WO2023123447A1 - 一种扫描模组、探测装置及终端设备 - Google Patents

一种扫描模组、探测装置及终端设备 Download PDF

Info

Publication number
WO2023123447A1
WO2023123447A1 PCT/CN2021/143910 CN2021143910W WO2023123447A1 WO 2023123447 A1 WO2023123447 A1 WO 2023123447A1 CN 2021143910 W CN2021143910 W CN 2021143910W WO 2023123447 A1 WO2023123447 A1 WO 2023123447A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
reflective
reflective surface
light
detection
Prior art date
Application number
PCT/CN2021/143910
Other languages
English (en)
French (fr)
Inventor
刘军
张绍鹏
卢佐旻
余安亮
王伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/143910 priority Critical patent/WO2023123447A1/zh
Publication of WO2023123447A1 publication Critical patent/WO2023123447A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present application relates to the field of scanning technology, in particular to a scanning module, a detection device and a terminal device.
  • detection devices such as smart transportation equipment, smart home equipment, robots, and vehicles are gradually entering people's daily lives. Since the detection device can perceive the surrounding environment, it can then identify and track moving targets based on the perceived environmental information, as well as identify stationary targets such as lane lines and signs, and can combine navigator and map data for path planning, etc. . Therefore, detection devices are playing an increasingly important role on smart terminals.
  • the accuracy of the detection device in sensing the surrounding environment may be reduced due to the influence of stray light.
  • the LiDAR usually includes a transmitting module, a scanning module, and a receiving module.
  • the detection light emitted by the transmitting module propagates to the detection area through the scanning module, and the target in the detection area reflects the detection light to obtain an echo signal, and the receiving module determines the relevant information of the target in the detection area based on the received echo signal. In this way, the detection of the detection area is realized.
  • the echo signal received by the receiving module may be doped with stray light, which will reduce the accuracy of lidar detection.
  • the present application provides a scanning module, a detection device and a terminal device, which are used to reduce or even eliminate stray light, thereby improving the detection accuracy of the detection device based on the scanning module.
  • the present application provides a scanning module, the scanning module includes a polyhedral reflective element, the polyhedral reflective element includes m reflective surfaces, the m reflective surfaces are adjacent in the first direction, and m is a positive integer; for m The first reflective surface among the reflective surfaces, the first reflective surface includes n sub-reflective surfaces, the angle between two adjacent sub-reflective surfaces is greater than 0° and less than 180°, n is an even number greater than or equal to 4, and n sub-reflective surfaces The reflective surfaces are adjacent in a second direction different from the first direction.
  • the incident light (such as the detection light from the emitting module) directed to the adjacent two sub-reflecting surfaces passes through this Two adjacent sub-reflecting surfaces converge after reflection, which helps to reduce the spot size of the probe light reflected by the scanning module, thereby reducing or even eliminating the noise caused by the large spot size of the probe light.
  • Astigmatism which helps to improve the detection accuracy of the detection device using the scanning module. It can also be understood that, based on the above-mentioned scanning module, it is helpful to realize the isolation of sending and receiving.
  • the first direction is perpendicular to the second direction.
  • the first direction may be the rotation direction of the scanning module
  • the second direction may be a direction perpendicular to the rotation direction of the scanning module.
  • the n sub-reflective surfaces include a first sub-reflective surface, a second sub-reflective surface adjacent to the first sub-reflective surface, a third sub-reflective surface adjacent to the second sub-reflective surface, and a fourth sub-reflective surface adjacent to the third sub-reflective surface, the second sub-reflective surface is parallel to the fourth sub-reflective surface, and the first sub-reflective surface is parallel to the third sub-reflective surface.
  • the n sub-reflective surfaces included in the first reflective surface also include a fifth sub-reflective surface and a sixth sub-reflective surface adjacent to the fifth sub-reflective surface, the fifth sub-reflective surface, the third sub-reflective surface, the first The sub-reflecting surfaces are parallel to each other, and the sixth sub-reflecting surface, the fourth sub-reflecting surface, and the second sub-reflecting surface are parallel to each other.
  • the n sub-reflecting surfaces of the first reflecting surface may be composed of reflecting surfaces of a V-shaped reflecting member.
  • the manufacturing process of the V-shaped reflector is simple, the manufacturing process of the scanning module can be simplified by using the V-shaped reflective member.
  • the V-shaped reflector can be integrally formed.
  • the V-shaped reflector can be integrally formed by molding.
  • the n sub-reflecting surfaces may be composed of reflecting surfaces of a W-shaped reflective member.
  • the W-shaped reflector can be integrally formed.
  • the W-shaped reflector can be integrally formed by molding.
  • the n sub-reflecting surfaces may be composed of reflecting surfaces of a sawtooth-shaped reflector, and n is an even number greater than or equal to 6.
  • the saw-tooth wave reflector can be integrally formed by single point diamond turning (single point diamond turning, SPDT) or molding.
  • the n sub-reflecting surfaces of the first reflecting surface may also be composed of any two or any three of the reflecting surfaces of the V-shaped reflecting member, the reflecting surface of the W-shaped reflecting member, or the reflecting surfaces of the sawtooth-shaped reflecting member.
  • a partition is arranged in the middle of the polyhedral reflective element, and the partition is used to divide the polyhedral reflective element into two regions.
  • the scanning module can be divided into a transmitting area and a receiving area, the sub-reflecting surface of the emitting area is used to reflect the probe light from the emitting module, and the sub-reflecting surface of the receiving area is used to reflect echo signal.
  • the further separation of the detection light and the echo signal can be realized, so that the interference of the detection light on the echo signal can be further reduced or even eliminated.
  • the scanning module further includes a support frame, and the m reflective surfaces are fixed around the support frame. Further, in some embodiments, the m reflective surfaces may be glued around the support frame.
  • the driving element drives the polyhedral reflective element to rotate conveniently.
  • the present application provides a detection device, which includes a transmitting module, a receiving module, and the first aspect or any one of the scanning modules in the first aspect.
  • the transmitting module is used to emit detection light
  • the scanning module is used to reflect the detection light to the detection area and reflect the echo signal to the receiving module.
  • the echo signal is obtained by reflecting the detection light from the target in the detection area.
  • the receiving module is used to receive the echo signal used to determine the associated information of the target.
  • the emission module injects detection light into the adjacent two sub-reflecting surfaces, and the detection light passes through the two adjacent sub-reflecting surfaces.
  • the sub-reflecting surfaces converge after reflection, which helps to reduce the spot size of the probe light reflected by the scanning module, thereby reducing or even eliminating the
  • the stray light generated due to the large spot size of the probe light helps to reduce or even eliminate the interference of the stray light to the echo signal.
  • both the miniaturization of the detection device and the isolation of transmission and reception can be realized, thereby reducing the interference of the detection light on the echo signal, which in turn helps to improve the detection accuracy of the detection device.
  • the associated information of the target may include but not limited to distance information of the target, orientation of the target, speed of the target, and/or grayscale information of the target.
  • the emitting module may include H light source components, where H is a positive integer; the light source components are used to emit detection light.
  • the H light source components may include a first light source component and a second light source component, wherein the first light source component and the second light source component may be line light sources.
  • the first light source component is used to emit the first detection light; the second light source component is used to emit the second detection light.
  • the power of the detection light emitted by the emitting module can be increased by the two light source components.
  • line scanning can be realized by a line light source.
  • the detection device may further include a beam converging element for converging the first detection light and the second detection light.
  • the beam converging element may be, for example, a beam combining prism or a refracting prism.
  • the first detection light and the second detection light can be converged (including but not limited to intersect) at the second position. That is to say, the beam waist of the first probe light and the beam waist of the second probe light can be made to coincide at the second position.
  • the emission module further includes a mirror; the mirror is used to change the propagation direction of the second detection light, and the beam waist of the second detection light after the propagation direction is changed is different from the beam waist of the first detection light. coincident with the first position.
  • the positions of the first light source component and the second light source component can be flexibly set, thereby helping to further reduce the volume of the detection device.
  • the H light source components include a third light source component, and the third light source component is a point light source.
  • the emission module further includes H collimation elements, and one collimation element corresponds to one light source assembly.
  • the detection light emitted by the corresponding light source component can be collimated into collimated light through the collimation element.
  • the present application provides a terminal device, where the terminal device includes a control device, and the second aspect or any one of the detecting devices in the second aspect.
  • the control device is used to receive the related information of the target from the detection device, and plan the driving route according to the related information of the target; or, is used to receive the echo signal from the detection device, and determine the related information of the target according to the echo signal.
  • Figure 1a is a schematic diagram of a beam waist of a light beam provided by the present application.
  • Fig. 1b is a schematic diagram of an included angle between two adjacent surfaces provided by the present application.
  • Figure 2a is a schematic diagram of the position of a detection device provided by the present application installed in a vehicle;
  • Figure 2b is a schematic diagram of another detection device provided by the present application installed on a vehicle
  • Fig. 2c exemplarily shows a schematic diagram of a possible application scenario of the present application
  • Fig. 3a is a schematic structural diagram of a transceiver off-axis detection device provided by the present application.
  • Figure 3b is a light path diagram of the propagation of the detection light in the detection device provided by the present application.
  • Figure 3c is another optical path diagram of the probe light propagating in the detection device provided by the present application.
  • Fig. 4a is a schematic structural diagram of a scanning module provided by the present application.
  • Fig. 4b is a schematic structural diagram of another scanning module provided by the present application.
  • Fig. 5a is a schematic structural diagram of a V-shaped reflector provided by the present application.
  • Fig. 5b is a schematic structural diagram of a V-shaped reflector provided by the present application.
  • Fig. 5c is a schematic structural diagram of a V-shaped reflector provided by the present application.
  • Fig. 6a is a schematic structural diagram of a first reflective surface provided by the present application.
  • Fig. 6b is a schematic structural diagram of another first reflecting surface provided by the present application.
  • Fig. 7a is a schematic structural diagram of another first reflecting surface provided by the present application.
  • Fig. 7b is a schematic structural diagram of another first reflecting surface provided by the present application.
  • Fig. 7c is a schematic structural diagram of another first reflecting surface provided by the present application.
  • Fig. 8a is a schematic structural diagram of another scanning module provided by the present application.
  • Fig. 8b is a schematic structural diagram of another scanning module provided by the present application.
  • Fig. 8c is a schematic structural diagram of another scanning module provided by the present application.
  • FIG. 9 is a schematic structural diagram of another scanning module provided by the present application.
  • FIG. 10 is a schematic structural diagram of a detection device provided by the present application.
  • Figure 11a is a schematic structural diagram of another detection device provided by the present application.
  • Fig. 11b is a schematic diagram of the propagation optical path of a detection light in the detection device provided by the present application.
  • Fig. 11c is a schematic structural diagram of another detection device provided by the present application.
  • Figure 11d is a schematic structural diagram of another detection device provided by the present application.
  • Fig. 11e is a schematic diagram of the propagation optical path of another detection light in the detection device provided by the present application.
  • Fig. 12 is a schematic structural diagram of a light source array provided by the present application.
  • Fig. 13 is a schematic structural diagram of a dodging element provided by the present application.
  • FIG. 14 is a schematic structural diagram of a detection component provided by the present application.
  • FIG. 15 is a schematic structural diagram of a terminal device provided by the present application.
  • Fig. 16 is a schematic structural diagram of a vehicle provided by the present application.
  • Fig. 17 is a schematic structural diagram of a windshield provided by the present application.
  • the beam waist usually refers to the position of the smallest beam radius in the direction of propagation of the beam.
  • the beam radius at this location is called the beam waist radius.
  • the beam converges at the beam waist, the beam radius is the smallest, and gradually diverges from the beam waist to both sides.
  • the light intensity distribution of the light beam in the direction of propagation is usually the center with the largest light intensity.
  • a smaller beam waist radius can be obtained by focusing the beam through a lens with a larger numerical aperture.
  • Molding is the abbreviation of compression molding, and molding is also called compression molding. Molding usually refers to a method in which plastic or rubber materials are formed in a closed mold cavity by means of heating and pressure.
  • the two adjacent surfaces are respectively a surface A and a surface B, wherein the angle between the surface A and the surface B is represented by ⁇ . It should be noted that the angle between two adjacent surfaces refers to the smaller angle among the two angles formed by two adjacent surfaces.
  • the two adjacent surfaces may be, for example, two adjacent reflective surfaces, or two adjacent sub-reflective surfaces.
  • the scanning module in this application can be integrated into the detection device, and the detection device can be installed in the vehicle, specifically, it can be installed in various positions of the vehicle.
  • the detection device can be installed in any direction or any multiple directions of the front, rear, left and right directions of the vehicle, so as to realize the capture of the surrounding environment information of the vehicle.
  • the vehicle is taken as an example, and the detection device is installed on the front, left front, right front, left rear, right rear (not shown in 2a), and right rear (not shown in Fig. 2a ) of the vehicle. Take six directions as an example.
  • the detection device can also be installed in the vehicle, for example, on the windshield, please refer to Fig. 2b.
  • the windshield can be used as a viewing window of the detection device.
  • Fig. 2c exemplarily shows a schematic diagram of a possible application scenario of the present application.
  • the detection device can perceive the fan-shaped area indicated by the dotted line box, and the fan-shaped area can be called the detection area of the detection device.
  • the detection device can obtain the vehicle's latitude and longitude, speed, orientation, or information of targets within a certain range (such as other vehicles around, or obstacles, etc.) in real time or periodically (such as the distance of the target, the moving speed of the target, or the posture, etc.).
  • the detection device or the vehicle can determine the position of the vehicle based on the acquired information, and can perform path planning and the like.
  • ADAS advanced driving assistant system
  • assisted driving or automatic driving of the vehicle can be realized.
  • the principle of the detection device to detect the target is: the detection device emits detection light in a certain direction, if there is a target in the detection area of the detection device, the target can reflect the received detection light back to the detection device (the reflected light can be Called the echo signal), the detection device then determines the information of the target according to the echo signal.
  • the detection device can also be applied to various other possible scenarios, not limited to the above-mentioned exemplified scenarios .
  • the detection device can also be installed on the drone as an airborne radar.
  • the detection device can also be installed in a roadside unit (RSU), as a roadside traffic detection device, which can realize intelligent vehicle-road collaborative communication, etc.
  • the detection device can be installed on an automated guided vehicle (AGV).
  • the AGV is equipped with an automatic navigation device such as electromagnetic or optical, and can drive along a prescribed navigation path. It has safety protection and various transfers. Functional transport cart.
  • the detection device can also be applied to scenarios such as telemedicine, remote training, multiplayer games, and multiplayer training. They are not listed here. It should be understood that the application scenario described in this application is to illustrate the technical solution of this application more clearly, and does not constitute a limitation to the technical solution provided by this application. Those of ordinary skill in the art know that with the emergence of new application scenarios, The technical solutions provided in this application are also applicable to similar technical problems.
  • the above application scenarios can be applied to areas such as unmanned driving, automatic driving, assisted driving, intelligent driving, connected vehicles, security monitoring, remote interaction, artificial intelligence or surveying and mapping.
  • the following uses an off-axis detecting device as an example to exemplarily show a possible situation of stray light generated in the detecting device.
