WO2024037061A1 - 一种显示设备和交通工具 - Google Patents

一种显示设备和交通工具 Download PDF

Info

Publication number
WO2024037061A1
WO2024037061A1 PCT/CN2023/092992 CN2023092992W WO2024037061A1 WO 2024037061 A1 WO2024037061 A1 WO 2024037061A1 CN 2023092992 W CN2023092992 W CN 2023092992W WO 2024037061 A1 WO2024037061 A1 WO 2024037061A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
target
imaging
light source
parallel
Prior art date
Application number
PCT/CN2023/092992
Other languages
English (en)
French (fr)
Inventor
赵晴
方元戎
魏素
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024037061A1 publication Critical patent/WO2024037061A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • Embodiments of the present application relate to the field of display, and in particular, to a display device and a vehicle.
  • the display device projects imaging light onto reflective elements such as glass.
  • the reflective element reflects the imaging light to the human eye, thereby realizing the projection of the imaging light to the human eye. Since different users may have different eye heights and the beam diameter of the imaging light is limited, the range of the imaging light projected to the vicinity of the human eye is limited. Therefore, the different ranges of imaging light that can be received by different human eye heights are called different eye boxes.
  • the imaging light has a larger diffusion angle.
  • the imaging light with a larger diffusion angle is reflected by the windshield and can reflect up to into different eye boxes, so that users with different eye heights can receive imaging light.
  • the divergence of the imaging light is high and the light intensity is low.
  • the brightness of the (imaging light) light source needs to be increased, resulting in high power consumption of the HUD.
  • Embodiments of the present application provide a display device and a vehicle for generating imaging light on different optical axes corresponding to different eye box positions, thereby reducing the diffusion angle of the imaging light and reducing power consumption.
  • inventions of the present application provide a display device.
  • the display device includes an image generating device, a first concave mirror and a second concave mirror.
  • the image generating device is used to generate target imaging light corresponding to the target area.
  • the eye box of the display device includes multiple areas, and the target area is one of the multiple areas.
  • Each of the multiple regions corresponds to one imaging light, and the multiple imaging lights corresponding to the multiple regions have different optical axes (the optical axis in the embodiment of the present application is the center line of the light beam).
  • the first concave mirror is used to project the target imaging light to the second concave mirror
  • the second concave mirror is used to project the target imaging light to the target area of the eye box.
  • the eye box of the display device includes multiple areas.
  • the target imaging light generated by the display device corresponds to an area in the eye box of the display device, and the target imaging light only needs to be projected to this area, and does not need to be projected to the entire eye box of the display device. Therefore, the light source in the display device only needs to illuminate this area, and does not need to illuminate the entire eye box of the display device. The lighting range of the light source is reduced, thereby reducing the power consumption of the display device.
  • a plurality of imaging lights corresponding to the above-mentioned regions are projected to the first concave mirror, and the plurality of imaging lights intersect between the first concave mirror and the second concave mirror. After passing through the second concave mirror, the plurality of imaging lights are projected to respective corresponding areas.
  • the first imaging light and the second imaging light are parallel to each other.
  • multiple imaging lights are parallel to each other after passing through the second concave mirror, so the multiple imaging lights can be parallel Projected to different areas of the eye box (human eyes at different heights). Since different imaging lights projected to the human eye are parallel to each other, in the HUD scene, through the display device (HUD) provided by the embodiment of the present application, the virtual images corresponding to all areas of the eye box can be made to be on the ground, preventing the virtual images from floating in the air. Create danger and improve safety.
  • the image generating device includes a plurality of light sources, a beam collimation module and a modulator.
  • any light source among the plurality of light sources is used to emit a light beam
  • the plurality of light beams emitted by the plurality of light sources correspond to the plurality of imaging lights one-to-one.
  • the target light source corresponding to the target imaging light among the plurality of light sources is used to emit the target light beam.
  • the beam collimation module is used to collimate the target beam and project the collimated target beam to the modulator.
  • the modulator is used to modulate the collimated target beam to obtain target imaging light.
  • the beam collimating module collimates different beams among the plurality of beams, and the optical axes of the different collimated beams are different. Since the optical axes of different beams after collimation are different, the modulator modulates the different beams after collimation, and the optical axes of the different imaging lights obtained are also different.
  • the light source and beam collimation module have a simple structure and a wide range of applications, so that the display device with this structure has the advantages of simple structure, low requirements on devices, wide range of applications, and low cost.
  • the light source among the multiple light sources can be any one of a point light source, a surface light source, and a volume light source, which is not limited in this application.
  • the plurality of light sources are located at different positions relative to the beam collimation module.
  • the multiple light sources are at different distances from the symmetry axis of the beam collimation module (ie, the optical system symmetry axis of the beam collimation module).
  • the two light sources are on different sides of the symmetry axis of the beam collimation module.
  • some light sources are at different distances from the symmetry axis of the beam collimation module (for example, light source 1 and light source 2 are different from the symmetry axis, light source 3 and light source 2 are different from the symmetry axis), Some light sources are at the same distance from the symmetry axis of the beam collimation module, then two light sources with the same distance are on different sides of the symmetry axis of the beam collimation module (for example, light source 1 and light source 3 are at the same distance from the symmetry axis, then light source 1 and light source 3 on different sides of the axis of symmetry).
  • multiple light sources are located at different positions relative to the beam collimating module, so that multiple light beams with different optical axes can be obtained through the beam collimating module.
  • Position control of multiple light sources is easy to implement and has high control accuracy. It can reduce the difficulty of designing and manufacturing the image generation device and reduce the cost, and due to the high precision, it can improve the position accuracy of the imaging light projected to the corresponding eye box and improve the display effect.
  • the distance h between the target light source and the symmetry axis of the beam collimation module, the distance L between the target light source and the main image plane of the beam collimation module, and the target beam and beam collimation conform to the following correspondence:
  • the target beam can be a beam emitted by any one of multiple light sources. Since different light sources have different positions relative to the symmetry axis of the beam collimation module, for the beams emitted by different light sources, the collimated beam The ⁇ angle is different (the ⁇ angle is also the ⁇ angle corresponding to the imaging light). According to the optical path design, different ⁇ angles corresponding to different imaging lights can be determined, thereby determining the positions of different light sources.
  • the eye box of the display device includes multiple areas.
  • the entire eye box of the display device can be illuminated.
  • the ⁇ and h corresponding to the target area can be determined, so that the target area can be illuminated through the light source corresponding to h. Therefore, it can be determined in different scenarios Different target areas and corresponding h can be used to illuminate different areas in different scenarios and reduce power consumption.
  • ⁇ ’ has a large adjustment range (1° to 10°), which can match the needs of different imaging light angles in more scenes.
  • the image generating device may include a light source, a first driving module, a beam collimation module and a modulator.
  • the first driving module is used to move the light source to a light source position corresponding to the target imaging light
  • the moved light source is used to emit a light beam corresponding to the target imaging light.
  • the beam collimating module collimates the target beam and projects the collimated target beam to the modulator.
  • the modulator is used to modulate the collimated target beam to obtain target imaging light.
  • the first driving module can move the light source to multiple positions (the multiple positions correspond to the aforementioned plurality of imaging lights), then the different light beams emitted by the light source at different positions are collimated by the beam collimation module, and the resulting collimated light beams are The optical axes of different light beams are different. Therefore, the modulator modulates different collimated light beams, and the optical axes of the different imaging lights obtained are also different.
  • the first driving module moves the position of the light source to realize lighting at different positions, which can reduce the number of light sources. You only need to move one light source to different positions to achieve the effect of multiple light sources, thereby obtaining the imaging light corresponding to different areas of the eye box and realizing eye box switching.
  • the beam collimation module includes at least one lens, and the at least one lens is used to collimate a plurality of light beams (including the target light beam).
  • the lens has a simple structure and low design and manufacturing difficulty, which can reduce the design and manufacturing difficulty and cost of the image generation device and the display device.
  • the beam collimation module may include a lens or lens group.
  • the lens group includes a plurality of lenses for collimating a plurality of light beams (including a target light beam).
  • a lens group is used as a beam collimation module.
  • the total thickness of multiple lenses in the lens group is less than the thickness of the aforementioned one lens, which can reduce the thickness of the beam collimation module, thereby reducing the cost of the beam collimation module.
  • the weight of the lens is also reduced, which can improve the stability of the lens position in the image generation device and reduce the cost of fixing the lens. Reducing the weight of the lens and reducing the fixed cost can reduce the cost of the image generating device and the display device.
  • the beam collimation module includes a Fresnel lens. Fresnel lenses are used to collimate multiple beams, including target beams.
  • the Fresnel lens is small in thickness and light in weight, the volume, weight and cost of the image generating device can be reduced.
  • the small thickness of the Fresnel lens can also reduce the cost of the fixed beam collimation module, further reducing the cost of the image generation device.
  • collimation of the divergent beam can be achieved through a lens array.
  • each of the multiple light sources includes n sub-light sources.
  • the beam collimation module may include a lens array including n lenses. The n lenses are in one-to-one correspondence with n sub-light sources of any one of the plurality of light sources. Any lens among the n lenses is used to collimate the light beam emitted by the corresponding sub-light source.
  • dispersing multiple light beams to n sub-light sources is equivalent to dividing multiple light beams into n bundles. Since the split light source structure reduces the beam range size of multiple light beams, the distance between the light source and the beam collimation module can be reduced, thereby reducing the size of the image generating device and the display device.
  • the image generating device may include multiple parallel light sources, beam expanders, and modulators.
  • any one of the plurality of parallel light sources is used to emit a parallel light beam.
  • the plurality of parallel light beams emitted by the plurality of parallel light sources correspond to the plurality of imaging lights, and the optical axes of the plurality of parallel light beams are different.
  • a target parallel light source corresponding to the target imaging light is used to emit a target parallel light beam.
  • the beam expander is used to increase the diameter of the target parallel beam and project the increased diameter target parallel beam to the modulator.
  • the modulator is used to modulate the target parallel beam with increased aperture to obtain target imaging light.
  • the multiple parallel beams with increased aperture correspond to the multiple imaging lights one-to-one.
  • Multiple parallel light sources correspond to multiple imaging lights one-to-one.
  • Different parallel light beams emitted by different parallel light sources have different optical axes. Therefore, the optical axes of different parallel light beams after the aperture is increased by the beam expander are also different.
  • the modulator modulates different light beams after increasing the aperture, and the optical axes of the different imaging lights obtained are also different.
  • the beams emitted by multiple parallel light sources have low divergence and good directivity.
  • the beams can be modulated to generate imaging light after passing through the beam expander, and no additional optical elements are needed to achieve collimation of the beams. .
  • the structure of the image generating device is simple, and the difficulty of designing and manufacturing the image generating device and the display device is reduced.
  • the beam expander is also called a beam expander, etc., which is not limited in this application.
  • the image generating device includes a parallel light source, a second driving module, a beam expander and a modulator.
  • the second driving module is used to move the parallel light source to a light source position corresponding to the target imaging light; the moved parallel light source is used to emit a target parallel light beam corresponding to the target imaging light.
  • the beam expander is used to increase the diameter of the target parallel beam and project the increased diameter target parallel beam to the modulator.
  • the modulator is used to modulate the target parallel beam with increased aperture to obtain target imaging light.
  • the second driving module can move the parallel light source to multiple positions (the multiple positions correspond to the aforementioned plurality of imaging lights one-to-one), then the different beams emitted by the parallel light source at different positions are enlarged by the beam expander to obtain The optical axes of different beams after increasing the aperture are different. Therefore, the modulator modulates different light beams after increasing the aperture, and the optical axes of the different imaging lights obtained are also different.
  • the parallel light source can project parallel light beams to the modulator at different angles to obtain imaging light in corresponding directions, which is not limited in this application.
  • the second driving module moves the position of the parallel light source to realize illumination at different positions, which can reduce the number of light sources. You only need to move one parallel light source to different positions to achieve the effect of multiple parallel light sources, thereby obtaining the imaging light corresponding to different eye box positions and realizing eye box switching.
  • multiple parallel beams are projected to the beam expander at different angles.
  • multiple parallel light sources in different directions are used to obtain light beams in different directions, thereby obtaining imaging light for projection to different eye box positions. Since the control of the position and direction of the light source is relatively simple, the design and manufacturing costs of the image generating device and the display device can be reduced.
  • the beam expander includes a lens group.
  • the lens group is used to increase the aperture of multiple parallel beams (including target parallel beams).
  • the display device may also include a positioning module.
  • the positioning module is used to determine the target area so that the light source corresponding to the target area emits an illumination beam.
  • the target area corresponds to the human eye position (for example, the target area is centered on the human eye).
  • the light source corresponding to the target area may include the aforementioned multiple light sources, light sources (the solution of the first driving module), multiple parallel light sources, or parallel light sources (the solution of the second driving module).
  • the target area corresponding to the position of the human eye is determined through the positioning module, so that the light source corresponding to the position of the human eye emits an illumination beam, so that the imaging light is projected onto the target area corresponding to the position of the human eye (for example, in On the target area where the human eye position is the center), the display effect of the display device is improved.
  • the first drive module move the light source to a position corresponding to the target area to generate a target beam; or you can also have the second drive module move the parallel light source to a position corresponding to the target area to generate a target beam.
  • Target parallel beam can also be used to determine the target area.
  • the display device further includes a positioning module.
  • the positioning module is used to determine the light source corresponding to the target area to emit the illumination beam to obtain the corresponding imaging light.
  • the target area is the area selected by the user.
  • the light source corresponding to the target area may include the aforementioned multiple light sources, light sources (the solution of the first driving module), multiple parallel light sources, or parallel light sources (the solution of the second driving module).
  • the area selected by the user is determined through the positioning module, so that the corresponding light source emits an illumination beam according to the user's selection instructions, so that the imaging light is projected onto the target area selected by the user, thereby improving the relationship between the display device and the user. of interactivity.
  • the first drive module move the light source to a position corresponding to the target area to generate a target beam; or you can also have the second drive module move the parallel light source to a position corresponding to the target area to generate a target beam.
  • Target parallel beam can also be used to determine the target area.
  • the image generating device further includes a diffuser. Diffusers are used to increase the spread angle of multiple collimated beams.
