WO2023173933A1 - 投影装置和交通工具 - Google Patents

投影装置和交通工具 Download PDF

Info

Publication number
WO2023173933A1
WO2023173933A1 PCT/CN2023/072623 CN2023072623W WO2023173933A1 WO 2023173933 A1 WO2023173933 A1 WO 2023173933A1 CN 2023072623 W CN2023072623 W CN 2023072623W WO 2023173933 A1 WO2023173933 A1 WO 2023173933A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength selection
selection unit
light
unit
wavelength
Prior art date
Application number
PCT/CN2023/072623
Other languages
English (en)
French (fr)
Inventor
陈波
邹冰
叶亚斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023173933A1 publication Critical patent/WO2023173933A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • B60R11/0229Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof for displays, e.g. cathodic tubes
    • B60R11/0235Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof for displays, e.g. cathodic tubes of flat type, e.g. LCD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/0003Arrangements for holding or mounting articles, not otherwise provided for characterised by position inside the vehicle
    • B60R2011/0026Windows, e.g. windscreen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B2027/0192Supplementary details
    • G02B2027/0196Supplementary details having transparent supporting structure for display mounting, e.g. to a window or a windshield

Definitions

  • the present application relates to the field of display technology, and in particular to a projection device and a vehicle.
  • Augmented reality head-up display (HUD) technology is a technology that uses an optical system to project the content displayed on the display to the user's eyes through the windshield. It is widely used in vehicles including cars.
  • augmented reality HUD technology in order to make the display effect better, bifocals are designed to display stereoscopic virtual images.
  • a projection device is used to display a bifocal stereoscopic virtual image.
  • the projection device includes a first display, a second display, a first reflector, a second reflector and a third reflector.
  • the image information of the first display is reflected to the user's eyes through the first reflector, the second reflector and the third reflector, and the image information of the second display is reflected to the user's eyes through the third reflector.
  • the projection device adopts a three-lens spatial folding reflection scheme. Since the multiple reflectors in the projection device cannot be blocked, the projection device will be relatively large in size.
  • the present application provides a projection device and a vehicle, which can make the projection device smaller in size.
  • this application provides a projection device, which includes an image providing unit, N wavelength selection units and a reflection unit, where N is greater than 1; the image providing unit is used to project light beams of N logical areas, with different The light beams correspond to different image contents; the 1st to Nth wavelength selection units among the N wavelength selection units are arranged in sequence along the projection direction of the N light beams, and the N wavelength selection units are used to reflect the N light beams to the above-mentioned reflection unit, and different wavelength selection units are used to reflect light of different wavelengths.
  • the i-th wavelength selection unit among the N wavelength selection units is also used to transmit the incident light from the i+1 to N-th wavelength selection units. Light or reflected light or incident light and reflected light, i ranges from 1 to N-1; the reflection unit is used to reflect the received N light beams to form images corresponding to the different image contents.
  • the N light beams are the light beams of N logical areas in the image providing unit. Different wavelength selection units among the N wavelength selection units are used to reflect light of different wavelengths, and the i-th wavelength selection unit among the N wavelength selection units is also used to transmit the incident light from the i+1 to N-th wavelength selection units. Light.
  • the N wavelength selection units can have overlapping parts, the spatial optical path is relatively compact, and the volume of the projection device can be made relatively small.
  • each wavelength selection unit reflects the corresponding light beam to the reflection unit.
  • Different light beams load different image contents, so multi-focal surface display can be achieved.
  • the incident light of the j+1th wavelength selection unit among the N wavelength selection units is sequentially selected from the 1st to jth wavelengths before being incident on the j+1th wavelength selection unit.
  • Unit transmission, j ranges from 1 to N-1.
  • the incident light of the j+1th wavelength selection unit is transmitted from the 1st to the jth wavelength selection unit, so that no need It is easy to design whether one end of adjacent wavelength selection units needs to be staggered.
  • the reflected light of the j+1th wavelength selection unit among the N wavelength selection units is transmitted from the jth to the 1st wavelength selection unit in sequence before being incident on the reflection unit, and the value of j is is 1 to N-1.
  • the reflected light of the j+1th wavelength selection unit is transmitted from the 1st to the jth wavelength selection unit, so that there is no need to specifically design whether one end of the adjacent wavelength selection unit needs to be staggered, and it is easy to implement.
  • the N light beams output by the image providing unit have different wavelengths, and different wavelength selection units are used to reflect different light beams.
  • each wavelength selection unit is used to reflect a light beam.
  • the N light beams have different wavelengths and can provide N images of different colors.
  • each of the N wavelength selection units is a band filter, a holographic optical element (HOE) volume grating or a diffractive optical element (Diffractive optical element, DOE)
  • HOE holographic optical element
  • DOE diffractive optical element
  • the first surface of the k-th wavelength selection unit among the N wavelength selection units is used to reflect the light beam of the image content corresponding to the k-th wavelength selection unit and transmit the k+1-th
  • k takes a value of at least one value from 1 to N-1; a part of the second surface of the kth wavelength selection unit is used to reflect the k+ Reflected light from 1 wavelength selection unit.
  • the second surface of the k-th wavelength selection unit is specially designed, and part of the second surface can reflect the reflected light of the k+1-th wavelength selection unit.
  • the reflected light is made to be between the kth wavelength selection unit and the k+1th wavelength selection unit.
  • At least one round trip can meet the optical path requirement when the distance between the kth wavelength selection unit and the k+1th wavelength selection unit is relatively small, thereby making the projection device smaller in size.
  • the N light beams output by the image providing unit have the same wavelength.
  • N wavelength selection units are used to reflect light in different wavelength ranges.
  • Each wavelength range can include wavelengths in one or more wave bands.
  • the combination of different wavelength ranges corresponding to the N wavelength selection units The set is less than or equal to the wavelength range of the beam. In this way, since the wavelengths of the N light beams are the same, the image providing unit is easy to implement.
  • the m+1th wavelength selection unit among the N wavelength selection units is used to transmit the light beam of the image content corresponding to the mth wavelength selection unit to the m+1th wavelength.
  • Select the light absorption of the unit, and m takes on at least one value from 1 to N-1.
  • the m-th wavelength selection unit can only reflect light in a certain wavelength range and cannot reflect light of all wavelengths in the incident light, so some light will be transmitted to the m+1-th wavelength selection unit.
  • This part of light contains light that can be reflected by the m+1th wavelength selection unit.
  • the m+1th wavelength selection unit absorbs this part of the light, such as using an energy attenuation device, instead of reflecting it to the reflective unit, so that two images of the same image content are not formed.
  • each of the N wavelength selection units is a band filter; or, the Nth wavelength selection unit is a reflector, and the i-th wavelength selection unit is a band filter. piece.
  • the wavelength selection unit is a band filter
  • the band filter can be a multi-channel filter
  • the final displayed image is a color image.
  • the band filter can be a single-channel filter, and the final displayed image is a monochrome image.
  • the first surface of the kth wavelength selection unit among the N wavelength selection units is used to reflect part of the light beam of the image content corresponding to the kth wavelength selection unit, and transmit the kth wavelength selection unit.
  • +1 to Nth wavelength For part of the light in the light beam of the image content corresponding to the selection unit, k takes a value of at least one value from 1 to N-1; a partial area of the second surface of the k-th wavelength selection unit is used to reflect the k+1-th Reflected light from the wavelength selection unit.
  • the second surface of the k-th wavelength selection unit is specially designed, and part of the second surface can reflect the reflected light of the k+1-th wavelength selection unit.
  • the reflected light is made to be between the kth wavelength selection unit and the k+1th wavelength selection unit.
  • At least one round trip can meet the optical path requirement when the distance between the kth wavelength selection unit and the k+1th wavelength selection unit is relatively small, thereby making the projection device smaller in size.
  • the 1st to Nth wavelength selection units are arranged in parallel in sequence along the projection direction of the N light beams. In this way, the N wavelength selection units are parallel, which not only makes the implementation difficult, but also makes the projection device smaller in size.
  • the first end of the j-th wavelength selection unit among the N wavelength selection units is staggered from the first end of the j+1-th wavelength selection unit, and the value of j is 1 to N-1 ;
  • the incident light of the j+1th wavelength selection unit is not transmitted from the 1st to the jth wavelength selection unit before it is incident on the j+1th wavelength selection unit, and the j+1th wavelength selection unit
  • the reflected light is transmitted from the jth to the 1st wavelength selection unit in sequence before being incident on the reflection unit.
  • the incident light of the j+1th wavelength selection unit is not transmitted from the 1st to the jth wavelength selection unit before it is incident on the j+1th wavelength selection unit, so that the j+1th wavelength selection unit corresponds to The light beam only passes through other wavelength selection units once, reducing optical loss.
  • the second end of the j-th wavelength selection unit among the N wavelength selection units is staggered from the second end of the j+1-th wavelength selection unit, and the value of j is 1 to N-1. ;
  • the incident light of the j+1th wavelength selection unit is incident on the j+1th wavelength selection unit, it is transmitted from the 1st to the jth wavelength selection unit in sequence, and the j+1th wavelength selection unit The reflected light is not transmitted from the jth to the 1st wavelength selection unit before being incident on the reflection unit.
  • Wavelength selection unit reduces optical loss.
  • the present application provides a projection device.
  • the projection device includes an image providing unit, a first wavelength selecting unit, a second wavelength selecting unit and a reflecting unit; the image providing unit is used to project two light beams. Each beam corresponds to different image content respectively; the first wavelength selection unit and the second wavelength selection unit are stacked and arranged along the projection direction of the two beams; the first wavelength selection unit and the second wavelength selection unit are used for Reflect the two light beams, wherein the first wavelength selection unit and the second wavelength selection unit are used to reflect light of different wavelengths, and the first wavelength selection unit is also used to transmit the incident light of the second wavelength selection unit; The reflection unit is used to reflect the two received light beams to form images corresponding to the different image contents.
  • different wavelength selection units among the two wavelength selection units are used to reflect light of different wavelengths, and the first wavelength selection unit is also used to transmit the incident light of the second wavelength selection unit.
  • the two wavelength selection units can have overlapping parts, the spatial optical path is relatively compact, and the volume of the projection device can be made relatively small.
  • the present application provides a projection device, which includes an image providing unit, three wavelength selection units and a reflection unit;
  • the image providing unit is used to project three light beams, and the three light beams respectively correspond to different image contents
  • the first to third wavelength selection units among the three wavelength selection units are arranged in a stack along the projection direction of the three light beams;
  • the three wavelength selection units are used to reflect the three light beams, wherein different wavelength selection units are used to reflect light of different wavelengths, and the first wavelength selection unit is used to transmit the second wavelength selection unit and the third The incident light of the wavelength selection unit; the second wavelength selection unit is used to transmit the incident light of the third wavelength selection unit;
  • the reflection unit is used to reflect the three received light beams to form images corresponding to the different image contents.
  • the present application provides a vehicle, which includes a windshield and a projection device as described in the first aspect and a possible implementation of the first aspect, or a projection device as described in the second aspect. device, or, a projection device as described in the third aspect;
  • the projection device is used to output N light beams to the windshield glass to form images corresponding to different image contents.
  • Figure 1 is a schematic structural diagram of a traditional projection device
  • Figure 2 is a schematic structural diagram of a projection device provided by an exemplary embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a projection device provided by an exemplary embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a projection device provided by an exemplary embodiment of the present application.
  • Figure 5 is a schematic diagram of multiple HOEs provided by an exemplary embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a projection device provided by an exemplary embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a projection device provided by an exemplary embodiment of the present application.
  • Figure 8 is an enlarged view of a wavelength selection unit provided by an exemplary embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a projection device provided by an exemplary embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a projection device provided by an exemplary embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a projection device provided by an exemplary embodiment of the present application.
  • Figure 12 is a schematic diagram of a projection device and a windshield provided by an exemplary embodiment of the present application.
  • Figure 13 is a schematic functional framework diagram of a vehicle provided by an exemplary embodiment of the present application.
  • Image providing unit 2. N wavelength selection units; 3. Reflection unit;
  • the first wavelength selection unit 01.
  • the second wavelength selection unit 02.
  • HUD is a system that transmits image content to the user's eyes through an optical system.
  • HUD is used in vehicles to transmit information such as car speed and road conditions displayed on the display to the driver's eyes through the optical system.
  • information such as car speed and road conditions displayed on the display
  • the driver can see relevant information without having to lower his head, which is very beneficial to the driver's safe driving.
  • augmented reality HUD has emerged in recent years. Augmented reality HUD is used in vehicles. It superimposes digital images on the real environment outside the vehicle through optical systems, allowing the driver to obtain augmented reality visual effects, which can be used for augmented reality navigation and adaptive driving. In scenarios such as cruise and lane departure warning.
  • the bifocal head-up display system is a HUD system that forms two projection surfaces based on two different projection distances.
  • Figure 1 provides a schematic structural diagram of a traditional projection device, which is a bifocal device for displaying virtual images.
  • the projection device includes a first display, a second display, a first reflector, a second reflector and a third reflector.
  • the image information of the first display is projected to the user's eyes through the first reflector, the second reflector and the third reflector, and the image information of the second display is projected to the user's eyes through the third reflector.
  • the projection device adopts a three-lens spatial folding reflection scheme. Since the multiple reflectors in the projection device cannot be blocked, the projection device will be relatively large in size. Moreover, when displaying three or more three-dimensional virtual images, a multi-lens folding reflection scheme is also used, which will use more reflectors, thereby making the projection device larger.
  • Embodiments of the present application provide a projection device that does not use multiple mirrors to reflect light beams, but uses a wavelength selection unit to reflect light beams.
  • the wavelength selection unit can have overlapping parts, and the spatial optical path is relatively compact, which will make the projection device smaller in size.
  • the projection device provided by the embodiment of the present application can be used in audio-visual entertainment and assisted driving scenarios.
  • the projection device can be used alone, or can be integrated as a component in other equipment.
  • the projection device can be integrated in a vehicle, or in a head-mounted display device, or in a head-mounted display device. Integrated into optical desktop display device.
  • FIG. 2 is a schematic structural diagram of a projection device provided by an embodiment of the present application.
  • the projection device includes an image providing unit 1 , N wavelength selection units 2 and a reflection unit 3 .
  • the image providing unit 1 is used to project N light beams, and different light beams correspond to different image contents.
  • the N wavelength selection units 2 include 1st to Nth wavelength selection units, and the 1st to Nth wavelength selection units are sequentially arranged along the projection direction of the N light beams.
  • the N wavelength selection units 2 are used to reflect the N light beams to the reflection unit 3. Different wavelength selection units are used to reflect light of different wavelengths.
  • the i-th wavelength selection unit among the N wavelength selection units 2 is also used to transmit.
  • the incident light of the i+1th to Nth wavelength selection unit, i ranges from 1 to N-1.
  • the reflection unit 3 is used to reflect the received N light beams to form images corresponding to different image contents. The positions of the images corresponding to the different image contents are different.
  • the incident light of the i-th wavelength selection unit refers to the light incident on the i-th wavelength selection unit.
  • the first to Nth wavelength selection units are stacked and arranged in sequence along the projection direction of the N light beams.
  • Each wavelength selection unit is responsible for reflecting light carrying an image content.
  • the wavelengths of the N light beams provided by the image providing unit 1 are the same or different.
  • the arrowed line indicates the propagation direction of the light beam.
  • the incident light of the j+1th wavelength selection unit is transmitted from the 1st to the jth wavelength selection unit in sequence before being incident on the j+1th wavelength selection unit.
  • j takes values from 1 to N-1.
  • the incident light of the j+1th wavelength selection unit refers to the light incident on the j+1th wavelength selection unit.
  • the reflected light of the j+1th wavelength selection unit is transmitted from the jth to the 1st wavelength selection unit in sequence before being incident on the reflection unit 3, where the reflected light refers to the light beam carrying the first image content that is reflected by the Light reflected by j+1 wavelength selection units.
  • the image providing unit 1 provides N light beams, and the N light beams have different wavelengths.
  • the first light beam is incident on the first wavelength selection unit, and the first wavelength selection unit reflects the first light beam to the reflection unit 3.