  • FIG. 3 a it is a schematic structural diagram of a transceiver off-axis detection device provided by the present application.
  • the detection device includes a transmitting module and a receiving module, wherein the paths of the detection light emitted by the transmitting module and the echo signals received by the receiving module are different.
  • the detection light emitted by the transmitting module has a certain divergence angle ⁇
  • the echo signal received by the receiving module also has a certain divergence angle ⁇ . Due to the space limitation of the detection device, there may be some overlap between the detection light and the echo signal, please refer to the overlapping (overlap) area in Fig. 3a.
  • the structural parts may reflect the detection light emitted by the emission module, and the reflected detection light may be Received by the receiving module, the receiving module cannot distinguish whether the received optical signal is the echo signal reflected by the target or the detection light reflected by the structure. Therefore, the detection light reflected by the structure will cause damage to the actual target reflection echo signal.
  • Crosstalk or called interference
  • the probe light reflected by the structure is stray light.
  • the detection device may mistakenly detect the stray light as an echo signal reflected by a target closer to the detection device, therefore, the stray light will affect the detection accuracy of the detection device. In particular, it has a greater impact on the scene where the detection device is used for short-distance detection.
  • the scanning module may For part of the detection light scattering, the scattered detection light cannot be sent to the detection area, and it will also form stray light in the detection device, and the stray light may also enter the receiving module, so it will be considered by the receiving module as the actual The echo signal reflected by the target will reduce the detection accuracy of the detection device.
  • the detection light emitted by the emission module is reflected to the window by the scanning module, and most of the detection light is transmitted to the detection area through the window to realize the scanning of the detection area, but because the window may not be able to achieve 100% Transmission, so there will be a small part of the detection light reflected by the window back to the detection device, which may be received by the receiving module, which will cause crosstalk to the echo signal reflected by the target. Therefore, this part of the detection light reflected by the window is also called for stray light.
  • the windshield can be used as a window of the detection device.
  • the windshield is a strong scattering source, and the transmittance of the windshield may not reach 100% (usually 75% to 85%)
  • the windshield will reflect the detection light emitted by the detection device back to the detection device, as shown in Figure 3c , the probe light reflected back to the detection device may be received by the receiving module, which will cause crosstalk to the echo signal reflected back from the actual target. Therefore, this part of the probe light scattered by the windshield is also called stray light.
  • the reasons why the windshield is a strong scattering source may include but not limited to the following: (1) The windshield is a large window with non-optical quality, and the smoothness cannot be controlled with high quality. (2) The surface shape of the integrally formed windshield cannot reach the optical level (such as PV micron level), and each region has different bending degrees during the molding process, and the surface shape of the windshield is poor in consistency.
  • the distance H between the transmitting module and the receiving module can be increased to isolate the transmitting light path and receiving light path.
  • increasing the distance H between the transmitting module and the receiving module will increase the volume of the detection device, which is not conducive to the miniaturization of the detection device.
  • the present application proposes a scanning module.
  • the scanning module can achieve transceiver isolation, thereby reducing or even eliminating the crosstalk of stray light on echo signals. Further, when the scanning module is applied to the detection device, it is helpful for the miniaturization of the detection device.
  • the scanning module may include a polyhedral reflective element, and the polyhedral reflective element includes m reflective surfaces, where m is a positive integer; it can also be understood that the polyhedral reflective element may include one reflective surface, or may include two or More than 2 reflective surfaces.
  • the m reflective surfaces are adjacent in the first direction.
  • the first reflective surface includes n sub-reflective surfaces, the angle between two adjacent sub-reflective surfaces is greater than 0° and less than 180°, and n is an even number greater than or equal to 4;
  • the first reflective surface includes at least 4 sub-reflective surfaces, for example, may also include 6 sub-reflective surfaces, or 8 sub-reflective surfaces.
  • the n sub-reflective surfaces are adjacent in the second direction. The second direction is different from the first direction.
  • the m reflective surfaces can constitute a continuous and closed reflective surface of a polyhedral reflective element; and/or, the n sub-reflective surfaces can constitute a continuous reflective surface in the m reflective surfaces (that is, referred to as first reflective surface).
  • the polyhedral reflective element including four first reflective surfaces in the first direction as an example, they are respectively reflective surface A, reflective surface B, reflective surface C and reflective surface D, wherein reflective surface A is in the first direction. Upwards are respectively adjacent to reflecting surface B and reflecting surface D, reflecting surface B is respectively adjacent to reflecting surface C and reflecting surface D in the first direction, and reflecting surface C is respectively adjacent to reflecting surface D and reflecting surface B in the first direction Adjacent, the reflective surface D is adjacent to the reflective surface A and the reflective surface C in the first direction, respectively.
  • the first reflective surface may be any one of reflective surface A, reflective surface B, reflective surface C, and reflective surface D.
  • each first reflective surface including four sub-reflective surfaces in the second direction as an example, which are respectively sub-reflective surface a, sub-reflective surface b, sub-reflective surface c, and sub-reflective surface d, wherein, sub-reflective surface a and sub-reflective surface Surface b is adjacent in the second direction, sub-reflective surface b is adjacent to sub-reflective surface c in the second direction, and sub-reflective surface c is adjacent to sub-reflective surface d in the second direction.
  • the included angle ⁇ between two adjacent sub-reflecting surfaces is greater than 0° and less than 180°.
  • the angle between adjacent sub-reflective surfaces a and sub-reflective surfaces b is ⁇
  • the angle between adjacent sub-reflective surfaces b and sub-reflective surfaces c is ⁇
  • the included angle between the reflecting surfaces d is ⁇ .
  • the included angle between two adjacent sub-reflective surfaces in the first reflective surface may be, for example, 30°, 45°, 60°, 75°, 90°, 120°, 145° or 150°.
  • the second direction may be perpendicular to the first direction.
  • the first direction may be the rotation direction of the scanning module.
  • the second direction may be a direction perpendicular to the rotation direction of the scanning module.
  • a plurality of reflective surfaces (or sub-reflective surfaces) adjacent in a certain direction does not mean that each reflective surface is adjacent to other reflective surfaces, but that any two of the multiple reflective surfaces Adjacent reflective surfaces are all adjacent in the same direction, for example, multiple reflective surfaces are adjacent in the horizontal direction (or vertical direction).
  • the adjacency refers to the adjacency in the first direction, for sub-reflection surface a, sub-reflection surface b, sub-reflection surface
  • the adjacency in c and sub-reflective surface d refers to adjacency in the second direction.
  • the incident light (such as the detection light from the emitting module) directed to the adjacent two sub-reflecting surfaces After being reflected by these two adjacent sub-reflecting surfaces, they converge, thereby helping to reduce the spot size of the probe light reflected by the scanning module (see the optical path in Figure 11e or Figure 11b below), thereby reducing or even Eliminate the stray light generated by the reflection of other structural parts due to the large spot size of the probe light.
  • the distance S between the transmitting module and the receiving module can be not increased, which contributes to the miniaturization of the detection device and improves the The detection accuracy of the detection device.
  • the detection device can not only realize the miniaturization of the detection device, but also realize the isolation of sending and receiving, so as to reduce the interference of the detection light on the echo signal, thereby improving the detection accuracy of the detection device.
  • the first reflective surface may be any one of the m reflective surfaces of the polyhedral reflective element.
  • the polyhedral reflective element may include a reflective surface in the first direction, and the first reflective surface is the reflective surface included in the polyhedral reflective element.
  • the polyhedral reflective element may include two reflective surfaces in the second direction, and the first reflective surface may be any one of the two reflective surfaces included in the polyhedral reflective element. It can also be understood that the two reflective surfaces included in the polyhedral reflective element may both be referred to as first reflective surfaces.
  • one reflective surface (referred to as the first reflective surface) among the m reflective surfaces is used as an example for introduction.
  • the n sub-reflective surfaces included in the first reflective surface may be the reflective surface of the V-shaped reflective member, and/or the reflective surface of the W-shaped reflective member, and/or the reflective surface of the sawtooth-shaped reflective member. noodle.
  • the possible structures of the n sub-reflective surfaces included in the first reflective surface are respectively introduced below.
  • the n sub-reflective surfaces included in the first reflective surface are composed of n/2 reflective surfaces of V-shaped reflectors.
  • the lengths of the two reflective surfaces of the V-shaped reflector may be the same. Please refer to FIG. 5 a , the lengths of both surfaces of the V-shaped reflector are L a . In another possible implementation manner, the lengths of the two surfaces of the V-shaped reflector may also be different. Please refer to FIG. 5 b , the lengths of the two reflective surfaces of the V-shaped reflector are L b and L c respectively. In this example, L b is greater than L c as an example. It can be understood that L b can also be smaller than L c . The present application does not limit whether the two reflective surfaces of the V-shaped reflector are the same, and which reflective surface has a longer length and which reflective surface has a shorter length.
  • the widths of the two reflective surfaces of the V-shaped reflector are generally the same. It can be understood that the widths of the two reflective surfaces of the V-shaped reflector may also be different, which is not limited in the present application.
  • the two reflecting surfaces of the V-shaped reflector are generally set to be larger than or equal to the spot size of the incident light.
  • the spot size refers to the area of the spot.
  • the size of the light spot refers to the length of the light spot ⁇ the width of the light spot.
  • the length of the light spot can be, for example, 10 mm
  • the width of the light spot can also be, for example, 10 mm.
  • L a is generally set to be greater than or equal to the length and/or width of the line spot.
  • the length L c of the shorter reflective surface is generally set to be greater than or equal to the length and/or width of the line spot.
  • the light spot size refers to the area of the elliptical light spot.
  • L a is usually set to be greater than or equal to the long axis of the elliptical light spot.
  • the length L c of the shorter reflective surface is generally set to be greater than or equal to the width of the elliptical light spot.
  • the light spot is a circular light spot, and the light spot size is the area of the circular light spot. Referring to FIG.
  • L a is generally set to be greater than or equal to the diameter of the circular light spot.
  • the length L c of the shorter reflective surface is generally set to be greater than or equal to the diameter of the circular light spot. It can be understood that the spot size is related to the field of view of the detection device, and the present application does not limit the specific size of the spot size.
  • the part where the two reflecting surfaces of the above-mentioned V-shaped reflector meet may also be arc-shaped, please refer to FIG. 5c.
  • the angle ⁇ between the two reflective surfaces of the V-shaped reflector is the angle between two adjacent sub-reflective surfaces theta.
  • the angle ⁇ between the two reflective surfaces of the V-shaped reflector is greater than 0° and less than 180°. For example, it can be 30°, 45°, 60°, 75°, 90°, 120°, 145° or 150°.
  • the angle between two adjacent sub-reflecting surfaces includes the angle ⁇ formed by the two reflecting surfaces of the V-shaped reflector and the angle ⁇ formed by each of the surfaces of two adjacent V-shaped reflectors , see Figure 6a or Figure 6b below.
  • the V-shaped reflector may include but not limited to a V-shaped reflector, or a V-shaped metal piece.
  • the V-shaped reflector can be formed by coating a reflective film on V-shaped glass or plastic.
  • the V-shaped reflector can be integrally formed by molding, for example. The preparation process of the integrally formed V-shaped reflector by molding is simple.
  • the n/2 V-shaped reflectors may all be the same, or may be different from each other, or may also be partially the same. Wherein, the n/2 V-shaped reflectors are the same, including but not limited to, the reflective surfaces of the n/2 V-shaped reflectors have the same length and the same included angle.
  • the different n/2 V-shaped reflectors include but not limited to different lengths and/or included angles of the reflective surfaces of the n/2 V-shaped reflectors.
  • FIG. 6 a it is a schematic structural diagram of a first reflective surface provided by the present application.
  • the first reflective surface includes 4 sub-reflective surfaces as an example, that is, n is equal to 4 as an example.
  • the 4 sub-reflecting surfaces included in the first reflecting surface are reflecting surfaces of 2 V-shaped reflecting members.
  • FIG. 6a takes two identical V-shaped reflectors as an example, and the lengths of the two reflective surfaces of the V-shaped reflectors are also the same example.
  • FIG. 6 b is a schematic structural diagram of another first reflecting surface provided by the present application.
  • the first reflective surface includes 4 sub-reflective surfaces as an example, that is, n is equal to 4 as an example.
  • the 4 sub-reflecting surfaces included in the first reflecting surface are reflecting surfaces of 2 V-shaped reflecting members.
  • Figure 6a is an example of two different V-shaped reflectors, wherein the lengths of the two reflective surfaces of one V-shaped reflector are the same, and the lengths of the two reflective surfaces of the other V-shaped reflector are different.
  • the two V-shaped reflectors forming the four sub-reflective surfaces may also be two identical two V-shaped reflectors, and the lengths of the two reflective surfaces of each V-shaped reflector are different, etc., This application is not limited to this.
  • the first sub-reflecting surface is parallel to the third sub-reflecting surface
  • the second sub-reflecting surface is parallel to the fourth sub-reflecting surface
  • the first sub-reflecting surface, the second sub-reflecting surface is parallel to the fourth sub-reflecting surface
  • the sub-reflective surface, the third sub-reflective surface and the fourth sub-reflective surface are four sequentially adjacent sub-reflective surfaces included in the first reflective surface.
  • the n sub-reflective surfaces include a first sub-reflective surface, a second sub-reflective surface adjacent to the first sub-reflective surface in the second direction, and a second sub-reflective surface adjacent to the second sub-reflective surface in the second direction.
  • the reflective surfaces are parallel.
  • the i-th sub-reflection surface in the first reflection surface is parallel to the i+2-th sub-reflection surface
  • the i-th sub-reflection surface is any one of the n sub-reflection surfaces
  • the first sub-reflection surface is the first A subreflector at the top or bottom of the reflector.
  • the first sub-reflective surface can be sub-reflective surface A, or it can also be sub-reflective surface D; sub-reflective surface A is parallel to sub-reflective surface C, sub-reflective surface B is parallel to sub-reflective surface D parallel.
  • a partition is provided in the middle of the polyhedral reflective element, and the partition is used to divide the polyhedral reflective element into two regions.
  • One of the areas may be called a transmitting area, which is used to reflect the detection light from the transmitting module; the other area may be called a receiving area, and is used to reflect the reflected echo signal from the target.
  • partitions can be set in the middle of the n/2 V-shaped reflectors to divide the n sub-reflective surfaces into sub-reflective surfaces (including n/4) in the emission area and sub-reflective surfaces (including n/4) in the receiving area (including n /4).
  • a partition is provided between the two V-shaped reflectors, as can be seen in the above-mentioned Fig. 6a or Fig. 6b.
  • the scanning module can be divided into a transmitting area and a receiving area, the sub-reflecting surface of the emitting area is used to reflect the probe light from the emitting module, and the sub-reflecting surface of the receiving area is used to reflect echo signal.
  • the further separation of the detection light and the echo signal can be realized, so that the interference of the detection light on the echo signal can be further reduced or even eliminated.
  • the n sub-reflective surfaces included in the first reflective surface are composed of n/4 reflective surfaces of W-shaped reflectors.
  • FIG. 7 a it is a schematic structural diagram of another first reflecting surface provided by the present application.