  • the diffuser is used to increase the diffusion angle of the multiple light beams, thereby increasing the diffusion angle of the multiple imaging lights generated after the collimated multiple light beams are modulated, thereby increasing the multiple imaging light projections. to the eye box area to achieve large eye box display.
  • the image generating device further includes a diffuser.
  • the diffuser is used to increase the diffusion angle of multiple parallel beams after increasing the aperture.
  • a diffuser is used to increase the diffusion angle of multiple parallel light beams, thereby increasing the diffusion angle of multiple imaging lights, thereby increasing the range of the eye box area to which the multiple imaging lights are projected, thereby achieving a large eye box display.
  • the image generating device further includes a diffuser. Diffusers are used to increase the diffusion angle of multiple imaging lights.
  • a diffuser is used to increase the diffusion angle of multiple imaging lights, thereby increasing the range of the eye box area to which the multiple imaging lights are projected, thereby achieving a large eye box display.
  • the diffuser may include diffractive optical elements such as frosted glass, gratings, periodic microstructure devices, etc. This application does not limit this.
  • the modulator includes any one of a liquid crystal display (LCD), a thin film transistor (TFT), and a liquid crystal on silicon (LCOS). item.
  • LCD liquid crystal display
  • TFT thin film transistor
  • LCOS liquid crystal on silicon
  • inventions of the present application provide a vehicle.
  • the vehicle includes the display device described in the first aspect.
  • the display device is installed on the vehicle.
  • the vehicle further includes a reflective element.
  • Display devices on vehicles are used to The reflective element projects target imaging light.
  • the reflective element is used to reflect the target imaging light.
  • embodiments of the present application also provide a display method, which is applied to a display device.
  • the display device includes an image generating device, a first concave mirror and a second concave mirror.
  • the method includes: an image generating device generates target imaging light corresponding to a target area, and projects the target imaging light to the target area.
  • the eye box of the display device includes multiple areas, and the target area is one of the multiple areas. Multiple imaging lights corresponding to multiple areas are projected to different areas of the eye box through the first concave mirror and the second concave mirror. Wherein, a plurality of imaging lights intersect between the first concave mirror and the second concave mirror.
  • the plurality of imaging lights after passing through the second concave mirror, are parallel to each other.
  • the display device can emit an illumination beam through a light source corresponding to the target area to obtain target imaging light.
  • the target area corresponds to the human eye position or the area selected for the user.
  • Figure 1 is a schematic diagram of the application scenario of the display device of the present application.
  • Figure 2 is a schematic diagram of the HUD scene of the display device of the present application.
  • Figure 3 is a schematic diagram of a table display scene of the display device of the present application.
  • Figure 4 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a display device in a table display scenario provided by an embodiment of the present application.
  • Figure 6a is a schematic structural diagram of an image generation device including a lens group provided by an embodiment of the present application.
  • Figure 6b is a schematic structural diagram of an image generation device including a reflective modulator provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an image generation device including a Fresnel lens provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an image generation device including a lens array provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of an image generation device including a first driving module provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of an image generation device including a parallel light source provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of an image generation device including a second driving module provided by an embodiment of the present application.
  • Figure 12 is a schematic flowchart of a display method provided by an embodiment of the present application.
  • Figure 13 is a schematic functional framework diagram of a vehicle provided by an embodiment of the present application.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A and B can be singular or plural.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • At least one of the following" or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, c can be single or multiple .
  • the display device of this application is used in projection display scenarios. As shown in Figure 1, the display device projects the imaging light on the reflective element, and the reflective element reflects the imaging light to the human eye, and the virtual image is presented to the human eye.
  • the imaging light in addition to reflecting the imaging light to the human eye to present a virtual image, the imaging light can also be reflected to other subjects. For example, it can be reflected to the image receiving surface of sensors, test equipment, intelligent learning equipment, etc., to achieve detection, debugging, training, etc. of the corresponding equipment. There is no limitation here.
  • the display device can be applied in scenarios such as head-up display (HUD) and table display.
  • HUD head-up display
  • table display table display
  • the reflective element is the windshield.
  • the image generating device on the display device outputs imaging light.
  • the imaging light is reflected by the curved mirror and projected onto the windshield.
  • the windshield reflects the imaging light to the human eye, and a virtual image appears on the human eye.
  • the windshield is only an example of a reflective element.
  • the reflective element can also be transparent ceramics, resin or other optical materials, which is not limited here.
  • the image generation device in the display device may be a picture generation unit (PGU), and the display device may be a HUD.
  • PGU picture generation unit
  • HUD can be applied to vehicles, airplanes and other means of transportation. In addition, it can also be applied to central control rooms, architectural landscapes, advertising and other scenarios. There are no limitations here.
  • the main function of the windshield in Figure 2 is to reflect imaging light, so the types of reflective elements in these scenarios are not limited.
  • the image generating device on the display device outputs imaging light.
  • the imaging light is reflected by the transflective element and the curved mirror, and is projected onto the human eye through the transflective element, thereby presenting a virtual image on the human eye.
  • the imaging light is projected onto the human eye for imaging. Since the beam diameter of the imaging light is limited and the imaging light propagates along the optical axis of the imaging light, the range of the imaging light reflected to the vicinity of the human eye is limited. Therefore, different eyebox areas are defined. If the human eye is located within the scope of the eye box, the human eye can receive all or most of the imaging light projected by the image generating device, thereby receiving all the projected images (ie, the virtual images in Figures 1 to 3).
  • human eyes refer to the eyes of the user. Users can have different interpretations in different scenarios.
  • the user in the HUD scenario, the user can be the driver or co-pilot on the vehicle, or the audience in the central control room, architectural landscape, advertising, etc.; in the table display scenario, the user can be the audience.
  • the above-mentioned audience is not limited to humans and other living creatures, but can also be devices such as robots.
  • the user's eyes represent the image collection devices of these devices. (can receive imaging light), the embodiment of the present application does not limit this.
  • the human eye can also be a simulated user during the design, production, and testing of the display device, such as a camera that simulates the human eye.
  • Different users may have different eye heights, which correspond to eye boxes of different heights.
  • one method is to increase the diffusion angle of the imaging light.
  • the imaging light with a larger diffusion angle is reflected by the windshield to human eyes (eye boxes) at different heights, so that human eyes at different heights can receive complete imaging light.
  • the diffusion angle of the imaging light is increased, the divergence of the imaging light will increase, thereby reducing the intensity of the imaging light.
  • the brightness of the imaging light source needs to be increased, resulting in high power consumption of the image generation device.
  • embodiments of the present application provide a display device and a vehicle.
  • the display device provided by the embodiment of the present application generates imaging light on different optical axes corresponding to different eye box positions, thereby reducing the diffusion angle of the imaging light and reducing power consumption.
  • a display device 4000 provided by an embodiment of the present application includes an image generating device 4100 , a first concave mirror 4200 and a second concave mirror 4300 .
  • the image generating device 4100 is used to generate target imaging light corresponding to the target area.
  • the eye box of the display device 4000 includes multiple areas, and the target area is one of the multiple areas. Each area in the multiple areas corresponds to an imaging light, and the optical axes of the multiple imaging lights corresponding to the multiple areas are different (the optical axis in the embodiment of the present application is the center line of the light beam), and the multiple imaging lights are all Projected to the first concave mirror 4200.
  • the first concave mirror 4200 is used to project the target imaging light to the second concave mirror 4300
  • the second concave mirror 4300 is used to project the target imaging light to the target area of the eye box.
  • multiple imaging lights corresponding to multiple areas of the eye box are projected to the first concave mirror 4200, and the multiple imaging lights intersect between the first concave mirror 4200 and the second concave mirror 4300. After passing through the second concave mirror 4300, the plurality of imaging lights are projected to respective corresponding areas.
  • the eye box of the display device 4000 includes a first area and a second area.
  • the first area corresponds to the first imaging light
  • the second area corresponds to the second imaging light.
  • the target area may be either the first area or the second area.
  • the first imaging light and the second imaging light are emitted from the image generating device 4100, they are both projected to the first concave mirror 4200.
  • the optical axes of the first imaging light and the second imaging light are different (the optical axis in the embodiment of the present application is the center line of the light beam), and the first imaging light and the second imaging light are aligned between the first concave mirror 4200 and the second imaging light.
  • Concave mirrors 4300 intersect. After passing through the second concave mirror 4300, the first imaging light is projected to the first eye box position, and the second imaging light is projected to the second eye box position.
  • the eye box of the display device 4000 includes multiple areas.
  • the target imaging light eg, the first imaging light or the second imaging light
  • the target imaging light generated by the display device 4000 only needs to be projected to the corresponding area, and does not need to be projected to the entire eye box of the display device 4000 . Therefore, the light source in the display device 4000 only needs to illuminate this area, and does not need to illuminate the entire eye box of the display device 4000 .
  • the illumination range of the light source is reduced, thereby reducing the power consumption of the display device 4000.
  • the eyebox of the display device 4000 includes a first area and a second area. If the display device 4000 generates the first imaging light (target imaging light) according to the actual position of the human eye, the first imaging light only needs to be projected to the first area to be received by the human eye, and does not need to be projected to the second area. Therefore, the light source in the display device 4000 only needs to illuminate the first area and does not need to illuminate the second area, which can reduce the power consumption of the display device 4000 .
  • the first imaging light target imaging light
  • the second concave mirror 4300 can project different imaging lights to different areas in the same direction.
  • the first imaging light and the second imaging light are parallel to each other after being reflected by the second concave mirror 4300 .
  • the reflective element it is also projected in parallel to different areas.
  • Two parallel beams of imaging light converge at infinity, that is, they converge at the virtual image position shown in Figure 4.
  • the virtual image is usually displayed at a position n (n ⁇ 1) meters in front of the reflective element. In the embodiment of the present application, a distance of n meters can be regarded as infinity.
  • the plurality of imaging lights projected to the human eye are parallel to each other, human eyes (eye boxes) of different heights can receive the imaging light at the same angle. Since different imaging lights projected to the human eye are parallel to each other, in the HUD scene, through the display device (HUD) provided by the embodiment of the present application, the virtual images corresponding to all areas in the eye box can be made to be on the ground, preventing the virtual images from floating on the ground. Danger in the air.
  • first area and the second area in FIG. 4 are only examples of different eyebox positions of the display device 4000.
  • the display device 4000 can be used to obtain imaging light corresponding to more areas (for example, it can be 3, 4 or more areas).
  • the first area and the second area appearing in the embodiment of the present application may be any two areas among the multiple areas mentioned above, and the present application does not limit this.
  • the eye box of the display device 4000 can be divided into an upper area, a middle area, and a lower area from top to bottom.
  • the first region and the second region may be an upper region and a lower region respectively, or they may be an upper region and a middle region respectively, or other combinations, which are not limited in this application.
  • the reflective element may be a windshield glass
  • the first concave mirror 4200 may be a small curved mirror
  • the second concave mirror 4300 may be a large curved mirror.
  • the display device 4000 provided by the embodiment of the present application is applied in the desktop display application scenario shown in Figure 3.
  • the structure of the display device 4000 can be as shown in Figure 5.
  • the first concave mirror 4200 may be a recess on an optical element, and the optical element is used to reflect the light from the first concave mirror 4200 to the second concave mirror 4300 and transmit the light from the second concave mirror 4300.
  • the optical element may be a partially reflective and partially transmissive optical element.
  • the embodiments of this application do not limit the ratio of reflection to transmission (for example, half reflection and half transmission, 40% reflection, 60% transmission, etc.).
  • the element may be a glass screen, and the first concave mirror 4200 may be a piece of sunken glass on the glass screen.
  • optical elements can also exist in other forms, such as independent concave mirrors, reflective films on concave glass, semi-transparent and semi-reflective films, etc., which are not limited in this application.
  • the image generation device 4100 is used to obtain target imaging light, where the target imaging light is any one of multiple imaging lights corresponding to multiple areas. That is to say, the image generating device 4100 has the ability to generate any one of the plurality of imaging lights mentioned above.
  • an image generation device 4100 provided by an embodiment of the present application includes multiple light sources, a beam collimation module 4130 and a modulator 4140.
  • any light source among the plurality of light sources is used to emit a light beam
  • the plurality of light beams emitted by the plurality of light sources correspond to the plurality of imaging lights one-to-one.
  • the target light source corresponding to the target imaging light among the plurality of light sources is used to emit the target light beam, and the target light beam may be any one of the plurality of light beams.
  • Beam collimation module 4130 is used to collimate the target beam, And project the collimated target beam to the modulator 4140.
  • the modulator 4140 is used to modulate the collimated target beam to obtain target imaging light.
  • the beam collimation module 4130 collimates different beams among the plurality of beams, and the optical axes of the different collimated beams are different. Since the optical axes of different collimated light beams are different, the modulator 4140 modulates the different collimated light beams, and the optical axes of the different imaging lights obtained are also different.
  • the plurality of light sources include a first light source 4110 and a second light source 4120.
  • the first light source 4110 is used to emit a first light beam
  • the second light source 4120 is used to emit a second light beam.
  • the target light beam may be any one of the first light beam and the second light beam.
  • the beam collimation module 4130 is used to collimate the first beam and project the collimated first beam to the modulator 4140.
  • the beam collimation module 4130 is also used to collimate the second beam and project the collimated second beam to the modulator 4140.
  • the optical axes of the collimated first beam and the collimated second beam are different.
  • the modulator 4140 is used to modulate the collimated first light beam according to the first image data to obtain first imaging light.
  • the first imaging light is projected to the first area through the first concave mirror 4200 and the second concave mirror 4300 .
  • the modulator 4140 can modulate the collimated second light beam according to the second image data to obtain second imaging light, and the second imaging light is projected to the second area through the first concave mirror 4200 and the second concave mirror 4300 .
  • the display device 4000 including multiple light sources and the beam collimation module 4130 has a simple structure, low requirements on devices, It has the advantages of wide application range and low cost.
  • the multiple light sources may be any one of point light sources, surface light sources, and volume light sources, which is not limited in this application.
  • the modulator 4140 may include: any one of a liquid crystal display (liquid crystal display, LCD), a thin film transistor (TFT), and a liquid crystal on silicon (liquid crystal on silicon, LCOS). This application discusses No restrictions.
  • a diffuser 4180 can also be added on the optical path between the beam collimation module 4130 and the modulator 4140.