  • the reflection unit 3 reflects the first light beam to form an image.
  • the second beam is transmitted through the first wavelength selection unit and is incident on the second wavelength selection unit.
  • the second wavelength selection unit reflects the second beam, and the second beam is transmitted through the first wavelength selection unit.
  • Reflection unit 3 reflects the second light beam to form an image. And so on, each of the N beams will be reflected to form an image.
  • FIG. 3 is a schematic structural diagram of another projection device provided by an embodiment of the present application. The difference from the projection device shown in Figure 2 is that the first end of the j-th wavelength selection unit is staggered from the first end of the j+1-th wavelength selection unit, and the value of j ranges from 1 to N-1.
  • the first end is the end from which light emerges from the j+1th wavelength selection unit.
  • the incident light of the j+1th wavelength selection unit is incident on the j+1th wavelength selection unit in sequence from the 1st
  • the wavelength selection units from 1 to jth are transmitted.
  • the reflected light of the j+1th wavelength selection unit is not transmitted from the jth to the 1st wavelength selection unit before being incident on the reflection unit 3, that is, it is directly reflected from the j+1th wavelength selection unit to the reflection unit 3.
  • the image providing unit 2 provides N light beams, and the N light beams have different wavelengths.
  • the first light beam is incident on the first wavelength selection unit, and the first wavelength selection unit reflects the first light beam to the reflection unit 3.
  • the reflection unit 3 reflects the first light beam to form image 1.
  • the second beam is transmitted through the first wavelength selection unit to the second wavelength selection unit, and the second wavelength selection unit directly reflects the second beam to the reflection unit 3 .
  • the reflection unit 3 reflects the second light beam to form image 2. And so on, each of the N beams will be reflected to form an image.
  • FIG. 4 is a schematic structural diagram of another projection device provided by an embodiment of the present application. The difference from the projection device shown in Figure 2 is that the second end of the j-th wavelength selection unit is staggered from the second end of the j+1-th wavelength selection unit, and the value of j ranges from 1 to N-1.
  • the second end is the end where light is incident from the j+1th wavelength selection unit.
  • the incident light of the j+1th wavelength selection unit does not pass through the 1st wavelength selection unit before being incident on the j+1th wavelength selection unit.
  • to the jth wavelength selection unit is transmitted, that is, directly incident from the image providing unit 1 to the j+1th wavelength selection unit.
  • the reflected light of the j+1th wavelength selection unit is transmitted from the jth to the 1st wavelength selection unit in sequence before being incident on the reflection unit 3 .
  • the image providing unit 2 provides N light beams, and the N light beams have different wavelengths.
  • the first light beam is incident on the first wavelength selection unit, and the first wavelength selection unit reflects the first light beam to the reflection unit 3.
  • the reflection unit 3 reflects the first light beam to form image 1.
  • the second beam does not pass through the first wavelength selection unit, but directly enters the second wavelength selection unit.
  • the second wavelength selection unit reflects the second beam, and the second beam passes through the first wavelength selection unit. It is transmitted to the reflection unit 3, and the reflection unit 3 reflects the second beam to form image 2. And so on, each of the N beams will be reflected to form an image.
  • the incident light of the j+1th wavelength selection unit only needs to pass through the 1st to jth wavelength selection units once.
  • the scenario of j wavelength selection units can reduce optical loss and improve display efficiency.
  • the image providing unit 1 includes N logical areas, and the N logical areas provide different image contents respectively.
  • the image content provided by one logical area is information such as vehicle speed
  • the image content provided by another logical area is navigation information, etc.
  • the N logical areas may belong to one display, or may not belong to the same display. For example, if the value of N is 2, one logical area belongs to the first display and the other logical area belongs to the second display.
  • the N logical areas can be located on the same plane or on different planes.
  • the image providing unit 1 may be a liquid crystal on silicon (LCOS) display, a liquid crystal display (LCD) display, a digital light processing (DLP) display or a micro-electromechanical system (MEMS). Any of micro-electro-mechanical system, MEMS) displays.
  • the LCD display may include a thin film transistor (TFT) display or the like.
  • the light source of various displays can be a light-emitting diode (LED) light source or a laser diode (laser diode, LD) light source.
  • the display may also be referred to as an image source or image generating unit.
  • the N light beams provided by the image providing unit 1 have different wavelengths, and the light sources emitted by the N logical areas have different wavelengths.
  • Different wavelength selection units reflect light beams of different wavelengths.
  • the wavelengths of the N beams can be set arbitrarily according to actual needs. For example, if the value of N is 3, the beams of the three image contents are all monochromatic light, and the three beams are red beams, green beams and blue beams respectively.
  • the N light beams provided by the image providing unit 1 have the same wavelength, and then different wavelength selection units reflect light in different wavelength ranges in the light beams.
  • the wavelength range of the beam can be set arbitrarily according to actual needs. For example, if the wavelength range of the light beam is set to the wavelength range of white light, then the light source is a white light source, or a three primary color light source. The red, green, and blue light emitted by the three primary color light source constitutes white light.
  • the projection directions of the N light beams may be parallel, or may have a certain included angle.
  • the projection directions of the N light beams may be located in the same plane, or may not be located in the same plane.
  • the sizes of the N wavelength selection units 2 may be equal or unequal.
  • the structure of the N wavelength selection units 2 may be a planar structure or a curved surface structure.
  • the positions of the N wavelength selection units 2 can be determined according to the position of the formed image.
  • the N wavelength selection units 2 can be placed in parallel or at a certain angle.
  • the 1st to Nth wavelength selection units are arranged in parallel along the projection direction of the N light beams, and can also be considered as the 1st to Nth wavelength selection units.
  • the selection units are arranged in parallel stacks in sequence along the projection direction of the N light beams, or in parallel and overlapping arrangements in sequence.
  • the spacing of the N wavelength selection units 2 may be the same or different. In this way, N wavelength selection units 2 are arranged in parallel stacks, which can save space and make the size of the projection device smaller.
  • each wavelength selection unit may be one of a band filter, a HOE volume grating, or a DOE.
  • the N-th wavelength selection unit is a reflector
  • the i-th wavelength selection unit is one of a band filter, an HOE volume grating, or a DOE.
  • the reason why the Nth wavelength selection unit can be a reflector is that there are no other wavelength selection units behind the Nth wavelength selection unit, other light will not pass through the Nth wavelength selection unit, and there is only one Nth wavelength selection unit. The beam is incident, so only the beam is reflected, and there is no need to transmit other beams.
  • each band filter can be manufactured through coating processing, and the separation of wavelengths is achieved through coating, making the spatial structure more compact.
  • Each band filter can be a single-channel filter or a multi-channel filter.
  • each wavelength selection unit uses a band filter. Assume that the value of N is 3.
  • the three wavelength selection units include the first band filter, the second band filter and the third band filter.
  • the first band filter, the second band filter and the third band filter are arranged in sequence along the projection direction of the N light beams. Taking a single-channel filter as an example, the first band filter uses a high-pass band filter with a cutoff of 490nm.
  • the first band filter reflects light of 380-475nm and transmits light of 505-800nm.
  • the second band filter uses a high-pass band filter with a cutoff of 650nm.
  • the second band filter reflects light from 505nm to 633nm, and the second band filter transmits light above 685nm.
  • the third band filter uses a high-pass band filter with a cutoff above 760nm.
  • the central wavelength of the first beam can be 430nm and the bandwidth is less than 40nm.
  • the center wavelength of the second beam can be 550nm and the bandwidth is less than 30nm.
  • the center wavelength of the third beam can be 710nm and the bandwidth is less than 30nm.
  • the light source in the display can be an LED light source or an LD light source.
  • HOE has wavelength selectivity and angle selectivity.
  • the principle of HOE is as follows:
  • the wavelength of light that the HOE can reflect can be set according to the diffraction formula (1).
  • ⁇ m is the angle of the incident light of the HOE relative to the HOE
  • is the grating spacing of the HOE
  • n is the average refractive index of the HOE.
  • the value of N is 3, and the three wavelength selection units are HOE1, HOE2 and HOE3 respectively.
  • HOE1, HOE2 and HOE3 are used with different grating vector directions, incident light with the same incident angle can be emitted in different emission directions. In this way, light of different wavelengths can be separated by HOE with different grating vectors and different grating intervals.
  • Figure 5 is a schematic diagram of HOE1, HOE2 and HOE3. In Figure 5, the three beams are separated through HOE1, HOE2 and HOE3.
  • DOE and HOE are similar and will not be described again here.
  • the HOE may be a thin film type HOE.
  • HOE and DOE can be prepared by exposure, electron beam lithography, nanoimprinting or other optical precision component processing methods.
  • each wavelength selection unit may be a band filter.
  • the i-th wavelength selection unit is a band filter
  • the N-th wavelength selection unit is a reflector.
  • the reason why the Nth wavelength selection unit can be a reflector is that there are no other wavelength selection units behind the Nth wavelength selection unit, and other light will not pass through (transmit) the Nth wavelength selection unit. The unit only needs to reflect the received light and does not need to transmit other light beams.
  • each wavelength selection unit is used to reflect light in a different wavelength range.
  • Each wavelength range may include wavelengths in one or more bands.
  • a band filter may be used.
  • the final displayed image is a color image.
  • the band filter can be a single-channel filter, and the final displayed image is a monochrome image.
  • each wavelength selection unit uses a band filter. Assume that the value of N is 3.
  • the three wavelength selection units include the first band filter, the second band filter and the third band filter.
  • the first The band filter, the second band filter and the third band filter are arranged in sequence along the projection direction of the three light beams.
  • the three wavelength selection units are respectively used to reflect light in the first wavelength range, light in the second wavelength range, and light in the third wavelength range.
  • Each wavelength range may include wavelengths in multiple discontinuous wavebands or each wavelength range.
  • a band of wavelengths can be included, with no overlap between the three wavelength ranges.
  • the union of the three wavelength ranges is less than or equal to the wavelength range of the light beam provided by the image providing unit 1 .
  • the first light beam is incident on the first waveband filter, and the light in the first wavelength range in the first light beam is reflected by the first waveband filter and is incident on the reflection unit 3 .
  • the second light beam is incident on the second waveband filter, and the light in the second wavelength range in the second light beam is reflected by the second waveband filter and is incident on the reflection unit 3 .
  • the third light beam is incident on the third waveband filter, and the light in the third wavelength range in the third light beam is reflected by the third waveband filter and is incident on the reflection unit 3 .
  • the above-mentioned band filter can be a dichroic filter, and the dichroic filter can also be called a dichroic mirror.
  • the first wavelength selection unit is a band filter
  • the second wavelength selection unit is HOE or DOE.
  • the value of m is 1 to N-1, and the m-th wavelength selection unit can reflect a certain Light in the wavelength range cannot reflect light of all wavelengths in the incident light, so some light will be transmitted to the m+1th wavelength selection unit, and in this part of light, there is light that the m+1th wavelength selection unit can reflect. If this part of the light belongs to the light beam of the image content corresponding to the m-th wavelength selection unit, Then this part of the light will also contain the image content, which can be understood as stray light.
  • the first wavelength selection unit corresponds to the first image content
  • the first image content corresponds to the first light beam.
  • the first wavelength selection unit reflects the light in the first wavelength range in the first beam, and then the light in the first beam except the first wavelength range is transmitted to the second wavelength selection unit.
  • the incident position of the part of the light in the m+1th wavelength selection unit can absorb the part of the light.
  • the value of N is 2, and the first wavelength selection unit corresponds to the first
  • the second wavelength selection unit corresponds to the beam of the second image content.
  • the wavelength range of each beam is 500 ⁇ 600nm.
  • the first wavelength selection unit reflects light of 500 ⁇ 540nm
  • the second wavelength selection unit reflects light of 560 ⁇ 600nm.
  • the light of 541 ⁇ 600nm in the light beam of the first image content will be transmitted from the first wavelength selection unit to the second wavelength selection unit.
  • the second wavelength selection unit needs to absorb the 541 ⁇ 600nm light in the beam of the first image content.
  • the m+1-th wavelength selection unit may absorb the part of the light by coating an absorption film at the incident position of the part of the light, and the absorption film is used to absorb the part of the light.
  • a reflective film is coated on the back side of the m-th wavelength selection unit (the surface close to the m+1-th wavelength selection unit) in the incident area of the part of the light, so that the part of the light is reflected to other locations without entering the reflection unit. 3.
  • this part of the light is reflected to other positions and does not enter the reflection unit 3 .
  • the projection device described in Figure 4 can be used so that the incident light of the j+1th wavelength selection unit does not pass through the 1st to jth wavelength selection units, Then the 1st to jth wavelength selection units will not reflect the incident light, nor will the same image content correspond to multiple virtual images.
  • the 1st to jth wavelength selection units will also Reflect part of the light in the light beam of the image content corresponding to the j+1th wavelength selection unit. This part of the light can be understood as stray light. If this part of the light is incident on the reflection unit 3, it will cause the same image content to correspond to multiple image. For example, if the value of N is 2, the first wavelength selection unit corresponds to the beam of the first image content, and the second wavelength selection unit corresponds to the beam of the second image content.
  • the wavelength range of each beam is 500 ⁇ 600nm.
  • the first wavelength selection unit reflects light of 500 ⁇ 540nm
  • the second wavelength selection unit reflects light of 560 ⁇ 600nm.
  • the light of 500 ⁇ 540nm in the light beam of the second image content will be reflected by the first wavelength selection unit. If the second image content When the 500 ⁇ 540nm light in the beam is incident on the reflective unit 3, the second image content will correspond to two images.
  • the image providing unit 1, the N wavelength selection units 2 and the reflection unit 3 can be designed to cooperate with each other so that this part of the light is reflected by the 1st to jth wavelength selection units and is not incident on Reflection unit 3.
  • the position and projection direction of the N light beams provided by the image providing unit 1, as well as the spacing and angle between the N wavelength selection units 2, and the angle and aperture of the reflection unit 3 can be designed to prevent the same image content from corresponding to multiple image.
  • Figure 6 exemplarily provides a structure of a projection device. Using the projection device shown in Figure 6 can prevent the same image content from corresponding to multiple images.
  • the three beams provided by the image providing unit 1 are not parallel, and the three wavelength selection units are not parallel either.
  • the first wavelength selection unit reflects the light of the first wavelength range in the beam
  • the second wavelength selection unit 2 reflects the light of the second wavelength range in the beam
  • the third wavelength selection unit reflects the light of the third wavelength range in the beam
  • the first wavelength range, the second wavelength range and the third wavelength range do not overlap, and their union is the wavelength range of each light beam provided by the image providing unit 1 .
  • the light in the first wavelength range in the first beam is reflected by the first wavelength selection unit and enters the reflection unit 3 .
  • the second light beam is incident on the first wavelength selection unit.
  • the light in the first wavelength range is reflected by the first wavelength selection unit and does not enter the reflection unit 3 (the direction of light transmission is indicated by a dotted line).
  • the light in the second wavelength range is The light in the third wavelength range is incident on the second wavelength selection unit.
  • the light in the second wavelength range in the second beam is reflected by the second wavelength selection unit and is incident on the reflected Unit 3.
  • the third light beam is incident on the first wavelength selection unit.
  • the light in the first wavelength range is reflected by the first wavelength selection unit and does not enter the reflection unit 3 (the direction of light transmission is indicated by a dotted line).
  • the light in the second wavelength range is The light in the third wavelength range is incident on the second wavelength selection unit.
  • the light in the second wavelength range in the third beam is reflected by the second wavelength selection unit and does not enter the reflection unit 3 (the light transmission direction is indicated by a dotted line).
  • the light in the third wavelength range in the third light beam is incident on the third wavelength selection unit, is reflected by the third wavelength selection unit, and is incident on the reflection unit 3 .
  • each image content corresponds to an image without interfering with each other.
  • the reflection unit 3 may be a curved mirror (for example, a concave mirror). Using a curved mirror as the reflection unit 3 can reduce aberrations and achieve better imaging effects. This is only an example, and any reflective unit 3 that can reduce aberrations can be applied to the embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of another projection device provided by an embodiment of the present application. As shown in Figure 7, there is a k-th wavelength selection unit among the N wavelength selection units 2.
  • the k-th wavelength selection unit has a first surface and a second surface. The first surface is opposite to the second surface, and the first surface is opposite to the second surface.
  • the k-1 wavelength selection units are adjacent, and the second surface is adjacent to the k+1-th wavelength selection unit.
  • the first surface is used to reflect the light beam corresponding to the image content of the k-th wavelength selection unit, and transmit other incident light beams to the k+1-th wavelength selection unit, and transmit other incident light beams to the k+1-th wavelength selection unit.
