this application provides a transmitting module.
  • the emission module includes an array light source and an optical shaping component.
  • the optical shaping component includes a spherical lens and/or an aspherical lens.
  • the array light source is used to emit the first light beam
  • the divergence angle of the first light beam is the first divergence angle.
  • the optical shaping component is used to adjust the first divergence angle of the first beam from the array light source to the first preset divergence angle at least in the first direction, and uniformly light the first beam to obtain the second beam.
  • the divergence angle of is the first preset divergence angle.
  • the optical shaping component can be used to shape the first light beam emitted by the array light source in the first direction (including adjusting the divergence angle and uniform light), so that the second light beam with the first preset divergence angle can be obtained, and the second light beam can be obtained.
  • the energy density of the light spot formed by the two beams is relatively uniform.
  • the preparation process of conventional spherical lenses and/or aspherical lenses included in the optical shaping component is simple. That is, based on the above-mentioned emission module, a spherical lens and/or an aspheric lens prepared by a relatively simple process can be used to achieve a better shaping effect on the first beam emitted by the array light source.
  • the array light source includes m ⁇ n light sources, m is an integer greater than 1, and n is a positive integer.
  • the optical shaping component includes a first collimating element.
  • the first collimating element is used to adjust the first divergence angle of the first beam from the array light source to the first preset divergence angle in the first direction, and to uniformly light the first beam.
  • the divergence angle and uniformity of the first light beam emitted by the array light source can be adjusted in the first direction. It can also be understood that the first collimating element can scale the divergence angle of the first light beam emitted by the array light source in the first direction to obtain the second light beam, and the second light beam propagates freely to mix and homogenize the light.
  • the array light source is located at a first preset distance from the object focus of the first collimating element, and the first preset distance is related to the duty cycle of the array light source in the first direction (also known as Filling rate) is related to the first divergence angle of the first beam.
  • the duty cycle of the array light source in the slow axis direction is the total effective luminous length of the array light source in the slow axis direction/the total physical length in the slow axis direction.
  • the focal length f 1 of the first collimating element there is a correlation between the focal length f 1 of the first collimating element, the length d of the array light source in the first direction, and the first preset divergence angle u 1 '. Furthermore, the correlation relationship satisfies the following formula 1.
  • ⁇ 1 is the allowable error range in the first direction.
  • the focal length f 1 of the first collimating element can be determined.
  • the first collimating element includes at least one aspherical mirror, and the aspherical mirror includes a one-dimensional cylindrical mirror (or called a cylindrical lens).
  • An elliptical beam focus can be obtained through a one-dimensional cylindrical mirror, which can be used to compensate for the astigmatism of the beam or emission module. Moreover, the one-dimensional cylindrical mirror can focus or defocus light only in the first direction without affecting the wavefront curvature in the second direction. Furthermore, if the first collimating element uses at least two one-dimensional cylindrical mirrors, the aberration in the first direction can be corrected.
  • the emission module further includes a first diaphragm, and the first diaphragm is located between the first collimating element and the array light source.
  • the first diaphragm can allow the first light beam within the effective field of view in the first direction to pass through, and can suppress the passage of background stray light outside the effective field of view in the first direction, thereby helping to reduce the influence of stray light.
  • the optical shaping component is also used to adjust the second divergence angle of the first beam from the array light source to the second preset divergence angle in the second direction. Further, optionally, the optical shaping component is also used to uniformly light the first beam from the array light source in the second direction.
  • the divergence angle of the second light beam in the second direction can be the second preset divergence angle. Furthermore, the energy density of the light spot formed by the second light beam in the second direction can also be made more uniform.
  • the optical shaping component further includes a second collimating element.
  • the divergence angle and uniformity of the first light beam emitted by the array light source can be adjusted in the second direction. It can also be understood that the second collimating element can be used to scale the divergence angle of the first beam emitted by the array light source in the second direction. After the second beam is obtained, the second beam propagates freely for mixing and uniform light.
  • the focal length f 2 of the second collimating element there is a correlation between the focal length f 2 of the second collimating element, the length h of the array light source in the second direction, and the second preset divergence angle u 2 ′ . Furthermore, the correlation relationship satisfies the following formula 2.
  • ⁇ 2 is the allowable error range.
  • the focal length f 2 of the second collimating element can be determined.
  • the second collimating element includes at least one aspherical mirror, and the aspherical mirror includes a one-dimensional cylindrical mirror.
  • An elliptical beam focus can be obtained through a one-dimensional cylindrical mirror, which can be used to compensate for the astigmatism of the beam or emission module. Moreover, the one-dimensional cylindrical mirror can focus or defocus light only in the second direction without affecting the wavefront curvature in the first direction. Furthermore, if the second collimating element uses at least two one-dimensional cylindrical mirrors, the aberration in the second direction can be corrected.
  • the emission module further includes a second aperture, and the second aperture is located between the second collimating element and the array light source.
  • the second aperture can allow the first light beam within the effective field of view in the second direction to pass through, and can suppress the passage of background stray light outside the effective field of view in the second direction, thereby helping to reduce the influence of stray light.
  • the first collimating element is perpendicular to the focus line of the second collimating element.
  • the light beams in the first direction and the second direction can not affect each other.
  • the optical axes of the first collimating element and the second collimating element are parallel or coincident.
  • the emission module further includes a reflective element, and the reflective element is located between the first collimating element and the second collimating element.
  • the direction of the propagation light path of the first beam emitted by the array light source can be changed by the reflective element, which helps to reduce the optical path of the first beam in the slow axis direction, thereby helping to reduce the size of the emission module in the first direction. This in turn contributes to the miniaturization of the transmitter module.
  • the reflective element includes a reflective prism or a plane reflector.
  • the optical shaping component includes a two-dimensional power shaping element.
  • the two-dimensional optical power shaping element is used to adjust the first divergence angle of the first beam from the array light source to the first preset divergence angle in the first direction, uniformly light the first beam, and adjust the first beam from the array in the second direction.
  • the second divergence angle of the first beam of the light source is adjusted to the second preset divergence angle to obtain the second beam.
  • the divergence angle and uniformity of the first light beam emitted by the array light source in the first direction and the second direction can be adjusted simultaneously.
  • the two-dimensional power shaping element includes at least one spherical lens or at least one two-dimensional power cylindrical mirror.
  • the emission module further includes a refractive prism.
  • the refractive prism is used to adjust the propagation light path of the second light beam. After adjusting the propagation light path, the energy density of the light spot formed by the second light beam in the middle area is greater than the energy density in the edge area.
  • the light in the upper half of the second beam can be deflected downward, and the light in the lower half can be deflected upward, resulting in an overlapping portion, so that the middle area of the light spot formed by the adjusted second beam can be propagated.
  • the energy density is greater than the energy density in the edge area, which helps to improve the ranging capability of the second beam in the middle area.
  • the shape of the light spot formed by the second light beam after adjusting the propagation optical path is a "convex" type or a "convex"-like type.
  • the energy density of the convex part of the "convex" or “convex”-like light spot is higher than the energy density of both sides.
  • the first optical axis of the first collimating element is perpendicular to the second optical axis of the second collimating element.
  • the first direction is perpendicular to the second direction.
  • the first direction is the slow axis direction of the optical shaping component; and/or the second direction is the fast axis direction of the optical shaping component.
  • the present application provides a detection device, which includes a receiving module and a transmitting module of the first aspect or any one of the first aspects; wherein, the receiving module is used to receive an echo signal, and the echo signal is The wave signal is a signal obtained after the second beam is reflected by the target in the detection area.
  • the detection device further includes a scanning module, and the scanning module is located at the waist of the second beam.
  • the scanning module is used to reflect the second beam from the optical shaping component to the detection area.
  • the above-mentioned transmitting module can compress the beam size near the light outlet of the beam shaping component.
  • a scanning module with a smaller reflective surface can be used, which helps to reduce the size of the scanning module. In turn, the size of the entire detection device can be reduced.
  • the present application provides a terminal device, which includes a control device and a detection device of the above second aspect or any one of the second aspects.
  • Figure 1a is a schematic diagram of the optical path of a light beam propagating through a lens provided by this application;
  • Figure 1b is a schematic diagram of the optical path of a light beam propagating through a lens provided by this application;
  • Figure 1c is a schematic diagram of the beam waist of a light beam provided by the present application.
  • Figure 2 is a schematic diagram of a possible application scenario of this application.
  • FIG. 3 is a schematic structural diagram of a transmitting module provided by this application.
  • Figure 4 is a schematic structural diagram of a one-dimensional array light source provided by this application.
  • Figure 5 is a schematic structural diagram of a two-dimensional array light source provided by this application.
  • Figure 6 is an optical path for shaping the first light beam in the slow axis direction by an optical shaping component provided by the present application
  • Figure 7 is a schematic diagram of the positional relationship between an array light source and a first collimating element provided by this application;
  • FIG. 8 is a schematic structural diagram of another transmitting module provided by this application.
  • Figure 9a is a schematic structural diagram of another transmitting module provided by this application.
  • Figure 9b is a schematic three-dimensional structural diagram of a transmitting module provided by this application.
  • Figure 10a is a schematic structural diagram of another transmitting module provided by this application.
  • Figure 10b is a schematic diagram of the three-dimensional structure of another transmitting module provided by this application.
  • Figure 11a is a schematic structural diagram of another transmitting module provided by this application.
  • Figure 11b is a schematic diagram of the three-dimensional structure of another transmitting module provided by this application.
  • Figure 12a is a schematic diagram of the uniformity of the light spot formed by the second beam in the slow axis direction provided by this application;
  • Figure 12b is a schematic diagram of the simulated relationship between the uniformity of the light spot formed by the second beam in the slow axis direction and the irradiation distance of the second beam provided by this application;
  • Figure 13a is a schematic structural diagram of another transmitting module provided by this application.
  • Figure 13b is a schematic diagram of the three-dimensional structure of another transmitting module provided by this application.
  • Figure 14a is a schematic diagram of a second beam forming a convex spot provided by the present application.
  • Figure 14b is a schematic diagram of the intensity distribution curve in the slow axis direction of a far-field light spot provided by this application;
  • FIG. 15 is a schematic structural diagram of another transmitting module provided by this application.
  • Figure 16 is a schematic structural diagram of a detection device provided by this application.
  • Figure 17 is a schematic structural diagram of a detection component provided by this application.
  • Figure 18 is an exemplary functional block diagram of a vehicle provided by this application.
  • a lens is a transparent optical device that affects the wavefront curvature of a passing light beam.
  • the beam enters from one side and comes out from the other side.
  • the function of the lens is to change the wavefront curvature of the light beam, that is, to focus or defocus the light beam.
  • a collimated beam with an approximately flat wavefront is transformed into a curved wavefront, and the beam is focused to the focus.
  • This type of lens is used as a focusing lens, see Figure 1a.
  • the same lens as above can also convert the divergent beam into a collimated beam. In this case, the lens acts as a collimating lens. Please refer to Figure 1a. At this time, the beam is incident from the right side.
  • Lenses with concave surfaces can turn a collimated or convergent beam into a divergent beam, see Figure 1b.
  • This type of lens can also be used to turn a divergent beam into a collimated beam. See Figure 1b, where the beam is coming from the right. Just incident.
  • Optical power is equal to the difference between the image-side beam convergence and the object-side beam convergence, which can characterize the ability of optical elements to deflect light beams.
  • Optical power is often represented by the letter ⁇ .
  • optical power is expressed as the reciprocal of the image-side focal length of the lens (approximately the refractive index of air is 1).
  • the power refers to the actual power of the optical element.
  • Beam divergence (u) is a measure of how quickly the beam diverges outward from the beam waist, see Figure 1c.
  • the beam waist of a beam refers to the place where the beam radius (a measure of the lateral expansion of the beam) is smallest in the direction of beam propagation. Among them, the beam radius at the location where the beam radius is the smallest becomes the beam waist radius.
  • the beam radius is usually defined as the radius corresponding to 1/e 2 of the peak intensity.
  • Homogenization refers to homogenizing the energy of the light beam.
  • the spot usually refers to the energy density (or intensity) distribution formed by the light beam in the angular space.
  • the energy density distribution of the light spot can be low at both ends and high in the middle (or called a "convex" shape or a "convex"-like shape).
  • the energy density distribution can be normal distribution (Normal distribution) or similar to normal.
  • the energy density of the light spot can also be uniformly distributed.
  • the area of interest refers to the area that needs to be processed from the processed image in the form of boxes, circles, ellipses, irregular polygons, etc. in machine vision and image processing.
  • the transmitting module can be integrated into the detection device, and the detection device can be installed on the vehicle.
  • FIG. 2 exemplarily shows a schematic diagram of a possible application scenario of the present application.
  • the detection device is installed on the front of the vehicle as an example. It can be understood that the detection device can also be installed in other positions of the vehicle, such as any one or more of the four directions of front, rear, left, and right, to capture information about the vehicle's surrounding environment.
  • the working principle of the detection device is: the detection device emits a beam to the detection area. If there is a target in the detection area, the target can reflect the received beam back to the detection device (the reflected beam can be called a reflection beam). wave signal), and the detection device determines the relevant information of the target based on the echo signal. Specifically, the detection device can obtain the longitude, latitude, speed, and orientation of the vehicle in real time or periodically, or the associated information (such as the distance of the target, the distance of the target, etc.) speed, and/or target attitude, etc.). Further, optionally, the detection device can send the acquired information to a control device in the vehicle, so that the control device can perform path planning of the vehicle based on the acquired information.
  • the longitude and latitude can be used to determine the location of the vehicle, or the speed and orientation can be used to determine the vehicle's driving direction and destination in the future, or the distance of surrounding objects can be used to determine the number and density of obstacles around the vehicle.
  • ADAS advanced driving assist system
  • the detection device can also be applied in other possible scenarios, and is not limited to the above example scenarios.
  • the detection device can also be installed on the vehicle as a headlight.
  • the detection device can also be installed on a drone as an airborne detection device.
  • the detection device can also be installed in a roadside unit (RSU).
  • RSU roadside unit
  • AGV automated guided vehicle
  • AGV is equipped with an automatic navigation device such as electromagnetic or optical, can travel along a prescribed navigation path, and has safety protection and various mobility features.
  • Functional transport vehicle For another example, the detection device can also be installed on the stage as a stage lighting.
  • the detection device can also be installed on the photolithography machine.
  • detection devices can also be installed on medical equipment. No more enumeration here. It should be noted that the application scenarios described in this application are for the purpose of explaining the technical solutions of this application more clearly and do not constitute a limitation on the technical solutions provided by this application. In these possible application scenarios, a uniform light spot may be required, or a "convex" or "convex"-like light spot may be required.
  • the above application scenarios can be applied to fields such as unmanned driving, autonomous driving, assisted driving, intelligent driving, connected vehicles, security monitoring, biomedicine, lithography or surveying (such as three-dimensional drawing).
  • micro-nano optical elements such as MLA or DOE are usually used for beam shaping.
  • the processing technology of these micro-nano optical elements is complex and requires complex design of optical paths.
  • the emission module can shape the light beam through a conventional lens, thereby helping to reduce the complexity of the preparation process of the emission module and the complexity of the optical path design.
  • the emission module may include an array light source and an optical shaping component.
  • the array light source is used to emit a first light beam, and the divergence angle of the first light beam is the first divergence angle.