  • the diffuser 4180 is used to increase the diffusion angle of the collimated multiple light beams, thereby increasing the diffusion angle of the multiple imaging lights, and increasing the range to which the multiple imaging lights can be projected, thereby increasing the size of the eye box.
  • the diffuser 4180 is used to enlarge the eye box.
  • the relationship between the diffusion angle of the diffuser 4180 and the size of the eye box can be as shown in Table 1:
  • the eye box size in Table 1 is the area size of the above-mentioned multiple areas projected to the human eye direction, and does not represent the size of the total eye box including multiple areas of the display device 4000 .
  • the diffuser 1480 may include diffractive optical elements such as frosted glass, gratings, etc., which is not limited by the present application.
  • the modulator 4140 may be a transmissive modulator, such as a liquid crystal display LCD, a thin film transistor TFT, etc. This application does not limit this.
  • the modulator 4140 may also be other types of modulators, such as liquid crystal on silicon LCOS, etc.
  • the corresponding optical path structure is as shown in Figure 6b.
  • a polarization beam splitter (PBS) 4190 is also included.
  • the polarization beam splitter 4190 is used to achieve splitting between the light beam corresponding to the imaging light and the imaging light.
  • the polarizing beam splitter 4190 can transmit the collimated first light beam to the modulator 4140 and reflect the modulated first imaging light to the first concave mirror 4200 .
  • the polarization beam splitter 4130 may transmit the collimated second light beam to the modulator 4140 and reflect the modulated second imaging light to the first concave mirror 4200 .
  • a lens may also be included between the polarizing beam splitter 4190 and the diffuser 4180.
  • a diffuser 4180 can be added on the optical path after the modulator 4140 to increase the diffusion angle of multiple imaging lights and increase the size of the eye box.
  • the diffuser 4180 can be added to the structure of any embodiment of the present application to increase the size of the eye box, which is not limited by the present application.
  • the modulator 4110 is a reflective modulator (such as LCOS)
  • the corresponding optical path structure is as shown in Figure 6b, which will not be described again below.
  • the beam collimation module 4130 may be the lens group shown in Figure 6a or Figure 6b.
  • the lens group includes a plurality of lenses, and the plurality of lenses are used to collimate a plurality of light beams.
  • the lens group may include a first lens 4131 and a second lens 4132.
  • the first lens 4131 and the second lens 4132 are used to collimate the first light beam and the second light beam.
  • the beam collimation module 4130 can also be a lens, that is, the lens group in Figure 6a or Figure 6b can be replaced by a lens, which is not limited in this application.
  • the total thickness of the lens in the lens group form of the beam collimation module 4130 is small, so this structure can reduce the thickness of the beam collimation module 4130 and the volume of the display device 4000.
  • the lens group reduces the total thickness of the lenses in the beam collimation module 4130, which can also reduce the total weight of the lenses in the beam collimation module 4130, thereby improving the stability of the lens position in the image generation device 4100 and reducing the need for fixation. the cost of the lens, thereby reducing the cost of the display device 4000.
  • Figure 6a and Figure 6b take two lenses as an example to illustrate the structure of the lens group.
  • the embodiments of the present application do not limit the number of lenses in the lens group.
  • the lens group may also include 3, 4 or more lenses. , this application does not limit this.
  • the position of the light source relative to the beam collimating module 4130 can determine the angle between the corresponding beam and the optical axis of the beam collimating module 4130.
  • the optical axis of the first light source 4130 and the beam collimation module 4130 i.e., the symmetry axis of the optical system of the beam collimation module 4130, is also called the The distance between the symmetry axes
  • the angle ⁇ between the collimated first beam and the optical axis of the beam collimation module 4130 complies with Formula 1:
  • the main plane of the image side of the beam collimation module 4130 is defined as follows: parallel light at infinity is illuminated on the beam collimation module 4130. After refraction, the light will pass through the focus of the image side of the beam collimation module 4130. After refraction The reverse extension of the light intersects with the incident light at a point, and the plane perpendicular to the optical axis through this point is the beam collimation module 4130 The principal plane of the image square.
  • the eye box of the display device 4000 includes multiple areas. By turning on multiple light sources corresponding to the multiple areas, the entire eye box of the display device can be illuminated. By determining the target area to be projected from the entire eye box, the ⁇ and h corresponding to the target area can be determined, so that the target area can be illuminated through the light source corresponding to h. Therefore, different target areas and corresponding h can be determined in different scenarios to achieve lighting of different areas in different scenarios and reduce power consumption.
  • the beams on different straight lines can be obtained through the beam collimating module.
  • Position control of multiple light sources is easy to implement and has high control accuracy. It can reduce the difficulty of designing and manufacturing the light source module and reduce the cost, and due to its high precision, it can improve the position accuracy of the imaging light projected to the corresponding eye box and improve the display effect.
  • some of the light sources are at different distances from the symmetry axis of the beam collimation module (for example, light source 1 and light source 2 are different from the symmetry axis, light source 3 and light source 2 are from the symmetry axis).
  • some light sources are at the same distance from the symmetry axis of the beam collimation module, then two light sources with the same distance are on different sides of the symmetry axis of the beam collimation module (for example, light source 1 and light source 3 are at the same distance from the symmetry axis, then the light sources 1 and light source 3 are on different sides of the symmetry axis).
  • the focal length f of the beam collimating module 4130 is the equivalent focal length of the lens group.
  • the value range of the included angle ⁇ ’ can be 1° ⁇ ’ ⁇ 10°.
  • the value range of the light source spacing h’ can be 0.2mm ⁇ h’ ⁇ 2.11mm, which is not limited in this application.
  • ⁇ ’ has a large adjustment range (1° to 10°), which can match the needs of different imaging light angles in more scenes.
  • the beam collimation module 4130 can also be in other forms, such as the Fresnel lens 4130 shown in Figure 7, the lens shown in Figure 8 Array 4130, etc.
  • the Fresnel lens 4130 has the advantages of small thickness and light weight, and can reduce the volume and cost of the image generation device 4100, thereby reducing the volume and cost of the display device 4000.
  • the structure of the image generating device 4100 including the lens array 4130 is shown in FIG. 8 .
  • the image is generated
  • the multiple light sources of the device 4100 each include n sub-light sources (for example, the first light source includes n first sub-light sources 4110a-4110n, and the second light source includes n second sub-light sources 4120a-4120n. Three examples are used in Figure 8, and does not cause any limitation on n).
  • the beam collimation module 4130 in the image generation device 4100 may be a lens array 4130.
  • the lens array 4130 includes n lenses, and the n lenses correspond one to one to n sub-light sources of any one of the plurality of light sources.
  • any lens among the n lenses is used to collimate the light beam emitted by the corresponding sub-light source.
  • the lens 4130a shown in FIG. 8 corresponds to the first sub-light source 4110a and the second sub-light source 4120a
  • the lens 4130b corresponds to the first sub-light source 4110b and the second sub-light source 4120b, and so on.
  • the first light source 4110 includes (upper, middle and lower) three first sub-light sources 4110a-4110c
  • the second light source 4120 includes (upper, middle and lower) three second sub-light sources 4120a-4120c
  • the lens array 4130 includes (Top, middle and bottom) Three lenses 4130a-4130c.
  • first sub-light sources i.e. 4110a, 4110b and 4110c
  • the first beam includes images corresponding to the three first The upper, middle and lower parts of the sub-light source
  • the three (upper, middle and lower) lenses in the lens array 4130 respectively collimate the upper, middle and lower parts of the first light beam (that is, the lens 4130a collimates the light emitted by the first sub-light source 4110a.
  • the lens 4130b collimates the middle part of the first light beam emitted by the first sub-light source 4110b, and so on) to obtain the collimated first light beam, and projects the collimated first light beam to Modulator 4140.
  • the modulator 4140 modulates the collimated first light beam according to the first image data to obtain first imaging light.
  • the first imaging light is projected to the first area through the first concave mirror 4200 and the second concave mirror 4300 .
  • the second imaging light corresponding to the second area (upper, middle and lower) three second sub-light sources (i.e. 4120a, 4120b and 4120c) all light up and emit a second beam (the second beam includes images corresponding to three second sub-light sources).
  • the lens 4130b collimates the middle part of the second beam emitted by the second sub-light source 4120b, and so on) to obtain the collimated second beam, and project the collimated second beam to Modulator 4140.
  • the modulator 4140 modulates the collimated second light beam according to the second image data to obtain second imaging light.
  • the second imaging light is projected to the second area through the first concave mirror 4200 and the second concave mirror 4300 .
  • the image generation device 4100 including a lens array disperses multiple light beams to n light sources for emission, which is equivalent to dividing the multiple light beams into n beams. Since the split light source structure reduces the range size of each of the multiple light beams, the distance between the light source (eg, the first light source 3110/second light source 3120) and the beam collimation module 3130 can be reduced, thereby reducing the The size of the small image generating device.
  • the distance h” between the sub-light sources and the angle ⁇ ’ between the light beams can be as shown in Table 2:
  • the first light source 4110, the second light source 4120 and the lens array 4130 are all Including the upper, middle and lower parts, h' can represent the distance between the first sub-light source of the upper part and the second sub-light source of the upper part; or the distance between the middle part and the lower part, which is not limited in this application.
  • the difference between multiple light sources is the position of the light sources relative to the optical axis of the beam collimation module 4130 . Therefore, the light source can be moved by the driving module to achieve the effect of multiple light sources, thus reducing the number of light sources.
  • the image generation device 4100 may further include a first driving module 4150 for moving the light source to a target light source position corresponding to the target area.
  • the target light source position may be the light source position where the first light source 4110 or the second light source 4120 is located. For example, if the target area is the first area, then the target light source position is the position of the first light source 4110 in the figure.
  • the first driving module 4150 may be a motor or other mechanical driving structure, which is not limited in this application.
  • the first driving module 4150 moves the position of the light source to change the direction of the illumination beam to match different areas of the eye box; the number of light sources can be reduced, and only one light source needs to be moved to a different position. The effect of multiple light sources, thereby imaging in different areas.
  • the image generation device 4100 may also include a track.
  • the track includes multiple light source positions, and the multiple light source positions correspond to multiple areas.
  • the first driving module 4150 can drive the light source to move to any light source position on the track, and the imaging light can be projected to any area of the eye box, thereby expanding the location of the projection area.
  • the image generation device 4100 may also include a positioning module 4160.
  • the positioning module 4160 is used to determine the target area, so that the light source corresponding to the target area emits an illumination beam to obtain target imaging light.
  • the light source corresponding to the target area may be any light source among multiple light sources (for example, any light source in Figures 6a to 8).
  • the positioning module 4160 can instruct the first driving module 4150 to move to the target light source position (for example, the position where the second light source 4120 is located).
  • the first driving module 4150 moves the light source to a position corresponding to the target area according to the instruction.
  • the moved light source can illuminate the modulator 4140, and the generated target imaging light can be projected to the target through the first concave mirror 4200 and the second concave mirror 4300. area.
  • the target area may be an area selected by the user, or may be a position corresponding to the human eye. If the target area is an area selected by the user, the interactivity between the display device 4000 and the user can be improved. If the target area corresponds to the position of the human eye, the position of the light source can be moved according to the position of the human eye, so that the imaging light moves with the position of the human eye, so that the imaging light is projected to the area centered on the human eye, which improves the efficiency of the image generation device. display effect.
  • the positioning module 4160 can send the target area to the central processing unit (CPU), processing module, etc. of the image generation device.
  • the CPU or processing module can instruct the light source corresponding to the target area to emit an illumination beam. .
  • the user may be a driver in a HUD scene or a viewer in a table display scene, which is not limited in this application.
  • the human eye may be the user's eye as described above.
  • FIG. 9 is only an example of an image generation device 4100 that achieves multiple light source effects by moving light sources, and the embodiment of the present application does not limit the form of the beam collimation module 4130 in this structure.
  • the Fresnel lens 4130 in Figure 9 can also be replaced by a lens group 4130, a lens array, etc., which is not limited in this application.
  • the image generating device 4100 includes a plurality of parallel light sources (for example, a first parallel light source 4110 and a second parallel light source 4120), a beam expander 4130 and a modulator 4140.
  • the parallel light source is a light source used to obtain parallel light beams, such as a laser light source.
  • a light beam with a divergence angle ⁇ n is called a parallel light beam, where n can be 20°, 15°, 10°, 8°, 5°, etc. This application does not limit this.
  • any parallel light source among the multiple parallel light sources is used to emit a parallel light beam.
  • the multiple parallel light beams emitted by the multiple parallel light sources correspond to the multiple imaging lights one-to-one, and the optical axes of the multiple parallel light beams are on different straight lines. superior.
  • a target parallel light source corresponding to the target imaging light is used to emit a target parallel light beam.
  • the beam expander 4130 is used to increase the diameter of the target parallel beam, and project the increased diameter target parallel beam to the modulator 4140 .
  • the modulator 4140 is used to modulate the target parallel beam with an increased aperture to obtain target imaging light.
  • Multiple parallel light sources correspond to multiple imaging lights in a one-to-one manner.
  • Different parallel light beams emitted by different parallel light sources have different optical axes. Therefore, the optical axes of different parallel light beams after the aperture is increased by the beam expander 4130 are also different.
  • the modulator 4140 modulates different light beams after the aperture is increased, and the optical axes of the different imaging lights obtained are also different.
  • the plurality of parallel light sources may include a first parallel light source 4110 and a second parallel light source 4120 .
  • the first parallel light source 4110 is used to emit a first parallel light beam.
  • the second parallel light source 4120 is used to emit a second parallel light beam.
  • the optical axis of the second parallel beam is different from that of the first parallel beam.
  • the target beam may be any one of the first beam and the second beam.
  • the beam expander 4130 is used to increase the diameter of the first parallel beam, and project the first parallel beam with the increased diameter to the modulator 4140; and to increase the diameter of the second parallel beam, and project the first parallel beam with the increased diameter to the modulator 4140. Two parallel beams are projected to modulator 4140.
  • the modulator 4140 is used to modulate the first parallel light beam with an increased diameter according to the first image data to obtain the first imaging light; and modulate the second parallel light beam with an increased diameter according to the second image data to obtain the second imaging light.
  • the first imaging light and the second imaging light may be respectively projected to the first area and the second area through the first concave mirror 4200 and the second concave mirror 4300 .