  • the light beam is the light beam of the image content corresponding to the k+1th to Nth wavelength selection units. For example, if the value of N is 2, the first wavelength selection unit corresponds to the first image content, the second wavelength selection unit corresponds to the second image content, and the first surface of the first wavelength selection unit reflects the first image content. The beam that transmits the content of the second image.
  • a partial area of the second surface of the kth wavelength selection unit is used to reflect the reflected light of the k+1th wavelength selection unit, that is, so that the reflected light of the k+1th wavelength selection unit is at least affected by the kth wavelength selection unit. Select the unit to reflect once.
  • the first surface is used to reflect part of the light in the image content corresponding to the k-th wavelength selection unit, and transmit other light to the k+1-th wavelength selection unit.
  • Other light is part of the light beam of the image content corresponding to the k+1th to Nth wavelength selection units. For example, if the value of N is 2, the first wavelength selection unit corresponds to the first image content, the second wavelength selection unit corresponds to the second image content, and the first surface of the first wavelength selection unit reflects the first image content.
  • the light of the first wavelength range in the light beam transmits the light of the second wavelength range of the light beam of the second image content, and the union of the first wavelength range and the second wavelength range is the wavelength range of the light beam of the image content.
  • a partial area of the second surface of the kth wavelength selection unit is used to reflect the reflected light of the k+1th wavelength selection unit, that is, so that the reflected light of the k+1th wavelength selection unit is at least affected by the kth wavelength selection unit. Select the unit to reflect once.
  • the distance (i.e., the optical path) between the light of the image content and the imaging position is constant.
  • the optical path is Under constant conditions, the reflected light of the k+1th wavelength selection unit is reflected through the partial area of the second surface, so that the optical path of the light of the image content between the kth and the k+1th wavelength selection unit changes. long, thereby shortening the distance between the kth and k+1th wavelength selection units.
  • the distance between the reflected light of the k-th and k+1-th wavelength selection units is relatively far, and the k-th and k+1-th wavelength selection units can be narrowed.
  • the distance between wavelength selection units for example, the first position is above the second position, the first position is the position where the reflected light of the k+1th wavelength selection unit first enters the kth wavelength selection unit, The second position is the exit position of the reflected light of the kth wavelength selection unit. Therefore, the size of the N wavelength selection units 2 can be reduced.
  • the value of k is at least one value from 1 to N-1, that is to say: there are one or more wavelength selection units in the N wavelength selection units 2, and the second surface of the one or more wavelength selection units has Some areas have a reflection function, and the reflection function is specifically a function of reflecting the reflected light of the adjacent wavelength selection unit.
  • the value of k there is no limit on the value of k, nor is there a limit on the number of k values.
  • the number of times a partial area of the second surface reflects the reflected light of the k+1th wavelength selection unit is not limited. The number of reflections may depend on the area size of the reflection area of the second surface. The larger the area, the greater the number of reflections. more.
  • a partial area of the second surface of the k-th wavelength selection unit is coated with a reflective film, and the reflective film is used to reflect the reflected light of the k+1-th wavelength selection unit. It is shown in FIG. 7 that the second surface of the first wavelength selection unit is provided with a reflective film.
  • the second wavelength selection unit from the 1st to the N-1th wavelength selection unit is Parts of the surface are coated with a reflective film.
  • the position of the partial area on the second surface of the k-th wavelength selection unit can be set according to actual needs.
  • This partial area cannot be located on the target incident path of the k+1-th to N-th wavelength selection units, and the K+1-th
  • the reflected light from the wavelength selection units can be incident on the reflection unit 3 .
  • the target incident path includes an incident path of the target light incident on the k+1 th to N th wavelength selection units, and the target light is the incident light of the k+1 th to N th wavelength selection units.
  • FIG. 9 is a schematic structural diagram of another projection device provided by an embodiment of the present application. As shown in FIG. 9 , the value of N is 2, and the projection device includes an image providing unit 1 , a first wavelength selection unit 01 , a second wavelength selection unit 02 and a reflection unit 3 .
  • the image providing unit 1 is used to project two light beams, and the two light beams correspond to different image contents. That is to say, the image providing unit 1 has two logical areas, and the image contents of the two logical areas are different.
  • the first wavelength selection unit 01 and the second wavelength selection unit 02 are stacked and arranged along the projection directions of the two light beams.
  • the first wavelength selection unit 01 and the second wavelength selection unit 02 are used to reflect the two light beams.
  • the first wavelength selection unit 01 and the second wavelength selection unit 02 are used to reflect light beams of different wavelengths.
  • the first wavelength selection unit 01 also uses The incident light transmitted through the second wavelength selection unit 02.
  • the reflection unit 3 is used to reflect the two received light beams to form images corresponding to different image contents.
  • the two beams include a first beam and a second beam.
  • the first beam is incident on the first wavelength selection unit 01, and the first wavelength selection unit 01 Reflect the first light beam to the reflection unit 3.
  • the second light beam is incident on the first wavelength selection unit 01 , and the first wavelength selection unit 01 transmits the second light beam to the second wavelength selection unit 02 .
  • the second wavelength selection unit 02 reflects the second light beam, and the reflected second light beam is incident (transmitted) to the reflection unit 3 through the first wavelength selection unit 01 .
  • the reflection unit 3 reflects the first light beam and the second light beam to form images corresponding to different image contents.
  • the first wavelength selection unit 01 reflects the light of the first wavelength range
  • the second wavelength selection unit 02 reflects the light of the second wavelength range
  • the first wavelength range and the second wavelength selection unit 02 reflect the light of the second wavelength range.
  • the union of the wavelength ranges is the wavelength range of the first light beam (or the wavelength range of the light beam output by the image providing unit 1).
  • the first light beam is incident on the first wavelength selection unit 01
  • the first wavelength selection unit 01 reflects the light in the first wavelength range in the first light beam to the reflection unit 3 .
  • the second light beam is incident on the first wavelength selection unit 01.
  • the first wavelength selection unit 01 transmits the light in the second wavelength range in the second light beam to the second wavelength selection unit 02, and does not reflect the light in the first wavelength range to the reflection unit 02.
  • the second wavelength selection unit 02 reflects the light in the second wavelength range, and the light in the second wavelength range is incident (transmitted) to the reflection unit 3 through the first wavelength selection unit 01.
  • the second light beam passes through the first wavelength selection unit 01 twice for illustration.
  • the second light beam may also pass through the first wavelength selection unit 01 only when it is incident, or it may only pass through the first wavelength selection unit 01 when it is emitted.
  • a wavelength selection unit 01. For detailed description, please refer to the description of FIGS. 3 and 4 .
  • FIG. 10 is a schematic structural diagram of another projection device provided by an embodiment of the present application.
  • the first surface of the first wavelength selection unit 01 is used to transmit the light incident to the second wavelength selection unit 02 (incident light), and a partial area of the second surface of the first wavelength selection unit 01 is used to reflect the second wavelength selection unit 02
  • the reflected light, the first surface and the second surface are On the opposite surface, this partial area causes the reflected light to be reflected at least once in the first wavelength selection unit 01 .
  • the distance ie, the optical path
  • the light passes through the second surface of the first wavelength selection unit 01
  • the partial area reflects the reflected light of the second wavelength selecting unit 02, so that the optical path of the reflected light between the two wavelength selecting units is lengthened, thereby shortening the distance between the two wavelength selecting units.
  • the first wavelength selection unit 01 may be one of a band filter, an HOE, or a DOE
  • the second wavelength selection unit 02 may also be one of a band filter, an HOE, or a DOE
  • the first wavelength selection unit 01 may be one of a band filter, HOE or DOE
  • the second wavelength selection unit 02 may be a reflector.
  • FIG. 11 is a schematic structural diagram of another projection device provided by an embodiment of the present application. As shown in Figure 11, the value of N is 3, and the projection device includes an image providing unit 1, three wavelength selection units and a reflection unit 3.
  • the image providing unit 1 is used to project three light beams, and the three light beams correspond to different image contents of the image providing unit 1. That is to say, the image providing unit 1 has three logical areas, and the image contents of the three logical areas are different.
  • the first to third wavelength selection units among the three wavelength selection units are stacked and arranged along the projection direction of the three light beams.
  • the three wavelength selection units are used to reflect the three light beams, and different wavelength selection units are used to reflect light of different wavelengths.
  • the first wavelength selection unit is also used to transmit the incident light of the second to third wavelength selection units, and the second wavelength selection unit is also used to transmit the incident light of the third wavelength selection unit.
  • the reflection unit 3 is used to reflect the three received light beams to form images corresponding to different image contents.
  • An embodiment of the present application also provides a vehicle.
  • the vehicle includes a windshield and any one of the aforementioned projection devices.
  • the windshield is used to reflect N light beams from the projection device to form N corresponding to the N light beams. images. N images and the driver are located on both sides of the windshield, and N images are virtual images.
  • the windshield can also be called a windshield.
  • Figure 12 shows a schematic diagram of the projection device and the windshield.
  • the projection device includes three wavelength selection units, forming three virtual images, namely virtual image 1, virtual image 2 and virtual image 3.
  • the vehicle also includes other parts. Not shown in Figure 12.
  • vehicles may be cars, trucks, motorcycles, buses, boats, airplanes, helicopters, lawn mowers, recreational vehicles, playground vehicles, construction equipment, trolleys, golf carts, trains, and handcarts etc., the embodiments of the present application are not particularly limited.
  • the N images are all augmented reality display images, and the augmented reality display images are used to display information such as map auxiliary information and indication information of external objects.
  • the indication information of external objects includes but is not limited to safe distance between vehicles, surrounding obstacles and reversing images.
  • Map auxiliary information is used to assist driving.
  • map auxiliary information includes but is not limited to direction arrows, distance and driving time, etc.
  • the N images are all status display images, and the status display images are used to display status information, entertainment information, etc. of the vehicle.
  • the status information of the vehicle is generally the information displayed on the instrument of the vehicle, also known as instrument information, including but not limited to information such as driving speed, driving mileage, fuel level, water temperature, and car light status.
  • the N images include an augmented reality display image and a status display image.
  • N has a value of 2
  • one image is an augmented reality display image and the other image is a status display image.
  • the imaging distance of the augmented reality display image may be greater than the imaging distance of the status display image.
  • N images can also be displayed on the projection screen.
  • the projection device may be provided with a housing that is used to prevent dust, etc.
  • the housing may also be called a dust cover.
  • the projection device uses multiple wavelength selection units, and there may be spatial blocking between the multiple wavelength selection units, so that the structure of the projection device is compact and the volume of the projection device is relatively small.
  • a single free surface (the free surface is the plane where the wavelength selection unit is located) can be used to obtain multiple three-dimensional Virtual images, cost savings.
  • multiple wavelength selection units can be used to separate the light of different wavelengths, so that the light of different wavelengths can be transmitted along different spatial paths to obtain multiple stereoscopic virtual images, that is, it can Achieve the display of multiple image contents.
  • Figure 13 is a schematic diagram of a possible functional framework of a vehicle provided by an embodiment of the present application.
  • the functional framework of the vehicle may include various subsystems, such as the sensor system 12, the control system 14, one or more peripheral devices 16 (one is shown as an example), Power supply 18, computer system 20, head-up display system 32.
  • the vehicle may also include other functional systems, such as an engine system that provides power for the vehicle, etc., which is not limited in this application.
  • the sensor system 12 may include several detection devices, which can sense the measured information and convert the sensed information into electrical signals or other required forms of information output according to certain rules.
  • these detection devices may include a global positioning system (GPS), vehicle speed sensor, inertial measurement unit (IMU), radar unit, laser rangefinder, camera device, wheel speed sensor, Steering sensors, gear sensors, or other components used for automatic detection, etc. are not limited in this application.
  • the control system 14 may include several elements, such as the illustrated steering unit, braking unit, lighting system, automatic driving system, map navigation system, network time synchronization system and obstacle avoidance system.
  • the control system 14 may also include components such as a throttle controller and an engine controller for controlling the driving speed of the vehicle, which are not limited in this application.
  • Peripheral device 16 may include several elements, such as a communication system, a touch screen, a user interface, a microphone and a speaker as shown, among others.
  • the communication system is used to realize network communication between vehicles and other devices other than vehicles.
  • the communication system can use wireless communication technology or wired communication technology to realize network communication between vehicles and other devices.
  • the wired communication technology may refer to communication between vehicles and other devices through network cables or optical fibers.
  • the power source 18 represents a system that provides power or energy to the vehicle, which may include, but is not limited to, rechargeable lithium batteries or lead-acid batteries, etc. In practical applications, one or more battery components in the power supply are used to provide electric energy or energy for starting the vehicle. The type and material of the power supply are not limited in this application.
  • the computer system 20 may include one or more processors 2001 (one processor is shown as an example) and a memory 2002 (which may also be referred to as a storage device).
  • the memory 2002 may also be inside the computer system 20 or outside the computer system 20 , for example, as a cache in a vehicle, etc., which is not limited by this application. in,
  • Processor 2001 may include one or more general-purpose processors, such as a graphics processing unit (GPU).
  • the processor 2001 may be used to run relevant programs or instructions corresponding to the programs stored in the memory 2002 to implement corresponding functions of the vehicle.
  • Memory 2002 may include volatile memory, such as RAM; memory may also include Including non-volatile memory (non-volatile memory), such as ROM, flash memory (flash memory) or solid state drives (SSD); the memory 2002 may also include a combination of the above types of memories.
  • the memory 2002 can be used to store a set of program codes or instructions corresponding to the program codes, so that the processor 2001 can call the program codes or instructions stored in the memory 2002 to implement corresponding functions of the vehicle. This function includes but is not limited to some or all of the functions in the vehicle function framework diagram shown in Figure 13.
  • a set of program codes for vehicle control can be stored in the memory 2002, and the processor 2001 calls the program codes to control the safe driving of the vehicle. How to achieve safe driving of the vehicle will be described in detail below in this application.
  • the memory 2002 may also store information such as road maps, driving routes, sensor data, and the like.
  • the computer system 20 can be combined with other elements in the vehicle functional framework diagram, such as sensors in the sensor system, GPS, etc., to implement vehicle-related functions.
  • the computer system 20 can control the driving direction or driving speed of the vehicle based on data input from the sensor system 12 , which is not limited in this application.
  • the head-up display system 32 may include several elements, such as a windshield, a controller, and the projection device described above.
  • the controller is used to generate images according to user instructions (such as generating images containing vehicle status such as vehicle speed, power/fuel level, and images of augmented reality AR content), and send the image content to the projection device; the projection device will carry the light of the image content. Projected to the windshield, the windshield is used to reflect the light carrying the image content, so that a virtual image corresponding to the image content is presented in front of the driver.
  • the functions of some components in the head-up display system can also be implemented by other subsystems of the vehicle.
  • the controller can also be a component in the control system.
  • Figure 13 of this application shows that it includes four subsystems.
  • the sensor system 12, the control system 14, the computer system 20 and the head-up display system 32 are only examples and do not constitute a limitation.
  • vehicles can combine several components in the vehicle according to different functions to obtain subsystems with corresponding different functions.
  • the vehicle may include more or fewer systems or components, which is not limited by this application.
  • first and second are used to distinguish identical or similar items with basically the same functions and functions. It should be understood that there is no logical or logical connection between “first” and “second”. Timing dependencies do not limit the number and execution order. It should also be understood that, although the following description uses the terms first, second, etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another.
  • the first wavelength selection unit may be referred to as a second wavelength selection unit, and similarly, the second wavelength selection unit may be referred to as a first wavelength selection unit. Both the first wavelength selection unit and the second wavelength selection unit may be wavelength selection units, and in some cases may be separate and different wavelength selection units.
  • a and/or B in this application includes three situations, namely: A, B and A and B.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影装置和交通工具。投影装置包括图像提供单元(1)、N个波长选择单元(2)和反射单元(3),图像提供单元(1)投射N个不同图像内容的光束,N个波长选择单元(2)中第1个至第N个波长选择单元(2)沿着N个不同图像内容的光束的投射方向依次排布,N个波长选择单元(2)用于反射N个光束,且不同的波长选择单元(2)用于反射不同波长的光,N个波长选择单元(2)中第i个波长选择单元还用于透射第i+1个至第N个波长选择单元(2)的入射光,i取值为1至N-1,反射单元(3)用于反射接收到的N个光束,以形成不同图像内容对应的图像。