  • the first divergence angle is the inherent divergence angle of the array light source in the first direction.
  • the optical shaping component includes a spherical lens and/or an aspheric lens for adjusting the first divergence angle of the first beam emitted by the array light source to the first preset divergence angle in the first direction, and uniformizing the first beam, Get the second beam.
  • the divergence angle of the second light beam is the first preset divergence angle, and the energy density (or intensity) of the light spot formed by the second light beam in the first direction is uniform.
  • the optical shaping component can be used to shape the first beam emitted by the array light source in the first direction (including adjusting the divergence angle and uniform light), so that the second beam of the first preset divergence angle can be obtained. Moreover, the energy density of the light spot formed by the second beam is relatively uniform. Furthermore, the preparation process of the spherical lens and/or aspherical lens included in the optical shaping component is simple. That is, based on the above-mentioned emission module, a spherical lens and/or an aspheric lens prepared by a relatively simple process can be used to achieve a better shaping effect on the first beam emitted by the array light source.
  • the optical shaping component is also used to adjust the second divergence angle of the first beam from the array light source to the second preset divergence angle in the second direction. Furthermore, the optical shaping component is also used to uniformly light the first beam from the array light source in the second direction to obtain the second beam.
  • the divergence angle of the first light beam in the second direction is the second divergence angle
  • the divergence angle of the second light beam in the second direction is the second preset divergence angle.
  • the first direction is perpendicular to the second direction.
  • the first direction is the slow axis direction of the optical shaping component; and/or the second direction is the fast axis direction of the optical shaping component.
  • the first direction is the slow axis direction of the optical shaping component as an example
  • the second direction is the fast axis direction of the optical shaping component.
  • the slow axis direction below can be replaced by the first direction
  • the fast axis direction can be replaced by the second direction.
  • the array light source includes m ⁇ n light sources, m is an integer greater than 1, and n is a positive integer.
  • the array light source may be a one-dimensional array light source (or called a linear type), please refer to Figure 4.
  • the array light source includes 8 light sources. These eight light sources are arranged in a strip shape along the slow axis direction (that is, the vertical direction shown in Figure 4), and the distance between two adjacent light sources is ⁇ 1 .
  • the size of the light-emitting area (or light-emitting surface) of each light source in the array light source can be expressed as p ⁇ k, see Figure 4.
  • the first divergence angle of the first light beam emitted by the array light source in the slow axis direction is u 1 .
  • the array light source can also be a two-dimensional array (or called an area array).
  • the array light source can achieve independent addressing.
  • Independent addressing means that the light sources in the array light sources can be independently gated (or lit, turned on, or energized), and the gated light sources can be used to emit the first light beam.
  • a driving current can be input to the light source that needs to be gated to realize the gated light source.
  • the addressing method of the array light source may include, but is not limited to, gating the light sources column by column, gating the light sources row by row, or gating the light sources according to the area of interest, etc. It can be understood that the addressing method of the array light source is also related to the physical connection relationship of the light source. Referring to Figure 5 above, for example, if the light sources in the same column of the array light source are connected in series and different columns are connected in parallel, the light sources in the array light source can be gated column by column. For another example, if the light sources in the same row of an array light source are connected in series and different rows are connected in parallel, the light sources in the array light source can be gated row by row. For another example, if the light sources on each diagonal line in the array light source are connected in series and the light sources on different diagonal lines are connected in parallel, the light sources in the array light source can be gated diagonally.
  • the light source in the array light source may be a vertical cavity surface emitting laser (VCSEL), an edge emitting laser (edge emitting laser, EEL), or a diode pumped solid state laser (DPSS). ), fiber laser or laser diode (laser diode, LD), etc.
  • VCSEL vertical cavity surface emitting laser
  • EEL edge emitting laser
  • DPSS diode pumped solid state laser
  • fiber laser or laser diode laser diode
  • the optical shaping component can perform at least the following two functions. One is to adjust the divergence angle of the first beam from the array light source, and the other is to homogenize the first beam. Specifically, the optical shaping component adjusts the first divergence angle of the first light beam emitted by the array light source to the first preset divergence angle in the slow axis direction, and further homogenizes the first light beam in the slow axis direction; and/ Or, adjust the second divergence angle of the first beam emitted by the array light source to the second preset divergence angle in the fast axis direction, and further homogenize the first beam in the fast axis direction.
  • the following is an introduction to the process of the optical shaping component shaping the first beam in the fast axis direction and the slow axis direction.
  • the optical shaping component shapes the first beam in the slow axis direction.
  • the optical shaping component is used to shape the first divergence angle u 1 of the first beam emitted by the array light source into a first preset divergence angle (or called the first projection divergence) in the slow axis direction.
  • angle) u 1 ' further, homogenize the first beam
  • the first beam from the array light source is shaped by the optical shaping component to obtain the second beam.
  • the divergence angle of the second beam in the slow axis direction is the first preset divergence angle u 1 ', and the second beam is formed by
  • the uniformity of the light spot in the slow axis direction (which can be determined by the following formula 3) is greater than the first preset uniformity.
  • the first divergence angle u 1 of the first light beam is the inherent divergence angle of the first light beam in the slow axis direction.
  • the first preset divergence angle u 1 ' and the first preset uniformity may be obtained in advance according to actual needs.
  • U represents the uniformity of the light spot formed by the second beam in the slow axis direction
  • I max represents the maximum intensity of the light spot formed by the second beam in the slow axis direction
  • I min represents the minimum intensity of the light spot formed by the second beam in the slow axis direction.
  • first divergence angle may be greater than the first preset divergence angle, and the first divergence angle may also be less than the first preset divergence angle, which is not limited in this application.
  • the optical shaping component shapes the first beam in the fast axis direction.
  • the optical shaping component is used to shape the second divergence angle u 2 of the first beam from the array light source into a second preset divergence angle (or called the second projection) in the fast axis direction. Divergence angle) u 2 '.
  • the first light beam is homogenized.
  • the first beam emitted by the array light source is shaped by the optical shaping component to obtain the second beam.
  • the divergence angle of the second beam in the fast axis direction is the second divergence angle u 2 ', and the light spot formed by the second beam is in the fast axis direction.
  • the uniformity is greater than the second preset uniformity.
  • the first divergence angle u 2 of the first beam is the inherent divergence angle of the first beam in the fast axis direction.
  • the second preset divergence angle u 2 ' and the second preset uniformity may be obtained in advance based on actual requirements.
  • the second divergence angle may be greater than the second preset divergence angle, and the second divergence angle may also be less than the second preset divergence angle, which is not limited in this application.
  • this application does not limit the size relationship between the first preset divergence angle and the second preset divergence angle, nor does it limit the size relationship between the first preset uniformity and the second preset uniformity.
  • the optical shaping component can only shape the slow axis direction (for example, it can include adjusting the divergence angle and/or uniformity in the slow axis direction). Based on this, the optical shaping component can include the following structure one; or Only the fast axis direction can be shaped. Based on this, the optical shaping component can include the following structure two; or it can also shape the fast axis direction and the slow axis direction at the same time. Based on this, the optical shaping component can include the following structure one and Structure two may also include at least one two-dimensional optical power shaping element, which will be described in detail below.
  • the optical shaping component includes a first collimating element.
  • the first collimation element may also be called a slow-axis collimator (SAC).
  • SAC slow-axis collimator
  • the first collimating element is used to shape the first divergence angle u 1 of the first beam from the array light source in the slow axis direction to the first preset divergence angle u 1 '.
  • the above-mentioned 6 can be
  • the optical shaping component is replaced with the first collimating element.
  • the first collimating element is also used to uniformly light the first light beam in the slow axis direction.
  • the divergence angle of the second light beam in the slow axis direction obtained after the first light beam from the array light source is shaped by the first collimating element is the first preset divergence angle u 1 ', and the light spot formed by the second light beam is in the slow axis direction.
  • the uniformity of the direction is greater than the first preset uniformity.
  • the first collimating element may comprise at least one aspherical lens, such as a one-dimensional cylindrical lens.
  • One-dimensional cylindrical mirror means that the optical power of the cylindrical mirror in one direction is not 0, and the optical power in other directions is 0. It can also be understood that the curvature of a one-dimensional cylindrical mirror only exists in one direction and has no curvature in the other direction.
  • one-dimensional cylindrical mirrors may include but are not limited to plano-convex cylindrical mirrors (or plano-convex cylindrical lenses), plano-concave cylindrical mirrors (or plano-concave cylindrical lenses), biconvex cylindrical mirrors (biconvex cylindrical lenses) Cylindrical lens) and biconcave cylindrical lens (biconcave cylindrical lens), etc.
  • An elliptical beam focus can be obtained through a one-dimensional cylindrical mirror, which can be used to compensate for the astigmatism of the beam or emission module. Moreover, the one-dimensional cylindrical mirror can focus or defocus light only in the first direction without affecting the wavefront curvature in the second direction. It should be noted that if the length d of the array light source in the slow axis direction is large, aberration correction needs to be considered when designing the structure of the optical shaping component in the slow axis direction. To this end, the first collimating element may use at least two one-dimensional cylindrical mirrors to correct aberrations in the slow axis direction.
  • the focus of the first collimating element involved in this application can be the first collimating element.
  • the focal length of the first collimating element involved in this application may be the equivalent focal length of the plurality of one-dimensional cylindrical mirrors included in the first collimating element.
  • the length d of the array light source in the slow axis direction, the focal length f 1 of the first collimating element and the first preset divergence angle u 1 ' satisfy the correlation relationship given by the following formula 1 .
  • ⁇ 1 is the allowable error range in the slow axis direction.
  • allowable errors include, but are not limited to, errors due to engineering errors.
  • the focal length f 1 of the first collimating element can be determined.
  • the focal length f 1 of the first collimating element determines the position of the first collimating element and the size of the divergence angle of the second beam shaped by the first collimating element in the slow axis direction.
  • the focal length of the first collimating element is the focal length of the optical shaping component in the slow axis direction.
  • the array light source may be located at the object focus of the first collimating element.
  • the array light source does not need to be placed at the object-side focus of the first collimation element.
  • Fine-tuning can be performed before and after the object-side focus of the first collimation element.
  • the amplitude of the fine-tuning (i.e., the first collimation element) A preset distance) is related to the duty cycle of the array light source in the slow axis direction and the first divergence angle u 1 of the first light beam.
  • the array light source is located at a first preset distance from the object focus of the first collimating element.
  • the first preset distance is related to the duty cycle of the array light source in the slow axis direction and the first divergence angle u 1 of the first beam. . It can also be understood that the distance between the position of the array light source and the object focus of the first collimating element is the first preset distance. Specifically, the first preset distance is a distance that is at least as large as the array light source in the slow axis direction. A fixed value related to the space ratio and the first divergence angle u 1 of the first beam. In other words, the size of the first preset distance is at least related to the duty cycle of the array light source in the slow axis direction and the first divergence angle u 1 of the first light beam. The specific relationship can be adjusted through model simulation. It can be understood that the position of the array light source may also be related to the total length of the optical path allowed by the emission module and/or the spatial angular distribution of the first light beam after emitting from the array light source.
  • the focal length of the first collimation element can be fine-tuned and/or the focal length of the first collimation element can be redesigned until the divergence angle of the second beam is obtained.
  • the required first preset divergence angle u 1 ' is the focal length of the first collimation element.
  • FIG. 7 is a schematic diagram of the positional relationship between an array light source and a first collimating element provided by the present application.
  • the array light source includes 3 ⁇ 1 LDs
  • the first collimating element includes a biconvex cylindrical mirror.
  • the divergence angle of the second beam obtained after the first beam emitted by the three LDs passes through the first collimating element is the first preset divergence angle u 1 '.
  • the first divergence angle u 1 of the first beam emitted from the three LDs in the slow axis direction is 13°
  • the second beam spreads freely to mix and homogenize the light, which can form a relatively uniform light spot in the slow axis direction from a certain distance to infinity.
  • the emission module may also include a first aperture, see Figure 8 .
  • the first diaphragm is located between the array light source and the first collimating element. Wherein, the first diaphragm is used to filter part of the stray light in the slow axis direction.
  • the first diaphragm can allow the first light beam within the effective field of view in the slow axis direction to pass through, and can suppress the passage of background stray light outside the effective field of view in the slow axis direction, thus helping to reduce stray light.
  • the first diaphragm may be, for example, a slit diaphragm (or called an aperture diaphragm).
  • the first diaphragm can also be printed with the required light-transmitting shape on glass through silk screen printing technology.
  • the other areas are black ink, and the black ink area is not allowed to transmit light.
  • the optical shaping component includes a second collimating element.
  • the second collimation element may also be called a fast-axis collimator (FAC).
  • FAC fast-axis collimator
  • the second collimating element is used to shape the second divergence angle u 2 of the first beam emitted by the array light source in the fast axis direction into the second preset divergence angle u 2 '.
  • the above 6 can be
  • the optical shaping component is replaced with a second collimating element.
  • the second collimating element is also used to uniformly light the first beam in the fast axis direction.
  • the divergence angle of the second beam in the fast axis direction of the first beam from the array light source after passing through the second collimating element is the second preset divergence angle u 2 ', and the light spot formed by the second beam is in the fast axis direction.
  • the uniformity in the axial direction is greater than the second preset uniformity.
  • the uniformity of the light spot formed by the second beam in the fast axis direction can also be determined based on the principle of the above formula 3.
  • U represents the uniformity of the light spot formed by the second beam in the fast axis direction
  • I max represents the maximum intensity of the light spot formed by the second beam in the fast axis direction
  • I min represents the light spot formed by the second beam in the fast axis direction.
  • the second collimating element may also include at least one one-dimensional cylindrical mirror.
  • the one-dimensional cylindrical mirror please refer to the relevant introduction of the aforementioned structure, and will not be described again here. It should be noted that if the length of the array light source in the fast axis direction is relatively large, aberration correction needs to be considered when designing the structure of the second collimating element in the fast axis direction. To this end, the second collimating element may use at least two one-dimensional cylindrical mirrors to correct aberrations in the fast axis direction.
  • the focus of the second collimating element involved in this application can be the second collimating element.
  • the equivalent focal length of the plurality of one-dimensional cylindrical mirrors included in this application, the focal length of the second collimating element involved in this application may be the equivalent focal length of the plurality of one-dimensional cylindrical mirrors included in the second collimating element.
  • the length h of the array light source in the fast axis direction, the focal length f 2 of the second collimating element, and the second preset divergence angle u 2 ' satisfy the correlation shown in the following formula 2 .
  • ⁇ 2 is the allowable error range in the fast axis direction. Allowable errors include, but are not limited to, errors due to engineering errors.
  • the focal length f 2 of the second collimating element can be determined.
  • the focal length f 2 of the second collimating element determines the position of the second collimating element and the divergence angle of the second beam shaped by the second collimating element in the fast axis direction.
  • the focal length of the second collimating element is the focal length of the optical shaping component in the fast axis direction.
  • the emission module may further include a second diaphragm, and the second diaphragm is located between the array light source and the second collimating element.
  • the second aperture is used to filter part of the stray light in the fast axis direction. The second aperture can allow the first light beam within the effective field of view in the fast axis direction to pass through, and can suppress the passage of background stray light outside the effective field of view in the fast axis direction, thus helping to reduce stray light.