  • the parallel light beam emitted by the parallel light source has low divergence and good directivity.
  • the parallel beam can be modulated to generate imaging light after passing through the beam expander 4130, and no additional optical devices are needed to achieve collimation of the beam. This makes the structure of the image generating device 4100 simple, and reduces the difficulty of designing and manufacturing the image generating device 4100 and the display device 4000.
  • parallel light beams in different directions are obtained through multiple parallel light sources in different directions, thereby obtaining imaging light for projection to different areas of the eye box. Since the control of the light source direction is relatively simple, the design and manufacturing costs of the image generating device 4100 and the display device 4000 can be reduced.
  • the difference between different parallel light sources lies in the angle at which the light beams emitted by the light sources are projected onto the beam expander 4130 . Therefore, the parallel light source can be rotated by the driving module to achieve the effect of multiple parallel light sources, thereby reducing the number of light sources.
  • the image generation device 4100 may further include a second driving module 4170 for moving the parallel light source to a light source position corresponding to the target imaging light.
  • the target light source position may be the light source position where the first parallel light source 4110 or the second parallel light source 4120 is located. For example, if the target area is the first area, then the target light source position is the position of the first parallel light source 4110 in the figure.
  • the parallel light source can project parallel light beams to the modulator at different angles to obtain imaging light in corresponding directions, which is not limited in this application.
  • the second driving module 4170 may be a motor or other mechanical driving structure, which is not limited in this application.
  • the second driving module 4170 moves the position of the light source to change the illumination direction of the light source to match different eye boxes; the number of light sources can be reduced, and only one parallel light source needs to be moved to a different position. The effect of multiple parallel light sources, thereby imaging in different eye boxes.
  • the image generation device 4100 may also include a track.
  • the track includes multiple light source positions, and the multiple light source positions correspond to multiple eyebox positions.
  • the second driving module 4170 can drive the parallel light source to move to any light source position on the track, and the imaging light can be projected to any area of the eye box, thereby expanding the area position.
  • the image generation device 4100 may also include a positioning module 4160.
  • the positioning module 4160 is used to instruct the light source corresponding to the target area to emit an illumination beam to obtain target imaging light.
  • the light source corresponding to the target area can be any light source among multiple light sources (for example, any light source in Figure 10).
  • the positioning module 4160 can instruct the parallel light source to move to the light source position corresponding to the target area (for example, the position of the second parallel light source 4120), and the moved parallel light source can illuminate
  • the target imaging light generated by the modulator 4140 can be projected to the target area through the first concave mirror 4200 and the second concave mirror 4300 .
  • the target area may be an area selected by the user, or may correspond to the position of the human eye. If the target area is an area selected by the user, the interactivity between the display device 4000 and the user can be improved. If the target area corresponds to the position of the human eye, the position of the light source can be moved according to the position of the human eye, so that the imaging light moves with the position of the human eye, so that the imaging light is projected to the sub-eye box position centered on the human eye, improving image generation.
  • the display effect of the device For the explanation to the user, please refer to the description in Figure 9 and will not be repeated here.
  • the image generation device 4100 shown in any embodiment of Figures 6a to 11 can be applied to the display device 4000 shown in Figures 4 and 5, and this application is not limited thereto.
  • FIG 12 is a schematic flowchart of a display method provided by an embodiment of the present application. This method can be applied to any of the aforementioned display devices 4000. As shown in Figure 12, the method includes:
  • the image generating device generates target imaging light corresponding to the target area.
  • the eye box of the display device includes multiple areas, and the target area is one of the multiple areas.
  • the plurality of imaging lights corresponding to the plurality of sub-regions are projected to different regions of the eye box through the first concave mirror and the second concave mirror.
  • the image generation device 4100 can generate target imaging light corresponding to the target area according to the actual position of the human eye. Among them, the actual position of the human eye is within the range of the target area.
  • the target imaging light may be the first imaging light or the second imaging light in the previous embodiment, which is not limited in this application.
  • the image generating device projects the target imaging light to the target area.
  • the target imaging light can be projected to the target area through the first concave mirror 4200 and the second concave mirror 4300 .
  • the optical paths of the target imaging light are shown in Figures 4 to 11 and will not be described again here.
  • the plurality of imaging lights after passing through the second concave mirror, are parallel to each other.
  • the display device can emit an illumination beam through a light source corresponding to the target area to obtain target imaging light.
  • the imaging light is projected to the target area through the first concave mirror and the second concave mirror.
  • the target area is Responds to the human eye position or to an area selected by the user.
  • FIG. 13 is a schematic diagram of a possible functional framework of a vehicle provided by an embodiment of the present application.
  • the functional framework of the vehicle may include various subsystems, such as the sensor system 12 in the figure, the control system 14, one or more peripheral devices 16 (one is shown as an example in the figure), a power supply 18.
  • Computer system 20 and head-up display system 22 may also include other functional systems, such as an engine system that provides power for the vehicle, etc., which is not limited in this application.
  • the sensor system 12 may include several detection devices, which can sense the measured information and convert the sensed information into electrical signals or other required forms of information output according to certain rules.
  • these detection devices may include a global positioning system (GPS), vehicle speed sensor, inertial measurement unit (IMU), radar unit, laser rangefinder, camera device, wheel speed sensor, Steering sensors, gear sensors, or other components used for automatic detection, etc. are not limited in this application.
  • the control system 14 may include several elements, such as the illustrated steering unit, braking unit, lighting system, automatic driving system, map navigation system, network time synchronization system and obstacle avoidance system.
  • the control system 14 may also include components such as a throttle controller and an engine controller for controlling the driving speed of the vehicle, which are not limited in this application.