Description

投影装置和交通工具
本申请要求于2022年3月18日提交中国国家知识产权局、申请号为202210273410.8、申请名称为“投影装置和交通工具”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别涉及一种投影装置和交通工具。
背景技术
增强现实抬头显示(head up display,HUD)技术是通过光学系统将显示器上显示的内容通过风挡玻璃投射到用户眼睛的技术,广泛应用于汽车在内的交通工具。在实现增强现实HUD技术时,为了使得显示效果更好,通过设计双焦展示立体虚拟图像。
相关技术中,双焦展示立体虚拟图像使用投影装置,投影装置包括第一显示器、第二显示器、第一反射镜、第二反射镜和第三反射镜。第一显示器的图像信息通过第一反射镜、第二反射镜和第三反射镜,反射到用户的眼睛,第二显示器的图像信息通过第三反射镜,反射到用户的眼睛。
相关技术中投影装置是采用三镜片空间折叠反射方案,由于投影装置中多个反射镜之间不能遮挡,所以会使得投影装置的体积比较大。
发明内容
本申请提供了一种投影装置和交通工具,能够使得投影装置的体积比较小。
第一方面,本申请提供了一种投影装置,该投影装置包括图像提供单元、N个波长选择单元和反射单元,N大于1;该图像提供单元,用于投射N个逻辑区域的光束,不同光束对应不同的图像内容;该N个波长选择单元中第1个至第N个波长选择单元沿着该N个光束的投射方向依次排布,该N个波长选择单元用于反射该N个光束至上述反射单元,且不同的波长选择单元用于反射不同波长的光,该N个波长选择单元中第i个波长选择单元还用于透射第i+1个至第N个波长选择单元的入射光或反射光或入射光和反射光,i取值为1至N-1;该反射单元,用于反射接收到的N个光束,以形成该不同图像内容对应的图像。
本申请所示的方案中,N个光束为图像提供单元中N个逻辑区域的光束。N个波长选择单元中不同的波长选择单元用于反射不同波长的光,该N个波长选择单元中第i个波长选择单元还用于透射第i+1个至第N个波长选择单元的入射光。这样,N个波长选择单元能够存在重叠部分,空间光路比较紧凑,能够使得投影装置的体积比较小。
在以上方案中,每个波长选择单元反射对应的光束至反射单元,不同的光束加载了不同的图像内容,因而可以实现多焦面显示。
在一种可能的实现方式中,该N个波长选择单元中第j+1个波长选择单元的入射光入射至该第j+1个波长选择单元前依次从第1个至第j个波长选择单元透射,j取值为1至N-1。
这样,第j+1个波长选择单元的入射光从第1个至第j个波长选择单元透射,使得不需 要特别设计相邻波长选择单元的一端是否需要错开,易于实现。
在一种可能的实现方式中,该N个波长选择单元中第j+1个波长选择单元的反射光入射至该反射单元前依次从第j个至第1个波长选择单元透射,j取值为1至N-1。
这样,第j+1个波长选择单元的反射光从第1个至第j个波长选择单元透射,使得不需要特别设计相邻波长选择单元的一端是否需要错开,易于实现。
在一种可能的实现方式中,该图像提供单元输出的N个光束的波长不相同,不同的波长选择单元用于反射不同光束。
本申请所示的方案中,每个波长选择单元用于反射一个光束,N个光束的波长不相同,能够提供N个不同颜色的图像。
在一种可能的实现方式中,N个波长选择单元中每个波长选择单元为波带滤波片、全息光学元件(holographic optical element,HOE)体光栅或者衍射光学元件(diffractive optical element,DOE)中的一种;或者,该第N个波长选择单元为反射镜,该第i个波长选择单元为波带滤波片、HOE体光栅或者DOE中的一种。
这样,N个波长选择单元存在多种设计,实现难度低。
在一种可能的实现方式中,该N个波长选择单元中第k个波长选择单元的第一表面用于反射该第k个波长选择单元对应的图像内容的光束,且透射第k+1个至第N个波长选择单元对应的图像内容的光束,k取值为1至N-1中的至少一个值;该第k个波长选择单元的第二表面的部分区域用于反射该第k+1个波长选择单元的反射光。
本申请所示的方案中,第k个波长选择单元的第二表面特殊设计,第二表面的部分区域能够反射第k+1个波长选择单元的反射光。这样,在第k+1个波长选择单元对应的图像内容的光束从出射至成像位置距离一定的情况下,使得该反射光在第k个波长选择单元与第k+1个波长选择单元之间往返至少一次,能够在第k个波长选择单元与第k+1个波长选择单元之间的距离比较小的情况下就能满足光程要求,进而使得投影装置的体积比较小。
在一种可能的实现方式中,该图像提供单元输出的N个光束的波长相同。
本申请所示的方案中,N个波长选择单元分别用于反射不同波长范围的光,每个波长范围可以包括一个或多个波带的波长,N个波长选择单元对应的不同波长范围的并集小于或等于光束的波长范围。这样,由于N个光束的波长相同,所以图像提供单元易于实现。
在一种可能的实现方式中,该N个波长选择单元中第m+1个波长选择单元,用于将第m个波长选择单元对应的图像内容的光束中透射至该第m+1个波长选择单元的光吸收,m取值为1至N-1中至少一个值。
本申请所示的方案中,第m个波长选择单元仅能反射某个波长范围的光,不能反射入射光中全部波长的光,所以会存在部分光透射至第m+1个波长选择单元,该部分光中存在第m+1个波长选择单元能够反射的光。第m+1个波长选择单元将该部分光吸收,如使用能量衰减器件,而不是反射至反射单元,使得不会形成同一个图像内容的两个图像。
在一种可能的实现方式中,N个波长选择单元中每个波长选择单元为波带滤波片;或者,该第N个波长选择单元为反射镜,该第i个波长选择单元为波带滤波片。
这样,N个波长选择单元存在多种设计,实现难度低。在波长选择单元为波带滤波片时,波带滤波片可以是多通道滤波片,最终显示的图像为彩色图像,波带滤波片可以是单通道滤波片,最终显示的图像为单色图像。
在一种可能的实现方式中,该N个波长选择单元中第k个波长选择单元的第一表面用于反射该第k个波长选择单元对应的图像内容的光束中部分光,且透射第k+1个至第N个波长 选择单元对应的图像内容的光束中部分光,k取值为1至N-1中的至少一个值;该第k个波长选择单元的第二表面的部分区域用于反射该第k+1个波长选择单元的反射光。
本申请所示的方案中,第k个波长选择单元的第二表面特殊设计,第二表面的部分区域能够反射第k+1个波长选择单元的反射光。这样,在第k+1个波长选择单元对应的图像内容的光束从出射至成像位置距离一定的情况下,使得该反射光在第k个波长选择单元与第k+1个波长选择单元之间往返至少一次,能够在第k个波长选择单元与第k+1个波长选择单元之间的距离比较小的情况下就能满足光程要求,进而使得投影装置的体积比较小。
在一种可能的实现方式中,该第1个至第N个波长选择单元沿着该N个光束的投射方向依次平行排布。这样,N个波长选择单元平行,不仅使得实现难度低,而且使得投影装置的体积比较小。
在一种可能的实现方式中,该N个波长选择单元中第j个波长选择单元的第一端与第j+1个波长选择单元的第一端错开,j取值为1至N-1;该第j+1个波长选择单元的入射光入射至该第j+1个波长选择单元前未从第1个至该第j个波长选择单元透射,该第j+1个波长选择单元的反射光入射至该反射单元前依次从该第j个至第1个波长选择单元透射。
这样,第j+1个波长选择单元的入射光入射至该第j+1个波长选择单元前未从第1个至该第j个波长选择单元透射,使得第j+1个波长选择单元对应的光束仅通过一次其他波长选择单元,降低光损耗。
在一种可能的实现方式中,该N个波长选择单元中第j个波长选择单元的第二端与第j+1个波长选择单元的第二端错开,j取值为1至N-1;该第j+1个波长选择单元的入射光入射至该第j+1个波长选择单元前依次从第1个至该第j个波长选择单元透射,该第j+1个波长选择单元的反射光入射至该反射单元前未从该第j个至第1个波长选择单元透射。
这样,第j+1个波长选择单元的反射光入射至该反射单元前未从该第j个至第1个波长选择单元透射,使得第j+1个波长选择单元对应的光束仅通过一次其他波长选择单元,降低光损耗。
第二方面,本申请提供了一种投影装置,该投影装置包括图像提供单元、第一波长选择单元、第二波长选择单元和反射单元;该图像提供单元,用于投射两个光束,该两个光束分别对应不同的图像内容;该第一波长选择单元和该第二波长选择单元沿着该两个光束的投射方向层叠排布;该第一波长选择单元和该第二波长选择单元用于反射该两个光束,其中,该第一波长选择单元和该第二波长选择单元用于反射不同波长的光,且该第一波长选择单元还用于透射该第二波长选择单元的入射光;该反射单元,用于反射接收到的两个光束,以形成该不同图像内容对应的图像。
本申请所示的方案中,两个波长选择单元中不同的波长选择单元用于反射不同波长的光,第一波长选择单元还用于透射该第二波长选择单元的入射光。这样,两个波长选择单元能够存在重叠部分,空间光路比较紧凑,能够使得投影装置的体积比较小。
第三方面,本申请提供了一种投影装置,该投影装置包括图像提供单元、三个波长选择单元和反射单元;
该图像提供单元,用于投射三个光束,该三个光束分别对应不同的图像内容;
该三个波长选择单元中第1个至第3个波长选择单元沿着该三个光束的投射方向依次层叠排布;
该三个波长选择单元用于反射该三个光束,其中,不同的波长选择单元用于反射不同波长的光,第1个波长选择单元用于透射该第2个波长选择单元和该第3个波长选择单元的入射光;该第2个波长选择单元用于透射该第3个波长选择单元的入射光;
该反射单元,用于反射接收到的三个光束,以形成该不同图像内容对应的图像。
第四方面,本申请提供了一种交通工具,该交通工具包括风挡玻璃和如第一发面及第一方面可能的实现方式中所述的投影装置,或者,如第二方面所述的投影装置,或者,如第三方面所述的投影装置;
所述投影装置,用于输出N个光束至所述风挡玻璃,以形成不同的图像内容对应的图像。
附图说明
图1是传统的投影装置的结构示意图;
图2是本申请一个示例性实施例提供的投影装置的结构示意图;
图3是本申请一个示例性实施例提供的投影装置的结构示意图;
图4是本申请一个示例性实施例提供的投影装置的结构示意图;
图5是本申请一个示例性实施例提供的多个HOE的示意图;
图6是本申请一个示例性实施例提供的投影装置的结构示意图;
图7是本申请一个示例性实施例提供的投影装置的结构示意图;
图8是本申请一个示例性实施例提供的波长选择单元的放大图;
图9是本申请一个示例性实施例提供的投影装置的结构示意图;
图10是本申请一个示例性实施例提供的投影装置的结构示意图;
图11是本申请一个示例性实施例提供的投影装置的结构示意图;
图12是本申请一个示例性实施例提供的投影装置和风挡玻璃的示意图;
图13是本申请一个示例性实施例提供的交通工具的功能框架示意图。
图示说明
1、图像提供单元;2、N个波长选择单元;3、反射单元;
01、第一波长选择单元;02、第二波长选择单元;
12、传感器系统;14、控制系统;16、外围设备;18、电源;20、计算机系统;
2001、处理器;2002、存储器;32抬头显示系统。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
下面对本申请实施例涉及的一些术语概念做解释说明。
1、HUD,是通过光学系统将图像内容传播到用户眼睛里的一种系统。例如,HUD应用于车辆中,通过光学系统将显示器上显示的汽车行驶速度、路况等信息传播到驾驶员眼睛里。这样,在黑暗、雨雪天气以及复杂路况下,驾驶员不需要低头就能看到相关信息,对驾驶员安全驾驶非常有益。再例如,近年来兴起增强现实HUD,增强现实HUD应用于车辆中,通过光学系统将数字图像叠加在车外真实环境上,使得驾驶员获得增强现实的视觉效果,可用于增强现实导航、自适应巡航和车道偏离预警等场景中。
2、双焦抬头显示系统,是基于两个不同投影距离形成两个投影面的HUD系统。
下面描述传统的投影装置。
图1提供了传统的投影装置的结构示意图,该投影装置为双焦展示虚拟图像的装置。参见图1,投影装置包括第一显示器、第二显示器、第一反射镜、第二反射镜和第三反射镜。第一显示器的图像信息通过第一反射镜、第二反射镜和第三反射镜,投射到用户的眼睛,第二显示器的图像信息通过第三反射镜,投射到用户的眼睛。这样,投影装置是采用三镜片空间折叠反射方案,由于投影装置中多个反射镜之间不能遮挡,所以会使得投影装置的体积比较大。而且在展示三个及三个以上立体虚拟图像时,还采用多镜片折叠反射方案,会使用更多的反射镜,进而会使得投影装置的体积更大。