  • the first reflective surface includes 4 sub-reflective surfaces as an example, that is, n is equal to 4 as an example.
  • the four sub-reflective surfaces included in the first reflective surface are four reflective surfaces of a W-shaped reflective member.
  • the difference between this FIG. 7a and the above-mentioned FIG. 6a is that one W-shaped reflector in FIG. 7a is integrally formed, and FIG. 6a is spliced with two V-shaped reflectors.
  • the lengths of the four reflective surfaces of the W-shaped reflector can be the same, please refer to the above Figure 7a; or the lengths of the four reflective surfaces of the W-shaped reflector can also be different from each other; or W-shaped
  • the lengths of the four reflective surfaces of the reflector may also be partly the same and partly different, which is not limited in this application. It can be understood that the widths of the two reflecting surfaces of the W-shaped reflecting member may be the same or different, which is not limited in the present application.
  • the four reflecting surfaces of the W-shaped reflector are generally set to be larger than or equal to the spot size of the incident light.
  • the size of the light spot please refer to the relevant introduction mentioned above, and will not repeat it here.
  • the part where two adjacent reflecting surfaces of the above-mentioned W-shaped reflecting member meet may also be arc-shaped.
  • the angle ⁇ formed by two adjacent reflection surfaces of the W-shaped reflector is the angle ⁇ between two adjacent sub-reflection surfaces. It can also be understood that the angle ⁇ formed by two adjacent reflective surfaces of the W-shaped reflector may be greater than 0° and less than 180°. For example, it can be 30°, 45°, 60°, 75°, 90°, 120°, 145° or 150°. It can be understood that the angle between two adjacent sub-reflecting surfaces includes the angle ⁇ formed by the two reflecting surfaces of the W-shaped reflector.
  • the W-shaped reflector can be integrally formed by molding, for example.
  • the W-shaped reflector may include but not limited to a W-shaped reflector, or a W-shaped metal piece.
  • the W-shaped reflector can be formed by coating a reflective film on W-shaped glass or plastic. The number of times the W-shaped reflector is attached to the frame (refer to the related introduction below) is less.
  • all of the n/4 W-shaped reflectors may be the same, or may be different from each other, or may also be partially identical and partially different.
  • the n/4 W-shaped reflectors are all the same, including but not limited to, the lengths of the reflective surfaces of the n/4 W-shaped reflectors are all the same and the included angles are also the same.
  • the different n/4 W-shaped reflectors include but are not limited to the length of at least one reflective surface and/or the angle formed by at least one pair of adjacent reflective surfaces among the reflective surfaces of the n/4 W-shaped reflectors.
  • the sub-reflective surface A is parallel to the sub-reflective surface C, and the sub-reflective surface B is parallel to the sub-reflective surface D. This helps to reduce the image rotation of the echo signal reflected by the scanning module.
  • FIG. 7 b it is a schematic structural diagram of another first reflecting surface provided by the present application.
  • the first reflective surface includes 6 sub-reflective surfaces as an example, that is, n is equal to 6 as an example.
  • the 6 sub-reflecting surfaces included in the first reflecting surface are 2 reflecting surfaces of a V-shaped reflecting member and 4 reflecting surfaces of a W-shaped reflecting member.
  • a reflective surface of the V-shaped reflector is in contact with a reflective surface of the W-shaped reflector.
  • the introduction of the V-shaped reflector please refer to the introduction of the aforementioned structure 1, and for the introduction of the W-shaped reflector, please refer to the introduction of the aforementioned structure 2, which will not be repeated here.
  • the length of the two reflective surfaces of the V-shaped reflector can be the same as the length of two of the four reflective surfaces of the W-shaped reflector; or, the length of one reflective surface of the V-shaped reflector can be The length of one of the four reflective surfaces of the W-shaped reflector is the same; or, the lengths of the two two reflective surfaces of the V-shaped reflector can be different from the lengths of the four reflective surfaces of the W-shaped reflector , which is not limited in this application.
  • the n sub-reflective surfaces included in the first reflective surface are divided into a first sub-reflective surface, a second sub-reflective surface, a third sub-reflective surface, a fourth sub-reflective surface, and a fifth sub-reflective surface.
  • the reflective surface is adjacent to the third sub-reflective surface in the second direction
  • the fifth sub-reflective surface is adjacent to the fourth sub-reflective surface in the second direction
  • the sixth sub-reflective surface is adjacent to the fifth sub-reflective surface in the second direction.
  • the sub-reflecting surfaces are adjacent; wherein, the fifth sub-reflecting surface, the third sub-reflecting surface, and the first sub-reflecting surface are parallel to each other, and the sixth sub-reflecting surface, the fourth sub-reflecting surface, The second sub-reflecting surfaces are parallel to each other. Referring to FIG.
  • sub-reflective surface A, sub-reflective surface C, and sub-reflective surface E are parallel to each other, and sub-reflective surface B, sub-reflective surface D, and sub-reflective surface F are parallel to each other.
  • the n sub-reflective surfaces included in the first reflective surface are composed of a reflective surface of a sawtooth-shaped reflective member, and the sawtooth-shaped reflective member includes n reflective surfaces, where n is an integer greater than or equal to 6.
  • FIG. 7 c it is a schematic structural diagram of another first reflecting surface provided by the present application.
  • the 6 sub-reflective surfaces included in the first reflective surface are 6 reflective surfaces of a sawtooth-shaped reflective member.
  • the length of the reflection surface of the sawtooth-shaped reflector is the same as an example.
  • the difference between Fig. 7c and Fig. 7b is that Fig. 7b is formed by splicing a V-shaped reflector and a W-shaped reflector, and Fig. 7c is integrally formed by a sawtooth-shaped reflector. Specifically, it can be integrally formed by SPDT.
  • the lengths of the n reflective surfaces of the sawtooth-shaped reflector may be the same, or may be partly the same and partly different, or may also be different from each other, which is not limited in the present application. Further, optionally, the widths of the reflection surfaces of the sawtooth-shaped reflector may be the same or different, which is not limited in the present application.
  • the n reflective surfaces of the sawtooth-shaped reflector are usually set to be greater than or equal to the spot size of the incident light .
  • the widths of the n reflective surfaces of the sawtooth-shaped reflector are generally the same, and are generally set to be greater than or equal to the size of the incident light spot in the first direction.
  • the included angle ⁇ between two adjacent reflective surfaces of the sawtooth wave reflector is the included angle ⁇ between two adjacent sub-reflective surfaces. It can also be understood that the included angle ⁇ between two adjacent reflection surfaces of the sawtooth wave reflector may be greater than 0° and less than 180°. For example, it can be 30°, 45°, 60°, 75°, 90°, 120°, 145° or 150°.
  • the n sub-reflective surfaces included in the first reflective surface are divided into a first sub-reflective surface, a second sub-reflective surface, a third sub-reflective surface, a fourth sub-reflective surface, and a fifth sub-reflective surface.
  • the reflective surface is adjacent to the third sub-reflective surface in the second direction
  • the fifth sub-reflective surface is adjacent to the fourth sub-reflective surface in the second direction
  • the sixth sub-reflective surface is adjacent to the fifth sub-reflective surface in the second direction.
  • the sub-reflecting surfaces are adjacent; wherein, the fifth sub-reflecting surface, the third sub-reflecting surface, and the first sub-reflecting surface are parallel to each other, and the sixth sub-reflecting surface, the fourth sub-reflecting surface, The second sub-reflecting surfaces are parallel to each other. Referring to FIG.
  • sub-reflective surface A, sub-reflective surface C, and sub-reflective surface E are parallel to each other, and sub-reflective surface B, sub-reflective surface D, and sub-reflective surface F are parallel to each other.
  • the n sub-reflective surfaces included in the first reflective surface may also have other possible structural configurations.
  • it may be composed of a reflective surface of a V-shaped reflector and a reflective surface of a sawtooth-shaped reflector, wherein n is an integer greater than or equal to 8.
  • it may also be composed of a reflective surface of a W-shaped reflector and a reflective surface of a sawtooth-shaped reflector, wherein n is an integer greater than or equal to 10. They are listed here.
  • it may also be composed of a reflective surface of a V-shaped reflector, a reflective surface of a W-shaped reflector, and a reflective surface of a sawtooth-shaped reflector.
  • the polyhedral reflective element may further include a supporting frame (or called a skeleton).
  • the support frame is used to fix the m reflective surfaces.
  • the m reflective surfaces may be fixed around the support frame by means of gluing (or glass patch).
  • the driving element drives the polyhedral reflective element to rotate conveniently.
  • FIG. 8 a is a schematic structural diagram of another scanning module provided by the present application.
  • the scanning module includes a support frame and a polyhedral reflection element.
  • the polyhedral reflective element includes 2 reflective surfaces as an example, and each reflective surface includes 4 sub-reflective surfaces as an example, and the 4 sub-reflective surfaces include 4 reflective surfaces including a W-shaped reflector as an example.
  • the W-shaped reflector can be fixed around (or referred to as both sides) of the support frame by means of glue.
  • FIG. 8 b is a schematic structural diagram of another scanning module provided by the present application.
  • the scanning module includes a support frame and a polyhedral reflection element.
  • the polyhedral reflective element includes 2 reflective surfaces as an example, and each reflective surface includes 4 sub-reflective surfaces as an example.
  • a reflecting surface including two V-shaped reflectors is taken as an example.
  • the V-shaped reflector can be fixed on the periphery (or called both sides) of the support frame by means of glue.
  • the scanning module may further include a partition disposed between the two V-shaped reflectors, which may also be understood as that the partition is disposed between the polyhedral reflective elements. It should be noted that the separator may not pass through the frame, as shown in FIG. 8c, which is not limited in the present application.
  • the scanning module further includes a driving element to drive the scanning module to rotate.
  • the driving element may include a rotating shaft and a driver.
  • the rotating shaft may be located on the central axis of the support frame, as may be referred to the introduction of the above-mentioned Fig. 8a or Fig. 8b. It can be understood that the rotating shaft can also be arranged at both ends of the support frame, as can be seen in the above-mentioned FIG. 8c. This application does not limit the specific position of the rotating shaft, and any position that can drive the scanning module to rotate is within the protection scope of this application.
  • the drive element may include, but not limited to, a motor, or a servo motor.
  • the driving element may belong to a part of the scanning module, or may be a structure independent of the scanning module.
  • FIG. 9 it is a schematic structural diagram of another scanning module provided by the present application.
  • reflective surface 1 is adjacent to reflective surface 2 and reflective surface 4 respectively
  • reflective surface 2 is adjacent to reflective surface 3 and reflective surface 1 respectively
  • reflective surface 3 is adjacent to reflective surface 2 and reflective surface 4 respectively
  • the reflective surface 4 is adjacent to the reflective surface 3 and the reflective surface 1 respectively
  • the reflective surface 3 is opposite to the reflective surface 1
  • the reflective surface 4 is opposite to the reflective surface 2.
  • the reflective surface 3 and the reflective surface 4 are not shown in FIG. 9 .
  • Each reflective surface includes 4 sub-reflective surfaces in the second direction as an example.
  • the four sub-reflecting surfaces take the reflecting surfaces of the two V-shaped reflectors as an example.
  • the tetrahedral reflective element which is used to divide the tetrahedral reflective element into two areas, which can be called the emitting area and the receiving area.
  • the emitting area corresponds to 2 sub-reflecting surfaces
  • the receiving area corresponds to 2 sub-reflecting surfaces. Reflective surface.
  • the present application may also provide a detection device.
  • the detecting device may include a transmitting module 1001 , a scanning module 1002 and a receiving module 1003 .
  • the transmitting module 1001 is used to emit detection light
  • the scanning module 1002 is used to reflect the detection light to the detection area and reflect the echo signal to the receiving module, the echo signal is the detection light passing through the detection area Obtained by the reflection of the target
  • the receiving module 1003 is used to receive the echo signal used to determine the associated information of the target.
  • the associated information of the target may include, but not limited to, distance information of the target, orientation of the target, speed of the target, and/or grayscale information of the target.
  • the detection device may further include a window 1004, which is used to isolate the influence of the external environment on the detection device.
  • a window 1004 is used to isolate the influence of the external environment on the detection device. It should be noted that the detection device may not include a window, and when the detection device is installed on a windshield of a vehicle, the function of the window can be replaced by the windshield. Or it can also be understood that the windshield is used as the window of the detection device.
  • the scanning module 1002 may be the scanning module in any one of the above-mentioned embodiments, for details, please refer to the above-mentioned related introductions, which will not be repeated here.
  • the transmitting module 1001 and the receiving module 1003 please refer to the following detailed introduction.
  • the transmitting module and the receiving module shown in FIG. 10 are respectively introduced and described below to give an exemplary specific implementation solution.
  • the transmitting module 1001 and the receiving module 1003 below are not marked with numbers.
  • the emission module may include H light source components, where H is a positive integer.
  • the light source component can be, for example, a vertical cavity surface emitting laser (vertical cavity surface emitting laser, VCSEL), an edge emitting laser (edge emitting laser, EEL), an all-solid-state semiconductor laser (diode pumped solid state laser, DPSS) or fiber laser, etc.
  • EEL can directly emit line beam
  • VCSEL, DPSS or fiber laser can obtain line beam through optical shaping.
  • the following exemplarily shows two possible structures of the light source assembly.
  • the light source component is a point light source.
  • the H light source components may include a third light source component, and the third light source component is a point light source.
  • the third probe light emitted by the third light source component of the point light source has a certain divergence angle ⁇ . It can be understood that the light spot formed by the third probe light is a circular light spot or an elliptical light spot. In the following FIG. 11 a , the light spot formed by the third probe light is taken as a circular light spot as an example for introduction.
  • FIG. 11a it is a schematic structural diagram of another detection device provided by the present application.
  • the emitting module in the detecting device is exemplified by including the third light source component.
  • the reflective surfaces of the polyhedral reflective elements included in the scanning module take the reflective surfaces of two V-shaped reflectors as an example, and FIG. 11a only shows the optical path of the emitting area of the scanning module.
  • the diameter of the light spot formed on the window is h 1 .
  • the beam waist of the third detection light reflected by the scanning module is at position 1 (ie, the second position).
  • the diameter of the light spot formed on the window is h 2 .
  • the diameter of the spot formed by the third probe light on the window can be reduced by the detection device, thereby reducing or even eliminating the Stray light generated by reflections from other structural parts, etc.
  • the V-shaped reflector may be the V-shaped reflector shown in FIG. 5c.
  • the light source component is a line light source.
  • the emitting module may include a first light source component and a second light source component.
  • the first light source component and the second light source component are line light sources.
  • the line light source may include but not limited to a light source array (M ⁇ N), where M is an integer greater than 1 and N is a positive integer, or M is a positive integer and N is an integer greater than 1.
  • FIG. 12 it is a schematic structural diagram of a light source array provided by the present application.
  • the light source array can be time-divided by row or by column.
  • Time-sharing gating by row refers to gating a row in the light source array at the same time.
  • Time-sharing gating by column refers to gating one column in the light source array at the same time. Taking one row at the same time as an example, the first row in the light source array is selected at the first time, the second row in the light source array is selected at the second time, and the third row in the light source array is selected at the third time.