  • the second diaphragm may be, for example, a slit diaphragm (or called an aperture diaphragm or an effective diaphragm).
  • the second aperture can also be printed with the required light-transmitting shape on glass through silk screen printing technology, and other areas are covered with black ink, and the black ink area does not allow light transmission.
  • the array light source can be arranged at a first preset distance from the object focus of the first collimation element; for example, the first collimation
  • the object-side focus of the element is F 1
  • the object-side focus of the second collimating element is F 2
  • the difference between F 1 and F 2 is a first preset distance.
  • the array light source can be set at a second preset distance from the object-side focus of the second collimation element; for example, the first collimation element can The focus is F 1 , the object-side focus of the second collimating element is F 2 , and the difference between F 1 and F 2 is a second preset distance.
  • the determination of the second preset distance is similar to the first preset distance, and the second preset distance is a fixed value that is at least related to the duty cycle of the array light source in the fast axis direction and the second divergence angle u 2 of the first beam. value.
  • the first preset distance which will not be described again here.
  • the optical shaping component may include a first collimating element and a second collimating element. Based on the positional relationship between the first alignment element and the second alignment element, two possible situations are exemplarily shown below.
  • Case 1 The optical axis of the first collimating element is parallel to or coincident with the optical axis of the second collimating element.
  • the emission module includes an array light source and an optical shaping component.
  • the optical shaping component includes a first collimating element and a second collimating element.
  • the first collimation element is a biconvex cylindrical mirror
  • the second collimation element is a plano-convex cylindrical mirror.
  • the optical axis of the first collimating element is parallel to or coincident with the optical axis of the second collimating element.
  • the focus line of the first collimation element and the focus line of the second collimation element are perpendicular to each other.
  • the focusing line of the first collimating element is in the same direction as the divergence angle of the first beam passing through the first collimating element
  • the focusing line of the second collimating element is in the same direction as the first collimating element passing through the first beam.
  • the divergence angle of the beam is adjusted in the same direction.
  • the second collimating element is equivalent to a transparent glass plate and does not change the first divergence angle of the passing first light beam. Therefore, in the slow axis direction, the first light beam emitted from the array light source is at Before passing through the first collimating element, the first divergence angle of the first light beam remains unchanged. The first divergence angle of the first beam is adjusted to the first preset divergence angle through the first collimating element. Similarly, in the fast axis direction, the first collimating element is equivalent to a transparent glass plate and does not change the second divergence angle of the passing first light beam.
  • the first collimating element emitted from the array light source Before a light beam passes through the second collimating element, the second divergence angle of the first light beam remains unchanged, and the second divergence angle of the first light beam is adjusted to the second preset divergence angle through the second collimating element.
  • Figure 9a illustrates the propagation optical path in the slow axis direction.
  • the first light beam emitted by the array light source is shaped by the second collimating element in the fast axis direction and then propagates to the first collimating element, and then is shaped by the first collimating element in the slow axis direction to obtain the second light beam;
  • the divergence angle of the first light beam in the slow axis direction is the first divergence angle
  • the divergence angle of the second light beam in the slow axis direction is the first preset divergence angle.
  • the uniformity of the light spot formed by the second light beam in the slow axis direction is greater than The first preset uniformity; the divergence angle of the first beam in the fast axis direction is the second divergence angle, the divergence angle of the second beam in the fast axis direction is the second preset divergence angle, and the light spot formed by the second beam is in the fast axis direction.
  • the uniformity of the direction is greater than the second preset uniformity.
  • Case 2 The optical axis of the first collimating element is perpendicular to the optical axis of the second collimating element.
  • the emission module includes an array light source, an optical shaping component and a reflective element.
  • the optical shaping component includes a first collimating element and a second collimating element
  • the reflective element is located between the first collimating element and the second collimating element.
  • the optical axis of the first collimating element is perpendicular to the optical axis of the second collimating element.
  • the focus line of the first collimation element and the focus line of the second collimation element are perpendicular to each other.
  • the first collimation element and the second collimation element are the same as those in FIG. 9a and FIG. 9b.
  • Figure 10a shows the propagation optical path in the slow axis direction.
  • the first beam emitted by the array light source is shaped by the second collimating element in the fast axis direction, propagates to the reflective element, is reflected by the reflective element to the first collimating element, and then passes through the first collimating element in the slow axis direction. After shaping, the second beam is obtained.
  • the divergence angle of the first light beam in the slow axis direction is the first divergence angle
  • the divergence angle of the second light beam in the slow axis direction is the first preset divergence angle.
  • the uniformity of the light spot formed by the second light beam in the slow axis direction is greater than The first preset uniformity; the divergence angle of the first beam in the fast axis direction is the second divergence angle, the second beam is the second preset divergence angle in the fast axis direction, and the light spot formed by the second beam is uniform in the fast axis direction.
  • the degree is greater than the second preset uniformity.
  • the reflective element may be, for example, a reflective prism (also called a turning prism) or a plane reflective mirror, which is not limited in this application.
  • the direction of the propagation light path of the first light beam emitted by the array light source can be changed through the reflective element, so that the first collimating element and the second collimating element can be placed flexibly. Moreover, compared with Figure 9a and Figure 9b, it helps to reduce the optical path of the first beam in the slow axis direction, thereby helping to reduce the size of the emission module in the slow axis direction, which in turn helps the emission module of miniaturization.
  • the positions of the first alignment element and the second alignment element shown in the above-mentioned Figures 9a, 9b, 10a and 10b are only an example.
  • the order of the first alignment element and the second alignment element can also be interchanged, which is not limited in this application.
  • the array light source and the optical shaping component are coaxial.
  • the array light source and the optical shaping component are non-coaxial.
  • Figure 10a and Figure 10b take the first collimation element and the second collimation element as an example.
  • the first collimation element is non-coaxial.
  • the collimating element and the second collimating element can also be coaxial, based on which the reflective element can be located between the second collimating element and the array light source.
  • the optical shaping component includes a first collimation element and a second collimation element.
  • the optical shaping component includes a two-dimensional power shaping element.
  • the two-dimensional power shaping element means that the power in two dimensions (ie, the slow axis direction and the fast axis direction) is not 0. The power in these two dimensions can be the same or different. This application There is no limit to this.
  • the design of the optical power of the two-dimensional power shaping element in the slow axis direction please refer to the above introduction of the first collimation element.
  • optical power of the fast axis direction please refer to the above introduction of the second collimation element. , which will not be described again here. If both dimensions have optical power and are different (that is, both dimensions have different curvatures), astigmatism can occur, which can be used to correct the astigmatism of the array light source.
  • the two-dimensional optical power shaping element is used to adjust the first divergence angle of the first light beam emitted from the array light source in the slow axis direction to the first preset divergence angle, and adjust the second divergence angle in the fast axis direction. is the second preset divergence angle. Furthermore, the two-dimensional power shaping element is also used to uniformly light the first beam in the slow axis direction and the fast axis direction, so that the uniformity of the light spot formed by the second beam obtained in the slow axis direction is greater than the first preset The uniformity, and the uniformity in the fast axis direction is greater than the second preset uniformity.
  • the two-dimensional power shaping element may include a spherical lens (that is, the surface of the lens is spherical), or an aspheric lens.
  • the aspheric lens may include, for example, but is not limited to, a two-dimensional cylindrical mirror.
  • the plastic surgery component may use a spherical lens group (ie, at least two spherical lenses) or a two-dimensional cylindrical lens group (ie, at least two two-dimensional cylindrical lenses).
  • the positional relationship between the array light source and the two-dimensional optical power shaping element is related to the uniformity requirement. If there is a high demand for uniform light in the slow axis direction, the array light source can be disposed at the first preset distance from the object focus of the two-dimensional power shaping element in the slow axis direction. If there is a high demand for uniform light in the fast axis direction, the array light source can be disposed at a second preset distance from the object focus of the two-dimensional power shaping element in the fast axis direction. Regarding the first preset distance and the second preset distance, please refer to the above-mentioned relevant introduction, and will not be described again here.
  • the emission module may also include a reflective element.
  • the reflective element is located between the array light source and the two-dimensional optical power shaping element. The reflective element is used to reflect the first light beam emitted by the array light source to the two-dimensional optical power shaping element.
  • the emission module in this application may also include a refractive prism.
  • a refractive prism please refer to the introduction of Figure 13a and Figure 13b below, which will not be described again here.
  • FIG 11a it is a schematic structural diagram of another transmitting module provided by the present application.
  • Figure 11b is a schematic diagram of the three-dimensional structure of Figure 11a.
  • the emission module includes, for example, an array light source, an optical shaping component and a first aperture.
  • the optical shaping component includes a first collimating element and a second collimating element as an example
  • the array light source includes a column as an example
  • the first collimating element includes a biconvex cylindrical mirror as an example
  • the second collimating element Taking a plano-convex cylindrical mirror as an example, in this example, the array light source and the optical shaping component are coaxial.
  • the first divergence angle of the first light beam emitted by the array light source in the slow axis direction is 13°
  • the second divergence angle in the fast axis direction is 45°
  • the first collimating element shapes the first beam in the slow axis direction
  • the second collimating element shapes the first beam in the fast axis direction.
  • the first beam is shaped by the first collimating element and the second collimating element.
  • the second beam is obtained.
  • the divergence angle of the second beam in the slow axis direction is the first preset divergence angle of 25°
  • the divergence angle of the second beam in the fast axis direction is the second preset divergence angle of 0.1°.
  • the structure of the transmitting module given in the above-mentioned Figures 11a and 11b is only an example.
  • the transmitting module may also have fewer structures than the above-mentioned Figures 11a and 11b.
  • the transmitting module may not include The first aperture in Figures 11a and 11b described above.
  • the emission module may also have more structures than the above-mentioned Figures 11a and 11b.
  • the emission module may also include a second aperture, etc., which is not limited in this application.
  • the energy density distribution of the spot of the first beam emitted by the array light source in the angular space may not meet actual needs.
  • the energy density distribution of the spot of the first beam in the space can be adjusted through the optical shaping component.
  • the energy density distribution of the light spot formed by the second beam is relatively uniform in space, see Figure 12a.
  • the uniformity of the light spot formed by the second light beam in the slow axis direction is greater than the first preset uniformity
  • the uniformity in the fast axis direction is greater than the second preset uniformity.
  • FIG. 12b is a schematic diagram of the simulated relationship between the intensity of the light spot formed by the second beam in the slow axis direction and the irradiation distance of the second beam provided by the present application. It can be seen from Figure 12b that as the distance irradiated by the second beam increases, the uniformity of the light spot formed by the second beam becomes higher. See Table 1 for details. A uniformity of 91.76% can be achieved at 1m, and as the distance increases, the uniformity will gradually increase, and a uniformity of 94.55% can be achieved at 100m.
  • the emission module includes, for example, an array light source, an optical shaping component, a first diaphragm, a reflective element and a refractive prism.
  • This example array light source and optical shaping component are non-coaxial.
  • the optical shaping component includes a first collimating element and a second collimating element as an example
  • the array light source includes a column of light sources as an example
  • the first collimating element includes a biconvex cylindrical mirror as an example
  • the second collimating element The component example includes a plano-convex cylindrical mirror.
  • the array light source emits a first beam.
  • the first beam is shaped by the second collimating element in the fast axis direction and then propagates to the reflective element. It is reflected by the reflective element to the first collimating element, and then is shaped by the first collimating element in the slow axis direction. Then get the second beam.
  • the refractive prism is used to adjust the propagation light path of the second beam. Specifically, the refractive prism can deflect the upper half of the second beam downward and the lower half of the second beam upward to concentrate the energy of the second beam.
  • the middle area, the middle area is the bulge.
  • the energy density in the middle area of the light spot formed by the second light beam after adjusting the propagation optical path is greater than the energy density in the edge area. It can also be understood that through the refractive prism, the energy of the second beam can be concentrated on the area of interest, thereby improving the distance measurement capability of the area of interest.
  • the shape of the light spot formed by the second light beam after adjusting the propagation light path is "convex” or “convex”-like.
  • the density is higher than the energy density on both sides.
  • the energy density of the convex part of the light spot formed by the second beam after adjusting the propagation light path is approximately twice the energy density of both sides.
  • adjusting the height and width of the convex part of the light spot formed by the second light beam after propagating the optical path can be achieved by adjusting the parameters (such as ⁇ or refractive index) of the first collimating element and the refractive prism.
  • the more convex.
  • the structure of the transmitting module given above is only an example, and the structure of the transmitting module can also be other combinations of various functional components and structures given above, such as the structure shown in Figure 15 .
  • the detection device may include a receiving module and a transmitting module in any of the above embodiments.
  • the receiving module is used to receive the echo signal obtained by reflecting the second beam by the target in the detection area.
  • the receiving module may include a detection component, and the detection component is configured to receive an echo signal obtained by reflecting the second beam of light from a target in the detection area. Further, optionally, the detection component can photoelectrically convert the echo signal to obtain an electrical signal used to determine the relevant information of the target.
  • the target's associated information may include but is not limited to the target's distance information, the target's orientation, the target's speed, and/or the target's grayscale information, etc.
  • the detection component may be a photodetector (PD), a P-type semiconductor-intrinsic negative (PIN) photodiode (also known as a PIN junction diode), an avalanche photodiode Diode (avalanche photodiode, APD), or single-photon avalanche diode (SPAD) array, silicon photomultiplier (SiMP) array, etc.
  • PD photodetector
  • PIN P-type semiconductor-intrinsic negative
  • APD avalanche photodiode Diode
  • SPAD single-photon avalanche diode
  • SiMP silicon photomultiplier
  • FIG. 17 is a schematic structural diagram of a detection component provided by this application.
  • the detection component includes 8 ⁇ 8 pixels as an example.
  • Each pixel in the pixel array may include one or more SPADs or SiMPs, etc.
  • the pixels in the pixel array can be gated column by column. It can be understood that the pixel array shown in FIG. 17 is only an example, and the number of rows and columns included in the pixel array is not limited in this application.
  • the pixel array may also be a pixel array with multiple rows and one column, or may also be other pixel arrays with multiple rows and multiple columns, which will not be listed here.
  • the shape of the pixels in the pixel array may also be other possible shapes (such as circular, square, elliptical, etc.), which is not limited in this application.
  • the detection component can also include 8 ⁇ 1 pixels, or it can also be the pixel array shown in Figure 17 above; if the array light source has the structure shown in Figure 5 above The structure of the detection component can be the pixel array shown in Figure 17 above.
  • the receiving module may further include a receiving lens, and the receiving lens may include at least one lens.
  • the lens may be, for example, a spherical lens (for example, a concave lens, a convex lens, etc.), or it may be an aspherical lens.
  • a combination of multiple spherical lenses and/or aspherical lenses as receiving lenses can help improve the imaging quality of the detection device and reduce the aberration of the optical imaging system.
  • convex lenses include biconvex lenses, plano-convex lenses, and meniscus-convex lenses.
  • Concave lenses include biconcave lenses, plano-concave lenses, and meniscus-convex lenses. This application does not limit the types of convex lenses and concave lenses.
  • the material of the lens in the receiving lens may be optical materials such as glass, resin, or crystal.
  • the material of the lens is resin, it helps to reduce the mass of the detection device.
  • the material of the lens is glass, it helps to further improve the imaging quality of the detection device.