本申请实施例提供了一种投影装置,该投影装置中未使用多个反射镜反射光束,而是采用波长选择单元反射光束。波长选择单元能够存在重叠部分,空间光路比较紧凑,会使得投影装置的体积比较小。
本申请实施例提供的投影装置可以应用于影音娱乐以及辅助驾驶场景中。示例性的,该投影装置可以单独使用,也可以作为部件集成在其它设备中,例如,该投影装置可以集成在交通工具中,还可以集成在头盔显示(head-mounted display)设备中,还可以集成在光桌面显示设备中。
图2是本申请实施例提供的一种投影装置的结构示意图。如图2所示,该投影装置包括图像提供单元1、N个波长选择单元2和反射单元3。图像提供单元1用于投射N个光束,不同光束对应不同的图像内容。该N个波长选择单元2包括第1个至第N个波长选择单元,第1个至第N个波长选择单元沿着该N个光束的投射方向依次排布。该N个波长选择单元2用于反射该N个光束至反射单元3,不同的波长选择单元用于反射不同波长的光,该N个波长选择单元2中第i个波长选择单元还用于透射第i+1个至第N个波长选择单元的入射光,i取值为1至N-1。反射单元3用于反射接收到的N个光束,以成像形成不同图像内容对应的图像。该不同图像内容对应的图像的位置不相同。
其中,第i个波长选择单元的入射光指入射至第i个波长选择单元的光。第1个至第N个波长选择单元沿着N个光束的投射方向依次层叠排列,每个波长选择单元负责对承载有一个图像内容的光进行反射。图像提供单元1提供的N个光束的波长相同,或者不相同。在图2中,带箭头的线表示光束的传输方向。
示例性的,在图2所示的投影装置中,第j+1个波长选择单元的入射光入射至第j+1个波长选择单元前依次从第1个至第j个波长选择单元透射,j取值为1至N-1。其中,第j+1个波长选择单元的入射光指入射至第j+1个波长选择单元的光。
并且第j+1个波长选择单元的反射光入射至反射单元3前依次从第j个至第1个波长选择单元透射,其中,该反射光指承载有第一个图像内容的光束中被第j+1个波长选择单元反射的光。
例如,在图2所示的投影装置中,图像提供单元1提供N个光束,N个光束的波长不相同。第1个光束入射至第1个波长选择单元,第1个波长选择单元将第1个光束反射至反射单元3,反射单元3对第1个光束进行反射,形成图像。第2个光束经过第1个波长选择单元的透射,入射至第2个波长选择单元,第2个波长选择单元对第2个光束进行反射,第2个光束经过第1个波长选择单元透射至反射单元3,反射单元3对第2个光束进行反射,形成图像。依此类推,N个光束中每个光束均会被反射,形成图像。
图3是本申请实施例提供的另一种投影装置的结构示意图。与图2的所示的投影装置的区别在于:第j个波长选择单元的第一端与第j+1个波长选择单元的第一端错开,j取值为1至N-1。
如图3所示,第一端为光从第j+1个波长选择单元出射的一端,第j+1个波长选择单元的入射光入射至第j+1个波长选择单元前依次从第1个至第j个波长选择单元透射。并且第j+1个波长选择单元的反射光入射至反射单元3前未从第j个至第1个波长选择单元透射,即直接从第j+1个波长选择单元反射至反射单元3。
例如,在图3所示的投影装置中,图像提供单元2提供N个光束,N个光束的波长不相同。第1个光束入射至第1个波长选择单元,第1个波长选择单元将第1个光束反射至反射单元3,反射单元3对第1个光束进行反射,形成图像1。第2个光束经过第1个波长选择单元的透射至第2个波长选择单元,第2个波长选择单元将第2个光束直接反射至反射单元3。反射单元3对第2个光束进行反射,形成图像2。依此类推,N个光束中每个光束均会被反射,形成图像。
图4是本申请实施例提供的另一种投影装置的结构示意图。与图2的所示的投影装置的区别在于:第j个波长选择单元的第二端与第j+1个波长选择单元的第二端错开,j取值为1至N-1。
如图4所示,第二端为光从第j+1个波长选择单元入射的一端,第j+1个波长选择单元的入射光入射至第j+1个波长选择单元前未从第1个至第j个波长选择单元透射,即直接从图像提供单元1入射至第j+1个波长选择单元。并且第j+1个波长选择单元的反射光入射至反射单元3前依次从第j个至第1个波长选择单元透射。
例如,在图4所示的投影装置中,图像提供单元2提供N个光束,N个光束的波长不相同。第1个光束入射至第1个波长选择单元,第1个波长选择单元将第1个光束反射至反射单元3,反射单元3对第1个光束进行反射,形成图像1。第2个光束未经过第1个波长选择单元,而是直接入射至第2个波长选择单元,第2个波长选择单元对第2个光束进行反射,第2个光束经过第1个波长选择单元透射至反射单元3,反射单元3对第2个光束进行反射,进行成像形成图像2。依此类推,N个光束中每个光束均会被反射,形成图像。
这样,采用图3和图4所示的投影装置,第j+1个波长选择单元的入射光只需要经过一次第1个至第j个波长选择单元,相对于两次经过第1个至第j个波长选择单元的场景,能够减少光损耗,提高显示效率。
针对上述图2至图4所示的投影装置,如下分别描述投影装置中各个部分的具体结构。
示例性的,图像提供单元1包括N个逻辑区域,N个逻辑区域分别提供不同的图像内容。例如,N取值为2,一个逻辑区域提供的图像内容是车速等信息,另一个逻辑区域提供的图像内容是导航信息等。
可选地,该N个逻辑区域可以属于一个显示器,也可以不属于同一个显示器。例如,N取值为2,一个逻辑区域属于第一显示器,另一个逻辑区域属于第二显示器。
可选地,N个逻辑区域可以位于同一平面,也可以位于不同平面。
示例性的,图像提供单元1可以是硅基液晶(liquid crystal on silicon,LCOS)显示器、液晶显示(liquid crystal display,LCD)显示器、数字光处理(digital light procession,DLP)显示器或微机电系统(micro-electro-mechanical system,MEMS)显示器中任一种。 其中,LCD显示器可以包括薄膜晶体管(thin film transistor,TFT)显示器等。各种显示器的光源可以是发光二极管(light-emitting diode,LED)光源,也可以是激光二极管(laser diode,LD)光源。该显示器也可以称为是图像源或图像生成单元。
示例性的,图像提供单元1提供的N个光束的波长不相同,N个逻辑区域的光源发出的光的波长不相同。不同的波长选择单元反射不同波长的光束。N个光束的波长可以根据实际需要任意设置,例如,N取值为3,三个图像内容的光束均为单色光,3个光束分别为红色光束、绿色光束和蓝色光束。
或者,图像提供单元1提供的N个光束的波长相同,那么不同的波长选择单元反射光束中不同波长范围的光。光束的波长范围可以根据实际需要任意设置。例如,光束的波长范围设置为白光的波长范围,那么光源为白光光源,或者是三原色光源,三原色光源发出的红绿蓝光组成白光。
可选地,N个光束的投射方向可以平行,也可以存在一定夹角。
可选的,N个光束的投射方向可以位于同一平面内,也可以不位于同一平面内。
示例性的,N个波长选择单元2的尺寸可以相等,也可以不相等。N个波长选择单元2的结构可以是平面型结构,也可以是曲面型结构。
示例性的,N个波长选择单元2的位置摆放可以根据所形成图像的位置确定。N个波长选择单元2可以平行摆放,也可以是按照一定夹角摆放。
其中,在N个波长选择单元2平行摆放时,第1个至第N个波长选择单元沿着该N个光束的投射方向依次平行排布,也可以认为是第1个至第N个波长选择单元沿着该N个光束的投射方向依次平行层叠排布,或者依次平行重叠排布,N个波长选择单元2的间距可以相同,也可以不相同。这样,N个波长选择单元2平行层叠排布,能够节约空间,更能够使得投影装置的尺寸比较小。
可选地,在N个光束的波长不相同的情况下,每个波长选择单元可以为波带滤波片、HOE体光栅或者DOE中的一种。或者,第N个波长选择单元为反射镜,第i个波长选择单元为波带滤波片、HOE体光栅或者DOE中的一种。第N个波长选择单元可以为反射镜的原因为:第N个波长选择单元后面不再存在其它波长选择单元,其它光不会经过第N个波长选择单元,第N个波长选择单元仅有一个光束入射,所以仅反射该光束即可,不需要透射其它光束。
其中,每个波带滤波片可以通过镀膜加工制作,通过镀膜实现对波长的分离,使得空间结构更加紧凑。每个波带滤波片可以是单通道滤波片,也可以是多通道滤波片。例如,每个波长选择单元均采用波带滤波片,假设N取值为3,3个波长选择单元包括第一波带滤波片、第二波带滤波片和第三波带滤波片,第一波带滤波片、第二波带滤波片和第三波带滤波沿着N个光束的投射方向依次排布。以单通道滤波片为例,第一波带滤波片使用490nm截止的高通波带滤波片,则第一波带滤波片反射380-475nm的光,透射505-800nm的光。第二波带滤波片使用650nm截止的高通波带滤波片,则第二波带滤波片反射505nm-633nm的光,第二波带滤波片透射685nm以上的光。第三波带滤波片使用760nm以上截止的高通波带滤波片。
为了提高光效率,第1个光束的中心波长可以为430nm,带宽小于40nm。第2个光束的中心波长可以为550nm,带宽小于30nm。第3个光束的中心波长可以为710nm,带宽小于30nm。采用这种方式,显示器中的光源可以为LED光源或者LD光源。
HOE具有波长选择性和角度选择性。HOE的原理如下:
根据衍射公式(1)可以设置HOE能够反射的光的波长。
sinθm=λ(2nΛ)                     (1)
在公式(1)中θm为HOE的入射光相对于HOE的角度,Λ为HOE的光栅间隔,n为HOE的平均折射率。针对不同的HOE,满足公式(1)的波长的光被HOE反射,不满足公式(1)的波长的光被HOE透射。这样,为不同波长的光设置不同的HOE,即可实现波长的分离。衍射光从HOE的出射方向可以通过公式(2)确定。此处HOE为反射型光栅,衍射光也可以认为是反射光。
在式(2)中,为HOE的光栅矢量方向,为入射光的矢量方向,为衍射光出射的矢量方向。
例如,N取值为3,3个波长选择单元分别为HOE1、HOE2和HOE3。通过具有不同光栅矢量方向的HOE1、HOE2和HOE3,能够将相同入射角度的入射光以不同的出射方向出射。这样,通过不同光栅矢量以及不同光栅间隔的HOE能够将不同波长的光分离。图5是HOE1、HOE2和HOE3的示意图,在图5中三个光束经过HOE1、HOE2和HOE3实现分离。
另外,DOE与HOE的原理类似,此处不再赘述。
可选地,为了缩小波长选择单元2的体积,HOE可以采用薄膜型的HOE。
可选地,HOE与DOE可以通过曝光法、电子束光刻法、纳米压印法或其他光学精密元件加工法制备。
可选地,在N个光束的波长相同的情况下,每个波长选择单元可以为波带滤波片。或者,第i个波长选择单元为波带滤波片,第N个波长选择单元为反射镜。第N个波长选择单元可以为反射镜的原因为:第N个波长选择单元后面不再存在其它波长选择单元,其它光不会经过(透过)第N个波长选择单元,第N个波长选择单元对接收到的光进行反射即可,不需要透射其它光束。此处,每个波长选择单元用于反射不同波长范围的光,每个波长范围可以包括一个或多个波带的波长,在波长范围包括多个波带的波长时,波带滤波片可以采用多通道滤波片,最终显示的图像为彩色图像,在波长范围包括一个波带的波长时,波带滤波片可以采用单通道滤波片,最终显示的图像为单色图像。
例如,每个波长选择单元均采用波带滤波片,假设N取值为3,3个波长选择单元包括第一波带滤波片、第二波带滤波片和第三波带滤波片,第一波带滤波片、第二波带滤波片和第三波带滤波沿着3个光束的投射方向依次排布。3个波长选择单元分别用于反射第一波长范围的光、第二波长范围的光和第三波长范围的光,每个波长范围可以包括不连续的多个波带的波长或者每个波长范围可以包括一个波带的波长,三个波长范围之间不重叠。可选地,三个波长范围的并集小于或等于图像提供单元1提供的光束的波长范围。第一个光束入射至第一波带滤波片,第一个光束中第一波长范围的光被第一波带滤波片反射,入射至反射单元3。第二个光束入射至第二波带滤波片,第二个光束中第二波长范围的光被第二波带滤波片反射,入射至反射单元3。第三个光束入射至第三波带滤波片,第三个光束中第三波长范围的光被第三波带滤波片反射,入射至反射单元3。