  • the probe light emitted by a row of light sources gated at all times is the line beam.
  • the shape of the light source given above is only an example, which is not limited in the present application.
  • the shape of the light source may also be a square or an ellipse or other possible shapes.
  • the above-mentioned light source array shown in FIG. 12 is only an example, and the present application does not specifically limit the number of rows and columns included in the light source array.
  • the light source array may be a light source array with one row and multiple columns, or may be a light source array with multiple rows and one column, which will not be listed here.
  • FIG. 11c it is a schematic structural diagram of another detection device provided by the present application.
  • the emission module in the detection device includes two light source components as an example, which are respectively referred to as a first light source component and a second light source component.
  • the reflective surfaces of the polyhedral reflective elements included in the scanning module take the reflective surfaces of two V-shaped reflectors as an example, and FIG. 11c only shows the optical path of the emitting area of the scanning module.
  • the first light source component and the second light source component are linear light sources, for details, please refer to the related introduction of the aforementioned linear light sources.
  • the first light source assembly is used to emit the first detection light
  • the second light source assembly is used to emit the second detection light.
  • Both the first detection light and the second detection light are line beams, and a line in FIG. 11c represents one detection light.
  • the emission module may further include a beam converging element for converging (including but not limited to intersecting) the first detection light and the second detection light, and the converging detection light is a line beam.
  • the beam waists of the first probe light and the second probe light overlap at position 1 (ie, the second position), that is, position 1 is the overlapping position of the beam waists of the first probe light and the second probe light.
  • the beam converging element may be, for example, a beam combining prism or a refracting prism. In FIG. 11c, the beam converging element is used as an example of a beam combining prism.
  • the first converging of the first detection light and the second detection light can be realized through the beam converging element.
  • the first detection light and the second detection light diverge from position 1, and after being reflected by the two sub-reflecting surfaces corresponding to the emission area of the scanning module, they can be converged again at position 2, so that the first detection light after re-convergence and the spot of the second probe light on the windshield or the window is relatively small.
  • the beam waist of the first probe light and the beam waist of the second probe beam can be overlapped at position 2 (ie, the first position) after the divergent first probe light and the second probe light are reflected by the scanning module.
  • the specific position of the first position can be adjusted according to the size of the divergence angle ⁇ .
  • the emitting module may further include a reflector.
  • the reflector is used to change the propagation optical path of the second detection light. After changing the propagation optical path, the beam waist of the second detection light coincides with the beam waist of the first detection light at the first position.
  • Position 2 is to change the transmission The first position where the beam waist of the second probe light after the optical path coincides with the beam waist of the first probe light.
  • the optical path of the first detection light is also called a straight-through optical path
  • the optical path of the second detection light is also called a side-through optical path.
  • the optical path of the second detection light after being reflected by the mirror is consistent with the outgoing direction of the first detection light.
  • the actual optical paths of the first detection light and the second detection light in the scanning module in the above-mentioned Fig. 11c and Fig. 11d can be referred to the following Fig. 11e. It can be understood that the reflections of the first detection light and the second detection light on the corresponding sub-reflecting surfaces satisfy the law of reflection. Based on the law of reflection, the first detection light and the second detection light can converge at the position after being reflected by the scanning module. 2.
  • the emitting module may further include at least one collimating element, and one collimating element corresponds to one light source assembly, see FIG. 11c above.
  • the collimating element may be, for example, a collimating mirror, specifically a collimating lens, or a curved mirror.
  • the collimation element is used to collimate the detection light emitted by the corresponding light source component into parallel light.
  • the first light source component corresponds to the first collimation element, and the first collimation element is used to collimate the first probe light into collimated light;
  • the second light source component corresponds to the second collimation element, and the second collimation element is used to Collimating the second probe light into collimated light.
  • the emission module may further include a homogenizer (homogenizer, HOM).
  • the light homogenizing element is used to homogenize the detection light (such as the first detection light and the second detection light).
  • the homogenizing element can be, for example, a fly-eye lens (see Figure 13) composed of a series (such as two or more) lenses (or called sub-eyes) to compress the divergence angle of the probe light, so that This makes the probe light directed to the scanning module more uniform.
  • the uniform light element may be located between the light beam converging element and the light source assembly. It should be noted that the light homogenizing element can also be arranged in other possible positions, and the application does not limit the specific position of the light uniform element.
  • the number of lenses included in the fly-eye lens shown in FIG. 13 is only an example.
  • the fly-eye lens may include more lenses than in FIG. 13 or fewer lenses than in FIG. 13 . limited. It should be understood that the more sub-eyes the fly-eye lens includes, the better the light uniformity effect will be.
  • the light homogenization element shown in FIG. 13 is only an example, and any structure in the present application that can achieve uniform light of the probe light is within the scope of protection of the present application.
  • the uniform light element may also be a light rod or the like.
  • the detection device may not include the above-mentioned beam converging element .
  • the receiving module may include a detection component.
  • the detection component is specifically used to perform photoelectric conversion on the echo signal to obtain an electrical signal used to determine the associated information of the target.
  • FIG. 14 is a schematic structural diagram of a detection assembly provided by the present application.
  • the detection component takes a pixel array as an example, and the pixel array includes 3 ⁇ 3 pixels as an example.
  • the pixel array can be strobed in time division by row or by time division by column.
  • Time-division gating by row refers to gating at least one row in the pixel array at the same time.
  • Time-sharing gating by column refers to gating at least one column in the pixel array at the same time.
  • the shape of the pixel given above is only an example, which is not limited in the present application.
  • the shape of the pixel may also be a direction, an ellipse, or other possible shapes.
  • the above-mentioned pixel array shown in FIG. 14 is only an example, and the number of rows and columns included in the pixel array is not limited in the present application.
  • the pixel array may also be a pixel array with one row and multiple columns, or may be a pixel array with multiple rows and one column, which will not be listed here.
  • the first row in the pixel array is selected at the first time, and the first row in the light source array is selected; the second row is selected at the second time.
  • the second row in the pixel array is selected, and the second row in the light source array is selected; at the third moment, the third row in the pixel array is selected, and the third row in the light source array is selected.
  • the first column in the pixel array is selected at the first time, and the first column in the light source array is selected; the second column in the pixel array is selected at the second time, And gate the second column of light sources in the light source array; gate the third column in the pixel array at the third moment, and gate the third column in the light source array.
  • the detection component may be, for example, a photon detector (photon detector, PD), a P-type semiconductor-intrinsic layer-N-type semiconductor (positive intrinsic negative, PIN) type photodiode (also known as a PIN junction diode), an avalanche Photodiode (avalanche photodiode, APD), or also can be above-mentioned pixel array, the pixel in the pixel array can be for example one or more single-photon avalanche diode (single-photon avalanche diode, SPAD), or silicon photomultiplier tube (silicon photomultiplier, SiMP), or PIN photodiode, or APD, etc.
  • a photon detector photon detector
  • PD P-type semiconductor-intrinsic layer-N-type semiconductor (positive intrinsic negative, PIN) type photodiode (also known as a PIN junction diode), an avalanche Photodiode (avalanche photodio
  • the receiving module may also include other possible structures, such as a receiving optical lens.
  • the receiving optical lens includes at least one lens, and the optical lens in the receiving optical lens can be a single spherical lens, or a combination of multiple spherical lenses (such as a combination of concave lenses, a combination of convex lenses, or a combination of convex lenses and concave lenses, etc.).
  • the receiving optics can also be non-rotationally symmetrical.
  • the lens in the receiving optical lens can be a single aspheric lens, or a combination of multiple aspheric lenses.
  • convex lenses include biconvex lenses, plano-convex lenses, and meniscus lenses
  • concave lenses include biconvex lenses, plano-concave lenses, and meniscus lenses.
  • the lens material in the receiving optical lens may be an optical material such as glass, resin, or crystal.
  • the material of the lens is resin, it helps to reduce the mass of the detection device.
  • the material of the lens is glass, it helps to further improve the imaging quality of the detection device.
  • the receiving optical lens includes at least one lens made of glass material.
  • the detection device may further include a control module.
  • the control module is used to plan the driving route according to the determined related information of the target, such as avoiding obstacles on the driving route, realizing automatic driving of the vehicle, etc. Alternatively, it may also be used to receive the echo signal from the detection device, and determine the relevant information of the target according to the echo signal.
  • control module can also be used to control the driving element to drive the scanning module to rotate.
  • control module can send a control signal to the driving element of the scanning module to control the rotation of the scanning module.
  • control module can also send a control signal to the detection component to control the detection component to process the received echo signal.
  • detection module can also send a control signal to the light source assembly to control the light source assembly to emit detection light; it will not be listed here.
  • control module may include one or more processing units, for example, the processing unit may be a central processing unit (central processing unit, CPU), or other general-purpose processors, field programmable gate arrays (field programmable gate array, FPGA), application processor (application processor, AP), graphics processing unit (graphics processing unit, GPU), image signal processor (image signal processor, ISP), controller, digital signal processor (digital signal processor, DSP), application specific integrated circuit (ASIC), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • the present application may further provide a terminal device.
  • FIG. 15 is a schematic structural diagram of a terminal device provided in this application.
  • the terminal device 1500 may include the detection means 1501 and the control means 1502 in any of the foregoing embodiments.
  • the detection device 1501 may send the determined associated information of the target to the control device 1502 .
  • the control device 1502 is used for planning a driving route according to the received associated information of the target. For example, avoiding obstacles on the driving path, etc.
  • the detection device 1501 may be, for example, a laser radar, which may use detection light to sense targets in the surrounding environment of the terminal device.
  • lidar in addition to sensing the target, lidar can also be used to sense the speed and/or heading of the target, and the like.
  • the detecting device 1501 may be the detecting device in any one of the above embodiments, for details, please refer to the relevant introduction above, and details are not repeated here.
  • the control device 1502 may include at least one processor 15021 executing instructions 150221 stored in a non-transitory computer readable medium such as a memory 15022 . Further, the terminal device may also include a transceiver 15023. For example, the transceiver 15023 may be used to receive information associated with a target from the detection device 1501 .
  • the control device 1502 may also be a plurality of computing devices that control individual components or subsystems of the terminal device 1500 in a distributed manner.
  • the processor 15021 may be a circuit with signal (or data) processing capabilities.
  • the processor may be a circuit with instruction reading and execution capabilities, such as a central processing unit (Central Processing Unit, CPU) , microprocessor, graphics processing unit (graphics processing unit, GPU) (can be understood as a microprocessor), or digital signal processor (digital signal processor, DSP), etc.; in another implementation, the processor can A certain function is realized through the logical relationship of the hardware circuit. The logical relationship of the hardware circuit is fixed or reconfigurable.
  • the processor is an application-specific integrated circuit (ASIC) or a programmable logic device (programmable logic device). , PLD) realized hardware circuit, such as FPGA.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the process of the processor loading the configuration file to realize the configuration of the hardware circuit can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as a neural network processing unit (neural network processing pnit, NPU) tensor processing unit (tensor processing unit, TPU), a deep learning processing unit (deep learning processing unit, DPU) and so on.
  • FIG. 15 functionally illustrates the processor, memory, and other elements of the control device 1502 in the same block, those of ordinary skill in the art will appreciate that the processor and memory may not actually be stored in the same physical housing. multiple processors or memory within.
  • the memory may be a hard drive or other storage medium located in a different housing than the control device 1502 .
  • the processor may also be remote from the vehicle but be in wireless communication with the vehicle.
  • the memory 15022 may contain instructions 150221 (for example, program logic), and the instructions 150221 may be read by the processor 15021 to perform various functions of the terminal device 1500, including the functions described above.
  • Memory 15022 may also contain additional instructions, including instructions to send data to, receive data from, interact with, and/or control other systems of the terminal device, such as the propulsion system.
  • the memory 15022 can also store data, such as the data detected by the detection device 1501, the position, direction, speed and other information of the vehicle.
  • the memory can be, for example, random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the functional framework of the terminal device shown in FIG. 15 is only an example.
  • the terminal device 1500 may include more, fewer or different devices (or systems), and each device may include more More, fewer or different components.
  • the devices and structures shown can be combined or divided in any manner, which is not specifically limited in the present application.
  • the terminal device may be transportation equipment, for example, vehicles (such as unmanned vehicles, smart vehicles, electric vehicles, or digital vehicles, etc.), ships, robots, surveying and mapping equipment, drones, smart home Equipment (such as sweeping robots, etc.), intelligent manufacturing equipment (such as industrial equipment), intelligent transportation equipment (such as automated guided vehicles (automated guided vehicle, AGV), unmanned transport vehicles, or trucks, etc.), etc.
  • vehicles such as unmanned vehicles, smart vehicles, electric vehicles, or digital vehicles, etc.
  • ships robots, surveying and mapping equipment, drones, smart home Equipment (such as sweeping robots, etc.), intelligent manufacturing equipment (such as industrial equipment), intelligent transportation equipment (such as automated guided vehicles (automated guided vehicle, AGV), unmanned transport vehicles, or trucks, etc.), etc.
  • AGV refers to a transport vehicle equipped with automatic navigation devices such as electromagnetic or optical, capable of driving along a prescribed navigation path, with safety protection and various transfer functions.
  • the following takes the terminal device as a vehicle as an example for introduction.
  • FIG. 16 it is a schematic structural diagram of a vehicle provided by the present application.
  • the vehicle may include a windshield and the detecting device in any one of the above-mentioned embodiments.
  • the detection device is installed on the windshield as an example.
  • the windshield can be used as a window for the detection device.
  • the detection device can be bonded to the windshield, and the windshield serves as the window of the detection device.
  • the windshield usually includes two layers of glass and a layer of polyvinyl butyral (PVB) material sandwiched between the two layers of glass.
  • PVB polyvinyl butyral
  • vehicle structure shown in FIG. 16 is only one example.
  • vehicle may also include other devices, such as a steering wheel, a memory, and a wireless communication device, which are not limited in this application.
  • the windshield may be, for example, a wedge-shaped windshield (see FIG. 17 ), or a plane windshield (see FIG. 16 above), which is not limited in the present application.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • the character “/” indicates that the front and back related objects are in a “division” relationship.