  • the receiving lens includes at least one lens made of glass material.
  • the detection device may further include a scanning module, and the scanning module is configured to reflect the received second light beam toward the detection area of the detection device. Specifically, by changing the scanning angle of the scanning module, the propagation direction of the second light beam directed toward the detection area is changed, thereby realizing scanning of the detection area.
  • the scanning module can rotate in a continuous operation mode or in a step operation mode, which is not limited in this application. In actual applications, the specific rotation mode can be set in advance.
  • the scanning module may be located at the beam waist of the second beam. Since the second beam after the first beam passes through the slow-axis collimation element will tend to converge and form a beam waist within a short distance, the scanning module can be placed at the beam waist of the second beam. A small reflective surface can be used. scanning module, thus helping to reduce the size of the detection device.
  • the scanning module may be one of a polyhedral (such as octahedron, hexahedron or tetrahedron, etc.) rotating mirror, micro electro-mechanical system (micro electro-mechanical system, MEMS) galvanometer or swing mirror. It should be noted that this application does not limit the type of scanning module, and any structure that can reflect the second beam to the detection area is acceptable.
  • a polyhedral such as octahedron, hexahedron or tetrahedron, etc.
  • MEMS micro electro-mechanical system
  • the detection device in this application may also include other possible modules, such as a control module.
  • the control module is used to determine the relevant information of the target based on the electrical signal from the detection component.
  • the driving path can be planned based on the determined target related information, such as avoiding obstacles on the path to be traveled, realizing automatic driving of the vehicle, etc.
  • control module may include one or more processors, and the processor may be a circuit with signal (or data) processing capabilities.
  • the processor can be a circuit with the ability to read and execute instructions, such as a central processing unit (CPU), a microprocessor, a graphics processing unit (GPU) (which can be understood as A microprocessor), or a digital signal processor (DSP), etc.; in another implementation, the processor can implement certain functions through the logical relationship of the hardware circuit, and the logical relationship of the hardware circuit is fixed Or can be reconstructed, for example, the processor is a hardware circuit implemented by an application-specific integrated circuit (ASIC) or a programmable logic device (PLD), such as a field programmable gate array (field programmable gate array) , FPGA).
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as a neural network processing unit (neural network processing unit, NPU), a tensor processing unit (TPU), a deep learning processing unit (deep learning processing unit, DPU), etc.
  • ASIC hardware circuit designed for artificial intelligence
  • NPU neural network processing unit
  • TPU tensor processing unit
  • DPU deep learning processing unit
  • it can also be an application processor (application processor, AP), image signal processor (image signal processor, ISP), or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the terminal device may include the detection device in any of the above embodiments.
  • the terminal device may be a vehicle (such as an unmanned vehicle, a smart vehicle, an electric vehicle, or a digital vehicle, etc.), a robot, a mapping device, a drone, or a smart home device (such as a television, a sweeping robot, or a smart desk lamp).
  • audio system intelligent lighting system, electrical control system, home background music, home theater system, intercom system, or video surveillance, etc.
  • intelligent manufacturing equipment such as industrial equipment
  • intelligent transportation equipment such as AGV, unmanned transport vehicle
  • smart terminals mobile phones, computers, tablets, PDAs, desktops, headsets, speakers, wearable devices, vehicle-mounted devices, virtual reality devices, augmented reality devices, etc.
  • FIG. 18 taking the terminal device as a vehicle as an example, this is an exemplary functional block diagram of a vehicle provided by this application.
  • Components coupled to or included in vehicle 100 may include sensor system 1001 and computer system 1002 .
  • the vehicle functional framework shown in FIG. 18 is only an example.
  • the vehicle 100 may include more, fewer, or different systems, and each system may include more, fewer, or different systems. components.
  • the systems and components shown can be combined or divided in any way, which is not specifically limited in this application.
  • the vehicle may also include a power supply 1003, a control system 1004, a user interface 1005, peripheral devices 1006, and the like.
  • the components of the vehicle 100 may be configured to operate in an interconnected manner with each other and/or with other components coupled to various systems.
  • power supply 1003 may provide power to all components of vehicle 100 .
  • Computer system 1002 may be configured to receive data from and control sensor system 1001, control system 1004, and peripheral devices 1006.
  • Sensor system 1001 may include several sensors for sensing information about the environment in which vehicle 100 is located, and the like.
  • the sensors of the sensor system 1001 may include, but are not limited to, a Global Positioning System (GPS), an Inertial Measurement Unit (IMU), a millimeter wave radar, a lidar, a camera, and a position sensor for modifying the sensor. and/or oriented brakes.
  • Millimeter wave radar can utilize radio signals to sense targets within the surrounding environment of the vehicle 100 .
  • millimeter wave radar may be used to sense the speed and/or heading of the target.
  • LiDAR can utilize laser light to sense targets in the environment in which vehicle 100 is located.
  • the lidar can be the detection device in any of the above embodiments.
  • the camera may be used to capture multiple images of the surrounding environment of vehicle 100 .
  • the camera can be a still camera or a video camera.
  • GPS may be any sensor used to estimate the geographic location of vehicle 100 .
  • the GPS may include a transceiver that estimates the position of the vehicle 100 relative to the earth based on satellite positioning data.
  • computer system 1002 may use GPS in conjunction with map data to estimate the road on which vehicle 100 is traveling.
  • the IMU may be used to sense changes in position and orientation of the vehicle 100 based on inertial acceleration and any combination thereof.
  • the combination of sensors in the IMU may include, for example, an accelerometer and a gyroscope. Additionally, other combinations of sensors in the IMU are possible.
  • the sensor system 1001 may also include sensors that monitor internal systems of the vehicle 100 (eg, in-vehicle air quality monitors, fuel gauges, oil temperature gauges, etc.). Sensor data from one or more of these sensors can be used to detect objects and their corresponding properties (position, shape, orientation, speed, etc.). This detection and identification is a critical function for safe operation of vehicle 100 . Sensor system 1001 may also include other sensors. This application does not specifically limit this.
  • the computer system 1002 may include at least one processor 10021. Further, the computer system 1002 may further include an interface circuit 10022. Processor 10021 executes instructions stored in a non-transitory computer-readable medium such as memory 10023. Computer system 1002 may also be a plurality of computing devices that control individual components or subsystems of vehicle 100 in a distributed manner.
  • the processor 10021 may be a circuit with signal (or data) processing capabilities.
  • signal or data