可选地,上述波带滤波片可以采用二向色滤光片,二向色滤光片也可以称为是二向色镜。
另外,N个波长选择单元2中可以存在不同类型的波长选择单元,例如,第1个波长选择单元为波带滤波片,第2个波长选择单元为HOE或者DOE。
示例性的,在N个光束的波长相同的情况下,N个波长选择单元2中存在第m个波长选择单元,m取值为1至N-1,第m个波长选择单元能反射某个波长范围的光,不能反射入射光中全部波长的光,所以会存在部分光透射至第m+1个波长选择单元,该部分光中存在第m+1个波长选择单元能够反射的光。若该部分光属于第m个波长选择单元对应的图像内容的光束, 则该部分光也会包含该图像内容,可以理解为杂散光。该部分光若被入射至反射单元3,会出现同一图像内容的两个图像,所以该部分光并不需要被反射至反射单元3。例如,第1个波长选择单元对应第一图像内容,第一图像内容对应第一个光束。第1个波长选择单元反射第一个光束中第一波长范围的光,那么第一个光束中除第一波长范围之外的光透射至第2个波长选择单元。
为了防止该部分光被反射至反射单元3,第m+1个波长选择单元中该部分光的入射位置可以吸收该部分光,例如,N取值为2,第1个波长选择单元对应第一个图像内容的光束,第2个波长选择单元对应第二个图像内容的光束,每个光束的波长范围均为500ˉ600nm。第1个波长选择单元反射500ˉ540nm的光,第2个波长选择单元反射560ˉ600nm的光,第一个图像内容的光束中541ˉ600nm的光会从第1个波长选择单元透射至第2个波长选择单元,第2个波长选择单元需要吸收第一个图像内容的光束中541ˉ600nm的光。
可选地,第m+1个波长选择单元吸收该部分光的方式可以为:在该部分光的入射位置处镀吸收膜,该吸收膜用于吸收该部分光。或者,通过在第m个波长选择单元的背面(靠近第m+1个波长选择单元的面)该部分光的入射区域镀反射膜,使得将该部分光反射至其它位置,而不进入反射单元3。或者,通过设置相邻波长选择单元之间的距离和/或角度,使得该部分光被反射至其它位置,不进入反射单元3。
示例性的,在N个光束的波长相同的情况下,可以采用图4所述的投影装置,使得第j+1个波长选择单元的入射光未经过第1个至第j个波长选择单元,那么第1个至第j个波长选择单元也不会对该入射光进行反射,也不会使得同一图像内容对应多个虚像。
若第j+1个波长选择单元的入射光经过第1个至第j个波长选择单元(见图2或图3所示的投影装置),则第1个至第j个波长选择单元也会对第j+1个波长选择单元对应的图像内容的光束中部分光进行反射,该部分光可以理解为杂散光,若该部分光若入射至反射单元3,则会使得同一图像内容对应多个图像。例如,N取值为2,第1个波长选择单元对应第一个图像内容的光束,第2个波长选择单元对应第二个图像内容的光束,每个光束的波长范围均为500ˉ600nm。第1个波长选择单元反射500ˉ540nm的光,第2个波长选择单元反射560ˉ600nm的光,第二个图像内容的光束中500ˉ540nm的光会被第1个波长选择单元反射,若第二个图像内容的光束中500ˉ540nm的光入射至反射单元3,则会使得第二个图像内容对应两个图像。
为了防止同一图像内容对应多个图像,可以设计图像提供单元1、N个波长选择单元2和反射单元3相互配合,使得该部分光被第1个至第j个波长选择单元反射后不入射至反射单元3。例如,可以设计图像提供单元1提供的N个光束的位置和投射方向,以及N个波长选择单元2之间的间距和角度,以及反射单元3的角度和孔径等,防止同一图像内容对应多个图像。
图6示例性的提供了一种投影装置的结构,采用图6所示的投影装置可以防止同一图像内容对应多个图像。参见图6,图像提供单元1提供的3个光束不平行,3个波长选择单元也不平行。第1个波长选择单元反射光束中第一波长范围的光,第2个波长选择单元2反射光束中第二波长范围的光,第3个波长选择单元反射光束中第三波长范围的光,第一波长范围、第二波长范围和第三波长范围不重合,且并集为图像提供单元1提供的每个光束的波长范围。第1个光束中第一波长范围的光被第1个波长选择单元反射,入射至反射单元3。第2个光束入射至第1个波长选择单元,第一波长范围的光被第1个波长选择单元反射,未入射至反射单元3(光线传输方向使用虚线表示),第二波长范围的光和第三波长范围的光入射至第2个波长选择单元。第2个光束中第二波长范围的光被第2个波长选择单元反射,入射至反射 单元3。第3个光束入射至第1个波长选择单元,第一波长范围的光被第1个波长选择单元反射,未入射至反射单元3(光线传输方向使用虚线表示),第二波长范围的光和第三波长范围的光入射至第2个波长选择单元。第3个光束中第二波长范围的光被第2个波长选择单元反射,未入射至反射单元3(光线传输方向使用虚线表示)。第3个光束中第三波长范围的光入射至第3个波长选择单元,被第3个波长选择单元反射,入射至反射单元3。这样,每个图像内容对应一个图像,互相不产生干扰。
示例性的,反射单元3可以是曲面反射镜(例如凹面镜),反射单元3采用曲面反射镜能够减少像差,使得成像效果更好。此处仅是一种示例,凡是能够减少像差的反射单元3均可以应用于本申请实施例中。
图7是本申请实施例提供的另一种投影装置的结构示意图。如图7所示,N个波长选择单元2中存在第k个波长选择单元,第k个波长选择单元存在第一表面和第二表面,第一表面与第二表面相对,第一面与第k-1个波长选择单元相邻,第二面与第k+1个波长选择单元相邻。
在N个光束的波长不相同的情况下,该第一表面用于反射第k个波长选择单元对应的图像内容的光束,并透射其他入射光束至第k+1个波长选择单元,透射的其他光束为第k+1个至第N个波长选择单元对应的图像内容的光束。例如,N取值为2,第1个波长选择单元对应第一个图像内容,第2个波长选择单元对应第二个图像内容,第1个波长选择单元的第一表面反射第一个图像内容的光束,透射第二个图像内容的光束。第k个波长选择单元的第二表面的部分区域用于反射第k+1个波长选择单元的反射光,也就是说,使得第k+1个波长选择单元的反射光至少被第k个波长选择单元反射一次。
在N个光束的波长相同的情况下,该第一表面用于反射第k个波长选择单元对应的图像内容的光束中部分光,并透射其他光至第k+1个波长选择单元,透射的其他光为第k+1个至第N个波长选择单元对应的图像内容的光束中部分光。例如,N取值为2,第1个波长选择单元对应第一个图像内容,第2个波长选择单元对应第二个图像内容,第1个波长选择单元的第一表面反射第一个图像内容的光束中第一波长范围的光,透射第二个图像内容的光束中第二波长范围的光,第一波长范围与第二波长范围的并集为图像内容的光束的波长范围。第k个波长选择单元的第二表面的部分区域用于反射第k+1个波长选择单元的反射光,也就是说,使得第k+1个波长选择单元的反射光至少被第k个波长选择单元反射一次。
这样,为了使得图像内容对应的图像清晰,图像内容的光从发出至成像位置之间的距离(即光程)恒定,对于第k+1个波长选择单元对应的图像内容的光,在光程恒定的情况下,通过第二表面的部分区域反射第k+1个波长选择单元的反射光,使得该图像内容的光在第k个和第k+1个波长选择单元之间的光程变长,进而能够缩短第k个和第k+1个波长选择单元之间的距离。而且在图7所示的投影装置中,在某些情况下使得第k个和第k+1个波长选择单元的反射光之间的距离比较远,可以缩小第k个和第k+1个波长选择单元之间的距离,例如,第一位置在第二位置的上方,第一位置为第k+1个波长选择单元的反射光第一次入射至第k个波长选择单元的位置,第二位置为第k个波长选择单元的反射光的出射位置。因此,可以缩小N个波长选择单元2的体积。
其中,k取值为1至N-1中的至少一个值,也就是说:N个波长选择单元2中存在一个或多个波长选择单元,该一个或多个波长选择单元的第二表面的部分区域具有反射功能,该反射功能具体为反射相邻的波长选择单元的反射光的功能。本申请实施例中,在1至N-1中, 不对k的取值进行限定,也不对k的取值的数目进行限定。另外,第二表面的部分区域对第k+1个波长选择单元的反射光的反射次数也不限定,该反射次数可以取决于第二表面的反射区域的面积大小,面积越大,反射次数可以越多。
可选地,第k个波长选择单元的第二表面的部分区域镀有反射膜,该反射膜用于反射第k+1个波长选择单元的反射光。在图7中示出第一个波长选择单元的第二表面设置有反射膜。
为了更好地理解第二表面的部分区域镀有反射膜,在图8中提供了波长选择单元的局部放大图,在图8中,第1个至第N-1个波长选择单元的第二表面的部分区域均镀有反射膜。
其中,第k个波长选择单元第二表面的部分区域的位置可以根据实际需要设置,该部分区域不能位于第k+1个至第N个波长选择单元的目标入射路径上,且第K+1个波长选择单元的反射光能够入射至反射单元3。目标入射路径包括目标光入射至第k+1个至第N个波长选择单元的入射路径,目标光为第k+1个至第N个波长选择单元的入射光。
图9是本申请实施例提供的另一种投影装置的结构示意图。如图9所示,N取值为2,投影装置包括图像提供单元1、第一波长选择单元01、第二波长选择单元02和反射单元3。
图像提供单元1用于投射两个光束,该两个光束对应不同图像内容,也就是说图像提供单元1存在两个逻辑区域,两个逻辑区域的图像内容不相同。
第一波长选择单元01和第二波长选择单元02沿着该两个光束的投射方向层叠排布。第一波长选择单元01和第二波长选择单元02用于反射该两个光束,第一波长选择单元01和第二波长选择单元02用于反射不同波长的光束,第一波长选择单元01还用于透射第二波长选择单元02的入射光。该反射单元3用于反射接收到的两个光束,以形成不同图像内容对应的图像。
示例性的,该两个光束包括第一光束和第二光束,在第一光束和第二光束的波长不相同的情况下,第一光束入射至第一波长选择单元01,第一波长选择单元01反射第一光束至反射单元3。第二光束入射至第一波长选择单元01,第一波长选择单元01透射第二光束至第二波长选择单元02。第二波长选择单元02反射第二光束,反射的第二光束经过第一波长选择单元01入射(透射)至反射单元3。反射单元3反射第一光束和第二光束,形成不同图像内容对应的图像。
在第一光束和第二光束的波长相同的情况下,第一波长选择单元01反射第一波长范围的光,第二波长选择单元02反射第二波长范围的光,第一波长范围和第二波长范围的并集为第一光束的波长范围(或图像提供单元1输出的光束的波长范围)。第一光束入射至第一波长选择单元01,第一波长选择单元01将第一光束中第一波长范围的光反射至反射单元3。第二光束入射至第一波长选择单元01,第一波长选择单元01将第二光束中第二波长范围的光透射至第二波长选择单元02,并将第一波长范围的光不反射至反射单元3,第二波长选择单元02反射该第二波长范围的光,第二波长范围的光经过第一波长选择单元01入射(透射)至反射单元3。
需要说明的是,此处是第二光束两次经过第一波长选择单元01为例进行说明,第二光束也可以仅在入射时经过第一波长选择单元01,或者,仅在出射时经过第一波长选择单元01。具体描述参见针对图3和图4的说明。
示例性的,图10是本申请实施例提供的另一种投影装置的结构示意图。第一波长选择单元01的第一表面用于透射入射至第二波长选择单元02的光(入射光),第一波长选择单元01的第二表面的部分区域用于反射第二波长选择单元02的反射光,第一表面与第二表面是 相对的表面,该部分区域使得该反射光在第一波长选择单元01被反射至少一次。这样,为了使得图像内容对应的图像清晰,图像内容的光从发出至成像位置之间的距离(即光程)恒定,在光程恒定的情况下,通过第一波长选择单元01的第二表面的部分区域反射第二波长选择单元02的反射光,使得该反射光在两个波长选择单元之间的光程变长,进而能够缩短两个波长选择单元之间的距离。
示例性的,第一波长选择单元01可以是波带滤波片、HOE或者DOE中的一种,第二波长选择单元02也可以是波带滤波片、HOE或者DOE中的一种。或者,第一波长选择单元01可以是波带滤波片、HOE或者DOE中的一种,或者第二波长选择单元02是反射镜。
需要说明的是,此处仅是简单描述N取值为2时投影装置的结构,投影装置的具体描述参见前文中的描述。
图11是本申请实施例提供的另一种投影装置的结构示意图。如图11所示,N取值为3,投影装置包括图像提供单元1、三个波长选择单元和反射单元3。