  • Peripheral device 16 may include several elements, such as a communication system, a touch screen, a user interface, a microphone and a speaker as shown, among others.
  • the communication system is used to realize network communication between vehicles and other devices other than vehicles.
  • the communication system can use wireless communication technology or wired communication technology to realize network communication between vehicles and other devices.
  • the wired communication technology may refer to communication between vehicles and other devices through network cables or optical fibers.
  • the power source 18 represents a system that provides power or energy to the vehicle, which may include, but is not limited to, rechargeable lithium batteries or lead-acid batteries, etc. In practical applications, one or more battery components in the power supply are used to provide electric energy or energy for starting the vehicle. The type and material of the power supply are not limited in this application.
  • the computer system 20 may include one or more processors 2001 (one processor is shown as an example) and a memory 2002 (which may also be referred to as a storage device).
  • the memory 2002 may also be inside the computer system 20 or outside the computer system 20 , for example, as a cache in a vehicle, etc., which is not limited by this application. in,
  • Processor 2001 may include one or more general-purpose processors, such as a graphics processing unit (GPU).
  • the processor 2001 may be used to run relevant programs or instructions corresponding to the programs stored in the memory 2002 to implement corresponding functions of the vehicle.
  • Memory 2002 may include volatile memory (volatile memory), such as RAM; memory may also include non-volatile memory (non-vlatile memory), such as ROM, flash memory (flash memory), HDD or solid state drive SSD; memory 2002 may also include combinations of the above types of memories.
  • the memory 2002 can be used to store a set of program codes or instructions corresponding to the program codes, so that the processor 2001 can call the program codes or instructions stored in the memory 2002 to implement corresponding functions of the vehicle. This function includes but is not limited to some or all of the functions in the vehicle function framework diagram shown in Figure 13. In this application, the memory 2002 may store a set of parameters for vehicle control. Program code, the processor 2001 calls the program code to control the safe driving of the vehicle. How to realize the safe driving of the vehicle will be described in detail below in this application.
  • the memory 2002 may also store information such as road maps, driving routes, sensor data, and the like.
  • the computer system 20 can be combined with other elements in the vehicle functional framework diagram, such as sensors in the sensor system, GPS, etc., to implement vehicle-related functions.
  • the computer system 20 can control the driving direction or driving speed of the vehicle based on data input from the sensor system 12 , which is not limited in this application.
  • Heads-up display system 22 may include several elements, such as the illustrated windshield, controls, and heads-up display.
  • the controller 222 is configured to generate an image according to user instructions (for example, generate an image containing vehicle status such as vehicle speed, power/fuel level, and an image of augmented reality AR content), and send the image to the head-up display for display; the head-up display may include an image
  • the generation unit, reflector combination, and front glass are used to cooperate with the head-up display to realize the light path of the head-up display system, so that the target image is presented in front of the driver.
  • the functions of some components in the head-up display system can also be implemented by other subsystems of the vehicle.
  • the controller can also be a component in the control system.
  • Figure 13 of this application shows that it includes four subsystems.
  • the sensor system 12, the control system 14, the computer system 20 and the head-up display system 22 are only examples and do not constitute a limitation.
  • vehicles can combine several components in the vehicle according to different functions to obtain subsystems with corresponding different functions.
  • the vehicle may include more or fewer systems or components, which is not limited by this application.
  • the above-mentioned means of transportation can be cars, trucks, motorcycles, buses, boats, airplanes, helicopters, lawn mowers, recreational vehicles, playground vehicles, construction equipment, trams, golf carts, trains, and trolleys.
  • the application examples are not particularly limited.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including a number of instructions for causing a computer device to (can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本申请实施例公开了一种图像显示设备和交通工具,用于在HUD、桌显等场景下降低功耗。本申请实施例提供的显示设备包括:图像生成装置,用于生成目标区域对应的目标成像光,显示设备的眼盒包括多个区域,目标区域为多个区域中的一个区域。其中,多个区域中的每个区域对应一个成像光,多个区域对应的多个成像光的光轴不同。第一凹面镜,用于将目标成像光投射至第二凹面镜。第二凹面镜,用于将目标成像光投射至目标区域。

Description

一种显示设备和交通工具
本申请要求于2022年8月17日提交中国国家知识产权局、申请号为202210989388.7、申请名称为“一种显示设备和交通工具”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示领域,尤其涉及一种显示设备和交通工具。
背景技术
在投影显示技术中,显示设备将成像光投射到玻璃等反射元件上。反射元件将成像光反射至人眼,实现成像光到人眼的投射。由于不同的用户可能具有不同的人眼高度,且成像光的光束口径有限,因此成像光投射至人眼附近的范围有限。于是,将不同人眼高度所能接收到成像光的不同范围称为不同眼盒。
为了使不同高度的人眼位置(不同眼盒)都能接收到成像光,在一种方案中,使成像光具有较大的扩散角,扩散角较大的成像光经风挡反射,可反射至多个不同的眼盒中,从而使不同人眼高度的用户都能接收到成像光。
但是,由于成像光的扩散角大,导致成像光的发散程度高、光强低。为了使成像光的光强在正常显示的光强范围内,则需要增大(成像光)光源的亮度,导致HUD的功耗高。
发明内容
本申请实施例提供了一种显示设备和交通工具,用于对应不同的眼盒位置在不同的光轴上生成成像光,从而减小成像光的扩散角、降低功耗。
第一方面,本申请实施例提供了一种显示设备。该显示设备包括图像生成装置、第一凹面镜和第二凹面镜。其中,图像生成装置用于生成目标区域对应的目标成像光。显示设备的眼盒包括多个区域,目标区域为该多个区域中的一个区域。该多个区域中的每个区域对应一个成像光,多个区域对应的多个成像光的光轴不同(本申请实施例中的光轴即光束的中心线)。第一凹面镜用于将目标成像光投射至第二凹面镜,第二凹面镜用于将目标成像光投射至眼盒的目标区域。
在本申请实施例中,显示设备的眼盒包括多个区域。显示设备生成的目标成像光对应于显示设备眼盒中的一个区域,目标成像光只需要投射至该区域即可,不需要投射至显示设备的整个眼盒。于是,显示设备中的光源只需要照亮该区域,不需要照亮显示设备的整个眼盒。减小了光源的照明范围,从而降低了显示设备的功耗。
在一种可选的实现方式中,上述多个区域对应的多个成像光均投射至第一凹面镜,该多个成像光在第一凹面镜与第二凹面镜之间交叉。经过第二凹面镜后,该多个成像光投射至各自对应的区域。
在一种可选的实现方式中,经过第二凹面镜后,第一成像光和第二成像光相互平行。
在本申请实施例中,多个成像光经第二凹面镜后相互平行,因此多个成像光可以平行 投射至眼盒的不同区域(不同高度的人眼)。由于投射至人眼的不同成像光相互平行,因此在HUD场景中,通过本申请实施例提供的显示设备(HUD),可以使眼盒所有区域对应的虚像都在地面上,避免虚像漂浮在空中造成危险,提升安全性。
在一种可选的实现方式中,图像生成装置包括多个光源、光束准直模块和调制器。其中,多个光源中的任一光源用于发出一个光束,多个光源发出的多个光束与多个成像光一一对应。多个光源中与目标成像光对应的目标光源用于发出目标光束。光束准直模块用于准直目标光束,并将准直后的目标光束投射至调制器。调制器用于调制准直后的目标光束,得到目标成像光。其中,光束准直模块对多个光束中的不同光束准直,所得的准直后的不同光束的光轴不同。由于准直后的不同光束的光轴不同,因此调制器对准直后的不同光束进行调制,所得的不同成像光的光轴也不同。
在本申请实施例中,光源与光束准直模块的结构简单、适用范围广,使得该结构的显示设备具有结构简单、对器件的要求低、应用范围广、成本低等优势。
可选的,多个光源中的光源,可以是点光源、面光源、体光源中的任一种,本申请对此不做限定。
在一种可选的实现方式中,多个光源相对于光束准直模块位于不同位置上。例如,多个光源相距光束准直模块的对称轴(即光束准直模块的光学系统对称轴)的距离不同。或者,若多个光源中有两个光源相距光束准直模块对称轴的距离相同,则这两个光源在光束准直模块的对称轴的不同侧。
例如,多个光源中(例如3个光源),部分光源距离光束准直模块对称轴的距离不同(例如光源1和光源2与对称轴的不同,光源3和光源2与对称轴的不同),部分光源距离光束准直模块对称轴的距离相同,则距离相同的两个光源在光束准直模块对称轴的不同侧(例如光源1和光源3与对称轴的距离相同,则光源1和光源3在对称轴不同侧)。
在本申请实施例中,使多个光源相对于光束准直模块位于不同位置,即可通过光束准直模块获取光轴不同的多个光束。对多个光源的位置控制容易实现、控制精度高。可以降低图像生成装置的设计制造难度、降低成本,并且由于精度高,可以提升成像光投射至对应眼盒的位置精度,提升显示效果。
在一种可选的实现方式中,目标光源与光束准直模块对称轴之间的距离h、目标光源与光束准直模块的像方主平面之间的距离L,以及目标光束与光束准直模块的对称轴之间的夹角之间,符合如下对应关系:
值得注意的是,目标光束可以是多个光源中任一光源发出的光束,由于不同光源相对光束准直模块对称轴的位置不同,则对不同光源发出的光束来说,准直后的光束的θ角不同(该θ角也是对应成像光的θ角)。可以根据光路设计,确定不同成像光对应的不同θ角,从而确定不同光源的位置。
在本申请实施例中,显示设备的眼盒包括多个区域,将多个光源均打开,即可照亮显示设备的整个眼盒。从整个眼盒中确定所要投射至的目标区域,即可确定目标区域对应的θ和h,从而通过h对应的光源实现对目标区域的照明。因此,可以在不同场景下确定不 同的目标区域以及对应的h,实现不同场景下对不同区域的照明,降低功耗。
在一种可选的实现方式中,多个光源中两光源之间的距离h’、光束准直模块的焦距f,以及该两光源经光束准直模块得到的两光束之间的夹角θ’之间,符合如下对应关系:
h′=f*tan(θ′)。
在一种可选的实现方式中,1°≤θ’≤10°,0.2mm≤h’≤2.11mm。
在本申请实施例中,θ’具有较大的调整范围(1°至10°),可以在更多场景中,匹配不同成像光夹角的需求。
在一种可选的实现方式中,图像生成装置可以包括光源、第一驱动模块、光束准直模块和调制器。其中,第一驱动模块用于将光源移动至目标成像光对应的光源位置,移动后的光源用于发出目标成像光对应的光束。光束准直模块于准直目标光束,并将准直后的目标光束投射至调制器。调制器用于调制准直后的目标光束,得到目标成像光。其中,第一驱动模块可以将光源移动至多个位置(该多个位置与前述多个成像光一一对应),则光源在不同位置上发出的不同光束经光束准直模块准直,所得的准直后的不同光束的光轴不同。因此调制器对准直后的不同光束进行调制,所得的不同成像光的光轴也不同。