  • the word “exemplarily” is used to mean serving as an example, illustration, or illustration. Any embodiment or design described herein as “example” is not to be construed as preferred or advantageous over other embodiments or designs. Or it can be understood that the use of the word example is intended to present a concept in a specific manner, and does not constitute a limitation to the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种扫描模组、探测装置及终端设备,用于解决现有技术中探测的准确度较低的问题。可应用于自动驾驶、智能驾驶、或辅助驾驶等领域。扫描模组包括:多面体反射元件在第一方向上相邻的m个反射面,m为正整数;对于m个反射面中的第一反射面,第一反射面包括n个子反射面,相邻两个子反射面间的夹角大于0°且小于180°,n为大于或等于4的偶数,n个子反射面在不同于第一方向的第二方向上相邻。由于射向相邻两个子反射面的探测光的经两个子反射面反射后汇聚,从而可减小经该扫描模组反射的探测光的光斑尺寸,进而可减小甚至消除因该探测光的光斑尺寸较大而被其它结构件等反射产生的杂散光,从而可提高应用该扫描模组的探测装置探测的准确度。

Description

一种扫描模组、探测装置及终端设备 技术领域
本申请涉及扫描技术领域,尤其涉及一种扫描模组、探测装置及终端设备。
背景技术
随着科学技术的发展,智能运输设备、智能家居设备、机器人、车辆等智能终端正在逐步进入人们的日常生活。由于探测装置可以感知周围的环境,进而可基于感知到的环境信息进行移动目标的辨识与追踪,以及静止目标如车道线、标示牌的识别,并可结合导航仪及地图数据等进行路径规划等。因此,探测装置在智能终端上发挥着越来越重要的作用。
在实际应用中,由于杂散光的影响可能会降低探测装置感知周围环境的准确性。以探测装置为激光雷达(light detection and ranging,LiDAR)为例,激光雷达通常包括发射模组、扫描模组和接收模组等。发射模组发射的探测光经扫描模组传播至探测区域,探测区域中的目标对探测光反射得到回波信号,接收模组基于接收到的回波信号确定探测区域中的目标的关联信息,从而实现对探测区域的探测。但是接收模组接收到的回波信号中可能掺杂了杂散光,从而会降低激光雷达探测的准确度。
综上,如何减小甚至消除杂散光对激光雷达的影响,是当前亟需解决的技术问题。
发明内容
本申请提供一种扫描模组、探测装置及终端设备,用于减小甚至消除杂散光,从而可提高基于该扫描模组的探测装置探测的准确度。
第一方面,本申请提供一种扫描模组,该扫描模组包括多面体反射元件,多面体反射元件包括m个反射面,m个反射面在第一方向上相邻,m为正整数;对于m个反射面中的第一反射面,第一反射面包括n个子反射面,相邻两个子反射面之间的夹角大于0°且小于180°,n为大于或等于4的偶数,n个子反射面在不同于第一方向的第二方向上相邻。
基于上述方案,由于相邻两个子反射面之间的夹角大于0°且小于180°,因此,射向相邻两个子反射面的入射光(如来自发射模组的探测光)的经这两个相邻的子反射面反射后汇聚,从而有助于减小经该扫描模组反射的探测光的光斑尺寸,进而可以减小甚至消除因该探测光的光斑尺寸较大而产生的杂散光,从而有助于提高应用该扫描模组的探测装置探测的准确度。也可以理解为,基于上述扫描模组,有助于实现收发隔离。
在一种可能的实现方式中,第一方向垂直于第二方向。示例性的,第一方向可以是描模组的旋转方向,第二方向可以是垂直于扫描模组的旋转方向的方向。
在一种可能的实现方式中,当m大于1时,第一反射面为m个反射面中的任一个;当m=1时,第一反射面即为这一个反射面。
在一种可能的实现方式中,n个子反射面包括第一子反射面、与第一子反射面相邻的第二子反射面、与第二子反射面相邻的第三子反射面、以及与第三子反射面相邻的第四子反射面,第二子反射面与第四子反射面平行,第一子反射面与第三子反射面平行。
通过设置第一子反射面与第三子反射面平行,第二子反射面与第四子反射面平行,有助于减小该扫描模组反射的回波信号的像旋。
进一步,第一反射面包括的n个子反射面还包括第五子反射面、以及与第五子反射面 相邻的第六子反射面,第五子反射面、第三子反射面、第一子反射面相互平行,第六子反射面、第四子反射面、第二子反射面相互平行。
通过设置第一子反射面、第三子反射面和第五子反射面平行,第二子反射面、第四子反射面和第六子反射面平行,有助于进一步减小该扫描模组反射的回波信号的像旋。
在一种可能的实现方式中,第一反射面的n个子反射面可以由V型反射件的反射面构成。
由于V型反射件的制备工艺简单,通过V型反射件可以简化扫描模组的制备工艺。
在一些实施例中,V型反射件可以一体成型。例如V型反射件可通过模压一体成型。
在另一种可能的实现方式中,n个子反射面可以由W型反射件的反射面构成。
在一些实施例中,W型反射件可以一体成型。例如W型反射件可通过模压一体成型。
在又一种可能的实现方式中,n个子反射面可以由锯齿波型反射件的反射面构成,n为大于或等于6的偶数。
在一些实施例中,锯齿波型反射件可以通过单点金刚石车削(single point diamond turning,SPDT)或模压一体成型。
或者,第一反射面的n个子反射面也可以由V型反射件的反射面、W型反射件的反射面或锯齿波型反射件的反射面中任两种或任三种构成。
在一种可能的实现方式中,多面体反射元件的中间设置有隔板,隔板用于将多面体反射元件分为两个区域。
通过在多面体反射元件的中间设置隔板,可以将扫描模组分为发射区域和接收区域,发射区域的子反射面用于反射来自发射模组的探测光,接收区域的子反射面用于反射回波信号。如此,可以实现探测光和回波信号的进一步分离,从而可进一步减小甚至消除探测光对回波信号的干扰。
在一种可能的实现方式中,扫描模组还包括支撑架,m个反射面固定于支撑架的周围。进一步,在一些实施例中,m个反射面可通过胶粘于支撑架的周围。
通过将m个反射面固定于支撑架的周围,以方便驱动元件驱动多面体反射元件的转动。
第二方面,本申请提供一种探测装置,该探测装置包括发射模组、接收模组以及上述第一方面或第一方面中的任意一种扫描模组。其中,发射模组用于发射探测光;扫描模组用于将探测光反射至探测区域、以及将回波信号反射至接收模组,回波信号为探测光经探测区域中的目标反射得到的;接收模组用于接收用于确定目标的关联信息的回波信号。
基于上述方案,由于相邻两个子反射面之间的夹角大于0°且小于180°,因此,发射模组向相邻两个子反射面射入探测光,探测光经这两个相邻的子反射面反射后汇聚,从而有助于减小经该扫描模组反射的探测光的光斑尺寸,进而可以在不增加发射模组和接收模组之间的距离的情况下,减小甚至消除因该探测光的光斑尺寸较大而产生的杂散光,从有助于减小甚至消除杂散光对回波信号的干扰。也可以理解为,基于上述探测装置,既可以实现探测装置的小型化,又可以实现收发隔离,从而减小探测光对回波信号的干扰,进而有助于提高探测装置探测的准确度。
在一种可能的实现方式中,目标的关联信息可以包括但不限于目标的距离信息、目标的方位、目标的速度、和/或目标的灰度信息等。
在一种可能的实现方式中,发射模组可包括H个光源组件,H为正整数;光源组件用于发射探测光。
在一种可能的实现方式中,H个光源组件可包括第一光源组件和第二光源组件,其中,第一光源组件和第二光源组件可为线光源。第一光源组件用于发射第一探测光;第二光源组件用于发射第二探测光。
通过两个光源组件可以提高发射模组发射的探测光的功率。而且,通过线光源可以实现线扫描。
进一步,探测装置还可包括光束汇聚元件,光束汇聚元件用于对第一探测光和第二探测光进行汇聚。
在一种可能的实现方式中,光束汇聚元件例如可以是合束棱镜或折射棱镜。
通过合束棱镜,可以使得第一探测光和第二探测光汇聚(可以包括但不限于相交)于第二位置。也就是说,可以使得第一探测光的束腰和第二探测光的束腰重合于第二位置。
在一种可能的实现方式中,发射模组还包括反射镜;反射镜用于改变第二探测光的传播方向,传播方向改变后的第二探测光的束腰与第一探测光的束腰重合于第一位置。
通过反射镜,可以灵活设置第一光源组件和第二光源组件的位置,从而有助于进一步减小探测装置的体积。
在一种可能的实现方式中,H个光源组件包括第三光源组件,第三光源组件为点光源。
在一种可能的实现方式中,发射模组还包括H个准直元件,一个准直元件对应一个光源组件。
通过准直元件可将对应光源组件发射的探测光准直为准直光。
第三方面,本申请提供一种终端设备,该终端设备包括控制装置、以及上述第二方面或第二方面中的任意一种探测装置。其中,控制装置用于接收来自探测装置的目标的关联信息,并根据目标的关联信息规划行驶路径;或者,用于接收来自探测装置的回波信号,并根据回波信号确定目标的关联信息。
上述第三方面可以达到的技术效果可以参照上述第二方面中有益效果的描述,此处不再重复赘述。
附图说明
图1a为本申请提供的一种光束的束腰的示意图;
图1b为本申请提供的一种相邻两个面之间的夹角的示意图。
图2a为本申请提供的一种探测装置安装于车辆的位置示意图;
图2b为本申请提供的另一种探测装置安装于车辆的位置示意图;
图2c示例性地的示出了本申请可能一种应用场景示意图;
图3a为本申请提供的一种收发离轴的探测装置的结构示意图;
图3b为本申请提供的一种探测光在探测装置中的传播光路图;
图3c为本申请提供的另一种探测光在探测装置中的传播光路图;
图4a为本申请提供的一种扫描模组的结构示意图;
图4b为本申请提供的另一种扫描模组的结构示意图;
图5a为本申请提供的一种V型反射件的结构示意图;
图5b为本申请提供的一种V型反射件的结构示意图;
图5c为本申请提供的一种V型反射件的结构示意图;
图6a为本申请提供的一种第一反射面的结构示意图;
图6b为本申请提供的又一种第一反射面的结构示意图;
图7a为本申请提供的又一种第一反射面的结构示意图;
图7b为本申请提供的又一种第一反射面的结构示意图;
图7c为本申请提供的又一种第一反射面的结构示意图;
图8a为本申请提供的另一种扫描模组的结构示意图;
图8b为本申请提供的另一种扫描模组的结构示意图;
图8c为本申请提供的另一种扫描模组的结构示意图;
图9为本申请提供的又一种扫描模组的结构示意图;
图10为本申请提供的一种探测装置的结构示意图;
图11a为本申请提供的另一种探测装置的结构示意图;
图11b为本申请提供的一种探测光在探测装置的传播光路示意图;
图11c为本申请提供的又一种探测装置的结构示意图;
图11d为本申请提供的又一种探测装置的结构示意图;
图11e为本申请提供的另一种探测光在探测装置的传播光路示意图;
图12为本申请提供的一种光源阵列的结构示意图;
图13为本申请提供的一种匀光元件的结构示意图;
图14为本申请提供的一种探测组件的结构示意图;
图15为本申请提供的一种终端设备的结构示意图;
图16为本申请提供的一种车辆的结构示意图;
图17为本申请提供的一种风挡的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
以下,对本申请中的部分用语进行解释说明。需要说明的是,这些解释是为了便于本领域技术人员理解,并不是对本申请所要求的保护范围构成限定。
一、束腰
束腰通常指的是光束在传播方向上光束半径最小的位置。这个位置的光束半径称为束腰半径。请参阅图1a,光束在束腰位置汇聚,光束半径最小,从束腰的位置向两面逐渐发散。光束在传播方向上的光强分布通常为中心的光强最大。一种可能的实现中,光束通过一个数值孔径较大的透镜聚焦可以获得较小的束腰半径。
二、模压
模压是压缩模塑的简称,模压又称压塑。模压通常指的是塑料或橡胶料等在闭合模腔内借助加热、加压而成型的方法。
三、相邻两个面之间的夹角
如图1b所示,相邻两个面分别为面A和面B,其中,面A和面B之间的夹角用θ表示。需要说明的是,相邻两个面之间夹角指相邻两个面形成的两个角中的较小的角。本申请中,相邻两个面例如可以是相邻两个反射面,或者相邻两个子反射面。
前文介绍了本申请所涉及到的一些用语,下面介绍本申请可能的应用场景。
本申请中的扫描模组可集成于探测装置,探测装置可安装于交通工具,具体可以安装 于交通工具的各个位置。例如,探测装置可以安装于交通工具前、后、左、右四个方向中任一方向或任多个方向,以实现对交通工具周围环境信息的捕获。请参阅图2a,交通工具以车辆为例,探测装置以安装于车辆的正前、左前、右前、左后、正后(与2a中未示出)、右后(图2a中未示出)六个方向为例。或者,探测装置也可以安装于车辆内,例如安装在风挡上,请参阅图2b。一些可能实施例中,风挡可以作为该探测装置的视窗。
图2c示例性地的示出了本申请可能一种应用场景示意图。该探测装置可感知到虚线框所示的扇形区域,该扇形区域可称为探测装置的探测区域。探测装置可以实时或周期性地获取车辆的经纬度、速度、朝向、或一定范围内的目标(例如周围其它车辆、或障碍物等)的信息(例如目标的距离、目标的移动速度、或目标的姿态等)。探测装置或车辆可根据这些获取到的这些信息确定车辆的位置、并可进行路径规划等。例如,利用经纬度确定车辆的位置,或利用速度和朝向确定车辆在未来一段时间的行驶方向和目的地,或利用周围物体的距离确定车辆周围的障碍物数量、密度等。进一步,可选地,结合高级驾驶辅助系统(advanced driving assistant system,ADAS)的功能,可以实现车辆的辅助驾驶或自动驾驶等。应理解,探测装置探测目标的原理是:探测装置以一定方向发射探测光,若在该探测装置的探测区域内存在目标,目标可将接收到的探测光反射回探测装置(被反射的光可以称为回波信号),探测装置再根据回波信号确定目标的信息。
需要说明的是,如上应用场景只是举例,本申请所提供的探测装置(该探测装置包括本申请所提供的光学接收系统)还可以应用在多种其它可能场景,而不限于上述示例出的场景。例如,探测装置还可以安装在无人机上,作为机载雷达。再比如,探测装置也可以安装在路侧单元(road side unit,RSU),作为路边交通探测装置,可以可实现智能车路协同通信等。再比如,探测装置可以安装在自动导引运输车(automated guided vehicle,AGV)上,AGV指装备有电磁或光学等自动导航装置,能够沿规定的导航路径行驶,具有安全保护以及各种移载功能的运输车。再比如,探测装置也可以应用于远程医疗、远程培训、多人游戏、多人训练等场景。此处不再一一列举。应理解,本申请所描述的应用场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着新的应用场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
基于上述内容,上述应用场景可应用于无人驾驶、自动驾驶、辅助驾驶、智能驾驶、网联车、安防监控、远程交互、人工智能或测绘等领域。
下面以收发离轴的探测装置为例,示例性的示出了探测装置中产生杂散光的可能的情形。