图像提供单元1用于投射三个光束,该三个光束对应图像提供单元1的不同图像内容,也就是说图像提供单元1存在三个逻辑区域,该三个逻辑区域的图像内容不相同。
该三个波长选择单元中第1个至第3个波长选择单元沿着该三个光束的投射方向层叠排布。该三个波长选择单元用于反射该三个光束,且不同的波长选择单元用于反射不同波长的光。其中,第1个波长选择单元还用于透射第2个至第3个波长选择单元的入射光,第2个波长选择单元还用于透射第3个波长选择单元的入射光。
该反射单元3用于反射接收到的3个光束,以形成不同图像内容对应的图像。
需要说明的是,此处仅是简单描述N取值为3时投影装置的结构,投影装置的具体描述参见前文中的描述。
本申请实施例还提供了一种交通工具,该交通工具包括风挡玻璃和前述任一种投影装置,该风挡玻璃用于将来自投影装置的N个光束进行反射,形成该N个光束对应的N个图像。N个图像和驾驶员位于风挡玻璃的两侧,N个图像为虚像。风挡玻璃也可以称为是挡风玻璃。图12示出了投影装置和风挡玻璃的示意图,其中,图12中投影装置包括三个波长选择单元,形成三个虚像,分别为虚像1、虚像2和虚像3,交通工具还包括其它部分,在图12中未示出。
示例性的,交通工具可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请实施例不作特别的限定。
示例性的,N个图像均为增强现实显示图像,增强现实显示图像用于显示地图辅助信息和外界物体的指示信息等信息。外界物体的指示信息包括但不限于安全车距、周围障碍物和倒车影像等。地图辅助信息用作辅助驾驶,例如,地图辅助信息包括但不限于方向箭头、距离和行驶时间等。
或者,N个图像均为状态显示图像,状态显示图像用于显示交通工具的状态信息和娱乐信息等。以汽车为例,交通工具的状态信息一般是显示在交通工具仪表上的信息,也称为是仪表信息,包括但不限于行驶速度、行驶里程、燃油量、水温和车灯状态等信息。
或者,N个图像包括增强现实显示图像和状态显示图像。例如,N取值为2,一个图像为增强现实显示图像,另一个图像为状态显示图像。
可选地,增强现实显示图像的成像距离可以大于状态显示图像的成像距离。
另外,本申请实施例中,N个图像也可以显示在投影屏幕上。
示例性的,在交通工具中,投影装置可以设置有外壳,该外壳用于防尘等,该外壳也可以称为是防尘罩。
本申请实施例中,投影装置采用多个波长选择单元,多个波长选择单元之间可以存在空间遮挡,使得投影装置的结构紧凑,进而使得投影装置的体积比较小。
而且相对于多镜片空间折叠系统,由于多个波长选择单元可以存在空间遮挡,且可以平行设置,所以能够使用单个自由面(该自由面为波长选择单元所在的平面),就能获得多个立体虚拟图像,节约成本。
而且相对于目前方案仅能展示两个立体虚拟图像,能够使用多个波长选择单元将不同波长的光分离,使得不同波长的光沿着不同的空间路径传输,获得多个立体虚拟图像,即能够实现多个图像内容的展示。
图13是本申请实施例提供的一种交通工具的一种可能的功能框架示意图。
如图13所示,交通工具的功能框架中可包括各种子系统,例如,图示中的传感器系统12、控制系统14、一个或多个外围设备16(图示以一个为例示出)、电源18、计算机系统20、抬头显示系统32。可选地,交通工具还可包括其他功能系统,例如,为交通工具提供动力的引擎系统等等,本申请这里不做限定。
其中,传感器系统12可包括若干检测装置,这些检测装置能感受到被测量的信息,并将感受到的信息按照一定规律将其转换为电信号或者其他所需形式的信息输出。如图示出,这些检测装置可包括全球定位系统(global positioning system,GPS)、车速传感器、惯性测量单元(inertial measurement unit,IMU)、雷达单元、激光测距仪、摄像装置、轮速传感器、转向传感器、档位传感器、或者其他用于自动检测的元件等等,本申请并不做限定。
控制系统14可包括若干元件,例如图示出的转向单元、制动单元、照明系统、自动驾驶系统、地图导航系统、网络对时系统和障碍规避系统。可选地,控制系统14还可包括诸如用于控制车辆行驶速度的油门控制器及发动机控制器等元件,本申请不做限定。
外围设备16可包括若干元件,例如图示中的通信系统、触摸屏、用户接口、麦克风以及扬声器等等。其中,通信系统用于实现交通工具和除交通工具之外的其他设备之间的网络通信。在实际应用中,通信系统可采用无线通信技术或有线通信技术实现交通工具和其他设备之间的网络通信。该有线通信技术可以是指车辆和其他设备之间通过网线或光纤等方式通信。
电源18代表为车辆提供电力或能源的系统,其可包括但不限于再充电的锂电池或铅酸电池等。在实际应用中,电源中的一个或多个电池组件用于提供车辆启动的电能或能量,电源的种类和材料本申请并不限定。
交通工具的若干功能均由计算机系统20控制实现。计算机系统20可包括一个或多个处理器2001(图示以一个处理器为例示出)和存储器2002(也可称为存储装置)。在实际应用中,该存储器2002也在计算机系统20内部,也可在计算机系统20外部,例如作为交通工具中的缓存等,本申请不做限定。其中,
处理器2001可包括一个或多个通用处理器,例如,图形处理器(graphic processing unit,GPU)。处理器2001可用于运行存储器2002中存储的相关程序或程序对应的指令,以实现车辆的相应功能。
存储器2002可以包括易失性存储器(volatile memory),例如,RAM;存储器也可以包 括非易失性存储器(non-volatile memory),例如,ROM、快闪存储器(flash memory)或固态硬盘(solid state drives,SSD);存储器2002还可以包括上述种类的存储器的组合。存储器2002可用于存储一组程序代码或程序代码对应的指令,以便于处理器2001调用存储器2002中存储的程序代码或指令以实现车辆的相应功能。该功能包括但不限于图13所示的车辆功能框架示意图中的部分功能或全部功能。本申请中,存储器2002中可存储一组用于车辆控制的程序代码,处理器2001调用该程序代码可控制车辆安全行驶,关于如何实现车辆安全行驶具体在本申请下文详述。
可选地,存储器2002除了存储程序代码或指令之外,还可存储诸如道路地图、驾驶线路、传感器数据等信息。计算机系统20可以结合车辆功能框架示意图中的其他元件,例如传感器系统中的传感器、GPS等,实现车辆的相关功能。例如,计算机系统20可基于传感器系统12的数据输入控制交通工具的行驶方向或行驶速度等,本申请不做限定。
抬头显示系统32可包括若干元件,例如,风挡玻璃、控制器和前文中描述的投影装置。控制器用于根据用户指令生成图像(如生成包含车速、电量/油量等车辆状态的图像以及增强现实AR内容的图像),并将该图像内容发送至投影装置;投影装置将承载图像内容的光投射至风挡玻璃,风挡玻璃用于反射承载图像内容的光,以使在驾驶员前方呈现图像内容对应的虚像。需要说明的是,抬头显示系统中的部分元件的功能也可以由车辆的其它子系统来实现,例如,控制器也可以为控制系统中的元件。
其中,本申请图13示出包括四个子系统,传感器系统12、控制系统14、计算机系统20和抬头显示系统32仅为示例,并不构成限定。在实际应用中,交通工具可根据不同功能对车辆中的若干元件进行组合,从而得到相应不同功能的子系统。在实际应用中,交通工具可包括更多或更少的系统或元件,本申请不做限定。
本申请中术语“第一”、“第二”等字样用于对作用和功能基本相同的相同项或相似项进行区分,应理解,“第一”、“第二”之间不具有逻辑或时序上的依赖关系,也不对数量和执行顺序进行限定。还应理解,尽管以下描述使用术语第一、第二等来描述各种元素,但这些元素不应受术语的限制。这些术语只是用于将一元素与另一元素区别分开。例如,在不脱离各种示例的范围的情况下,第一波长选择单元可以被称为第二波长选择单元,并且类似地,第二波长选择单元可以被称为第一波长选择单元。第一波长选择单元和第二波长选择单元都可以是波长选择单元,并且在某些情况下,可以是单独且不同的波长选择单元。
本申请中术语“至少一个”的含义是指一个或多个,本申请中术语“多个”的含义是指两个或两个以上。
本申请中术语“A和/或B”包括三种情况,三种情况分别为:A、B以及A和B。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种投影装置,其特征在于,包括图像提供单元(1)、N个波长选择单元(2)和反射单元(3),N大于1;
    所述图像提供单元(1),用于投射N个光束,不同光束对应不同的图像内容;
    所述N个波长选择单元(2)中第1个至第N个波长选择单元沿着所述N个光束的投射方向依次排布,所述N个波长选择单元(2)用于反射所述N个光束至所述反射单元(3),且不同的波长选择单元用于反射不同波长的光,所述N个波长选择单元(2)中第i个波长选择单元还用于透射第i+1个至第N个波长选择单元的入射光和/或反射光,i取值为1至N-1;
    所述反射单元(3),用于反射接收到的N个光束,以形成所述不同的图像内容对应的图像。
  2. 根据权利要求1所述的投影装置,其特征在于,所述N个波长选择单元(2)中第j+1个波长选择单元的入射光入射至所述第j+1个波长选择单元前依次从第1个至第j个波长选择单元透射,j取值为1至N-1。
  3. 根据权利要求1或2所述的投影装置,其特征在于,所述N个波长选择单元(2)中第j+1个波长选择单元的反射光入射至所述反射单元前依次从第j个至第1个波长选择单元透射,j取值为1至N-1。
  4. 根据权利要求1至3任一项所述的投影装置,其特征在于,所述图像提供单元(1)输出的N个光束的波长不相同,不同的波长选择单元用于反射不同光束。
  5. 根据权利要求4所述的投影装置,其特征在于,所述N个波长选择单元(2)中每个波长选择单元为波带滤波片、全息光学元件HOE体光栅或者衍射光学元件DOE中的一种;或者,
    所述第N个波长选择单元为反射镜,所述第i个波长选择单元为波带滤波片、HOE体光栅或者DOE中的一种。
  6. 根据权利要求4或5所述的投影装置,其特征在于,所述N个波长选择单元(2)中第k个波长选择单元的第一表面用于反射所述第k个波长选择单元对应的图像内容的光束,且透射第k+1个至所述第N个波长选择单元对应的图像内容的光束,k取值为1至N-1中的至少一个值;
    所述第k个波长选择单元的第二表面的部分区域用于反射所述第k+1个波长选择单元的反射光。
  7. 根据权利要求1至3任一项所述的投影装置,其特征在于,所述图像提供单元(1)输出的N个光束的波长相同。
  8. 根据权利要求7所述的投影装置,其特征在于,所述N个波长选择单元(2)中第m+1个波长选择单元,用于将第m个波长选择单元对应的图像内容的光束中透射至所述第m+1个波长选择单元的光吸收,m取值为1至N-1中至少一个值。
  9. 根据权利要求7或8所述的投影装置,其特征在于,所述N个波长选择单元(2)中每个波长选择单元为波带滤波片;或者,
    所述第N个波长选择单元为反射镜,所述第i个波长选择单元为波带滤波片。
  10. 根据权利要求7至9任一项所述的投影装置,其特征在于,所述N个波长选择单元(2)中第k个波长选择单元的第一表面用于反射所述第k个波长选择单元对应的图像内容的光束中部分光,且透射第k+1个至所述第N个波长选择单元对应的图像内容的光束中部分光,k 取值为1至N-1中的至少一个值;
    所述第k个波长选择单元的第二表面的部分区域用于反射所述第k+1个波长选择单元的反射光。
  11. 根据权利要求1至10任一项所述的投影装置,其特征在于,所述第1个至第N个波长选择单元沿着所述N个光束的投射方向依次平行排布。
  12. 一种交通工具,其特征在于,包括风挡玻璃和如权利要求1至11任一项所述的投影装置;
    所述投影装置,用于输出N个光束至所述风挡玻璃,以形成不同的图像内容对应的图像。
PCT/CN2023/072623 2022-03-18 2023-01-17 投影装置和交通工具 WO2023173933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210273410.8 2022-03-18
CN202210273410.8A CN116804798A (zh) 2022-03-18 2022-03-18 投影装置和交通工具