在本申请实施例中,通过第一驱动模块移动光源的位置来实现不同位置的照明,可以减小光源的数量。只需要将一个光源移动至不同位置即可实现多个光源的效果,从而获取眼盒的不同区域所对应的成像光,实现眼盒切换。
在一种可选的实现方式中,光束准直模块包括至少一个透镜,至少一个透镜用于对多个光束(包括目标光束)进行准直。
在本申请实施例中,透镜的结构简单、设计制造难度低,可以降低图像生成装置和显示设备的设计制造难度与成本。
可选的,光束准直模块可以包括一个透镜或透镜组。透镜组包括多个透镜,该多个透镜用于对多个光束(包括目标光束)进行准直。
在本申请实施例中,相较于一个透镜,将透镜组作为光束准直模块,透镜组中多个透镜的总厚度小于前述一个透镜的厚度,可以减小光束准直模块的厚度,从而减小图像生成装置和显示设备的体积。并且,光束准直模块中透镜的厚度减小,则透镜的重量也减小,可以提升图像生成装置中透镜位置的稳定性、降低固定透镜的成本。透镜重量的减小与固定成本的减小,都可以降低图像生成装置和显示设备的成本。
在一种可选的实现方式中,光束准直模块包括菲涅尔透镜。菲涅尔透镜用于对多个光束(包括目标光束)进行准直。
在本申请实施例中,由于菲涅尔透镜的厚度小、重量轻,因此可以减小图像生成装置的体积、重量和成本。并且,菲涅尔透镜的厚度小还可以降低固定光束准直模块的成本,进一步减小图像生成装置的成本。
在一种可选的实现方式中,可以通过透镜阵列实现对发散光束的准直。具体的,多个光源均包括n个子光源。光束准直模块可以包括透镜阵列,透镜阵列包括n个透镜。该n个透镜与多个光源中任一光源的n个子光源一一对应。n个透镜中的任一透镜,用于对对应的子光源发出的光束进行准直。
在本申请实施例中,将多个光束都分散至n个子光源发出,相当于将多个光束都分成 了n束。由于分束的光源结构减小了多个光束的光束范围大小,因此可以减小光源与光束准直模块之间的距离,从而减小图像生成装置和显示设备的体积。
在一种可选的实现方式中,图像生成装置可以包括多个平行光源、扩束器和调制器。其中,多个平行光源中的任一平行光源用于发出一个平行光束,多个平行光源发出的多个平行光束与多个成像光一一对应,且该多个平行光束的光轴不同。其中,多个平行光源中与目标成像光对应的目标平行光源用于发出目标平行光束。扩束器用于增大目标平行光束的口径,并将增大口径后的目标平行光束投射至调制器。调制器用于调制增大口径后的目标平行光束,得到目标成像光。其中,增大口径后的多个平行光束与多个成像光一一对应。多个平行光源与多个成像光一一对应,不同平行光源发出的不同平行光束的光轴不同,因此经扩束器增大口径后的不同平行光束的光轴也不同。调制器对增大口径后的不同光束进行调制,所得的不同成像光的光轴也不同。
在本申请实施例中,多个平行光源发出的光束的发散程度低、方向性好,该光束经扩束器后即可进行调制生成成像光,不需要额外设置光学元件来实现光束的准直。使得图像生成装置的结构简单,降低了图像生成装置和显示设备的设计制造难度。
在本申请实施例中,扩束器也称为扩束镜等,本申请对此不做限定。
在一种可选的实现方式中,图像生成装置包括平行光源、第二驱动模块、扩束器和调制器。第二驱动模块用于将平行光源移动至目标成像光对应的光源位置;移动后的平行光源用于发出与目标成像光对应的目标平行光束。扩束器用于增大目标平行光束的口径,并将增大口径后的目标平行光束投射至调制器。调制器用于调制增大口径后的目标平行光束,得到目标成像光。其中,第二驱动模块可以将平行光源移动至多个位置(该多个位置与前述多个成像光一一对应),则平行光源在不同位置上发出的不同光束经扩束器增大口径,所得的增大口径后的不同光束的光轴不同。因此调制器对增大口径后的不同光束进行调制,所得的不同成像光的光轴也不同。
可选的,在不同的位置上,平行光源可以将平行光束以不同的角度投射至调制器,以获取对应方向的成像光,本申请对此不做限定。
在本申请实施例中,通过第二驱动模块移动平行光源的位置来实现不同位置的照明,可以减小光源的数量。只需要将一个平行光源移动至不同位置即可实现多个平行光源的效果,从而获取不同眼盒位置对应的成像光,实现眼盒切换。
在一种可选的实现方式中,多个平行光束以不同的角度投射至扩束器。
在本申请实施例中,通过不同方向的多个平行光源来获取不同方向的光束,从而获取用于投射至不同眼盒位置的成像光。由于光源位置和方向的控制较为简单,因此可以降低图像生成装置和显示设备的设计制造成本。
在一种可选的实现方式中,扩束器包括透镜组。透镜组用于增大多个平行光束(包括目标平行光束)的口径。
在一种可选的实现方式中,显示设备还可以包括定位模块。定位模块用于确定目标区域,使得目标区域对应的光源发出照明光束。其中,目标区域对应于人眼位置(例如目标区域以人眼为中心)。可选的,目标区域对应的光源可以包括前述多个光源、光源(第一驱动模块的方案)、多个平行光源或平行光源(第二驱动模块的方案)。
在本申请实施例中,通过定位模块确定对应于人眼位置的目标区域,从而根据人眼位置指示对应的光源发出照明光束,使得成像光投射至人眼位置所对应的目标区域上(例如以人眼位置为中心的目标区域上),提升了显示设备的显示效果。
可选的,确定目标区域,还可以使得第一驱动模块将光源移动至目标区域对应的位置,生成目标光束;或者,也可以使得第二驱动模块将平行光源移动至目标区域对应的位置,生成目标平行光束。
在一种可选的实现方式中,显示设备还包括定位模块。定位模块用于确定目标区域对应的光源发出照明光束,得到对应的成像光。其中,目标区域为用户选择的区域。可选的,目标区域对应的光源可以包括前述多个光源、光源(第一驱动模块的方案)、多个平行光源或平行光源(第二驱动模块的方案)。
在本申请实施例中,通过定位模块确定用户选择的区域,从而根据用户的选择指示对应的光源发出照明光束,使成像光投射至用户所选择的目标区域上,提升了显示设备与用户之间的交互性。
可选的,确定目标区域,还可以使得第一驱动模块将光源移动至目标区域对应的位置,生成目标光束;或者,也可以使得第二驱动模块将平行光源移动至目标区域对应的位置,生成目标平行光束。
在一种可选的实现方式中,图像生成装置还包括扩散器。扩散器用于增大准直后的多个光束的扩散角。
在本申请实施例中,通过扩散器增大多个光束的扩散角,从而使得准直后的多个光束经过调制后所生成的多个成像光的扩散角增大,从而增大多个成像光投射至的眼盒区域范围,实现大眼盒显示。
在一种可选的实现方式中,图像生成装置还包括扩散器。扩散器用于对增大口径后的多个平行光束进行扩散角的增大。
在本申请实施例中,通过扩散器增大多个平行光束的扩散角,从而增大多个成像光的扩散角,从而增大多个成像光投射至的眼盒区域范围,实现大眼盒显示。
在一种可选的实现方式中,图像生成装置还包括扩散器。扩散器用于增大多个成像光的扩散角。
在本申请实施例中,通过扩散器增大多个成像光的扩散角,从而增大多个成像光投射至的眼盒区域范围,实现大眼盒显示。
在本申请实施例中,扩散器(diffuser)可以包括毛玻璃、光栅、周期性微结构器件等衍射光学元件等,本申请对此不做限定。
在一种可选的实现方式中,调制器包括:液晶显示器(liquid crystal display,LCD)、薄膜电晶体(thin film transistor,TFT)和硅基液晶(liquid crystal on silicon,LCOS)中的任一项。
第二方面,本申请实施例提供了一种交通工具。该交通工具包括第一方面所述的显示设备。该显示设备安装在该交通工具上。
在一种可选的实现方式中,交通工具还包括反射元件。交通工具上的显示设备用于向 反射元件投射目标成像光。反射元件用于反射目标成像光。
第二方面的有益效果参见第一方面,此处不再赘述。
第三方面,本申请实施例还提供了一种显示方法,该方法应用于显示设备。该显示设备包括图像生成装置、第一凹面镜和第二凹面镜。该方法包括:图像生成装置生成目标区域对应的目标成像光,并将目标成像光投射至目标区域。显示设备的眼盒包括多个区域,目标区域为该多个区域中的一个区域。多个区域对应的多个成像光经第一凹面镜和第二凹面镜投射至眼盒的不同区域。其中,多个成像光在第一凹面镜与第二凹面镜之间交叉。
在一种可选的实现方式中,经过第二凹面镜后,多个成像光相互平行。
在一种可选的实现方式中,显示设备可以通过目标区域对应的光源发出照明光束,得到目标成像光。其中,目标区域对应于人眼位置或者为用户选择的区域。
第三方面的有益效果参见第一方面,此处不再赘述。
附图说明
图1为本申请的显示设备的应用场景的示意图;
图2为本申请的显示设备的HUD场景的示意图;
图3为本申请的显示设备的桌显场景的示意图;
图4为本申请实施例提供的显示设备的结构示意图;
图5为本申请实施例提供的桌显场景下的显示设备的结构示意图;
图6a为本申请实施例提供的包括透镜组的图像生成装置的结构示意图;
图6b为本申请实施例提供的包括反射式调制器的图像生成装置的结构示意图;
图7为本申请实施例提供的包括菲涅尔透镜的图像生成装置的结构示意图;
图8为本申请实施例提供的包括透镜阵列的图像生成装置的结构示意图;
图9为本申请实施例提供的包括第一驱动模块的图像生成装置的结构示意图;
图10为本申请实施例提供的包括平行光源的图像生成装置的结构示意图;
图11为本申请实施例提供的包括第二驱动模块的图像生成装置的结构示意图;
图12为本申请实施例提供的一种显示方法的流程示意图;
图13为本申请实施例提供的一种交通工具的功能框架示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,其目的在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。另外,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的 关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
接下来说明本申请的显示设备的应用场景。本申请的显示设备应用于投影显示场景中。如图1所示,显示设备将成像光投射在反射元件上,反射元件将成像光反射至人眼,虚像即可呈现在人眼上。
值得注意的是,除了将成像光反射至人眼呈现虚像,还可以将成像光反射至其他主体。例如可以反射至传感器、测试设备、智能学习设备等的图像接收面上,以实现对相应设备的检测、调试、训练等,此处不做限定。
对场景再细化,可以将显示设备应用在抬头显示(head up display,HUD)、桌上显示等场景中。
如图2所示,在抬头显示HUD场景中,反射元件为风挡玻璃。显示设备上的图像生成装置输出成像光。成像光经过曲面镜反射,投射到风挡玻璃上。风挡玻璃将成像光反射至人眼,虚像即可呈现在人眼上。
值得注意的是,风挡玻璃仅是对反射元件的一种示例,除了玻璃,反射元件也可以是透明陶瓷、树脂或其他光学材料,此处不做限定。
在抬头显示场景中,显示设备中的图像生成装置可以是图像生成单元(picture generation unit,PGU),显示设备可以是HUD。HUD可以应用在车辆、飞机等交通工具上,除此之外,还可以应用在中控室、建筑景观、广告投放等场景下,此处不做限定。在交通工具之外的场景下,图2中的风挡玻璃主要的作用是用于反射成像光,因此不限定这些场景下反射元件的种类。
如图3所示,在桌面显示场景中,显示设备上的图像生成装置输出成像光。成像光经过半反半透元件和曲面镜的反射,透过半反半透元件投射到人眼上,从而在人眼上呈现虚像。
如图1至图3所示,在投影显示的场景中,成像光都投射至人眼上成像。由于成像光的光束口径有限,且成像光沿成像光的光轴方向传播,因此成像光反射至人眼附近的范围有限。因此,定义不同的眼盒(eyebox)区域。若人眼位于眼盒范围内,人眼即可接收到图像生成装置投射出的全部或大部分成像光,从而接收到全部的投影图像(即图1至图3中的虚像)。
值得注意的是,在本申请实施例中,人眼指的是用户的眼睛。用户在不同场景下可以有不同的解释。例如,在HUD场景下,用户可以是交通工具上的驾驶员、副驾驶,也可以是中控室、建筑景观、广告投放等的观众;在桌上显示场景下,用户可以是观众。上述观众不限于人类等生物,也可以是机器人等设备,用户的眼睛则表示这些设备的图像采集装 置(可以接收成像光),本申请实施例对此不做限定。或者,人眼也可以是显示设备在设计、生产、测试等过程中的模拟用户,例如模拟人眼的摄像头等。
不同用户的人眼高度可能不同,也就对应了不同高度的眼盒。为了使更多的用户可以接收到全部的投影图像(完整的成像光),一种方法是增大成像光的扩散角。较大扩散角的成像光经风挡玻璃反射至不同高度的人眼(眼盒)中,从而使不同高度的人眼都能接收到完整的成像光。
但是,若增大成像光的扩散角,将会导致成像光的发散程度增大,从而降低成像光的光强。为了使成像光在正常显示的光强范围内,需要增大成像光光源的亮度,导致图像生成装置的功耗高。
为了解决上述缺陷,本申请实施例提供了一种显示设备和交通工具。本申请实施例提供的显示设备通过对应不同的眼盒位置在不同的光轴上生成成像光,从而减小成像光的扩散角、降低功耗。
如图4所示,本申请实施例提供的显示设备4000包括图像生成装置4100、第一凹面镜4200和第二凹面镜4300。图像生成装置4100用于生成目标区域对应的目标成像光。其中,显示设备4000的眼盒包括多个区域,目标区域为该多个区域中的一个区域。该多个区域中的每个区域对应一个成像光,多个区域对应的多个成像光的光轴不同(本申请实施例中的光轴即光束的中心线),且该多个成像光均投射至第一凹面镜4200。第一凹面镜4200用于将目标成像光投射至第二凹面镜4300,第二凹面镜4300用于将目标成像光投射眼盒的目标区域。
可选的,眼盒的多个区域所对应的多个成像光,均投射至第一凹面镜4200,该多个成像光在第一凹面镜4200与第二凹面镜4300之间交叉。经过第二凹面镜4300后,该多个成像光投射至各自对应的区域。
例如图4所示,显示设备4000的眼盒包括第一区域和第二区域,第一区域对应于第一成像光,第二区域对应于第二成像光。目标区域可以是第一区域和第二区域中的任一个。第一成像光和第二成像光从图像生成装置4100发出后,均投射至第一凹面镜4200。其中,第一成像光和第二成像光的光轴不同(本申请实施例中的光轴即光束的中心线),且第一成像光和第二成像光在第一凹面镜4200与第二凹面镜4300之间交叉。经第二凹面镜4300后,第一成像光投射至第一眼盒位置,第二成像光投射至第二眼盒位置。
在本申请实施例中,显示设备4000的眼盒包括多个区域。显示设备4000生成的目标成像光(例如第一成像光或第二成像光)只需要投射至对应的区域即可,不需要投射至显示设备4000的整个眼盒。于是,显示设备4000中的光源只需要照亮该区域,不需要照亮显示设备4000的整个眼盒。减小了光源的照明范围,从而降低了显示设备4000的功耗。
例如,显示设备4000的眼盒包括第一区域和第二区域。若显示设备4000根据人眼的实际位置生成第一成像光(目标成像光),第一成像光只需要投射至第一区域即可被人眼所接收,不需要投射至第二区域。因此显示设备4000内的光源只需要照亮第一区域,不需要照亮第二区域,可以减小显示设备4000的功耗。
可选的,第二凹面镜4300可以将不同成像光以相同的方向投射至不同的区域。以两 个成像光为例,如图4所示,第一成像光和第二成像光经第二凹面镜4300的反射后相互平行。对应的,经过反射元件反射后也是平行投射至不同的区域。两束平行的成像光在无穷远处会聚,即会聚在图4所示的虚像位置上。虚像通常显示在反射元件前n(n≥1)米的位置上,在本申请实施例中,n米的距离即可看作无穷远。
在本申请实施例中,由于投射至人眼的多个成像光是相互平行的,因此不同高度的人眼(眼盒)可以通过相同的角度接收成像光。由于投射至人眼的不同成像光相互平行,因此在HUD场景中,通过本申请实施例提供的显示设备(HUD),可以使眼盒中所有区域对应的虚像都在地面上,避免虚像漂浮在空中造成危险。
值得注意的是,本申请实施例所述的平行是理想状态,由于设计误差、器件公差、装配公差等,导致从第二凹面镜后的多个成像光之间具有一定夹角,也属于本申请实施例的保护范围。
值得注意的是,图4中的第一区域和第二区域仅是对显示设备4000的不同眼盒位置的示例。显示设备4000可以用于获取更多区域各自对应的成像光(例如可以是3个、4个或更多个区域)。本申请实施例中出现的第一区域和第二区域,可以是上述多个区域中的任意两个区域,本申请对此不做限定。
例如,显示设备4000的眼盒可以从上到下依次分为上区域、中区域、下区域。第一区域和第二区域可以分别是上区域和下区域,也可以分别是上区域和中区域,或者其他的组合,本申请对此不做限定。
将本申请实施例提供的显示设备4000应用在图2所示的HUD应用场景中,反射元件可以是风挡玻璃,第一凹面镜4200可以是小曲面镜,第二凹面镜4300可以是大曲面镜。将本申请实施例提供的显示设备4000应用在图3所示的桌上显示应用场景中,显示设备4000的结构可以如图5所示。其中,第一凹面镜4200可以是光学元件上的一块凹陷,该光学元件用于将来自第一凹面镜4200的光反射至第二凹面镜4300,以及透射来自第二凹面镜4300的光。可选的,该光学元件可以是部分反射部分透射的光学元件,本申请实施例不限定其反射与透射的比例(例如一半反射一半透射,40%反射,60%透射等)。例如,该元件可以是玻璃屏幕,则第一凹面镜4200可以是玻璃屏幕上一块凹陷的玻璃。除此之外,光学元件也可以其他形式存在,例如独立的凹面镜,凹陷玻璃上的反射膜、半透半反膜等,本申请对此不做限定。
上面说明了本申请实施例提供的显示设备4000的不同形态,接下来说明本申请实施例提供的显示设备4000中的图像生成装置4100的结构。在本申请实施例中,图像生成装置4100用于获取目标成像光,目标成像光为多个区域对应的多个成像光中的任一个。也就是说,图像生成装置4100具备生成上述多个成像光中任一成像光的能力。
如图6a所示,本申请实施例提供的一种图像生成装置4100包括多个光源、光束准直模块4130和调制器4140。其中,多个光源中的任一光源用于发出一个光束,多个光源发出的多个光束与多个成像光一一对应。多个光源中与目标成像光对应的目标光源用于发出目标光束,目标光束可以是多个光束中的任一个。光束准直模块4130用于准直目标光束, 并将准直后的目标光束投射至调制器4140。调制器4140用于调制准直后的目标光束,得到目标成像光。
其中,光束准直模块4130对多个光束中的不同光束准直,所得的准直后的不同光束的光轴不同。由于准直后的不同光束的光轴不同,因此调制器4140对准直后的不同光束进行调制,所得的不同成像光的光轴也不同。