  • FIG. 18 functionally illustrates the processor, memory, and other elements of computer system 1002 in the same block, one of ordinary skill in the art will understand that the processor and memory may not actually be stored in the same physical enclosure. multiple processors or memories within.
  • the memory may be a hard drive or other storage medium located in a housing different from computer system 1002.
  • the processor can also be remote from the vehicle but can communicate wirelessly with the vehicle.
  • memory 10023 may contain instructions (eg, program logic) that may be read by processor 10021 to perform various functions of vehicle 100 , including the functions described above. Memory 10023 may also contain additional instructions, including instructions to send data to, receive data from, interact with, and/or control one or more of propulsion system 110, sensor system 1001, control system 1004, and peripherals 1006. instruction. In addition to instructions, the memory 10023 may also store data such as road maps, route information, data detected by sensors, vehicle position, direction, speed and other such vehicle data, as well as other information. This information may be used by vehicle 100 and computer system 1002 when vehicle 100 is in autonomous, semi-autonomous and/or manual modes.
  • instructions eg, program logic
  • Memory 10023 may also contain additional instructions, including instructions to send data to, receive data from, interact with, and/or control one or more of propulsion system 110, sensor system 1001, control system 1004, and peripherals 1006. instruction.
  • the memory 10023 may also store data such as road maps, route information, data detected by sensors, vehicle position, direction, speed and
  • the memory can be, for example, random access memory (RAM), flash memory, read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically erasable EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or any other form of storage media well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the ASIC can be located in the detection device.
  • the processor and the storage medium may also exist as discrete components in the detection device.
  • Computer system 1002 may control functions of vehicle 100 based on input received from various subsystems (eg, sensor system 1001 and control system 1004 , etc.) and from user interface 1005 .
  • computer system 1002 may utilize input from control system 1004 in order to control the steering unit to avoid obstacles detected by sensor system 1001 and obstacle avoidance system.
  • computer system 1002 is operable to provide control of many aspects of vehicle 100 and its subsystems.
  • one or more of these components described above may be installed separately or associated with vehicle 100 .
  • memory 10023 may exist partially or completely separate from vehicle 100.
  • the components described above may be communicatively coupled together in wired and/or wireless manners.
  • the vehicle 100 may be a car, a truck, a motorcycle, a bus, a boat, an airplane, a helicopter, a lawnmower, an entertainment vehicle, an amusement park vehicle, construction equipment, a tram, a golf cart, a train, and Trolleys, etc. This application does not limit this.
  • a, b or c can mean: a, b, c, "a and b", “a and c", “b and c”, or “a and b and c” ”, where a, b, c can be single or multiple.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • the character “/” indicates that the related objects are in a “division” relationship.
  • the word “exemplary” is used to mean an example, illustration, or illustration. Any embodiment or design described herein as “example” is not intended to be construed as preferred or advantageous over other embodiments or designs. Alternatively, it can be understood that the use of the word “example” is intended to present concepts in a specific manner and does not constitute a limitation on this application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种发射模组、探测装置及终端设备。发射模组包括阵列光源和光学整形组件,光学整形组件包括球面透镜和/或非球面透镜。阵列光源用于发射第一光束。光学整形组件用于至少在第一方向上,将阵列光源发射的第一光束的第一发散角调整为第一预设发散角,并对第一光束匀光,得到第二光束。对阵列光源发射的第一光束有较好的调整发散角和匀光效果。用于解决现有技术中需要通过复杂制备工艺的微纳光学元件整形的问题。可应用于自动驾驶、智能驾驶、辅助驾驶、网联车或测绘等领域。

Description

一种发射模组、探测装置及终端设备 技术领域
本申请涉及光学整形技术领域,尤其涉及一种发射模组、探测装置及终端设备。
背景技术
随着科学技术的发展,智能运输设备、智能家居设备、机器人、车辆等智能终端正在逐步进入人们的日常生活。由于激光雷达可以感知周围的环境,进而可基于感知到的环境信息进行移动目标的辨识与追踪,以及静止目标如车道线、标示牌的识别,并可结合导航仪及地图数据等进行路径规划等。因此,激光雷达在智能终端上发挥着越来越重要的作用。
基于激光雷达不同的应用需求,对激光雷达中的光源发射的光束有不同的整形需求,从而可使得激光雷达形成特定能量密度分布的出射光束,这个过程也可称为光束整形过程。目前,通常采用微纳光学元件(如微透镜阵列(microlens array,MLA)或衍射光学器件(diffractive optical elements,DOE)等)对光束进行整形,但这些微纳光学元件的加工精度高、工艺复杂且光路设计复杂。
综上,如何通过制备工艺简单的整形结构对光束进行整形,是当前亟需解决的技术问题。
发明内容
本申请提供一种发射模组、探测装置及终端设备,用于通过制备工艺简单的光学整形组件实现光束整形。
第一方面,本申请提供一种发射模组。该发射模组包括阵列光源和光学整形组件,光学整形组件包括球面透镜和/或非球面透镜。其中,阵列光源用于发射第一光束,第一光束的发散角为第一发散角。光学整形组件用于至少在第一方向上,将来自阵列光源的第一光束的第一发散角调整为第一预设发散角,并对第一光束匀光,得到第二光束,第二光束的发散角为第一预设发散角。
基于上述方案,通过光学整形组件可以实现对阵列光源发射的第一光束在第一方向的整形(包括调整发散角和匀光),从而可获得第一预设发散角的第二光束,而且第二光束形成的光斑的能量密度较均匀。进一步,光学整形组件包括的常规的球面透镜和/或非球面透镜的制备工艺简单。即基于上述发射模组,可以通过较简单工艺制备的球面透镜和/或非球面透镜,实现对阵列光源发射的第一光束的较好的整形效果。
在一种可能的实现方式中,阵列光源包括m×n个光源,m为大于1的整数,n为正整数。
在一种可能的实现方式中,光学整形组件包括第一准直元件。第一准直元件用于在第一方向上,将来自阵列光源的第一光束的第一发散角调整为第一预设发散角,并对第一光束匀光。
通过第一准直元件,可以在第一方向上调节阵列光源发射的第一光束的发散角和均匀度。也可以理解为,通过第一准直元件可以在第一方向上对阵列光源发射的第一光束进行一次发散角的缩放,获得第二光束,第二光束自由传播进行混叠匀光。
在一种可能的实现方式中,阵列光源位于距离第一准直元件的物方焦点的第一预设距离处,第一预设距离与阵列光源在第一方向的占空比(或称为填充率)和第一光束的第一发散角相关。其中,阵列光源在慢轴方向的占空比为阵列光源在慢轴方向的总有效发光长度/在慢轴方向的总物理长度。
通过将阵列光源设置于距离第一准直元件的物方焦点的第一预设距离处,有助于进一步提高第二光束在第一方向上的均匀度。
在一种可能的实现方式中,第一准直元件的焦距f 1、阵列光源在第一方向的长度d和第一预设发散角u 1’存在关联关系。进一步,关联关系满足下述公式1。
u 1’/2=arctan(d/2f 1)±δ 1    公式1
其中,δ 1为第一方向允许的误差范围。
通过上述公式1,可以确定出第一准直元件的焦距f 1
在一种可能的实现方式中,第一准直元件包括至少一个非球面镜,所述非球面镜包括一维柱面镜(或称为柱透镜)。
通过一维柱面镜可以得到椭圆形的光束焦点,可以用来补偿光束或者发射模组的像散。而且,一维柱面镜可以只在第一方向上使光聚焦或者散焦,不会影响第二方向上的波前曲率。进一步,若第一准直元件采用至少两个一维柱面镜,可以实现对第一方向的像差的矫正。
在一种可能的实现方式中,发射模组还包括第一光阑,第一光阑位于第一准直元件与阵列光源之间。
通过第一光阑可以允许第一方向上的有效视场内的第一光束通过,且可抑制第一方向上的有效视场外的背景杂散光通过,从而有助于减小杂散光的影响。
在一种可能的实现方式中,光学整形组件还用于在第二方向,将来自阵列光源的第一光束的第二发散角调整为第二预设发散角。进一步,可选的,光学整形组件还用于在第二方向,对来自阵列光源的第一光束进行匀光。
通过光学整形组件在第二方向上对第一光束整形,可以使得第二光束在第二方向的发散角为第二预设发散角。进一步,还可以使得第二光束形成的光斑在第二方向上的能量密度也较均匀。
在一种可能的实现方式中,光学整形组件还包括第二准直元件。
通过第二准直元件,可以在第二方向上调节阵列光源发射的第一光束的发散角以及均匀度。也可以理解为,通过第二准直元件可以在第二方向上对阵列光源发射的第一光束进行一次发散角的缩放,获得第二光束之后,第二光束自由传播进行混叠匀光。
在一种可能的实现方式中,第二准直元件的焦距f 2、阵列光源在第二方向的长度h和第二预设发散角u 2’存在关联关系。进一步,关联关系满足下述公式2。
u 2’/2=arctan(d/2f 2)±δ 2   公式2。
其中,δ 2为允许的误差范围。
通过上述公式2,可以确定出第二准直元件的焦距f 2
在一种可能的实现方式中,第二准直元件包括至少一个非球面镜,非球面镜包括一维柱面镜。
通过一维柱面镜可以得到椭圆形的光束焦点,可以用来补偿光束或者发射模组的像散。而且,一维柱面镜可以只在第二方向上使光聚焦或者散焦,不会影响第一方向上的波前曲 率。进一步,若第二准直元件采用至少两个一维柱面镜,可以实现对第二方向的像差的矫正。
在一种可能的实现方式中,发射模组还包括第二光阑,第二光阑位于第二准直元件与阵列光源之间。
通过第二光阑可以允许第二方向上的有效视场内的第一光束通过,且可抑制第二方向上的有效视场外的背景杂散光通过,进而有助于减小杂散光的影响。
在一种可能的实现方式中,第一准直元件与第二准直元件的聚焦线垂直。
通过第一准直元件的聚焦线与第二准直元件的聚焦线垂直,可以使得第一方向和第二方向的光束互不影响。
在一种可能的实现方式中,第一准直元件与第二准直元件的光轴平行或重合。
在一种可能的实现方式中,发射模组还包括反射元件,反射元件位于第一准直元件与第二准直元件之间。
通过反射元件可以改变阵列光源发射的第一光束的传播光路的方向,有助于减小第一光束在慢轴方向的光程,从而有助于减小发射模组在第一方向的尺寸,进而有助于发射模组的小型化。
示例性的,反射元件包括反射棱镜或平面反射镜。
在一种可能的实现方式中,光学整形组件包括二维光焦度整形元件。二维光焦度整形元件用于在第一方向将来自阵列光源的第一光束的第一发散角调整为第一预设发散角,对第一光束匀光,并在第二方向将来自阵列光源的第一光束的第二发散角调整为第二预设发散角,得到第二光束。
通过二维光焦度整形元件,可以同时调整阵列光源发射的第一光束在第一方向和第二方向的发散角和均匀度。
示例性地,二维光焦度整形元件包括至少一个球面透镜或至少一个二维光焦度的柱面镜。
在一种可能的实现方式中,发射模组还包括折射棱镜。折射棱镜用于调整第二光束的传播光路,调整传播光路后的第二光束形成的光斑的中间区域的能量密度大于边缘区域的能量密度。
通过折射棱镜,可以将第二光束的上半部分的光向下偏移,下半部分的光向上偏移,出现重叠部分,从而可使得传播光路调整后的第二光束形成的光斑的中间区域的能量密度大于边缘区域的能量密度,进而有助于提高中间区域的第二光束的测距能力。
在一种可能的实现方式中,调整传播光路后的第二光束形成的光斑的形状为“凸”型或类“凸”型。
其中,“凸”型或类“凸”型的光斑中凸起部分的能量密度高于两侧的能量密度。
在一种可能的实现方式中,第一准直元件的第一光轴与第二准直元件的第二光轴垂直。
在一种可能的实现方式中,第一方向与第二方向垂直。
在一种可能的实现方式中,第一方向为光学整形组件的慢轴方向;和/或,第二方向为光学整形组件的快轴方向。
第二方面,本申请提供一种探测装置,该探测装置包括接收模组及上述第一方面或第一方面中的任意一种发射模组;其中,接收模组用于接收回波信号,回波信号为第二光束经探测区域中的目标反射后得到的信号。
上述第二方面可以达到的技术效果可以参照上述第一方面中有益效果的描述,此处不再重复赘述。
在一种可能的实现方式中,探测装置还包括扫描模组,扫描模组位于第二光束的束腰处。扫描模组用于将来自光学整形组件的第二光束反射至探测区域。
通过上述发射模组可以压缩光束整形组件出光口附近的光束尺寸,将扫描模组放置在束腰处,可以采用反射面较小的扫描模组,从而有助于减小扫描模组的尺寸,进而可降低探测装置整机的尺寸。
第三方面,本申请提供一种终端设备,该终端设备包括控制装置及上述第二方面或第二方面中的任意一种探测装置。
上述第三方面可以达到的技术效果可以参照上述第二方面中有益效果的描述,此处不再重复赘述。
附图说明
图1a为本申请提供的一种经透镜的传播的光束光路示意图;
图1b为本申请提供的一种经透镜的传播的光束光路示意图;
图1c为本申请提供的一种光束的束腰的示意图;
图2为本申请可能的一种应用场景示意图;
图3为本申请提供的一种发射模组的结构示意图;
图4为本申请提供的一种一维阵列光源的结构示意图;
图5为本申请提供的一种二维阵列光源的结构示意图;
图6为本申请提供的一种光学整形组件在慢轴方向对第一光束的整形的光路;
图7为本申请提供的一种阵列光源与第一准直元件的位置关系示意图;
图8为本申请提供的另一种发射模组的结构示意图;
图9a为本申请提供的另一种发射模组的结构示意图;
图9b为本申请提供的一种发射模组的三维结构示意图;
图10a为本申请提供的又一种发射模组的结构示意图;