Publications (1)

Publication Number Publication Date
WO2023173933A1 true WO2023173933A1 (zh) 2023-09-21

Family

ID=84442493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072623 WO2023173933A1 (zh) 2022-03-18 2023-01-17 投影装置和交通工具

Country Status (2)

Country Link
CN (2) CN115480403B (zh)
WO (1) WO2023173933A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115542643A (zh) * 2022-04-21 2022-12-30 华为技术有限公司 一种投影装置、交通工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716206A (zh) * 2016-09-22 2019-05-03 微软技术许可有限责任公司 用于与光学波导一起使用的显示引擎
CN110221428A (zh) * 2018-03-02 2019-09-10 蒋晶 近眼显示系统
WO2019185229A1 (de) * 2018-03-27 2019-10-03 Robert Bosch Gmbh Projektionsvorrichtung für eine datenbrille, eine solche datenbrille sowie verfahren zum betrieb einer solchen projektionsvorrichtung
CN209542963U (zh) * 2018-12-20 2019-10-25 苏州车萝卜汽车电子科技有限公司 Hud成像系统、hud
CN113671698A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种抬头显示系统和基于抬头显示系统的图像显示方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9008470B2 (en) * 2012-01-30 2015-04-14 Huawei Technologies Co., Ltd. Method and apparatus for wavelength selective switch
FR3051049B1 (fr) * 2016-05-04 2018-06-15 Valeo Comfort And Driving Assistance Dispositif de generation d'images et afficheur tete-haute comportant un tel dispositif
FR3054327B1 (fr) * 2016-07-22 2021-01-01 Valeo Comfort & Driving Assistance Afficheur tete-haute
CN106483664B (zh) * 2016-12-22 2023-08-04 深圳点石创新科技有限公司 抬头显示装置及装有该抬头显示装置的车辆
KR102568792B1 (ko) * 2017-12-04 2023-08-21 삼성전자주식회사 회절 광학 렌즈를 구비한 다중 영상 디스플레이 장치
JP7059654B2 (ja) * 2018-01-29 2022-04-26 大日本印刷株式会社 表示装置、移動体、照明装置および反射板
JP7131209B2 (ja) * 2018-08-30 2022-09-06 株式会社Jvcケンウッド ディスプレイ装置、ディスプレイ方法およびプログラム
US11284053B2 (en) * 2019-03-29 2022-03-22 Razmik Ghazaryan Head-mounted display and projection screen
CN112526678B (zh) * 2019-09-17 2022-05-24 华为技术有限公司 一种光谱处理装置以及可重构光分插复用器
CN116224597A (zh) * 2021-05-19 2023-06-06 上海天马微电子有限公司 一种抬头显示系统及交通工具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716206A (zh) * 2016-09-22 2019-05-03 微软技术许可有限责任公司 用于与光学波导一起使用的显示引擎
CN110221428A (zh) * 2018-03-02 2019-09-10 蒋晶 近眼显示系统
WO2019185229A1 (de) * 2018-03-27 2019-10-03 Robert Bosch Gmbh Projektionsvorrichtung für eine datenbrille, eine solche datenbrille sowie verfahren zum betrieb einer solchen projektionsvorrichtung
CN209542963U (zh) * 2018-12-20 2019-10-25 苏州车萝卜汽车电子科技有限公司 Hud成像系统、hud
CN113671698A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种抬头显示系统和基于抬头显示系统的图像显示方法

Also Published As

Publication number Publication date
CN115480403A (zh) 2022-12-16
CN115480403B (zh) 2024-03-15
CN116804798A (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
US10942353B2 (en) Information display device
US9715110B1 (en) Automotive head up display (HUD)
US7715103B2 (en) Buried numerical aperture expander having transparent properties
CN112639581B (zh) 抬头显示器和抬头显示方法
WO2018042844A1 (ja) 情報表示装置
WO2017150486A1 (ja) 光学系、それを備える撮像装置及び投影装置
US9891433B2 (en) Virtual image generation device and head-up display
CN108501722B (zh) 一种车载显示系统
EP3963387B1 (en) Achromatic optical lens assembly having pancharatnam berry phase lens
WO2023173933A1 (zh) 投影装置和交通工具
CN113022591A (zh) 基于增强现实的车载抬头显示装置
WO2023202195A1 (zh) 一种投影装置、交通工具
WO2023236582A1 (zh) 显示装置和交通工具
CN117348320A (zh) 投影装置、交通工具和显示设备
KR20180070351A (ko) 특수 반사체를 이용한 헤드업 디스플레이 시스템
WO2024093272A1 (zh) 虚像显示装置和交通工具
WO2024065332A1 (zh) 一种显示模组、光学显示系统、终端设备及图像显示方法
WO2024037061A1 (zh) 一种显示设备和交通工具
CN117806041A (zh) 显示装置和交通工具
CN115616778B (zh) 一种显示装置和交通工具
WO2023231453A1 (zh) 一种风挡玻璃、显示系统及交通工具
WO2023142568A1 (zh) 显示装置和交通工具
EP4063938A1 (en) Head-up display system
CN117183690A (zh) 一种风挡玻璃、显示系统及交通工具
CN115826234A (zh) 抬头显示设备和交通工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769444

Country of ref document: EP

Kind code of ref document: A1