例如,若显示设备的眼盒包括两个区域,则如图6a所示,多个光源包括第一光源4110和第二光源4120。其中,第一光源4110用于发出第一光束,第二光源4120用于发出第二光束,目标光束可以是第一光束和第二光束中的任一个。光束准直模块4130用于准直第一光束,并将准直后的第一光束投射至调制器4140。光束准直模块4130还用于准直第二光束,并将准直后的第二光束投射至调制器4140。准直后的第一光束和准直后的第二光束的光轴不同。调制器4140用于根据第一图像数据调制准直后的第一光束,得到第一成像光,第一成像光经第一凹面镜4200和第二凹面镜4300投射至第一区域。调制器4140可以根据第二图像数据调制准直后的第二光束,得到第二成像光,第二成像光经第一凹面镜4200和第二凹面镜4300投射至第二区域。
在本申请实施例中,由于多个光源和光束准直模块4130的结构简单、适用范围广,因此包括多个光源和光束准直模块4130的显示设备4000具有结构简单、对器件的要求低、应用范围广、成本低等优势。
其中,多个光源(例如第一光源4110和第二光源4120),可以是点光源、面光源、体光源中的任一种,本申请对此不做限定。
其中,调制器4140可以包括:液晶显示器(liquid crystal display,LCD)、薄膜电晶体(thin film transistor,TFT)和硅基液晶(liquid crystal on silicon,LCOS)中的任一项,本申请对此不做限定。
可选的,还可以在光束准直模块4130与调制器4140之间的光路上增设扩散器4180。扩散器4180用于增大准直后的多个光束的扩散角,从而增大多个成像光的扩散角,增大多个成像光所能投射至的范围,从而增大眼盒。
在本申请实施例中,扩散器4180用于增大眼盒。示例地,扩散器4180的扩散角与眼盒大小之间的关系可以如表1所示:
表1扩散器的扩散角与眼盒大小之间的对应关系
值得注意的是,表1中的眼盒大小为上述多个区域投射至人眼方向的区域大小,并不表示显示设备4000的包括多个区域的总眼盒的大小。
在本申请实施例中,扩散器(diffuser)1480可以包括毛玻璃、光栅等衍射光学元件等,本申请对此不做限定。
在本申请实施例中,调制器4140可以是透射式的调制器,例如液晶显示器LCD、薄膜电晶体TFT等,本申请对此不做限定。调制器4140也可以是其他类型的调制器,例如硅基液晶LCOS等。
若调制器4110为反射式的调制器(例如LCOS),则对应的光路结构如图6b所示。在该结构中,还包括偏振分光器(polarization beam splitter,PBS)4190。偏振分光器4190用于实现成像光对应的光束与成像光的分光。具体的,如图6b所示,偏振分光器4190可以将准直后的第一光束透射至调制器4140,以及将调制生成的第一成像光反射至第一凹面镜4200。偏振分光器4130可以将准直后的第二光束透射至调制器4140,以及将调制生成的第二成像光反射至第一凹面镜4200。
可选的,在偏振分光器4190与扩散器4180之间,还可以包括镜头。
可选的,若调制器4110为反射式的调制器(例如LCOS),则可以在调制器4140之后的光路上增设扩散器4180,从而增大多个成像光的扩散角,增大眼盒。
值得注意的是,扩散器4180可以增设在本申请任一实施例的结构中,以增大眼盒,本申请对此不做限定。在本申请任一实施例的结构中,若调制器4110为反射式的调制器(例如LCOS),则对应的光路结构如图6b所示,下文不再赘述。
在本申请实施例中,光束准直模块4130可以是图6a或图6b所示的透镜组。该透镜组包括多个透镜,多个透镜用于对多个光束进行准直。例如图6a或图6b所示,透镜组可以包括第一透镜4131和第二透镜4132。第一透镜4131和第二透镜4132用于对第一光束和第二光束进行准直。可选的,光束准直模块4130也可以是一个透镜,即图6a或图6b中的透镜组可以替换为一个透镜,本申请对此不做限定。
相较于一个透镜的形式,透镜组形式的光束准直模块4130中,透镜的总厚度小,因此该结构可以减小光束准直模块4130的厚度和显示设备4000的体积。并且,透镜组减小了光束准直模块4130中透镜的总厚度,也就可以减小光束准直模块4130中透镜的总重量,从而可以提升图像生成装置4100中透镜位置的稳定性,降低固定透镜的成本,从而降低显示设备4000的成本。
值得注意的是,图6a和图6b以两个透镜为例说明透镜组的结构,本申请实施例不限定透镜组中透镜的数量,透镜组也可以包括3个、4个或更多个透镜,本申请对此不做限定。
在本申请实施例中,光源相对于光束准直模块4130之间的位置,可以决定对应光束相对于光束准直模块4130光轴之间的夹角大小。如图6a所示,以第一光源4110为例,若第一光源4130与光束准直模块4130的光轴(即光束准直模块4130的光学系统对称轴,也称为光束准直模块4130的对称轴)之间的距离为h,第一光源4110与光束准直模块4130的像方主平面之间的距离为L。则准直后的第一光束与光束准直模块4130的光轴之间的夹角θ符合公式1:
其中,光束准直模块4130的像方主平面的定义如下:无限远处的平行光照射到光束准直模块4130上,经过折射,光线会通过光束准直模块4130的像方的焦点,折射后光线反向延长与入射光线相交于一点,通过这点做的垂直于光轴的平面就是光束准直模块4130 的像方主平面。
由上述公式1可知,若不同光源对于光束准直模块位于不同位置,即可得到光轴位于不同直线上的不同光束,例如在图6a至图8的示例中,第一光源4110和第二光源4120在光束准直模块4130的光轴的不同侧,则准直后的第一光束和准直后的第二光束的光轴在不同直线上。可选的,除了在光轴的不同侧,也可以使第一光源4110与第二光源4120相距光束准直模块4130的光轴的距离(即图6a中的h)不同,本申请对此不做限定。
在本申请实施例中,显示设备4000的眼盒包括多个区域,将对应于多个区域的多个光源均打开,即可照亮显示设备的整个眼盒。从整个眼盒中确定所要投射至的目标区域,即可确定目标区域对应的θ和h,从而通过h对应的光源实现对目标区域的照明。因此,可以在不同场景下确定不同的目标区域以及对应的h,实现不同场景下对不同区域的照明,降低功耗。
在本申请实施例中,使多个光源相对于光束准直模块位于不同位置,即可通过光束准直模块获取不同直线上的光束(准直后的多个光束)。对多个光源的位置控制容易实现、控制精度高。可以降低光源模块的设计制造难度、降低成本,并且由于精度高,可以提升成像光投射至对应眼盒的位置精度,提升显示效果。
可选的,若在多个光源中(例如3个光源),部分光源距离光束准直模块对称轴的距离不同(例如光源1和光源2与对称轴的不同,光源3和光源2与对称轴的不同),部分光源距离光束准直模块对称轴的距离相同,则距离相同的两个光源在光束准直模块对称轴的不同侧(例如光源1和光源3与对称轴的距离相同,则光源1和光源3在对称轴不同侧)。
在本申请实施例中,不同光源(例如第一光源与第二光源)之间的距离h’与对应的不同光束(例如准直后的第一光束与准直后的第二光束)之间的夹角θ’,以及光束准直模块4130的焦距f之间,符合公式2所述的对应关系:
h′=f*tan(θ′)           
公式2
可选的,若光束准直模块4130为透镜组,则光束准直模块4130的焦距f为透镜组的等效焦距。
例如,若f=12mm,则h’与θ’之间的关系可以如表2所示:
表2光源之间的距离h’与光束之间的夹角θ’的对应关系
可选的,夹角θ’的取值范围可以是1°≤θ’≤10°。可选的,光源间距h’的取值范围可以是0.2mm≤h’≤2.11mm,本申请对此不做限定。在本申请实施例中,θ’具有较大的调整范围(1°至10°),可以在更多场景中,匹配不同成像光夹角的需求。
在本申请实施例中,除了图6a和图6b所示的透镜组的形式,光束准直模块4130还可以是其他形式,例如图7所示的菲涅尔透镜4130、图8所示的透镜阵列4130等,本申请对此不做限定。其中,菲涅尔透镜4130具有厚度小、重量轻等优势,可以减小图像生成装置4100的体积和成本,从而降低显示设备4000的体积和成本。
包括透镜阵列4130的图像生成装置4100的结构如图8所示。在该结构中,图像生成 装置4100的多个光源均包括n个子光源(例如第一光源包括n个第一子光源4110a-4110n,第二光源包括n个第二子光源4120a-4120n,图8中以3个示例,并不造成对n的限定)。图像生成装置4100中的光束准直模块4130可以是透镜阵列4130,透镜阵列4130包括n个透镜,该n个透镜与多个光源中任一光源的n个子光源一一对应。n个透镜中的任一透镜,用于对对应的子光源发出的光束进行准直。例如图8所示的透镜4130a对应于第一子光源4110a和第二子光源4120a,透镜4130b对应于第一子光源4110b和第二子光源4120b,以此类推。
例如图8所示,第一光源4110包括(上中下)三个第一子光源4110a-4110c,第二光源4120包括(上中下)三个第二子光源4120a-4120c,透镜阵列4130包括(上中下)三个透镜4130a-4130c。
为了获取第一区域对应的第一成像光,(上中下)三个第一子光源(即4110a、4110b和4110c)都亮起,发出第一光束(第一光束包括对应于三个第一子光源的上中下三个部分);透镜阵列4130中的(上中下)三个透镜分别准直第一光束的上中下三个部分(即透镜4130a准直第一子光源4110a发出的上部分的第一光束,透镜4130b准直第一子光源4110b发出的中部分的第一光束,以此类推),得到准直后的第一光束,并将准直后的第一光束投射至调制器4140。调制器4140根据第一图像数据调制准直后的第一光束,得到第一成像光。第一成像光经第一凹面镜4200和第二凹面镜4300投射至第一区域。
为了获取第二区域对应的第二成像光,(上中下)三个第二子光源(即4120a、4120b和4120c)都亮起,发出第二光束(第二光束包括对应于三个第二子光源的上中下三个部分);透镜阵列4130中的(上中下)三个透镜分别准直第二光束的上中下三个部分(即透镜4130a准直第二子光源4120a发出的上部分的第二光束,透镜4130b准直第二子光源4120b发出的中部分的第二光束,以此类推),得到准直后的第二光束,并将准直后的第二光束投射至调制器4140。调制器4140根据第二图像数据调制准直后的第二光束,得到第二成像光。第二成像光经第一凹面镜4200和第二凹面镜4300投射至第二区域。
在本申请实施例中,包括透镜阵列的图像生成装置4100将多个光束分散至n个光源发出,相当于将多个光束都分成了n束。由于分束的光源结构减小了多个光束中每束光束的范围大小,因此可以减小光源(例如第一光源3110/第二光源3120)与光束准直模块3130之间的距离,从而减小图像生成装置的体积。
在该实施例中,一组光源中不同子光源之间的距离h”与对应的不同光束之间的夹角θ’,以及透镜阵列4130中每个透镜的焦距f’之间的关系参见公式3。
h"=f′*tan(θ′)               
公式3
示例地,若透镜阵列4130中每个透镜的焦距f’为2.5mm,则子光源之间的距离h”与光束之间的夹角θ’可以如表2所示:
表3子光源之间的距离h”与光束之间的夹角θ’的对应关系
例如图8所示的图像生成装置中,第一光源4110、第二光源4120和透镜阵列4130均 包括上中下三部分,则h’可以表示上部分的第一子光源与上部分的第二子光源之间的间距;或者中部分、下部分的间距,本申请对此不做限定。
如前所述,多个光源(例如第一光源4110与第二光源4120)之间的区别在于光源相对于光束准直模块4130的光轴的位置不同。因此,可以通过驱动模块移动光源,来实现多个光源的效果,从而减小光源数量。
如图9所示,图像生成装置4100还可以包括第一驱动模块4150,用于将光源移动至目标区域对应的目标光源位置。目标光源位置可以是第一光源4110或第二光源4120所在的光源位置。例如目标区域为第一区域,则目标光源位置为图中第一光源4110所在的位置。
可选的,第一驱动模块4150可以是电机或其他机械驱动结构,本申请对此不做限定。
在本申请实施例中,通过第一驱动模块4150移动光源的位置来改变照明光束的方向,匹配眼盒的不同区域;可以减小光源的数量,只需要将一个光源移动至不同位置即可实现多个光源的效果,从而在不同区域中成像。
可选的,如图9所示,图像生成装置4100还可以包括轨道。轨道包括多个光源位置,多个光源位置对应于多个区域。第一驱动模块4150可以驱动光源移动至轨道的任意光源位置上,成像光即可投射至眼盒的任意区域,实现对投射区域位置的扩展。
可选的,图像生成装置4100还可以包括定位模块4160。定位模块4160用于确定目标区域,使得目标区域对应的光源发出照明光束,得到目标成像光。可选的,目标区域对应的光源可以是多个光源中的任意光源(例如图6a至图8中的任意光源)。可选的,在图9所示的实施例中,定位模块4160可以指示第一驱动模块4150移动至目标光源位置(例如第二光源4120所在的位置)。第一驱动模块4150根据指示将光源移动至目标区域对应的位置,移动后的光源即可照亮调制器4140,生成的目标成像光经第一凹面镜4200和第二凹面镜4300可以投射至目标区域。
其中,目标区域可以是用户选择的区域,也可以是对应于人眼的位置。若目标区域是用户选择的区域,则可以提升显示设备4000与用户之间的交互性。若目标区域是对应于人眼的位置,则可以根据人眼位置移动光源位置,实现成像光随人眼位置的移动,使得成像光投射至以人眼为中心的区域,提升了图像生成装置的显示效果。
具体的,确定目标区域后,定位模块4160可以向图像生成装置的中央处理器(central processing unit,CPU)、处理模块等发送该目标区域,CPU或处理模块可以指示目标区域对应的光源发出照明光束。
在本申请实施例中,用户可以是HUD场景下的驾驶者,也可以是桌上显示场景下的观众,本申请对此不做限定。人眼可以是上述用户的眼睛。
值得注意的是,图9仅是对通过移动光源实现多个光源效果的图像生成装置4100的一个示例,本申请实施例不限定该结构中光束准直模块4130的形态。图9中的菲涅尔透镜4130也可以替换成透镜组4130、透镜阵列等,本申请对此不做限定。
在本申请实施例中,除了通过准直不同位置上光源所发出的光束,还可以通过其他方 式获取光轴在不同直线上的光束。例如,可以通过平行光源获取不同方向上的平行光束。对应结构如图10所示,在图像生成装置4100中,包括多个平行光源(例如第一平行光源4110和第二平行光源4120)、扩束器4130和调制器4140。
在本申请实施例中,平行光源是用于获取平行光束的光源,例如激光光源等。本申请实施例将发散角≤n的光束称为平行光束,其中,n可以为20°、15°、10°、8°、5°等,本申请对此不做限定。
其中,多个平行光源中的任一平行光源用于发出一个平行光束,多个平行光源发出的多个平行光束与多个成像光一一对应,且该多个平行光束的光轴在不同直线上。其中,多个平行光源中与目标成像光对应的目标平行光源用于发出目标平行光束。扩束器4130用于增大目标平行光束的口径,并将增大口径后的目标平行光束投射至调制器4140。调制器4140用于调制增大口径后的目标平行光束,得到目标成像光。
多个平行光源与多个成像光一一对应,不同平行光源发出的不同平行光束的光轴不同,因此经扩束器4130增大口径后的不同平行光束的光轴也不同。调制器4140对增大口径后的不同光束进行调制,所得的不同成像光的光轴也不同。
还是以眼盒包括两个区域为例,多个平行光源可以包括第一平行光源4110和第二平行光源4120。第一平行光源4110用于发出第一平行光束。第二平行光源4120用于发出第二平行光束。第二平行光束与第一平行光束的光轴不同。目标光束可以是第一光束进而第二光束中的任一个。扩束器4130用于增大第一平行光束的口径,并将增大口径后的第一平行光束投射至调制器4140;以及增大第二平行光束的口径,并将增大口径后的第二平行光束投射至调制器4140。调制器4140用于根据第一图像数据调制增大口径后的第一平行光束,得到第一成像光;以及根据第二图像数据调制增大口径后的第二平行光束,得到第二成像光。第一成像光和第二成像光经第一凹面镜4200和第二凹面镜4300可以分别投射至第一区域和第二区域。
在本申请实施例中,平行光源发出的平行光束的发散程度低、方向性好。该平行光束经扩束器4130后即可进行调制生成成像光,不需要额外设置光学器件来实现光束的准直。使得图像生成装置4100的结构简单,降低了图像生成装置4100和显示设备4000的设计制造难度。
在本申请实施例中,通过不同方向的多个平行光源来获取不同方向的平行光束,从而获取用于投射至眼盒不同区域的成像光。由于光源方向的控制较为简单,因此可以降低图像生成装置4100和显示设备4000的设计制造成本。
如前所述,不同平行光源之间的区别在于光源发出的光束投射至扩束器4130的角度不同。因此,可以通过驱动模块旋转平行光源,来实现多个平行光源的效果,从而减小光源数量。
如图11所示,图像生成装置4100还可以包括第二驱动模块4170,用于将平行光源移动至目标成像光对应的光源位置。目标光源位置可以是第一平行光源4110或第二平行光源4120所在的光源位置。例如目标区域为第一区域,则目标光源位置为图中第一平行光源4110所在的位置。
可选的,在不同的位置上,平行光源可以将平行光束以不同的角度投射至调制器,以获取对应方向的成像光,本申请对此不做限定。
可选的,第二驱动模块4170可以是电机或其他机械驱动结构,本申请对此不做限定。
在本申请实施例中,通过第二驱动模块4170移动光源的位置来改变光源的照明方向,匹配不同的眼盒;可以减小光源的数量,只需要将一个平行光源移动至不同位置即可实现多个平行光源的效果,从而在不同眼盒中成像。
可选的,如图11所示,图像生成装置4100还可以包括轨道。轨道包括多个光源位置,多个光源位置对应于多个眼盒位置。第二驱动模块4170可以驱动平行光源移动至轨道的任意光源位置上,成像光即可投射至眼盒的任意区域,实现对区域位置的扩展。
可选的,图像生成装置4100还可以包括定位模块4160。定位模块4160用于指示目标区域对应的光源发出照明光束,得到目标成像光。可选的,目标区域对应的光源可以是多个光源中的任意光源(例如图10中的任意光源)。可选的,在图11所示的实施例中,定位模块4160可以指示平行光源移动至目标区域对应的光源位置(例如第二平行光源4120所在的位置),移动后的平行光源即可照亮调制器4140,生成的目标成像光经第一凹面镜4200和第二凹面镜4300可以投射至目标区域。
其中,目标区域可以是用户选择的区域,也可以对应于人眼位置。若目标区域是用户选择的区域,则可以提升显示设备4000与用户之间的交互性。若目标区域对应于人眼位置,则可以根据人眼位置移动光源位置,实现成像光随人眼位置的移动,使得成像光投射至以人眼为中心的子眼盒位置上,提升了图像生成装置的显示效果。对用户的解释参见图9的说明,此处不再赘述。
图6a至图11中任一实施例所示的图像生成装置4100,都可以应用在图4和图5所示的显示设备4000中,本申请对此不做限定。