图10b为本申请提供的又一种发射模组的三维结构示意图;
图11a为本申请提供的又一种发射模组的结构示意图;
图11b为本申请提供的又一种发射模组的三维结构示意图;
图12a为本申请提供的一种第二光束形成的光斑在慢轴方向均匀度的示意图;
图12b为本申请提供的一种第二光束形成的光斑在慢轴方向的均匀度与第二光束照射距离的模拟关系示意图;
图13a为本申请提供的又一种发射模组的结构示意图;
图13b为本申请提供的又一种发射模组的三维结构示意图;
图14a为本申请提供的一种第二光束形成凸形光斑的示意图;
图14b为本申请提供的一种远场光斑的慢轴方向强度分布曲线的示意图;
图15为本申请提供的又一种发射模组的结构示意图;
图16为本申请提供的一种探测装置的结构示意图;
图17为本申请提供的一种探测组件的结构示意图;
图18为本申请提供的一种车辆的示例性功能框图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
以下,对本申请中的部分用语进行解释说明。需要说明的是,这些解释是为了便于本领域技术人员理解,并不是对本申请所要求的保护范围构成限定。
一、透镜
透镜是一种透明光学器件,会影响经过的光束的波前曲率。光束从一侧进入,从另一侧出来。透镜的作用是改变光束的波前曲率,即将光束聚焦或者散焦。例如:一束波前约为平面的准直光束转化成波前是弯曲的,光束聚焦到焦点,此类透镜是作为聚焦透镜,请参阅图1a。与上面相同的透镜也可以将发散光束转化成准直光束,这时透镜即是作为准直透镜,请参阅图1a,此时光束是从右侧入射的即可。具有凹面的透镜可以使准直或者会聚光束变成发散光束,请参阅图1b,此类透镜也可以用于将发散的光束变成准直光束,请参阅图1b,此时光束是从右侧入射的即可。
二、光焦度
光焦度等于像方光束会聚度与物方光束会聚度之差,可以表征光学元件偏折光束的能力。光焦度常用字母φ表示。一般光焦度表示为透镜的像方焦距的倒数(近似认为空气的折射率为1)。光焦度的单位为屈光度(D),1屈光度(D)=1m -1
由于光学元件的厚度不同、折射率等不均匀性、前后表面的曲率(透镜的凸面的曲率半径为正数,凹面的曲率半径是负数)不同等,这些特性会造成光学元件实际的光焦度与理论光焦度有差异,因此,也可将实际光焦度称为等效光焦度,在下文中没有特别说明的地方,光焦度均指光学元件的实际光焦度。
三、光束发散角
光束发散角(u)是用来衡量光束从束腰向外发散的速度,请参阅图1c。光束的束腰指的是光束传播方向上光束半径(用于衡量光束的横向扩展)最小的地方。其中,光束半径最小的这个地方的光束半径成为束腰半径。对于高斯光束,光束半径通常定义为峰值强度的1/e 2处对应的半径。
四、匀光(uniform light)
匀光是指将光束的能量进行均匀化处理。
五、光斑
光斑通常是指光束在角空间上形成的能量密度(或称为强度)分布。光斑的能量密度分布可呈两头低、中间高的形态(或称为“凸”字型或类“凸”字型),例如,能量密度分布可呈正态分布(Normal distribution)或类似正态分布(Normal distribution)的形态。再比如,光斑的能量密度也可以是均匀分布的。
六、感兴趣区域(region of interest)
感兴趣区域指机器视觉、图像处理中,从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域。
前文介绍了本申请所涉及到的一些用语,下面介绍本申请可能的应用场景。
在一种可能的实现方式中,发射模组可集成于探测装置,探测装置可安装于车辆上。请参阅图2,示例性地的示出了本申请可能的一种应用场景示意图。该应用场景中以探测装置安装在车辆的前面为例。可以理解的是,探测装置也可以安装于车辆的其它位置,如 前、后、左、右四个方向中任一方向或任多个方向,以实现对车辆周围环境信息的捕获。
在该应用场景中,探测装置的工作原理为:探测装置向探测区域发射光束,若在探测区域内存在目标,目标可将接收到的光束反射回探测装置(被反射回的光束可以称为回波信号),探测装置再根据回波信号确定目标的关联信息。具体的,探测装置可以实时或周期性地获取车辆的经纬度、速度、朝向、或一定范围内的目标(例如周围其它车辆、行人、或障碍物等)的关联信息(例如目标的距离、目标的速度、和/或目标的姿态等)。进一步,可选的,探测装置可向车辆中的控制装置等发送获取到的这些信息,以使控制装置根据获取到的这些信息进行车辆的路径规划等。例如,可利用经纬度确定车辆的位置,或利用速度和朝向确定车辆在未来一段时间的行驶方向和目的地,或利用周围物体的距离确定车辆周围的障碍物数量、密度等。进一步,可选地,可结合高级驾驶辅助系统(advanced driving assistant system,ADAS)的功能,可以实现车辆的辅助驾驶或自动驾驶等。
应理解,如上应用场景只是举例,本申请所提供的探测装置(该探测装置包括本申请所提供的发射模组)还可以应用在其它可能场景,而不限于上述示例出的场景。例如,探测装置也可以安装在车辆上,作为车灯。再比如,探测装置还可以安装在无人机上,作为机载探测装置。再比如,探测装置也可以安装在路侧单元(road side unit,RSU),作为路边交通探测装置,请参阅上述图2,可以可实现智能车路协同通信等。再比如,探测装置也可以安装在自动导引运输车(automated guided vehicle,AGV)上,AGV指装备有电磁或光学等自动导航装置,能够沿规定的导航路径行驶,具有安全保护以及各种移载功能的运输车。再比如,探测装置也可以安装在舞台上作为舞台照明灯。再比如,探测装置也可以安装在光刻机上。再比如,探测装置也可以安装在医疗器械上。此处不再一一列举。需要说明的是,本申请所描述的应用场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定。在这些可能的应用场景中,可能需要均匀的光斑,或者也可能需要“凸”型光斑或类“凸”型光斑。
上述应用场景例如可应用于无人驾驶、自动驾驶、辅助驾驶、智能驾驶、网联车、安防监控、生物医疗、光刻或测绘(如三维绘图)等领域。
如背景技术描述,现有技术中对光束整形通常采用的是MLA或DOE等微纳光学元件,但这些微纳光学元件的加工工艺复杂且需要复杂的设计光路。
鉴于上述问题,本申请提出一种发射模组。该发射模组可以通过常规的透镜实现对光束的整形,从而有助于降低发射模组制备工艺的复杂度以及降低光路设计的复杂度。
基于上述内容,下面结合附图对本申请提出的发射模组进行具体阐述。
如图3所示,为本申请提供的一种发射模组的结构示意图。该发射模组可包括阵列光源和光学整形组件。阵列光源用于发射第一光束,第一光束的发散角为第一发散角。第一发散角为阵列光源在第一方向的固有发散角。光学整形组件包括球面透镜和/或非球面透镜,用于在第一方向上将阵列光源发射的第一光束的第一发散角调整为第一预设发散角,并对第一光束匀光,得到第二光束。其中,第二光束的发散角为第一预设发散角,第二光束形成的光斑在第一方向上的能量密度(或称为强度)是均匀的。
基于上述发射模组,通过光学整形组件可以实现对阵列光源发射的第一光束在第一方向的整形(包括调整发散角和匀光),从而可获得第一预设发散角的第二光束,而且第二光束形成的光斑的能量密度较均匀。进一步,光学整形组件包括的球面透镜和/或非球面透 镜的制备工艺简单。即基于上述发射模组,可以通过较简单工艺制备的球面透镜和/或非球面透镜,实现对阵列光源发射的第一光束的较好的整形效果。
在一种可能的实现方式中,光学整形组件还用于在第二方向,将来自阵列光源的第一光束的第二发散角调整为第二预设发散角。进一步,光学整形组件还用于在第二方向,对来自阵列光源的第一光束进行匀光,得到第二光束。其中,第一光束在第二方向的发散角为第二发散角,第二光束在第二方向的发散角为第二预设发散角。
其中,第一方向与第二方向垂直。示例性的,第一方向为光学整形组件的慢轴方向;和/或,第二方向为光学整形组件的快轴方向。
在下文的介绍中,以第一方向为光学整形组件的慢轴方向为例,第二方向为光学整形组件的快轴方向为例介绍。换言之,下文中的慢轴方向可以用第一方向替换,快轴方向可以用第二方向替换。
下面对图3所示的各个功能组件和结构分别进行介绍说明,以给出示例性的具体实现方案。
一、阵列光源
在一种可能的实现方式中,阵列光源包括m×n个光源,m为大于1的整数,n为正整数。具体的,阵列光源可以是一维阵列光源(或称为线列型),请参阅图4。该示例中以阵列光源包括8个光源为例。这8个光源沿慢轴方向(即图4所示的竖直方向)呈条状排列,相邻两个光源之间的间距为Δ 1。例如,相邻两个光源之间的间距Δ 1=400(微米)um。进一步,可选的,阵列光源中每个光源的发光区域(或称为发光面)的大小可表示为p×k,请参阅图4。其中,p表示光源的发光区域的慢轴方向的长度,k表示光源发光区域的快轴方向的长度。示例性地,光源的发光区域的大小为220um×10um。基于此,阵列光源在慢轴方向的占空比(或称为填充率)为阵列光源在慢轴方向的总有效发光长度/在慢轴方向的总物理长度,即可表示为(8×p)/d,d表示阵列光源在慢轴方向的总物理长度,具体的,d=(m-1)×(Δ 1+p)+p。阵列光源发射的第一光束在慢轴方向的第一发散角为u 1
或者,阵列光源也可以是二维阵列(或称为面阵型),请参阅图5,图5以阵列光源包括8×8个光源为例,在慢轴方向,相邻两个光源之间的间距为Δ 2。其中,Δ 1可以与Δ 2相同,也可以不同,本申请对此不作限定。进一步,阵列光源中每个光源的发光区域可参见上述图4的介绍,此处不再赘述。基于图5,阵列光源在慢轴方向的占空比可表示为(8×p)/d,d=(m-1)×(Δ 2+p)+p。
其中,阵列光源可实现独立寻址。独立寻址是指可独立选通(或称为点亮或开启或通电)阵列光源中的光源,选通的光源可用于发射第一光束。具体的,可向需要选通的光源输入驱动电流,以实现选通光源。
在一种可能的实现方式中,阵列光源的寻址方式可以包括但不限于逐列选通光源、或逐行选通光源、或按感兴趣的区域选通光源等。可以理解的是,阵列光源的寻址方式还与光源的物理连接关系相关。结合上述图5,例如,阵列光源中的同一列内的光源串联,不同列之间并联,则可以逐列选通阵列光源中的光源。再比如,阵列光源同一行内的光源串联,不同行之间并联,则可以逐行选通阵列光源中的光源。再比如,若阵列光源中各斜对角线上的光源串联,不同斜对角线上光源并联,则可以按斜对角线选通阵列光源中的光源。
示例性地,阵列光源中的光源例如可以是垂直腔面发射激光器(vertical cavity surface  emitting laser,VCSEL)、边缘发射激光器(edge emitting laser,EEL)、全固态半导体激光器(diode pumped solid state laser,DPSS)、光纤激光器或激光二极管(laser diode,LD)等。
二、光学整形组件
在一种可能的实现方式中,光学整形组件可以实现至少如下两种功能,其一为调整来自阵列光源的第一光束的发散角,其二为对第一光束进行匀光。具体的,光学整形组件于在慢轴方向上将阵列光源发射的第一光束的第一发散角调整为第一预设发散角,并进一步对第一光束在慢轴方向进行匀光;和/或,在快轴方向上将阵列光源发射的第一光束的第二发散角调整为第二预设发散角,并进一步对第一光束在快轴方向进行匀光。
下面对光学整形组件在快轴方向和慢轴方向对第一光束进行整形的过程进行介绍。
情形一,光学整形组件在慢轴方向对第一光束进行整形。
在一种可能的实现方式中,光学整形组件用于在慢轴方向,将阵列光源发射的第一光束的第一发散角u 1整形为第一预设发散角(或称为第一投射发散角)u 1’,进一步,对第一光束进行匀光,请参阅图6。也可以理解为,来自阵列光源的第一光束经光学整形组件的整形后获得第二光束,第二光束在慢轴方向的发散角为第一预设发散角u 1’,第二光束形成的光斑在慢轴方向的均匀度(可通过下述公式3确定)大于第一预设均匀度。其中,第一光束的第一发散角u 1为第一光束在慢轴方向的固有发散角。第一预设发散角u 1’以及第一预设均匀度可以是根据实际需求预先获取的。
U=1–(I max-I min)/(I max+I min)    公式3
其中,U表示第二光束形成的光斑在慢轴方向匀光度,I max表示第二光束形成的光斑在慢轴方向的最大强度,I min表示第二光束形成的光斑在慢轴方向的最小强度。
可以理解的是,第一发散角可以大于第一预设发散角,第一发散角也可以小于第一预设发散角,本申请对此不作限定。
情形二,光学整形组件在快轴方向对第一光束进行整形。
在一种可能的实现方式中,光学整形组件用于在快轴方向上,将来自阵列光源的第一光束的第二发散角u 2整形为第二预设发散角(或称为第二投射发散角)u 2’。进一步,对第一光束进行匀光。换言之,阵列光源发射的第一光束经光学整形组件的整形后获得第二光束,第二光束在快轴方向的发散角为第二发散角u 2’,第二光束形成的光斑在快轴方向的均匀度大于第二预设均匀度。其中,第一光束的第一发散角u 2为第一光束在快轴方向的固有发散角。其中,第二预设发散角u 2’以及第二预设均匀度可以是基于实际需求预先获取的。
可以理解的是,第二发散角可以大于第二预设发散角,第二发散角也可以小于第二预设发散角,本申请对此不作限定。此外,本申请对第一预设发散角与第二预设发散角的大小关系不作限定,对第一预设均匀度与第二预设均匀度的大小关系也不作限定。
需要说明的是,光学整形组件可以仅对慢轴方向进行整形(例如可以包括调整在慢轴方向的发散角和/或匀光度),基于此,光学整形组件可以包括下述结构一;或者也可以只对快轴方向进行整形,基于此,光学整形组件可以包括下述结构二;或者也可以同时对快轴方向和慢轴方向进行整形,基于此,光学整形组件可以包括下述结构一和结构二,或者也可以包括至少一个二维光焦度整形元件,下面进行详细介绍。
结构一,光学整形组件包括第一准直元件。
其中,第一准直元件也可以称为慢轴准直元件(slow-axis collimators,SAC)。第一准 直元件用于将来自阵列光源的第一光束在慢轴方向的第一发散角u 1整形为第一预设发散角u 1’,请参阅图6,具体可将上述6中的光学整形组件用第一准直元件替换。进一步,第一准直元件还用于在慢轴方向对第一光束进行匀光。换言之,来自阵列光源的第一光束经第一准直元件的整形后获得的第二光束在慢轴方向的发散角为第一预设发散角u 1’,第二光束形成的光斑在慢轴方向的均匀度大于第一预设均匀度。
示例性地,第一准直元件可以包括至少一个非球面透镜,例如一维柱面镜。一维柱面镜是指柱面镜在一个方向的光焦度不为0,其它方向的光焦度均为0。也可以理解为,一维柱面镜曲率仅在一个方向上存在,另外一个方向无曲率。其中,一维柱面镜可以包括但不限于平凸柱面镜(或称为平凸柱透镜)、平凹柱面镜(或称为平凹柱透镜)、双凸柱面镜(双凸柱透镜)和双凹柱面镜(双凹柱透镜)等。通过一维柱面镜可以得到椭圆形的光束焦点,可以用来补偿光束或者发射模组的像散。而且,一维柱面镜可以只在第一方向上使光聚焦或者散焦,不会影响第二方向上的波前曲率。需要说明的是,若阵列光源在慢轴方向的长度d较大,设计光学整形组件在慢轴方向的结构时需要考虑像差的矫正。为此,第一准直元件可以采用至少两个一维柱面镜,以实现对慢轴方向的像差的矫正。若第一准直元件包括至少两个一维柱面镜,每个一维柱面镜有对应的焦点和焦距,本申请中涉及到的第一准直元件的焦点可以是第一准直元件包括的这多个一维柱面镜的等效焦点,本申请中涉及到的第一准直元件的焦距可以是第一准直元件包括的这多个一维柱面镜的等效焦距。
在一种可能的实现方式中,阵列光源在慢轴方向的长度d、第一准直元件的焦距f 1及第一预设发散角u 1’之间满足下述公式1给出的关联关系。
u 1’/2=arctan(d/2f 1)±δ 1   公式1
其中,δ 1为慢轴方向允许的误差范围。例如,允许的误差包括但不限于因工程误差导致的误差。
基于上述公式1,可以确定出第一准直元件的焦距f 1。第一准直元件的焦距f 1决定第一准直元件的位置以及经第一准直元件整形后的第二光束在慢轴方向的发散角的大小。通常,第一准直元件的焦距越大,第二光束在慢轴方向的发散角越小。其中,第一准直元件的焦距即为光学整形组件在慢轴方向的焦距。换言之,可通过设计第一准直元件的焦距f 1,对阵列光源的像进行放大或缩小,从而在慢轴方向形成不同的发散角。
在一种可能的实现方式中,阵列光源可以位于第一准直元件的物方焦点上。但为了获得较好的匀光效果,阵列光源也可以不放在第一准直元件的物方焦点上,可在第一准直元件的物方焦点的前后进行微调,微调的幅度(即第一预设距离)与阵列光源在慢轴方向的占空比和第一光束的第一发散角u 1相关。换言之,阵列光源位于第一准直元件的物方焦点的第一预设距离处,第一预设距离与阵列光源在慢轴方向的占空比及第一光束的第一发散角u 1相关。也可以理解为,阵列光源的位置与第一准直元件的物方焦点之间的距离为第一预设距离,具体的,第一预设距离是一个至少与阵列光源在慢轴方向的占空比及第一光束的第一发散角u 1相关的固定值。换言之,第一预设距离的大小至少与阵列光源在慢轴方向的占空比及第一光束的第一发散角u 1相关,具体的关系可通过模型仿真调整。可以理解的是,阵列光源的位置可能还与发射模组允许的光路总长度和/或从阵列光源出射后的第一光束的空间角分布等相关。
在对阵列光源的位置进行微调后,阵列光源发射的第一光束经第一准直元件整形后获得的第二光束的发散角与需求的第一预设发散角u 1’之间可能存在一定的偏差。若对第二光 束的发散角的精度有较高的要求,可以对第一准直元件的焦距进行微调和/或重新设计第一准直元件的焦距,直到获得的第二光束的发散角为需求的第一预设发散角u 1’。
请参阅图7,为本申请提供的一种阵列光源与第一准直元件的位置关系示意图。该示例中阵列光源以包括3×1个LD为例,第一准直元件以包括一个双凸柱面镜为例。3个LD发射的第一光束经第一准直元件后获得的第二光束的发散角为第一预设发散角u 1’。示例性的,从3个LD出射的第一光束在慢轴方向的第一发散角u 1=13°,经第一准直元件整形后获得的第二光束的第一预设发散角u 1’=25°,进一步,第二光束自由传播进行混叠匀光,可在一定距离至无穷远处形成在慢轴方向较均匀的光斑。
进一步,可选的,发射模组还可包括第一光阑,请参阅图8。第一光阑位于阵列光源与第一准直元件之间。其中,第一光阑用于在慢轴方向上过滤部分杂散光。通过第一光阑可以允许慢轴方向上的有效视场内的第一光束通过,且可抑制慢轴方向上的有效视场外的背景杂散光通过,进而有助于减小杂散光。
在一种可能的实现方式中,第一光阑例如可以是狭缝光阑(或称为孔径光阑)。再比如,第一光阑也可以是通过丝印技术在玻璃等上印出需要的通光形状,其他区域是黑墨,黑墨的区域不允许透光。
结构二,光学整形组件包括第二准直元件。
其中,第二准直元件也可称为快轴准直元件(fast-axis collimators,FAC)。第二准直元件用于将阵列光源发射的第一光束在快轴方向的第二发散角u 2整形为第二预设发散角u 2’,请参阅图6,具体可将上述6中的光学整形组件用第二准直元件替换。进一步,第二准直元件还用于在快轴方向对第一光束进行匀光。也可以理解为,来自阵列光源的第一光束经第二准直元件后获得的第二光束在快轴方向的发散角为第二预设发散角u 2’,第二光束形成的光斑在快轴方向的均匀度大于第二预设均匀度。其中,第二光束形成的光斑在快轴方向的均匀度也可以基于上述公式3的原理确定。具体的,上述公式3中U表示第二光束形成的光斑在快轴方向匀光度,I max表示第二光束形成的光斑在快轴方向的最大强度,I min表示第二光束形成的光斑在快轴方向的最小强度。