如图3a所示,为本申请提供的一种收发离轴的探测装置的结构示意图。该探测装置包括发射模组和接收模组,其中,发射模组发射的探测光和接收模组接收的回波信号所经过的路径是不同的。基于该收发离轴的探测装置,发射模组发射的探测光具有一定的发散角ω,接收模组接收到的回波信号也有一定的发散角φ。由于探测装置的空间限制,探测光和回波信号可能会存在一部分重叠,请参阅图3a中的重叠(overlap)区域。
基于上述图3a所示的探测装置,若在探测装置的重叠(overlap)区域中存在其它任意结构件,结构件可能会对发射模组发射的探测光进行反射,被反射回的探测光可能会被接收模组接收,接收模组无法辨别出接收到的光信号是目标反射的回波信号还是被结构件反 射的探测光,因此,结构件反射的探测光会对实际目标反射回波信号造成串扰(或称为干扰)。其中,被结构件反射的探测光即为杂散光。进一步,由于这部分杂散光的传播时间较短,探测装置可能会误将该杂散光检测为是距离探测装置较近的目标反射的回波信号,因此,该杂散光会影响探测装置探测的准确度,特别是对探测装置应用于近距离探测的场景影响较大。
在又一种可能的场景中,由于扫描模组的反射面可能会比较粗糙、存在划痕、或存在麻点等,发射模组发射的探测光射向扫描模组后,扫描模组可能会对部分探测光散射,被散射的这部分探测光无法射向探测区域,也会在探测装置中形成为杂散光,该杂散光也可能会进入接收模组,从而会被接收模组认为是实际目标反射的回波信号,进而会降低探测装置探测的准确度。
请参阅图3b,发射模组发射的探测光经扫描模组反射至视窗,绝大部分的探测光经视窗透射至探测区域,以实现对探测区域的扫描,但是由于视窗可能无法实现100%的透射,因此会有少部分探测光被视窗反射回探测装置,从而可能会被接收模组接收,进而会对目标反射回的回波信号造成串扰,因此,被视窗反射的这部分探测光也称为杂散光。
当探测装置安装于车辆内,例如安装在风挡上(可参见上述图2b),风挡可以作为探测装置的视窗。但是由于风挡是强散射源,而且风挡的透过率可能无法达到100%(通常在75%~85%),因此,风挡会将探测装置发射出的探测光反射回探测装置,可参见图3c,被反射回探测装置的探测光可能会被接收模组接收,进而会对实际目标反射回的回波信号造成串扰,因此,被风挡散射的这部分探测光也称为杂散光。其中,风挡是强散射源的原因可以包括但不限于以下内容:(1)风挡是非光学品质的大窗口,无法高质量的管控光洁度。(2)一体成型的风挡的面型无法达到光学级别(如PV微米级),且成型过程中各个区域具有不同的弯折程度,风挡的面型的一致性较差。
需要说明的是,上述给出的可能的产生杂散光的情形仅是示例,本申请对基于探测光如何产生的杂散光不作限定。
由于杂散光会对回波信号(即携带有目标的效信息的光)产生干扰,在一种可能的实现方式,可以通过增大发射模组和接收模组之间的距离H,以隔离发射光路和接收光路。但是增大发射模组和接收模组之间的距离H会增大探测装置的体积,不利于探测装置的小型化。
鉴于上述问题,本申请提出一种扫描模组。该扫描模组可以实现收发隔离,从而可减小甚至消除杂散光对回波信号的串扰。进一步,该扫描模组应用于探测装置时,有助于探测装置的小型化。
基于上述内容,下面结合附对本申请提出的扫描模组进行具体阐述。
本申请中,该扫描模组可包括多面体反射元件,多面体反射元件包括m个反射面,m为正整数;也可以理解为,多面体反射元件可以包括1个反射面,或者也可以包括2个或2个以上的反射面。这m个反射面在第一方向上相邻。对于m个反射面中的第一反射面,第一反射面包括n个子反射面,相邻两个子反射面之间的夹角大于0°且小于180°,n为大于或等于4的偶数;也可以理解为,第一反射面至少包括4个子反射面,例如也可以包括6个子反射面、或8个子反射面等。n个子反射面在第二方向上相邻。第二方向与第一方向不同。
具体设计中,所述m个反射面可以构成多面体反射元件的连续且闭合的反射面;和/ 或,所述n个子反射面可以构成m个反射面中的一个连续的反射面(即称为第一反射面)。
请参阅图4a,以多面体反射元件在第一方向包括4个第一反射面为例,分别为反射面A、反射面B、反射面C和反射面D,其中,反射面A在第一方向上分别与反射面B和反射面D相邻,反射面B在第一方向上分别与反射面C和反射面D相邻,反射面C在第一方向上分别与反射面D和反射面B相邻,反射面D在第一方向上分别与反射面A和反射面C相邻。其中,第一反射面可以是反射面A、反射面B、反射面C和反射面D中的任一个反射面。以每个第一反射面在第二方向上包括4个子反射面为例,分别为子反射面a、子反射面b、子反射面c和子反射面d,其中,子反射面a与子反射面b在第二方向上相邻,子反射面b在第二方向上与子反射面c相邻,子反射面c小第二方向上与子反射面d相邻。相邻两个子反射面之间的夹角θ大于0°且小于180°。结合图4b,相邻的子反射面a和子反射面b之间的夹角为θ,相邻的子反射面b和子反射面c之间的夹角为θ,相邻的子反射面c和子反射面d之间的夹角为θ。示例性的,第一反射面中的相邻两个子反射面之间的夹角例如可以30°、45°、60°、75°、90°、120°、145°或150°等。进一步,可选的,第二方向可与第一方向垂直。其中,第一方向可以是扫描模组的旋转方向。第二方向可以是垂直于扫描模组的旋转方向的方向。
需要说明的是,多个反射面(或者子反射面)在某个方向上相邻并非是每个反射面均与其它反射面相邻,而是在这多个反射面中,任意两个相邻反射面都是在同一个方向上相邻,例如,多个反射面在水平方向(或者垂直方向)上相邻。结合上述图4a,对于反射面A、反射面B、反射面C和反射面D中的相邻是指在第一方向上的相邻,对于子反射面a、子反射面b、子反射面c和子反射面d中的相邻是指在第二方向上的相邻。
基于该扫描模组,由于相邻两个子反射面之间的夹角大于0°且小于180°,因此,射向相邻两个子反射面的入射光(如来自发射模组的探测光)的经这两个相邻的子反射面反射后汇聚,从而有助于减小经该扫描模组反射的探测光的光斑尺寸(可参见下述图11e或图11b光路),进而可以减小甚至消除因该探测光的光斑尺寸较大而被其它结构件等反射产生的杂散光。进一步,当该扫描模组应用于探测装置时,结合上述图3a,可以在不增加发射模组和接收模组之间的距离S,即有助于探测装置的小型化,且有助于提高探测装置探测的准确度。也可以理解为,探测装置通过应用上述扫描模组,既可以实现探测装置的小型化,又可以实现收发隔离,以减小探测光对回波信号的干扰,从而提高探测装置探测的准确度。
在一种可能的实现方式中,第一反射面可以是多面体反射元件的m个反射面中的任一个反射面。例如,多面体反射元件在第一方向可包括一个反射面,该第一反射面即为多面体反射元件包括的这一个反射面。再比如,多面体反射元件在第二方向可包括两个反射面,该第一反射面可以是多面体反射元件包括的这两个反射面中的任一个。也可以理解为,多面体反射元件包括的这两个反射面可以均称为第一反射面。
在下文的介绍中,为便于方案的说明,以m个反射面中的一个反射面(称为第一反射面)为例介绍。
在一种可能的实现方式中,第一反射面包括的n个子反射面可以是V型反射件的反射面,和/或W型反射件的反射面,和/或锯齿波型反射件的反射面。下面对第一反射面包括的n个子反射面的可能的结构分别进行介绍。
结构一,第一反射面包括的n个子反射面由n/2个V型反射件的反射面构成。
在一种可能的实现方式中,V型反射件的两个反射面的长可以相同。请参阅图5a,V型反射件的两个面的长均为L a。在另一种可能的实现方式中,V型反射件的两个面的长也可以不同。请参阅图5b,V型反射件的两个反射面的长分别为L b和L c,该示例中以L b大于L c为例。可以理解的是,L b也可以小于L c。本申请对V型反射件的两个反射面是否相同、以及哪个反射面的长较长哪个反射面的长较短不作限定。
进一步,可选地,V型反射件的两个反射面的宽(可参见上述图4a)通常相同。可以理解的是,V型反射件的两个反射面的宽也可以不同,本申请对此不作限定。
为了防止射向子反射面的入射光(如探测光或回波信号)被泄露,V型反射件的两个反射面通常均设置为大于或等于入射光的光斑尺寸。通常,光斑尺寸指光斑的面积。例如,若光斑为线光斑,光斑尺寸指光斑的长×光斑的宽,光斑的长例如可以为10毫米,光斑的宽例如也可以是10毫米。结合上述图5a,L a通常设置为大于或等于线光斑的长和/或宽。结合上述图5b,较短反射面的长L c通常设置为大于或等于线光斑的长和/或宽。再比如,若光斑为椭圆光斑,光斑尺寸指椭圆光斑的面积。结合上述图5a,L a通常设置为大于或等于椭圆光斑的长轴。结合上述图5b,较短反射面的长L c通常设置为大于或等于椭圆光斑的宽。再比如,光斑为圆光斑,光斑尺寸为圆光斑的面积。结合上述图5a,L a通常设置为大于或等于圆光斑的直径。结合上述图5b,较短反射面的长L c通常设置为大于或等于圆光斑的直径。可以理解的是,光斑尺寸与探测装置的视场相关,本申请对光斑尺寸的具体大小不作限定。
需要说明的是,上述V型反射件的两个反射面相接的部分也可以是弧形的,请参阅图5c。
在一种可能的实现方式中,V型反射件的两个反射面的夹角α(即V型反射件的两个面形成的夹角)即为相邻两个子反射面之间的夹角θ。换言之,V型反射件的两个反射面的夹角α大于0°且小于180°。具体例如可以是30°、45°、60°、75°、90°、120°、145°或150°等。可以理解的是,相邻两个子反射面之间的夹角包括V型反射件的两个反射面形成的夹角α、以及相邻两个V型反射件的各一个面形成的夹角α,请参阅下述图6a或图6b。
示例性的,V型反射件可以包括但不限于V型反射镜、或者V型金属件。其中,V型反射镜可以是在V型玻璃或塑料等上镀制反射膜形成的。具体的,V型反射件例如可以通过模压一体成型。通过模压一体成型的V型反射件的制备工艺简单。
在一种可能的实现方式中,n/2个V型反射件可以全部相同,或者也可以互不相同,或者也可以部分相同。其中,n/2个V型反射件相同包括但不限于n/2个V型反射件的反射面的长均相同且夹角也相同。n/2个V型反射件不同包括但不限于n/2个V型反射件的反射面的长和/或夹角不同。
如图6a所示,为本申请提供的一种第一反射面的结构示意图。该示例中以第一反射面包括4个子反射面为例,即n等于4为例。其中,第一反射面包括的4个子反射面为2个V型反射件的反射面。图6a以2个相同的V型反射件为例,且V型反射件的两个反射面的长也相同示例的。
请参阅图6b,为本申请提供的另一种第一反射面的结构示意图。该示例中以第一反射面包括4个子反射面为例,即n等于4为例。其中,第一反射面包括的4个子反射面为2个V型反射件的反射面。图6a以2个不同的V型反射件示例的,其中一个V型反射件的 两个反射面的长相同,另一个V型反射件的两个反射面的长不同。
需要说明的是,形成4个子反射面的两个V型反射件也可以是两个相同的两个V型反射件,且每个V型反射件的两个反射面的长不同,等等,本申请对此不作限定。
为了减小该扫描模组反射的回波信号的像旋,第一子反射面与第三子反射面平行,第二子反射面与第四子反射面平行,第一子反射面、第二子反射面、第三子反射面和第四子反射面为第一反射面包括的4个依次相邻的子反射面。也可以理解为,n个子反射面包括第一子反射面、在第二方向上与第一子反射面相邻的第二子反射面、在第二方向上与第二子反射面相邻的第三子反射面、在第二方向上与第三子反射面相邻的第四子反射面,其中,第二子反射面与第四子反射面平行,第一子反射面与第三子反射面平行。或者也可以理解为,第一反射面中的第i个子反射面与第i+2个子反射面平行,第i个子反射面为n个子反射面中的任一个,第1个子反射面为第一反射面的顶端或底端的子反射面。结合上述图6a或图6b,第1个子反射面可以是子反射面A,或者也可以是子反射面D;子反射面A与第子反射面C平行,子反射面B与子反射面D平行。
在一些实施例中,多面体反射元件的中间还设置有隔板,隔板用于将多面体反射元件分为两个区域。其中一个区域可称为发射区域,用于反射来自发射模组的探测光;另一个区域可称为接收区域,用于反射经目标的反射回波信号。具体的,可在n/2个V型反射件的中间设置隔板,以将n个子反射面分为发射区域的子反射面(包括n/4个)和接收区域的子反射面(包括n/4个)。例如,在两个V型反射件的中间设置有隔板,可参见上述图6a或图6b。
通过在多面体反射元件的中间设置隔板,可以将扫描模组分为发射区域和接收区域,发射区域的子反射面用于反射来自发射模组的探测光,接收区域的子反射面用于反射回波信号。如此,可以实现探测光和回波信号的进一步分离,从而可进一步减小甚至消除探测光对回波信号的干扰。
结构二,第一反射面包括的n个子反射面由n/4个W型反射件的反射面构成。
如图7a所示,为本申请提供的另一种第一反射面的结构示意图。该示例中以第一反射面包括4个子反射面为例,即n等于4为例。该第一反射面包括的4个子反射面为一个W型反射件的4个反射面。该图7a与上述图6a的区别在于,图7a中的一个W型是一体成型的,图6a是2个V型反射件拼接的。
在一种可能的实现方式中,W型反射件的四个反射面的长可以相同,请参阅上述图7a;或者W型反射件的四个反射面的长也可以互不相同;或者W型反射件的四个反射面的长也可以部分相同部分不同,本申请对此不作限定。可以理解的是,W型反射件的两个反射面的宽可以相同,或者也可以不同,本申请对此不作限定。
为了防止射向子反射面的入射光(如探测光或回波信号)被泄露,W型反射件的四个反射面通常均设置为大于或等于入射光的光斑尺寸。关于光斑尺寸可以参见前述相关介绍,此处不再赘述。
需要说明的是,上述W型反射件的相邻两个反射面相接的部分也可以是弧形的。
在一种可能的实现方式中,W型反射件的相邻两个反射面形成的夹角α即为相邻两个子反射面之间的夹角θ。也可以理解为,W型反射件的相邻两个反射面形成的夹角α可以大于0°且小于180°。具体例如可以是30°、45°、60°、75°、90°、120°、145°或150°等。可以理解的是,相邻两个子反射面之间的夹角包括W型反射件的两个反射面形成的夹角α。
具体的,W型反射件例如可以通过模压一体成型。关于模压的相关介绍可参见前述描述,此处不再赘述。示例性地,W型反射件可以包括但不限于W型反射镜、或者W型金属件。其中,W型反射镜可以是在W型玻璃或塑料等上镀制反射膜形成的。W型反射件与骨架(可参见下文的相关介绍)贴合的次数较少。
在一种可能的实现方式中,n/4个W型反射件可以全部相同,或者也可以互不相同,或者也可以部分相同部分不同。其中,n/4个W型反射件全部相同包括但不限于n/4个W型反射件的反射面的长均相同且夹角也相同。n/4个W型反射件不同包括但不限于n/4个W型反射件的反射面中至少一个反射面的长和/或至少一对相邻反射面形成的夹角不同。
结合上述图7a,子反射面A与子反射面C平行,子反射面B与子反射面D平行。如此有助于减小该扫描模组反射的回波信号的像旋。
结构三,第一反射面包括的n个子反射面由p个V型反射件的反射面和q个W型反射件的反射面构成,2×p+4×q=n,n大于或等于6的偶数。
如图7b所示,为本申请提供的又一种第一反射面的结构示意图。该示例中以第一反射面包括6个子反射面为例,即以n等于6为例。该第一反射面包括的6个子反射面为1个V型反射件的2个反射面和1个W型反射件的4个反射面。该V型反射件的一个反射面与W型反射件的一个反射面相接。关于V型反射件的介绍可参见前述结构一的介绍,关于W型反射件的介绍可参见前述结构二的介绍,此处不再赘述。