图12是本申请实施例提供的一种显示方法的流程示意图。该方法可以应用于前述任一种显示设备4000。如图12所示,该方法包括:
S1:图像生成装置生成目标区域对应的目标成像光。显示设备的眼盒包括多个区域,目标区域为多个区域中的一个区域。多个子区域对应的多个成像光经第一凹面镜和第二凹面镜投射至眼盒的不同区域。
图像生成装置4100可以根据人眼的实际位置生成目标区域对应的目标成像光。其中,人眼的实际位置在目标区域的范围内。
多个成像光的光路参见图4至图11,此处不再赘述。可选的,目标成像光可以是前述实施例中的第一成像光或第二成像光,本申请对此不做限定。
S2:图像生成装置将目标成像光投射至目标区域。
目标成像光经第一凹面镜4200和第二凹面镜4300即可投射至目标区域。目标成像光的光路参见图4至图11,此处不再赘述。
在一种可选的实现方式中,经过第二凹面镜后,多个成像光相互平行。
在一种可选的实现方式中,显示设备可以通过目标区域对应的光源发出照明光束,得到目标成像光。该成像光经第一凹面镜和第二凹面镜投射至目标区域。其中,目标区域对 应于人眼位置或者为用户选择的区域。
上述显示设备可以安装在交通工具上,请参见图13,图13是本申请实施例提供的一种交通工具的一种可能的功能框架示意图。
如图13所示,交通工具的功能框架中可包括各种子系统,例如图示中的传感器系统12、控制系统14、一个或多个外围设备16(图示以一个为例示出)、电源18、计算机系统20和抬头显示系统22。可选地,交通工具还可包括其他功能系统,例如为交通工具提供动力的引擎系统等等,本申请这里不做限定。
其中,传感器系统12可包括若干检测装置,这些检测装置能感受到被测量的信息,并将感受到的信息按照一定规律将其转换为电信号或者其他所需形式的信息输出。如图示出,这些检测装置可包括全球定位系统(global positioning system,GPS)、车速传感器、惯性测量单元(inertial measurement unit,IMU)、雷达单元、激光测距仪、摄像装置、轮速传感器、转向传感器、档位传感器、或者其他用于自动检测的元件等等,本申请并不做限定。
控制系统14可包括若干元件,例如图示出的转向单元、制动单元、照明系统、自动驾驶系统、地图导航系统、网络对时系统和障碍规避系统。可选地,控制系统14还可包括诸如用于控制车辆行驶速度的油门控制器及发动机控制器等元件,本申请不做限定。
外围设备16可包括若干元件,例如图示中的通信系统、触摸屏、用户接口、麦克风以及扬声器等等。其中,通信系统用于实现交通工具和除交通工具之外的其他设备之间的网络通信。在实际应用中,通信系统可采用无线通信技术或有线通信技术实现交通工具和其他设备之间的网络通信。该有线通信技术可以是指车辆和其他设备之间通过网线或光纤等方式通信。
电源18代表为车辆提供电力或能源的系统,其可包括但不限于再充电的锂电池或铅酸电池等。在实际应用中,电源中的一个或多个电池组件用于提供车辆启动的电能或能量,电源的种类和材料本申请并不限定。
交通工具的若干功能均由计算机系统20控制实现。计算机系统20可包括一个或多个处理器2001(图示以一个处理器为例示出)和存储器2002(也可称为存储装置)。在实际应用中,该存储器2002也在计算机系统20内部,也可在计算机系统20外部,例如作为交通工具中的缓存等,本申请不做限定。其中,
处理器2001可包括一个或多个通用处理器,例如图形处理器(graphic processing unit,GPU)。处理器2001可用于运行存储器2002中存储的相关程序或程序对应的指令,以实现车辆的相应功能。
存储器2002可以包括易失性存储器(volatile memory),例如RAM;存储器也可以包括非易失性存储器(non-vlatile memory),例如ROM、快闪存储器(flash memory)、HDD或固态硬盘SSD;存储器2002还可以包括上述种类的存储器的组合。存储器2002可用于存储一组程序代码或程序代码对应的指令,以便于处理器2001调用存储器2002中存储的程序代码或指令以实现车辆的相应功能。该功能包括但不限于图13所示的车辆功能框架示意图中的部分功能或全部功能。本申请中,存储器2002中可存储一组用于车辆控制的 程序代码,处理器2001调用该程序代码可控制车辆安全行驶,关于如何实现车辆安全行驶具体在本申请下文详述。
可选地,存储器2002除了存储程序代码或指令之外,还可存储诸如道路地图、驾驶线路、传感器数据等信息。计算机系统20可以结合车辆功能框架示意图中的其他元件,例如传感器系统中的传感器、GPS等,实现车辆的相关功能。例如,计算机系统20可基于传感器系统12的数据输入控制交通工具的行驶方向或行驶速度等,本申请不做限定。
抬头显示系统22可包括若干元件,例如图示出的前挡玻璃,控制器和抬头显示器。控制器222用于根据用户指令生成图像(例如生成包含车速、电量/油量等车辆状态的图像以及增强现实AR内容的图像),并将该图像发送至抬头显示器进行显示;抬头显示器可以包括图像生成单元、反射镜组合,前挡玻璃用于配合抬头显示器以实现抬头显示系统的光路,以使在驾驶员前方呈现目标图像。需要说明的是,抬头显示系统中的部分元件的功能也可以由车辆的其它子系统来实现,例如,控制器也可以为控制系统中的元件。
其中,本申请图13示出包括四个子系统,传感器系统12、控制系统14、计算机系统20和抬头显示系统22仅为示例,并不构成限定。在实际应用中,交通工具可根据不同功能对车辆中的若干元件进行组合,从而得到相应不同功能的子系统。在实际应用中,交通工具可包括更多或更少的系统或元件,本申请不做限定。
上述交通工具可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请实施例不做特别的限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备 (可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (20)

  1. 一种显示设备,其特征在于,包括:
    图像生成装置,用于生成目标区域对应的目标成像光,所述显示设备的眼盒包括多个区域,所述目标区域为所述多个区域中的一个区域;其中,所述多个区域中的每个区域对应一个成像光,所述多个区域对应的多个成像光的光轴不同;
    所述第一凹面镜,用于将所述目标成像光投射至第二凹面镜;
    所述第二凹面镜,用于将所述目标成像光投射至所述目标区域。
  2. 根据权利要求1所述的设备,其特征在于,经过所述第二凹面镜后,所述多个成像光相互平行。
  3. 根据权利要求1或2所述的设备,其特征在于,所述图像生成装置包括:
    多个光源,所述多个光源中的任一光源用于发出一个光束,所述多个光源发出的多个光束与所述多个成像光一一对应;所述多个光源中与目标成像光对应的目标光源用于发出目标光束;
    光束准直模块,用于准直所述目标光束,并将准直后的目标光束投射至调制器;所述光束准直模块对所述多个光束中的不同光束准直,所得的准直后的不同光束的光轴不同;
    所述调制器,用于调制所述准直后的目标光束,得到所述目标成像光。
  4. 根据权利要求3所述的设备,其特征在于,所述多个光源相距所述光束准直模块的对称轴的距离不同;或,若所述多个光源中的两光源相距所述光束准直模块的对称轴的距离相同,则所述两光源在所述光束准直模块的对称轴的不同侧。
  5. 根据权利要求3或4所述的设备,其特征在于,所述目标光源与所述光束准直模块的对称轴之间的距离h、所述目标光源与所述光束准直模块的像方主平面之间的距离L,以及所述目标光束与所述光束准直模块的对称轴之间的夹角之间,符合如下对应关系:
  6. 根据权利要求3至5中任一项所述的设备,其特征在于,所述多个光源中两光源之间的距离h’、所述光束准直模块的焦距f,以及所述两光源经所述光束准直模块得到的两光束之间的夹角θ’之间,符合如下对应关系:
    h′=f*tan(θ′)。
  7. 根据权利要求6所述的设备,其特征在于,1°≤θ’≤10°,0.2mm≤h’≤2.11mm。
  8. 根据权利要求1或2所述的设备,其特征在于,所述图像生成装置包括:
    第一驱动模块,用于将光源移动至所述目标成像光对应的位置;
    光源,移动后的所述光源用于发出与所述目标成像光对应的目标光束;所述光源在多个位置上发出的多个光束与所述多个成像光一一对应;
    光束准直模块,用于准直所述目标光束,并将准直后的目标光束投射至调制器;所述光束准直模块对所述多个光束中的不同光束准直,所得的准直后的不同光束的光轴不同;
    所述调制器,用于调制所述准直后的目标光束,得到所述目标成像光。
  9. 根据权利要求3至6中任一项所述的设备,其特征在于,所述光束准直模块包括:
    至少一个透镜,所述至少一个透镜用于对所述多个光束进行准直。
  10. 根据权利要求3至9中任一项所述的设备,其特征在于,所述光束准直模块包括:
    菲涅尔透镜,用于对所述多个光束进行准直。
  11. 根据权利要求3至8中任一项所述的设备,其特征在于,所述多个光源中的任一光源,均包括n个子光源;
    所述光束准直模块包括:透镜阵列,所述透镜阵列包括n个透镜,所述n个透镜与所述多个光源中任一光源的n个子光源一一对应;
    所述n个透镜中的任一透镜,用于对对应的子光源发出的光束进行准直。
  12. 根据权利要求1或2所述的设备,其特征在于,所述图像生成装置包括:
    多个平行光源,所述多个平行光源中的任一平行光源用于发出一个平行光束,所述多个平行光源发出的多个平行光束与所述多个成像光一一对应,且所述多个平行光束的光轴不同;所述多个平行光源中与目标成像光对应的目标平行光源用于发出目标平行光束;
    扩束器,用于增大所述目标平行光束的口径,并将增大口径后的目标平行光束投射至所述调制器;
    所述调制器,用于调制增大口径后的目标平行光束,得到所述多个成像光。
  13. 根据权利要求1或2所述的设备,其特征在于,所述图像生成装置包括:
    第二驱动模块,用于将平行光源移动至所述目标成像光对应的位置;
    平行光源,移动后的所述平行光源用于发出与所述目标成像光对应的目标平行光束;所述平行光源在多个位置上发出的多个平行光束与所述多个成像光一一对应,且所述多个平行光束的光轴在不同直线上;
    扩束器,用于增大所述目标平行光束的口径,并将增大口径后的目标平行光束投射至调制器;
    所述调制器,用于调制所述增大口径后的目标平行光束,得到所述目标成像光。
  14. 根据权利要求12或13所述的设备,其特征在于,所述多个平行光束以不同的角度投射至所述扩束器。
  15. 根据权利要求12至14中任一项所述的设备,其特征在于,所述扩束器包括透镜组;
    所述透镜组用于增大所述多个平行光束的口径。
  16. 根据权利要求3至15中任一项所述的设备,其特征在于,所述显示设备还包括:
    定位模块,用于确定所述目标区域,使得所述目标区域对应的光源发出照明光束;
    其中,所述目标区域对应于用户眼睛的位置或者为所述用户选择的眼盒位置。
  17. 根据权利要求3至16中任一项所述的设备,其特征在于,还包括:
    扩散器,用于增大准直后的多个光束的扩散角,或者,用于将增大口径后的多个平行光束的扩散角增大,或者,用于增大所述多个成像光的扩散角。
  18. 根据权利要求3至17中任一项所述的设备,其特征在于,所述调制器包括:
    液晶显示器LCD、薄膜电晶体TFT和硅基液晶LCOS中的任一项。
  19. 一种交通工具,其特征在于,包括权利要求1至18中任一项所述的显示设备,所述显示设备安装在所述交通工具上。
  20. 根据权利要求19所述的交通工具,其特征在于,还包括反射元件,所述显示设备用于向所述反射元件投射所述目标成像光,所述反射元件用于反射所述目标成像光。
PCT/CN2023/092992 2022-08-17 2023-05-09 一种显示设备和交通工具 WO2024037061A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210989388.7 2022-08-17
CN202210989388.7A CN117631280A (zh) 2022-08-17 2022-08-17 一种显示设备和交通工具

Publications (1)

Publication Number Publication Date
WO2024037061A1 true WO2024037061A1 (zh) 2024-02-22

Family

ID=89940585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092992 WO2024037061A1 (zh) 2022-08-17 2023-05-09 一种显示设备和交通工具

Country Status (2)

Country Link
CN (1) CN117631280A (zh)
WO (1) WO2024037061A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090278765A1 (en) * 2008-05-09 2009-11-12 Gm Global Technology Operations, Inc. Image adjustment and processing for a head up display of a vehicle
CN111948816A (zh) * 2019-05-17 2020-11-17 未来(北京)黑科技有限公司 一种抬头显示系统及机动车
CN112255788A (zh) * 2020-09-29 2021-01-22 江苏泽景汽车电子股份有限公司 一种反射镜不翻转的hud图像调节方法
CN112558299A (zh) * 2019-09-26 2021-03-26 光宝电子(广州)有限公司 用于扩充实境的抬头显示装置
CN113219655A (zh) * 2020-01-21 2021-08-06 未来(北京)黑科技有限公司 一种多视角显示的车辆显示系统
CN114820396A (zh) * 2022-07-01 2022-07-29 泽景(西安)汽车电子有限责任公司 图像处理方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090278765A1 (en) * 2008-05-09 2009-11-12 Gm Global Technology Operations, Inc. Image adjustment and processing for a head up display of a vehicle
CN111948816A (zh) * 2019-05-17 2020-11-17 未来(北京)黑科技有限公司 一种抬头显示系统及机动车
CN112558299A (zh) * 2019-09-26 2021-03-26 光宝电子(广州)有限公司 用于扩充实境的抬头显示装置
CN113219655A (zh) * 2020-01-21 2021-08-06 未来(北京)黑科技有限公司 一种多视角显示的车辆显示系统
CN112255788A (zh) * 2020-09-29 2021-01-22 江苏泽景汽车电子股份有限公司 一种反射镜不翻转的hud图像调节方法
CN114820396A (zh) * 2022-07-01 2022-07-29 泽景(西安)汽车电子有限责任公司 图像处理方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN117631280A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN112639581B (zh) 抬头显示器和抬头显示方法
CN101876753B (zh) 平视显示器的混合照明系统
US11474395B2 (en) Birefringent polymer based surface relief grating
CN108501722B (zh) 一种车载显示系统
US20220388396A1 (en) Light source apparatus, and information display system and head-up display apparatus using the same
US9164282B2 (en) Image-partitioned display device for virtual image
WO2017041212A1 (zh) 准直显示装置、车载或机载平视显示装置
WO2024037061A1 (zh) 一种显示设备和交通工具
WO2023202195A1 (zh) 一种投影装置、交通工具
WO2024021574A1 (zh) 立体投影系统、投影系统和交通工具
WO2023173933A1 (zh) 投影装置和交通工具
US20220206297A1 (en) Projection optical system and head-up display device mounted on automobile
CN115685654A (zh) 投影装置、交通工具和显示设备
WO2022141852A1 (zh) 一种投影光学系统及汽车的抬头显示装置
WO2022141853A1 (zh) 一种投影光学系统及汽车的抬头显示装置
CN115638382A (zh) 一种光机模组、车灯模组和交通工具
US11199710B2 (en) Low-obliquity beam scanner with reflective polarizer
CN220983541U (zh) 一种扩散屏、显示装置、交通工具和车载系统
WO2023142568A1 (zh) 显示装置和交通工具
WO2024098828A1 (zh) 投影系统、投影方法和交通工具
CN117631281A (zh) 一种显示设备和交通工具
CN220983636U (zh) 一种显示装置、交通工具和车载系统
WO2023185293A1 (zh) 一种图像生成装置、显示设备和交通工具
WO2024065332A1 (zh) 一种显示模组、光学显示系统、终端设备及图像显示方法
WO2024032057A1 (zh) 一种立体显示装置、立体显示设备以及立体显示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853968

Country of ref document: EP

Kind code of ref document: A1