示例性地,第二准直元件也可以包括至少一个一维柱面镜,其中,关于一维柱面镜的介绍可参见前述结构一种的相关介绍,此处不再赘述。需要说明的是,若阵列光源在快轴方向的长度较大,设计第二准直元件在快轴方向的结构时需要考虑像差的矫正。为此,第二准直元件可以采用至少两个一维柱面镜,以实现对快轴方向的像差的矫正。若第二准直元件包括至少两个一维柱面镜,每个一维柱面镜有对应的焦点和焦距,本申请中涉及到的第二准直元件的焦点可以是第二准直元件包括的这多个一维柱面镜的等效焦点,本申请中涉及到的第二准直元件的焦距可以是第二准直元件包括的这多个一维柱面镜的等效焦距。
在一种可能的实现方式中,阵列光源在快轴方向的长度h、第二准直元件的焦距f 2及第二预设发散角u 2’之间满足下述公式2所示的关联关系。
u 2’/2=arctan(h/2f 2)±δ 2    公式2
其中,δ 2为快轴方向允许的误差范围。允许的误差包括但不限于因工程误差导致的误差。
基于上述公式2,可以确定出第二准直元件的焦距f 2。第二准直元件的焦距f 2决定第二准直元件的位置以及经第二准直元件整形后的第二光束在快轴方向的发散角的大小。通常,第二准直元件的焦距越大,第二光束在快轴方向的发散角越小。其中,第二准直元件 的焦距即为光学整形组件在快轴方向的焦距。换言之,可通过设计第二准直元件的焦距f 2,对阵列光源的像进行放大或缩小,从而在快轴方向形成不同的发散角。
进一步,可选的,发射模组还可包括第二光阑,第二光阑位于阵列光源与第二准直元件之间。其中,第二光阑用于在快轴方向上过滤部分杂散光。通过第二光阑可以允许快轴方向上的有效视场内的第一光束通过,且可抑制快轴方向上的有效视场外的背景杂散光通过,进而有助于减小杂散光。
在一种可能的实现方式中,第二光阑例如可以是狭缝光阑(或称为孔径光阑或有效光阑)。再比如,第二光阑也可以是通过丝印技术在玻璃等上印出需要的通光形状,其他区域是黑墨,黑墨的区域不允许透光。
需要说明的是,若对慢轴方向有较高的匀光度需求,则阵列光源可设置于距离第一准直元件的物方焦点的第一预设距离处;示例性地,第一准直元件的物方焦点为F 1,第二准直元件的物方焦点为F 2,F 1和F 2之间相差一个第一预设距离。若对快轴方向有较高的匀光度需求,则阵列光源可设置于距离第二准直元件的物方焦点的第二预设距离处;示例性地,第一准直元件能的物方焦点为F 1,第二准直元件的物方焦点为F 2,F 1和F 2之间相差一个第二预设距离。其中,第二预设距离的确定类似于第一预设距离,第二预设距离是一个至少与阵列光源在快轴方向的占空比及第一光束的第二发散角u 2相关的固定值,具体可参见前述第一预设距离的介绍,此处不再赘述。
本申请中,若需要对第一光束的快轴方向和慢轴方向均进行整形,光学整形组件可包括第一准直元件和第二准直元件。基于第一准直元件和第二准直元件的位置关系,如下示例性地的示出了两种可能的情形。
情形1,第一准直元件的光轴与第二准直元件的光轴平行或重合。
请参阅图9a和图9b,为本申请提供的另两种发射模组的结构示意图。该发射模组包括阵列光源和光学整形组件。其中,光学整形组件包括第一准直元件和第二准直元件。该示例中第一准直元件以双凸柱面镜为例,第二准直元件以包括一个平凸柱面镜为例。第一准直元件的光轴与第二准直元件的光轴平行或重合。进一步,可选的,第一准直元件的聚焦线与第二准直元件的聚焦线相互垂直。其中,第一准直元件的聚焦线与为第一准直元件对经过的第一光束的发散角调整的方向相同,第二准直元件的聚焦线与第二准直元件对经过的第一光束的发散角调整的方向相同。可以理解的是,若第一准直元件与第二准直元件的聚焦线不垂直,两个方向的光会互相影响。因此,通过第一准直元件的聚焦线与第二准直元件的聚焦线垂直,可以使得第一方向和第二方向的光束互不影响。在慢轴方向上,第二准直元件等效于一个透明的玻璃平板,不会改变经过的第一光束的第一发散角,因此,在慢轴方向上从阵列光源出射的第一光束在经过第一准直元件之前,第一光束的第一发散角不变。经第一准直元件将第一光束的第一发散角调整为第一预设发散角。同理,在快轴方向上,第一准直元件等效于一个透明的玻璃平板,不会改变经过的第一光束的第二发散角,因此,在快轴方向上从阵列光源出射的第一光束在经过第二准直元件之前,第一光束的第二发散角不变,经第二准直元件将第一光束的第二发散角调整为第二预设发散角。
可以理解的是,图9a示例出的是慢轴方向的传播光路。具体的,阵列光源发射的第一光束经第二准直元件在快轴方向的整形后传播至第一准直元件,再经第一准直元件在慢轴方向的整形后获得第二光束;第一光束在慢轴方向的发散角为第一发散角,第二光束在慢 轴方向的发散角为第一预设发散角,进一步,第二光束形成的光斑在慢轴方向的均匀度大于第一预设均匀度;第一光束在快轴方向的发散角为第二发散角,第二光束在快轴方向的发散角为第二预设发散角,第二光束形成的光斑在快轴方向的均匀度大于第二预设均匀度。
情形2,第一准直元件的光轴与第二准直元件的光轴垂直。
请参阅图10a和图10b,为本申请提供的两种发射模组的结构示意图。该发射模组包括阵列光源、光学整形组件和反射元件。其中,光学整形组件包括第一准直元件和第二准直元件,反射元件位于第一准直元件与第二准直元件之间。第一准直元件的光轴与第二准直元件的光轴垂直。进一步,可选的,第一准直元件的聚焦线与第二准直元件的聚焦线相互垂直。该示例中第一准直元件和第二准直元件与上述图9a和图9b中的相同为例,具体可参见前述相关介绍,此处不再赘述。
图10a示出的是慢轴方向的传播光路。具体的:阵列光源发射的第一光束经第二准直元件在快轴方向的整形后传播至反射元件,经反射元件反射至第一准直元件,再经第一准直元件在慢轴方向整形后获得第二光束。第一光束在慢轴方向的发散角为第一发散角,第二光束在慢轴方向的发散角为第一预设发散角,进一步,第二光束形成的光斑在慢轴方向的均匀度大于第一预设均匀度;第一光束在快轴方向的发散角为第二发散角,第二光束在快轴方向为第二预设发散角,第二光束形成的光斑在快轴方向的均匀度大于第二预设均匀度。反射元件例如可以是反射棱镜(或称为转折棱镜)或者也可以是平面反射镜等,本申请对此不作限定。
通过反射元件可以改变阵列光源发射的第一光束的传播光路的方向,从而可以实现灵活放置第一准直元件和第二准直元件。而且,相比于图9a和图9b,有助于减小第一光束在慢轴方向的光程,从而有助于减小发射模组在慢轴方向的尺寸,进而有助于发射模组的小型化。
需要说明的是,上述图9a、图9b、图10a和图10b给出的第一准直元件和第二准直元件的位置仅是一种示例。例如,第一准直元件和第二准直元件的顺序也可以互换,本申请对此不作限定。此外,上述图9a和图9b所示的发射模组中,阵列光源与光学整形组件是共轴的,图10a和图10b所示的发射模组中,阵列光源与光学整形组件是非共轴的。对于阵列光源与光学整形组件是非共轴的结构中,图10a和图10b是以第一准直元件和第二准直元件也是非共轴的为例示例的,在具体的实现中,第一准直元件和第二准直元件也可以是共轴的,基于此,反射元件可以位于第二准直元件和阵列光源之间。
若需要对第一光束的快轴方向和慢轴方向均进行整形,一种可能的实现方式中,光学整形组件包括第一准直元件和第二准直元件,具体可参见前述相关介绍,此处不再赘述。另一种可能的实现方式中,光学整形组件包括二维光焦度整形元件。其中,二维光焦度整形元件是指在两个维度(即慢轴方向和快轴方向)的光焦度均不为0,这两个维度的光焦度可以相同也可以不同,本申请对此不作限定。二维光焦度整形元件在慢轴方向的光焦度的大小设计可参见上述第一准直元件的介绍,在快轴方向的光焦度大小的设计可参见上述第二准直元件的介绍,此处不再赘述。若两个维度均有光焦度且不同(即两个维度均又曲率且不同),可以产生像散,从而用于纠正阵列光源的像散。
具体的,二维光焦度整形元件用于将来自阵列光源发射的第一光束在慢轴方向上的第一发散角调整为第一预设发散角,在快轴方向的第二发散角调整为第二预设发散角。进一步,二维光焦度整形元件还用于在慢轴方向和快轴方向分别对第一光束进行匀光,使得获 得的第二光束形成的光斑在慢轴方向的均匀度大于第一预设均匀度、且在快轴方向的均匀度大于第二预设均匀度。
示例性地,二维光焦度整形元件可包括球面透镜(即透镜的表面为球形)、或者非球面透镜,其中,非球面透镜例如可以包括但不限于二维柱面镜等。需要说明的是,为了矫正像差,学整形组件可以采用球面镜组(即至少两个球面透镜)或者二维柱面镜组(即至少两个二维柱面镜)等。
进一步,可选的,阵列光源与二维光焦度整形元件的位置关系与均匀度的需求有关。若对慢轴方向有较高的匀光需求,则阵列光源可设置于二维光焦度整形元件在慢轴方向的物方焦点的第一预设距离处。若对快轴方向有较高的匀光需求,则阵列光源可设置于二维光焦度整形元件在快轴方向的物方焦点的第二预设距离处。关于第一预设距离和第二预设距离可参见前述相关介绍,此处不再赘述。
需要说明的是,若光学整形组件包括二维光焦度整形元件,且阵列光源与二维光焦度元件不共轴,发射模组还可包括反射元件。反射元件位于阵列光源与二维光焦度整形元件之间,反射元件用于将阵列光源发射的第一光束反射至二维光焦度整形元件。
本申请中的发射模组还可以包括折射棱镜,具体可参见下述图13a和图13b的介绍,此处不再赘述。
基于上述内容,下面结合具体的硬件结构,给出上述发射模组的两种具体实现方式。以便于进一步理解上述发射模组的结构。需要说明的是,上述给出各个功能组件和结构中,如果没有特殊说明以及逻辑冲突,根据其内在的逻辑关系可以组合形成其它可能的发射模组。
如图11a所示,为本申请提供的又一种发射模组的结构示意图。图11b为图11a的三维结构示意图。该发射模组以包括阵列光源、光学整形组件和第一光阑为例。其中,光学整形组件以包括第一准直元件和第二准直元件为例,阵列光源以包括一列为例,第一准直元件以包括一个双凸柱面镜为例,第二准直元件以包括一个平凸柱面镜为例,该示例中以阵列光源与光学整形组件是共轴的为例。例如,阵列光源发射的第一光束在慢轴方向的第一发散角为13°,在快轴方向的第二发散角为45°。第一准直元件在慢轴方向对第一光束进行整形,第二准直元件在快轴方向对第一光束进行整形,第一光束经第一准直元件和第二准直元件的整形后获得第二光束,第二光束在慢轴方向的发散角即为第一预设发散角为25°,第二光束在快轴方向的发散角即为第二预设发散角为0.1°。关于阵列光源、第一准直元件、第二准直元件和第一光阑更详细的介绍可参见前述相关描述,此处不再赘述。需要说明的是,上述图11a和图11b中给出的发射模组的结构仅是示例,发射模组也可以有比上述图11a和图11b更少的结构,例如,发射模组可以不包括上述图11a和图11b中的第一光阑。当然,发射模组也可以有比上述图11a和图11b更多的结构,例如,发射模组还可包括第二光阑等,本申请对此不作限定。
其中,阵列光源发射的第一光束的光斑在角空间中的能量密度分布可能不能满足实际需求,通过光学整形组件可调整第一光束的光斑在空间中的能量密度分布。在一种可能的实现方式中,若发射模组为上述图11a图11b所示的结构,获得的第二光束形成的光斑在空间的能量密度分布较均匀,请参阅图12a。具体的,第二光束形成的光斑在慢轴方向的均匀度大于第一预设均匀度,在快轴方向的均匀度大于第二预设均匀度。
请参阅图12b,为本申请提供的一种第二光束形成的光斑在慢轴方向的强度与第二光束照射距离的模拟关系示意图。由图12b可以看出,随着第二光束照射的距离越远,第二光束形成的光斑的均匀度越高。具体可参见表1。1m处即可实现91。76%的均匀度,而随着距离的增加,均匀性会逐渐增加,在100m处可实现94.55%的均匀度。
表1第二光束形成的光斑强度与照射距离的模拟关系
  1m 2m 5m 100m
最大值 0.065 0.02 0.01 0.0058
最小值 0.055 0.018 0.0089 0.0052
均匀度 91.76% 94.14% 94.44% 94.55%
如图13a和图13b所示,为本申请提供的两种发射模组的结构示意图。图13b为图13a的三维结构示意图。该发射模组以包括阵列光源、光学整形组件、第一光阑、反射元件和折射棱镜为例。该示例阵列光源与光学整形组件是非共轴的。其中,光学整形组件以包括第一准直元件和第二准直元件为例,阵列光源以包括一列光源为例,第一准直元件以包括一个双凸柱面镜为例,第二准直元件以包括一个平凸柱面镜为例。阵列光源发射第一光束,第一光束经第二准直元件在快轴方向整形后传播至反射元件,经反射元件反射至第一准直元件,再经第一准直元件在慢轴方向整形后获得第二光束。折射棱镜用于调整第二光束的传播光路,具体的,折射棱镜可将第二光束的上半部分的光向下偏移,下半部分的光向上偏移,将第二光束的能量集中到中间区域,中间区域即为凸起。调整传播光路后的第二光束形成的光斑的中间区域的能量密度大于边缘区域的能量密度。也可以理解为,通过折射棱镜,可以将第二光束的能量集中在感兴趣区域,从而可提高感兴趣区域的测距能力。
基于此,调整传播光路后的第二光束形成的光斑的形状为“凸”型或类“凸”型,请参阅图14a,调整传播光路后的第二光束形成的光斑中凸起部分的能量密度高于两侧的能量密度。调整传播光路后的第二光束形成的光斑凸起部分的能量密度约为两侧能量密度的2倍。结合图14b的模拟的远场光斑的慢轴方向上强度分布曲线可以看出,中间能量腔,两边能量弱,形成“凸”型或类“凸”型。可以理解为,调整传播光路后的第二光束形成的光斑的凸起部分的高度和宽度可通过调节第一准直元件和折射棱镜的参数(如β或折射率)实现,β越大,凸起部分越长;折射棱镜的材料的折射率越大,凸起的部分越长。
需要说明的是,上述给出的发射模组的结构仅是示例,发射模组的结构还可以是上述给出各个功能组件和结构的其它组合,如图15所示的结构。
基于上述描述的发射模组的结构和功能原理,本申请还可以提供一种探测装置。请参阅图16,该探测装置可包括接收模组以及上述任一实施例中的发射模组。接收模组用于接收经探测区域中的目标反射第二光束得到的回波信号。
在一种可能的实现方式中,接收模组可包括探测组件,探测组件用于接收经探测区域中的目标反射第二光束得到的回波信号。进一步,可选的,探测组件可对回波信号进行光电转化,得到用于确定目标的关联信息的电信号。其中,目标的关联信息可以包括但不限于目标的距离信息、目标的方位、目标的速度、和/或目标的灰度信息等。
示例性地,探测组件例如可以是光电探测器(photon detector,PD)、P型半导体-本征层-N型半导体(positive intrinsic negative,PIN)光电二极管(亦称为PIN结二极管)、雪 崩光电二极管(avalanche photodiode,APD)、或者单光子雪崩二极管(single-photon avalanche diode,SPAD)阵列、硅光电倍增管(silicon photomultiplier,SiMP)阵列等。
请参阅图17,为本申请提供的一种探测组件的结构示意图。该探测组件以包括8×8的像素为例,像素阵列中的每个像素可以包括一个或多个SPAD或SiMP等。进一步,可以按列选通像素阵列中的像素。可以理解的是,上述图17给出的像素阵列仅是示例,本申请对像素阵列包括的行和列的数量不作限定。例如,像素阵列也可以是多行一列的像素阵列,或者还可以是其它多行多列的像素阵列,此处不再一一列举。此外,像素阵列中的像素的形状也可以是其它可能的形状(例如圆形、方形或椭圆形等),本申请对此也不作限定。需要说明的是,若阵列光源为上述图4所示的结构,探测组件也可以包括8×1个像素,或者也可以为上述图17所示的像素阵列;若阵列光源为上述图5所示的结构,探测组件可以为上述图17所示的像素阵列。
在一种可能的实现方式中,接收模组还可包括接收镜头,接收镜头可包括至少一个镜片。镜片例如可以是球面透镜(例如凹透镜、或凸透镜等),或者也可以是非球面透镜。通过多片球面透镜和/或非球面透镜的组合作为接收镜头,有助于提高探测装置的成像质量,降低光学成像系统的像差。应理解,凸透镜和凹透镜有多种不同的类型,例如凸透镜有双凸透镜,平凸透镜以及凹凸透镜,凹透镜有双凹透镜,平凹透镜以及凹凸透镜,本申请对凸透镜和凹透镜的类型不作限定。
其中,接收镜头中的镜片的材料可以是玻璃、树脂或者晶体等光学材料。当镜片的材料为树脂时,有助于减轻探测装置的质量。当镜片的材料为玻璃时,有助于进一步提高探测装置的成像质量。进一步,为了有效抑制温漂,接收镜头中包括至少一个玻璃材料的镜片。
进一步,可选的,该探测装置还可包括扫描模组,扫描模组用于向探测装置的探测区域反射接收到的第二光束。具体的,通过改变扫描模组的扫描角度,以改变第二光束射向探测区域的第二光束的传播方向,从而实现对探测区域的扫描。需要说明的是,扫描模组可以按连续运转模式转动,或者也可以按步进运转模式转动,本申请对此不作限定。在实际应用中,具体采用哪种模式转动,可以预先设置。
在一种可能的实现方式中,扫描模组可位于第二光束的束腰处。由于第一光束经慢轴准直元件后的第二光束会呈现汇聚的趋势,在短距离内形成束腰,将扫描模组放置在第二光束的束腰处,可以采用反射面较小的扫描模组,从而有助于减小探测装置的体积。
示例性的,扫描模组例如可以是多面体(例如八面体、六面体或四面体等)转镜、微机电系统(micro electro-mechanical system,MEMS)振镜或摆镜中的一种。需要说明的是,本申请对扫描模组的类型不做限定,凡是可以实现将第二光束反射至探测区域的结构均可以。
需要说明的是,本申请中的探测装置还可以包括其它可能的模组,例如控制模组。控制模组用于根据来自探测组件的电信号确定目标的关联信息。进一步,还可根据确定出的目标的关联信息,进行行驶路径的规划,例如躲避将要行驶的路径上的障碍物、实现车辆的自动驾驶等。
示例性地,控制模组例如可以是可以包括一个或多个处理器,处理器可以是一种具有信号(或数据)的处理能力的电路。在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元(central processing unit,CPU)、微处理器、图形处理器(graphics  processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital singnal processor,DSP)等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路(application-specific integrated circuit,ASIC)或可编程逻辑器件(programmable logic device,PLD)实现的硬件电路,例如现场可编程门阵列(field programmable gate array,FPGA)。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(neural network processing pnit,NPU)张量处理单元(tensor processing unit,TPU)、深度学习处理单元(deep learning processing unit,DPU)等。例如还可以是应用处理器(application processor,AP)、图像信号处理器(image signal processor,ISP)、或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合等。