进一步,V型反射件的2个两个反射面的长可以与W型反射件的4个反射面中的两个反射面的长相同;或者,V型反射件的1个反射面的长可以与W型反射件的4个反射面中的一个反射面的长相同;或者,V型反射件的2个两个反射面的长可以与W型反射件的4个反射面的长均不相同,本申请对此不作限定。
在一种可能的实现方式中,第一反射面包括的所述n个子反射面分为第一子反射面、第二子反射面、第三子反射面、第四子反射面、第五子反射面和第六子反射面;第二子反射面在第二方向上与第一子反射面相邻、第三子反射面在第二方向上与第二子反射面相邻、第四子反射面在第二方向上与第三子反射面相邻,所述第五子反射面在第二方向上与第四子反射面相邻,第六子反射面在第二方向上与第五子反射面相邻;其中,所述第五子反射面、所述第三子反射面、所述第一子反射面相互平行,所述第六子反射面、所述第四子反射面、所述第二子反射面相互平行。结合上述图7b,子反射面A、子反射面C、子反射面E互相平行,子反射面B、子反射面D、子反射面F互相平行。
结构四,第一反射面包括的n个子反射面由一个锯齿波型反射件的反射面构成,该锯齿波型反射件包括n个反射面,n为大于或等于6的整数。
如图7c所示,为本申请提供的又一种第一反射面的结构示意图。该示例中以第一反射面包括6个子反射面为例,即以n=6为例。其中,该第一反射面包括的6个子反射面是一个锯齿波型反射件的6个反射面。图7c中是以锯齿波型反射件的反射面的长相同为例说明的。图7c与图7b的区别在于,图7b中是由一个V型反射件和一个W型反射件拼接形成的,图7c是由一个锯齿波型反射件一体成型的。具体的,可以通过SPDT一体成型。
在一种可能的实现方式中,锯齿波型反射件的n个反射面的长可以相同,或者也可以部分相同部分不同,或者也可以互不相同,本申请对此不作限定。进一步,可选的,锯齿波型反射件的各个反射面的宽可以相同,或者也可以不同,本申请对此不作限定。
需要说明的是,为了防止射向子反射面的入射光(如探测光或回波信号)被泄露,锯 齿波型反射件的n个反射面通常均设置为大于或等于该入射光的光斑尺寸。关于光斑的尺寸的介绍可参见前述相关描述,此处不再赘述。进一步,可选地,锯齿波型反射件的n个反射面的宽(可参见上述图4a)通常相同,且也通常设置为大于或等于入射光的光斑在第一方向上的尺寸。
在一种可能的实现方式中,锯齿波型反射件的相邻两个反射面之间的夹角α即为相邻两个子反射面之间的夹角θ。也可以理解为,锯齿波型反射件的相邻两个反射面之间的夹角α可以大于0°且小于180°。具体例如可以是30°、45°、60°、75°、90°、120°、145°或150°等。
在一种可能的实现方式中,第一反射面包括的所述n个子反射面分为第一子反射面、第二子反射面、第三子反射面、第四子反射面、第五子反射面和第六子反射面;第二子反射面在第二方向上与第一子反射面相邻、第三子反射面在第二方向上与第二子反射面相邻、第四子反射面在第二方向上与第三子反射面相邻,所述第五子反射面在第二方向上与第四子反射面相邻,第六子反射面在第二方向上与第五子反射面相邻;其中,所述第五子反射面、所述第三子反射面、所述第一子反射面相互平行,所述第六子反射面、所述第四子反射面、所述第二子反射面相互平行。结合上述图7c,子反射面A、子反射面C、子反射面E互相平行,子反射面B、子反射面D、子反射面F互相平行。
可以理解的是,第一反射面包括的n个子反射面也可能是其它可能的结构构成。例如,可以是由V型反射件的反射面和锯齿波型反射件的反射面构成,其中,n为大于或等于8的整数。再比如,还可以是由W型反射件的反射面和锯齿波型反射件的反射面构成,其中,n为大于或等于10的整数。此处在一一列举。再比如,还可以是由V型反射件的反射面、W型反射件的反射面和锯齿波型反射件的反射面构成。
在一种可能的实现方式中,多面体反射元件还可包括支撑架(或称为骨架)。支撑架用于固定m个反射面。具体的,m个反射面可通过胶粘(或称为玻璃贴片)等方式固定于所述支撑架的周围。通过将m个反射面固定于支撑架的周围,以方便驱动元件驱动多面体反射元件的转动。
请参阅图8a,为本申请提供的另一种扫描模组的结构示意图。该扫描模组包括支撑架和多面体反射元件。该示例中多面体反射元件以包括2个反射面为例,每个反射面以包括4个子反射面为例,这4个子反射面以包括1个W型反射件的4个反射面为例。进一步,W型反射件可通过胶粘的方式固定于支撑架的周围(或称为两侧)。
请参阅图8b,为本申请提供的另一种扫描模组的结构示意图。该扫描模组包括支撑架和多面体反射元件。该示例中多面体反射元件以包括2个反射面为例,每个反射面以包括4个子反射面为例。这4个子反射面以包括2个V型反射件的反射面为例。进一步,V型反射件可通过胶粘方式固定于支撑架的周围(或称为两侧)。进一步,该扫描模组还可包括设置于2个V型反射件中间的隔板,也可以理解为,隔板设置于多面体反射元件的中间。需要说明的是,隔板也可以不穿过骨架,如图8c所示,本申请对此不作限定。
在一种可能的实现方式中,扫描模组还包括驱动元件,以驱动扫描模组转动。具体的,驱动元件可包括转轴和驱动器。其中,转轴可以位于支撑架的中心轴线上,可参见上述图8a或图8b的介绍。可以理解的是,转轴也可以设置于支撑架的两端,可参见上述图8c。本申请对转轴的具体位置不作限定,凡是可以实现在带动扫描模组转动的位置均在本申请 的保护范围。驱动元件可以包括但不限于马达、或者伺服电机等。
需要说明的是,驱动元件可以属于扫描模组的一部分,或者也可以是独立于扫描模组的结构。
基于上述内容,下面给出上述扫描模组的一种具体实现方式。以便于进一步理解上述扫描模组的结构。如图9所示,为本申请提供的又一种扫描模组的结构示意图。该扫描模组以包括四面体反射元件为例,也可以理解为,多面体反射元件在第一方向上包括的四个(即m=4)反射面,分别为反射面1、反射面2、反射面3和反射面4,四个反射面固定于骨架的周围。在第一方向上,反射面1分别与反射面2和反射面4相邻,反射面2分别与反射面3和反射面1相邻,反射面3分别与反射面2和反射面4相邻,反射面4分别与反射面3和反射面1相邻,反射面3与反射面1相对,反射面4与反射面2相对,反射面3和反射4在图9中未示出。每个反射面在第二方向上以包括4个子反射面为例。这4个子反射面以2个V型反射件的反射面为例。进一步,在四面体反射元件的中间还设置有隔板,用于将四面体反射元件分为两个区域,可称为发射区域和接收区域,发射区域对应2个子反射面,接收区域对应2个子反射面。关于子反射面之间的关系、以及各个子反射面的介绍可分别参见前述相关说明,此处不再赘述。
基于上述描述的扫描模组的结构和功能原理,本申请还可以提供一种探测装置。请参阅图10,为本申请提供的一种探测装置的结构示意图。该探测装置可以包括发射模组1001、扫描模组1002和接收模组1003。其中,发射模组1001用于发射探测光;扫描模组1002用于将探测光反射至探测区域、以及将回波信号反射至所述接收模组,回波信号为探测光经探测区域中的目标反射得到的;接收模组1003用于接收用于确定目标的关联信息的回波信号。示例性地,目标的关联信息可以包括但不限于目标的距离信息、目标的方位、目标的速度、和/或目标的灰度信息等。
进一步,在一些实施例中,该探测装置还可包括视窗1004,视窗1004用于隔离外界环境对探测装置的影响。需要说明的是,该探测装置也可以不包括视窗,当探测装置安装在如车辆的风挡上时,可用风挡代替视窗的功能。或者也可以理解为,风挡作为探测装置的视窗。
其中,扫描模组1002可以为上述任一实施例中的扫描模组,具体可参见前述相关介绍,此处不再赘述。发射模组1001和接收模组1003可参见下述具体介绍。
结合上述图3b,基于上述探测装置,有助于降低对视窗对散射质量(如粗糙度、局部面型等)的要求,进而可在保证探测装置性能的情况下制备的难度。进一步,通过收发隔离,还有助于降低对扫描模组的反射面的粗糙度的要求。
下面对图10所示的发射模组和接收模组分别进行介绍说明,以给出示例性的具体实现方案。为方便说明,下文中的发射模组1001和接收模组1003均未加数字标识。
一、发射模组
在一种可能的实现方式中,发射模组可包括H个光源组件,H为正整数。示例性的,光源组件例如可以是垂直腔面发射激光器(vertical cavity surface emitting laser,VCSEL)、面缘发射激光器(edge emitting laser,EEL)、全固态半导体激光器(diode pumped solid state laser,DPSS)或光纤激光器等。其中,EEL可以直接发射线光束,VCSEL、DPSS或光纤 激光器可以通过光学整形获得线光束。
下面示例性的示出了两种可能的光源组件的结构。
结构A,光源组件为点光源。
在一种可能的实现方式中,H个光源组件可包括第三光源组件,第三光源组件为点光源。点光源的第三光源组件发射的第三探测光具有一定的发散角ω。可以理解的是,第三探测光形成的光斑为圆光斑或椭圆光斑。下述图11a中以第三探测光形成的光斑为圆光斑为例介绍。
如图11a所示,为本申请提供的另一种探测装置的结构示意图。该探测装置中的发射模组以包括第三光源组件为例。扫描模组包括的多面体反射元件的反射面以2个V型反射件的反射面为例,图11a仅示出了扫描模组的发射区域的光路。第三光源组件发射的第三探测光经上述任一实施例中的扫描模组进行汇聚后,在视窗上形成的光斑的直径为h 1。换言之,第三探测光经扫描模组反射后的束腰在位置1(即第二位置)。若扫描模组是现有技术中的扫描模组,在视窗上形成的光斑的直径为h 2。结合图11b的实际光路和图11a的等效光路,通过上述探测装置可以减小第三探测光在视窗上形成的光斑的直径,进而可以减小甚至消除因该探测光的光斑较大而被其它结构件等反射产生的杂散光。
需要说明的是,若光源组件为点光源,上述V型反射件可以是上述图5c所示的V型反射件。
结构B,光源组件为线光源。
在一种可能的实现方式中,发射模组可包括第一光源组件和第二光源组件。所述第一光源组件和所述第二光源组件为线光源。线光源例如可以包括但不限于光源阵列(M×N),其中,M为大于1的整数,N为正整数,或者M为正整数,N为大于1的整数。
如图12所示,为本申请提供的一种光源阵列的结构示意图。该示例中以M=N=3为例,即光源阵列以包括3×3个光源为例。其中,光源阵列可以按行分时或按列分时选通。按行分时选通是指同一时刻选通光源阵列中的一行。按列分时选通是指同一时刻选通光源阵列中的一列。以同一时刻选通一行为例,第一时刻选通光源阵列中的第一行,第二时刻选通光源阵列中的第二行,第三时刻选通光源阵列中的第三行,每个时刻选通的一行光源发射的探测光即为线光束。需要说明的是,上述给出的光源的形状仅是示例,本申请对此不作限定,例如光源的形状也可以是方形或椭圆形或其它可能的形状。
上述图12给出的光源阵列仅是示例,本申请对光源阵列包括的行和列的数量不作具体限定。例如,光源阵列可以是一行多列的光源阵列,或者也可以是多行一列的光源阵列,此处不再一一列举。
如图11c所示,为本申请提供的又一种探测装置的结构示意图。该探测装置中的发射模组以包括两个光源组件为例,分别称为第一光源组件和第二光源组件。扫描模组包括的多面体反射元件的反射面以2个V型反射件的反射面为例,图11c仅示出了扫描模组的发射区域的光路。其中,第一光源组件和第二光源组件为线光源,具体可参见前述线光源的相关介绍。第一光源组件用于发射第一探测光,第二光源组件用于发射第二探测光,第一探测光和第二探测光均为线光束,图11c中的一条线表示一个探测光。
进一步,该发射模组还可包括光束汇聚元件,用于对所述第一探测光和所述第二探测光进行汇聚(可以包括但不限于相交),汇聚后的探测光为线光束。换言之,第一探测光的束腰和第二探测光的束腰在位置1(即第二位置)重合,即位置1为第一探测光和第二 探测光的束腰的重合的位置。光束汇聚元件例如可以是合束棱镜或折射棱镜,图11c中以光束汇聚元件为合束棱镜示例。也可以理解为,通过光束汇聚元件可以实现对第一探测光和第二探测光的第一次收束。第一探测光和第二探测光从位置1处开始发散,经扫描模组的发射区域对应的两个子反射面反射后可在位置2处再次收束,使得再次收束后的第一探测光和第二探测光在风挡或视窗上的光斑较小。换言之,发散后的第一探测光和第二探测光经扫描模组的反射后可位置2(即第一位置)处实现第一探测光的束腰和第二探测光的束腰的重合。第一位置的具体位置可根据发散角ω的大小来调整。
在一种可能的实现方式中,发射模组还可包括反射镜。反射镜用于改变第二探测光的传播光路,改变传播光路后的第二探测光的束腰与第一探测光的束腰重合于第一位置,请参阅图11d,位置2即为改变传播光路后的第二探测光的束腰与第一探测光的束腰重合的第一位置。其中,第一探测光的光路也称为直通光路,第二探测光的光路也可称为侧通光路。第二探测光经反射镜的反射后的光路与第一探测光出射的方向一致。
需要说明的是,上述图11c和图11d中第一探测光和第二探测光在扫描模组中的实际光路可参见下述图11e。可以理解的是,第一探测光和第二探测光在对应子反射面的反射均满足反射定律,基于反射定律,第一探测光和第二探测光经扫描模组的反射后可汇聚于位置2。
在一种可能的实现方式中,发射模组还可以包括至少一个准直元件,一个准直元件对应一个光源组件,结合上述图11c。准直元件例如可以是准直镜,具体如准直透镜、或曲面反射镜等。准直元件用于将对应光源组件发射的探测光准直为平行光。例如,第一光源组件对应第一准直元件,第一准直元件用于将第一探测光准直为准直光;第二光源组件对应第二准直元件,第二准直元件用于将第二探测光准直为准直光。
进一步,可选的,发射模组还可包括匀光元件(homogenizer,HOM)。匀光元件用于对探测光(如第一探测光和第二探测光)进行匀光。匀光元件例如可以是一系列(如两个或者两个以上)的透镜(或称为子眼)组成的复眼透镜(可参见图13),以实现将探测光的发散角进行压缩,从而可使得射向扫描模组的探测光变得更均匀一些。具体的,匀光元件可位于光束汇聚元件可光源组件之间。需要说明的是,匀光元件也可以设置其它可能的位置,本申请对匀光元件的具体位置不作限定。
需要说明的是,图13中所示的复眼透镜包括的透镜的数量仅是示例,本申请中复眼透镜可以包括比图13多的透镜,也可以比图13少的透镜,本申请对此不作限定。应理解,复眼透镜包括的子眼越多,匀光效果越好。此外,复眼透镜可以是一个,也可以是多个,本申请对此也不作限定。此外,图13给出的匀光元件仅是示例,本申请中凡是可以实现将探测光进行匀光的结构均在本申请的保护范围内。例如,匀光元件例如还可以是光棒等。
可以理解的是,若第一探测光和第二探测光经匀光元件匀光后,在第二方向没有漏光,即可以全部传播至扫描模组时,探测装置也可以不包括上述光束汇聚元件。
二、接收模组
在一种可能的实现方式中,接收模组可包括探测组件。探测组件具体用于对回波信号进行光电转化,得到用于确定目标的关联信息的电信号。
请参阅图14,为本申请提供的一种探测组件的结构示意图。该探测组件以像素阵列为例,像素阵列以包括3×3个像素为例。在一种可能的实现方式中,像素阵列可以按行分时或按列分时选通。按行分时选通是指同一时刻选通像素阵列中的至少一行。按列分时选通 是指同一时刻选通像素阵列中的至少一列。需要说明的是,上述给出的像素的形状仅是示例,本申请对此不做限定,例如像素的形状也可以是方向或椭圆形或其它可能的形状。
上述图14给出的像素阵列仅是示例,本申请对像素阵列包括的行和列的数量不作限定。例如,像素阵列也可以是一行多列的像素阵列,或者也可以是多行一列的像素阵列,此处不再一一列举。