基于上述描述的探测装置的结构和功能原理,本申请还可以提供一种终端设备。该终端设备可包括上述任一实施例中的探测装置。示例性地,该终端设备例如可以是车辆(例如无人车、智能车、电动车、或数字汽车等)、机器人、测绘设备、无人机、智能家居设备(例如电视、扫地机器人、智能台灯、音响系统、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、或视频监控等)、智能制造设备(例如工业设备)、智能运输设备(例如AGV、无人运输车、或货车等)、或智能终端(手机、计算机、平板电脑、掌上电脑、台式机、耳机、音响、穿戴设备、车载设备、虚拟现实设备、增强现实设备等)等。
请参阅图18,以终端设备为车辆为例,为本申请提供的一种车辆的示例性功能框图。耦合到车辆100或包括在车辆100中的组件可以包括传感器系统1001和计算机系统1002。可以理解的是,图18给出的车辆功能框架只是一个示例,在其它示例中,车辆100可以包括更多、更少或不同的系统,并且每个系统可以包括更多、更少或不同的组件。此外,示出的系统和组件可以按任意种的方式进行组合或划分,本申请对此不做具体限定。例如,车辆还可以包括电源1003、控制系统1004、用户接口1005和外围设备1006等。车辆100的组件可以被配置为以与彼此互连和/或与耦合到各系统的其它组件互连的方式工作。例如,电源1003可以向车辆100的所有组件提供电力。计算机系统1002可以被配置为从传感器系统1001、控制系统1004和外围设备1006接收数据并对它们进行控制。
传感器系统1001可以包括用于感测关于车辆100所位于的环境的信息等的若干个传感器。示例性地,传感器系统1001的传感器可以包括但不限于全球定位系统(Global PositioningSystem,GPS)、惯性测量单元(Inertial Measurement Unit,IMU)、毫米波雷达、激光雷达、相机以及用于修改传感器的位置和/或朝向的制动器。毫米波雷达可利用无线电信号来感测车辆100的周边环境内的目标。在一些实施例中,除了感测目标以外,毫米波雷达还可用于感测目标的速度和/或前进方向。激光雷达可利用激光来感测车辆100所位于的环境中的目标。在一些实施例中,激光雷达可以为上述任一实施例中的探测装置,具体可参见上述关于探测装置的介绍,此处不再赘述。相机可用于捕捉车辆100的周边环境的多个图像。相机可以是静态相机或视频相机。在一些实施例中,GPS可以为用于估计车辆100的地理位置的任何传感器。为此,GPS可以包括收发器,基于卫星定位数据估计车辆100相对于地球的位置。在一些示例中,计算机系统1002可以结合地图数据使用GPS来 估计车辆100行驶的道路。IMU可以用于基于惯性加速度及其任意组合来感测车辆100的位置和朝向变化。在一些示例中,IMU中传感器的组合可包括例如加速度计和陀螺仪。另外,IMU中传感器的其它组合也是可能的。
可以理解的是,传感器系统1001还可包括被监视车辆100的内部系统的传感器(例如,车内空气质量监测器、燃油量表、机油温度表等)。来自这些传感器中的一个或多个的传感器数据可用于检测对象及其相应特性(位置、形状、方向、速度等)。这种检测和识别是车辆100的安全操作的关键功能。传感器系统1001还可以包括其它传感器。本申请对此不做具体限定。
车辆100的部分或所有功能受计算机系统1002控制。计算机系统1002可包括至少一个处理器10021,进一步,该计算机系统1002还可包括接口电路10022。处理器10021执行存储在例如存储器10023这样的非暂态计算机可读介质中的指令。计算机系统1002还可以是采用分布式方式控制车辆100的个体组件或子系统的多个计算设备。
处理器10021可以是一种具有信号(或数据)的处理能力的电路,具体可能的实现可参见前述控制模块的介绍,此处不再赘述。
尽管图18功能性地图示了处理器、存储器、和在相同块中的计算机系统1002的其它元件,但是本领域的普通技术人员应该理解该处理器和存储器实际上可以不存储在相同的物理外壳内的多个处理器或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机系统1002的外壳内的其它存储介质。再比如,处理器也可以远离该车辆但可以与该车辆进行无线通信。
在一些实施例中,存储器10023可包含指令(例如,程序逻辑),指令可被处理器10021读取来执行车辆100的各种功能,包括以上描述的功能。存储器10023也可包含额外的指令,包括向推进系统110、传感器系统1001、控制系统1004和外围设备1006中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。除了指令以外,存储器10023还可存储数据,例如道路地图,路线信息,传感器检测到的数据,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息。这种信息可在车辆100在自主、半自主和/或手动模式中被车辆100和计算机系统1002使用。
存储器例如可以是随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。另一种示例中,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于探测装置中。当然,处理器和存储介质也可以作为分立组件存在于探测装置中。
计算机系统1002可基于从各种子系统(例如,传感器系统1001和控制系统1004等)以及从用户接口1005接收的输入来控制车辆100的功能。例如,计算机系统1002可利用来自控制系统1004的输入以便控制转向单元来避免由传感器系统1001和障碍物避免系统检测到的障碍物。在一些实施例中,计算机系统1002可操作来对车辆100及其子系统的许多方面提供控制。
可选地,上述这些组件中的一个或多个可与车辆100分开安装或关联。例如,存储器 10023可以部分或完全地与车辆100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
示例性的,上述车辆100可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请对此不作限定。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“均匀”不是指绝对的均匀,可以允许有一定工程上的误差。“垂直”不是指绝对的垂直,可以允许有一定工程上的误差。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。另外,在本申请中,“示例性的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。或者可理解为,使用示例的一词旨在以具体方式呈现概念,并不对本申请构成限定。
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。术语“第一”、“第二”等类似表述,是用于分区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (29)

  1. 一种发射模组,其特征在于,包括阵列光源和光学整形组件,所述光学整形组件包括球面透镜和/或非球面透镜;
    所述阵列光源,用于发射第一光束;
    所述光学整形组件,用于至少在第一方向上,将来自所述阵列光源的所述第一光束的第一发散角调整为第一预设发散角,并对所述第一光束匀光,得到第二光束。
  2. 如权利要求1所述的模组,其特征在于,所述阵列光源包括m×n个光源,所述m为大于1的整数,所述n为正整数。
  3. 如权利要求1或2所述的模组,其特征在于,所述光学整形组件包括第一准直元件。
  4. 如权利要求3所述的模组,其特征在于,所述第一准直元件的焦距f 1、所述阵列光源在第一方向的长度d和所述第一预设发散角u 1’存在关联关系。
  5. 如权利要求4所述的模组,其特征在于,所述关联关系满足公式1:
    u 1’/2=arctan(d/2f 1)±δ 1  公式1
    其中,所述δ 1为第一方向允许的误差范围。
  6. 如权利要求3~5任一项所述的模组,其特征在于,所述阵列光源位于距离所述第一准直元件的物方焦点的第一预设距离处,所述第一预设距离与所述阵列光源在所述第一方向的占空比和所述第一光束的第一发散角相关。
  7. 如权利要求3~6任一项所述的模组,其特征在于,所述第一准直元件包括至少一个非球面镜,所述非球面镜包括一维柱面镜。
  8. 如权利要求3~7任一项所述的模组,其特征在于,所述发射模组还包括第一光阑,所述第一光阑位于所述第一准直元件与所述阵列光源之间。
  9. 如权利要求1~3任一项所述的模组,其特征在于,所述光学整形组件还用于:
    在第二方向,将来自所述阵列光源的所述第一光束的第二发散角调整为第二预设发散角。
  10. 如权利要求9所述的模组,其特征在于,所述光学整形组件还用于:
    在第二方向,对来自所述阵列光源的所述第一光束进行匀光。
  11. 如权利要求9或10所述的模组,其特征在于,所述光学整形组件还包括第二准直元件。
  12. 如权利要求11所述的模组,其特征在于,所述第二准直元件的焦距f 2、所述阵列光源在第二方向的长度h和所述第二预设发散角u 2’存在关联关系。
  13. 如权利要求12所述的模组,其特征在于,所述关联关系满足公式2:
    u 2’/2=arctan(h/2f 2)±δ 2  公式2
    其中,所述δ 2为允许的误差范围。
  14. 如权利要求11~13任一项所述的模组,其特征在于,所述第二准直元件包括至少一个非球面镜,所述非球面镜包括一维柱面镜。
  15. 如权利要求11~14任一项所述的模组,其特征在于,所述发射模组还包括第二光阑,所述第二光阑位于所述第二准直元件与所述阵列光源之间。
  16. 如权利要求11~15任一项所述的模组,其特征在于,所述第一准直元件与所述第二准直元件的聚焦线垂直。
  17. 如权利要求11~16任一项所述的模组,其特征在于,所述第一准直元件与所述第二准直元件的光轴平行或重合。
  18. 如权利要求11~16任一项所述的模组,其特征在于,所述发射模组还包括反射元件,所述反射元件位于所述第一准直元件与所述第二准直元件之间。
  19. 如权利要求18所述的模组,其特征在于,所述反射元件包括反射棱镜。
  20. 如权利要求18或19所述的模组,其特征在于,所述第一准直元件的第一光轴与所述第二准直元件的第二光轴垂直。
  21. 如权利要求1或2所述的模组,其特征在于,所述光学整形组件包括二维光焦度整形元件;
    所述二维光焦度整形元件,用于在第一方向将来自所述阵列光源的所述第一光束的第一发散角调整为所述第一预设发散角,对所述第一光束匀光,并在第二方向将来自所述阵列光源的所述第一光束的第二发散角调整为第二预设发散角,得到所述第二光束。
  22. 如权利要求21所述的模组,其特征在于,所述二维光焦度整形元件包括以下任一项:
    至少一个球面透镜;
    至少一个二维光焦度的柱面镜。
  23. 如权利要求1~22任一项所述的模组,其特征在于,所述发射模组还包括折射棱镜;
    所述折射棱镜,用于调整所述第二光束的传播光路,调整传播光路后的第二光束形成的光斑的中间区域的能量密度大于边缘区域的能量密度。
  24. 如权利要求23所述的模组,其特征在于,所述调整传播光路后的第二光束形成的光斑的形状为“凸”型或类“凸”型。
  25. 如权利要求9~24任一项所述的模组,其特征在于,所述第一方向与所述第二方向垂直。
  26. 如权利要求9~25任一项所述的模组,其特征在于,所述第一方向为所述光学整形组件的慢轴方向;和/或,
    所述第二方向为所述光学整形组件的快轴方向。
  27. 一种探测装置,其特征在于,包括接收模组及如权利要求1~26任一项所述的发射模组;
    所述接收模组,用于接收回波信号,所述回波信号为所述第二光束经探测区域中的目标反射后得到的信号。
  28. 如权利要求27所述的装置,其特征在于,所述探测装置还包括扫描模组,所述扫描模组位于所述第二光束的束腰处;
    所述扫描模组,用于将来自所述光学整形组件的第二光束反射至所述探测区域。
  29. 一种终端设备,其特征在于,包括控制装置及如权利要求27或28所述的探测装置。
PCT/CN2022/094966 2022-05-25 2022-05-25 一种发射模组、探测装置及终端设备 WO2023225902A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094966 WO2023225902A1 (zh) 2022-05-25 2022-05-25 一种发射模组、探测装置及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094966 WO2023225902A1 (zh) 2022-05-25 2022-05-25 一种发射模组、探测装置及终端设备

Publications (1)

Publication Number Publication Date
WO2023225902A1 true WO2023225902A1 (zh) 2023-11-30

Family

ID=88918070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094966 WO2023225902A1 (zh) 2022-05-25 2022-05-25 一种发射模组、探测装置及终端设备

Country Status (1)

Country Link
WO (1) WO2023225902A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070053066A1 (en) * 2004-03-06 2007-03-08 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg Device for homogenizing light and configuration for illuminating or focusing with such a device
CN201401667Y (zh) * 2009-05-05 2010-02-10 浙江大学 一种半导体激光器阵列光束整形照明系统
CN101834402A (zh) * 2009-09-24 2010-09-15 西安炬光科技有限公司 一种半导体激光器侧泵模块
CN208206801U (zh) * 2018-06-07 2018-12-07 成都自序电子科技有限公司 一种激光物证仪
CN110554508A (zh) * 2018-05-30 2019-12-10 宁波舜宇车载光学技术有限公司 光束整形装置及其光束整形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070053066A1 (en) * 2004-03-06 2007-03-08 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg Device for homogenizing light and configuration for illuminating or focusing with such a device
CN201401667Y (zh) * 2009-05-05 2010-02-10 浙江大学 一种半导体激光器阵列光束整形照明系统
CN101834402A (zh) * 2009-09-24 2010-09-15 西安炬光科技有限公司 一种半导体激光器侧泵模块
CN110554508A (zh) * 2018-05-30 2019-12-10 宁波舜宇车载光学技术有限公司 光束整形装置及其光束整形方法
CN208206801U (zh) * 2018-06-07 2018-12-07 成都自序电子科技有限公司 一种激光物证仪

Similar Documents

Publication Publication Date Title
JP7442837B2 (ja) 小角度発散を伴うvcselアレイlidar送信機
KR102387213B1 (ko) 조정가능한 해상도 및 페일세이프 동작을 갖는 lidar들을 위한 시스템들 및 방법들
TWI644116B (zh) 光學裝置
WO2023213238A1 (zh) 光学整形模组、装置及激光雷达系统
EP4089467A1 (en) Head-up display system and control method therefor, and vehicle
US20240210528A1 (en) Receiving Optical System, Lidar System, and Terminal Device
WO2021057809A1 (zh) 激光雷达及其控制方法和具有激光雷达的设备
CN106249529A (zh) 投影机
WO2023092859A1 (zh) 激光雷达发射装置、激光雷达装置及电子设备
CN111398969A (zh) 一种激光雷达及其收发装置
WO2023225902A1 (zh) 一种发射模组、探测装置及终端设备
WO2024036582A1 (zh) 一种发射模组、接收模组、探测装置及终端设备
WO2023015562A1 (zh) 一种激光雷达及终端设备
US20220091417A1 (en) Head-up display
WO2022206373A1 (zh) 一种激光发射方法、装置、探测装置及移动平台
WO2023123447A1 (zh) 一种扫描模组、探测装置及终端设备
WO2023201596A1 (zh) 一种探测装置及终端设备
WO2024044997A1 (zh) 一种光学接收模组、接收系统、探测装置及终端设备
WO2024044905A1 (zh) 一种探测装置及终端设备
WO2024065332A1 (zh) 一种显示模组、光学显示系统、终端设备及图像显示方法
WO2023019442A1 (zh) 一种探测系统、终端设备及探测控制方法
WO2024041034A1 (zh) 一种显示模组、光学显示系统、终端设备及成像方法
WO2024037061A1 (zh) 一种显示设备和交通工具
WO2023056585A1 (zh) 一种探测系统、终端设备、控制探测方法及控制装置
WO2023060374A1 (zh) 一种扫描系统、探测系统及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943107

Country of ref document: EP

Kind code of ref document: A1