结合上述图12中的光源阵列,以同一时刻选通一行为例,第一时刻选通像素阵列中的第一行,并选通光源阵列中的第一行;第二时刻选通像素阵列中的第二行,并选通光源阵列中的第二行;第三时刻选通像素阵列中的第三行,并选通光源阵列中的第三行。以同一时刻选通像素阵列中的一列为例,第一时刻选通像素阵列中的第一列,并选通光源阵列中的第一列;第二时刻选通像素阵列中的第二列,并选通光源阵列中的第二列光源;第三时刻选通像素阵列中的第三列,并选通光源阵列中的第三列。
示例性地,探测组件例如可以是光电探测器(photon detector,PD)、P型半导体-本征层-N型半导体(positive intrinsic negative,PIN)型光电二极管(亦称为PIN结二极管)、雪崩光电二极管(avalanche photodiode,APD),或者也可以是上述像素阵列,像素阵列中的像素例如可以是一个或多个单光子雪崩二极管(single-photon avalanche diode,SPAD)、或硅光电倍增管(silicon photomultiplier,SiMP)、或PIN型光电二极管、或APD等。
需要说明的是,接收模组还可以包括其它可能的结构,例如接收光学镜头。接收光学镜头包括至少一片镜片,接收光学镜头中的镜片可以是单片的球面透镜,也可以是多片球面透镜的组合(例如凹透镜的组合、凸透镜的组合或凸透镜和凹透镜的组合等)。或者,接收光学镜头也可以是非旋转对称的。例如,接收光学镜头中的镜片可以是单片的非球面透镜,也可以是多片非球面透镜的组合。通过多片球面透镜和/或非球面透镜的组合,有助于提高探测装置的成像质量,降低光学成像系统的像差。应理解,凸透镜和凹透镜有多种不同的类型,例如凸透镜有双凸透镜,平凸透镜以及凹凸透镜,凹透镜有双凹透镜,平凹透镜以及凹凸透镜。
在一种可能的实现方式中,接收光学镜头中的镜片的材料可以是玻璃、树脂或者晶体等光学材料。当镜片的材料为树脂时,有助于减轻探测装置的质量。当镜片的材料为玻璃时,有助于进一步提高探测装置的成像质量。进一步,为了有效抑制温漂,接收光学镜头中包括至少一个玻璃材料的镜片。
在一种可能的实现方式中,探测装置还可包括控制模组。控制模组用于根据确定出的目标的关联信息,进行行驶路径的规划,例如躲避将要行驶的路径上的障碍物、实现车辆的自动驾驶等。或者,也可以用于接收来自所述探测装置的所述回波信号,并根据所述回波信号确定所述目标的关联信息。
进一步,可选的,控制模组还可用于控制驱动元件带动扫描模组转动。具体的,控制模组可向扫描模组的驱动元件发送控制信号,以控制扫描模组转动。进一步,控制模组还可向探测组件发送控制信号,以控制探测组件对接收到的回波信号进行处理。进一步,探测模组还可向光源组件发送控制信号,以控制光源组件发射探测光;此处不再一一列举。
示例性地,控制模组例如可以是可以包括一个或多个处理单元,处理单元例如可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、现场可编程门阵列(field programmable gate array,FPGA)、应用处理器(application processor,AP)、图 形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processor,ISP)、控制器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合等。通用处理器可以是微处理器,也可以是任何常规的处理器。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
基于上述描述的探测装置的架构和功能原理,本申请还可以提供一种终端设备。
请参阅图15,为本申请提供的一种终端设备的结构示意图。该终端设备1500可以包括上述任一实施例中的探测装置1501以及控制装置1502。探测装置1501可以将确定出的目标的关联信息发送至控制装置1502。控制装置1502用于根据接收到的目标的关联信息,规划行驶路径。例如躲避行驶路径上的障碍物等。
其中,探测装置1501例如可以是激光雷达,可利用探测光来感测终端设备的周面环境内的目标。在一些实施例中,除了感测目标以外,激光雷达还可用于感测目标的速度和/或前进方向等。探测装置1501可以是上述任一实施例中的探测装置,具体可参见前述相关介绍,此处不再赘述。
终端设备1500的部分或所有功能受控制装置1502控制。控制装置1502可包括至少一个处理器15021,处理器15021执行存储在例如存储器15022这样的非暂态计算机可读介质中的指令150221。进一步,该终端设备还可包括收发器15023。例如,收发器15023可用于接收来自探测装置1501的目标的关联信息。控制装置1502还可以是采用分布式方式控制终端设备1500的个体组件或子系统的多个计算设备。
处理器15021可以是一种具有信号(或数据)的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元(Central Processing Unit,CPU)、微处理器、图形处理器(graphics processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital singnal processor,DSP)等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路(application-specific integrated circuit,ASIC)或可编程逻辑器件(programmable logic device,PLD)实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(neural network processing pnit,NPU)张量处理单元(tensor processing unit,TPU)、深度学习处理单元(deep learning processing unit,DPU)等。尽管图15功能性地图示了处理器、存储器、和在相同块中的控制装置1502的其它元件,但是本领域的普通技术人员应该理解该处理器和存储器实际上可以不存储在相同的物理外壳内的多个处理器或存储器。例如,存储器可以是硬盘驱动器或位于不同于控制装置1502的外壳内的其它存储介质。再比如,处理器也可以远离该车辆但可以与该车辆进行无线通信。
在一些实施例中,存储器15022可包含指令150221(例如,程序逻辑),指令150221可被处理器15021读取来执行终端设备1500的各种功能,包括以上描述的功能。存储器15022也可包含额外的指令,包括向终端设备的其它系统(如推进系统)发送数据、从其接收数据、与其交互和/或对其进行控制的指令。除了指令150221以外,存储器15022还 可存储数据,例如探测装置1501检测到的数据,车辆的位置、方向、速度以及其他信息。
存储器例如可以是随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。
需要说明的是,图15给出的终端设备的功能框架只是一个示例,在其它示例中,终端设备1500可以包括更多、更少或不同的装置(或系统),并且每个装置可以包括更多、更少或不同的组件。此外,示出的装置和结构可以按任意种的方式进行组合或划分,本申请对此不做具体限定。
示例性地,该终端设备例如可以是交通设备,交通设备例如可以是车辆(例如无人车、智能车、电动车、或数字汽车等)、船、机器人、测绘设备、无人机、智能家居设备(例如扫地机器人等)、智能制造设备(例如工业设备)、智能运输设备(例如自动导引运输车(automated guided vehicle,AGV)、无人运输车、或货车等)等。其中,AGV指装备有电磁或光学等自动导航装置,能够沿规定的导航路径行驶,具有安全保护以及各种移载功能的运输车。
下面以终端设备为车辆为例介绍。
如图16所示,为本申请提供的一种车辆的结构示意图。该车辆可包括风挡及上述任一实施例中的探测装置。在该示例中,以探测装置安装在风挡上为例。风挡可以作为探测装置的视窗。具体的,探测装置可粘合于风挡上,风挡作为探测装置的视窗。为了防止风挡被撞击之后整块破碎,通常风挡包括两层玻璃及夹在两层玻璃中间的一层聚乙烯醇缩丁醛(polyvinyl butyral,PVB)材料。
应理解,图16所示的车辆结构仅是一个示例。车辆还可以包括其他器件,例如方向盘、存储器和无线通信装置等,本申请对此不作限定。
在一种可能的实现方式中,风挡例如可以是楔型风挡(请参阅图17),或者也可以是平面风挡(请参阅上述图16),本申请对此不作限定。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“均匀”不是指绝对的均匀,可以允许有一定工程上的误差。“垂直”不是指绝对的垂直,可以允许有一定工程上的误差。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。另外,在本申请中,“示 例性地”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。或者可理解为,使用示例的一词旨在以具体方式呈现概念,并不对本申请构成限定。
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。术语“第一”、“第二”等类似表述,是用于分区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的方案进行示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种扫描模组,其特征在于,包括多面体反射元件,所述多面体反射元件包括m个反射面,所述m为正整数;
    对于所述m个反射面中的第一反射面,所述第一反射面包括n个子反射面,相邻两个所述子反射面之间的夹角大于0°且小于180°,所述n为大于或等于4的偶数;
    所述m个反射面在第一方向上相邻,所述n个子反射面在不同于所述第一方向的第二方向上相邻。
  2. 如权利要求1所述的扫描模组,其特征在于,所述第一方向垂直于所述第二方向。
  3. 如权利要求1或2所述的扫描模组,其特征在于,所述第一反射面为所述m个反射面中的任一个。
  4. 如权利要求1~3任一项所述的扫描模组,其特征在于,所述n个子反射面包括第一子反射面、与所述第一子反射面相邻的第二子反射面、与所述第二子反射面相邻的第三子反射面、以及与所述第三子反射面相邻的第四子反射面,所述第二子反射面与所述第四子反射面平行,所述第一子反射面与所述第三子反射面平行。
  5. 如权利要求4所述的扫描模组,其特征在于,所述n个子反射面还包括第五子反射面、以及与所述第五子反射面相邻的第六子反射面,所述第五子反射面、所述第三子反射面、所述第一子反射面相互平行,所述第六子反射面、所述第四子反射面、所述第二子反射面相互平行。
  6. 如权利要求1~5任一项所述的扫描模组,其特征在于,所述n个子反射面由以下任一项或任多项的组合构成:
    V型反射件的反射面;
    W型反射件的反射面;或者,
    锯齿波型反射件的反射面,所述n为大于或等于6的偶数。
  7. 如权利要求6所述的扫描模组,其特征在于,所述V型反射件一体成型;和/或,
    所述W型反射件一体成型;和/或,
    所述锯齿波型反射件一体成型。
  8. 如权利要求1~7任一项所述的扫描模组,其特征在于,所述多面体反射元件的中间设置有隔板,所述隔板用于将所述多面体反射元件分为两个区域。
  9. 如权利要求1~8任一项所述的扫描模组,其特征在于,所述扫描模组还包括支撑架;
    所述m个反射面固定于所述支撑架的周围。
  10. 如权利要求9所述的扫描模组,其特征在于,所述m个反射面通过胶粘于所述支撑架的周围。
  11. 一种探测装置,其特征在于,包括发射模组、接收模组以及如权利要求1~10任一项所述的扫描模组;
    所述发射模组,用于发射探测光;
    所述扫描模组,用于将所述探测光反射至探测区域,以及将回波信号反射至所述接收模组,所述回波信号为所述探测光经所述探测区域中的目标反射得到的;
    所述接收模组,用于接收所述回波信号,所述回波信号用于确定所述目标的关联信息。
  12. 如权利要求11所述的装置,其特征在于,所述发射模组包括第一光源组件和第二 光源组件,所述第一光源组件和所述第二光源组件为线光源;
    所述第一光源组件,用于发射第一探测光;
    所述第二光源组件,用于发射第二探测光。
  13. 如权利要求12所述的装置,其特征在于,所述探测装置还包括光束汇聚元件;
    所述光束汇聚元件,用于对所述第一探测光和所述第二探测光进行汇聚。
  14. 如权利要求12或13所述的装置,其特征在于,所述光束汇聚元件包括合束棱镜或折射棱镜。
  15. 如权利要求12~14任一项所述的装置,其特征在于,所述发射模组还包括反射镜;
    所述反射镜,用于改变所述第二探测光的传播方向,传播方向改变后的第二探测光的束腰与所述第一探测光的束腰重合于第一位置。
  16. 如权利要求11所述的装置,其特征在于,所述发射模组包括第三光源组件,所述第三光源组件为点光源。
  17. 如权利要求11~16任一项所述的装置,其特征在于,所述发射模组还包括至少一个准直元件,一个准直元件对应一个光源组件。
  18. 一种终端设备,其特征在于,包括控制装置、以及如权利要求11~17任一项所述的探测装置;
    所述控制装置,用于接收来自所述探测装置的所述目标的关联信息,并根据所述目标的关联信息规划行驶路径;或者,
    用于接收来自所述探测装置的所述回波信号,并根据所述回波信号确定所述目标的关联信息。
PCT/CN2021/143910 2021-12-31 2021-12-31 一种扫描模组、探测装置及终端设备 WO2023123447A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143910 WO2023123447A1 (zh) 2021-12-31 2021-12-31 一种扫描模组、探测装置及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143910 WO2023123447A1 (zh) 2021-12-31 2021-12-31 一种扫描模组、探测装置及终端设备

Publications (1)

Publication Number Publication Date
WO2023123447A1 true WO2023123447A1 (zh) 2023-07-06

Family

ID=86997133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143910 WO2023123447A1 (zh) 2021-12-31 2021-12-31 一种扫描模组、探测装置及终端设备

Country Status (1)

Country Link
WO (1) WO2023123447A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021724A1 (en) * 2007-07-20 2009-01-22 Vanderbilt University Combined raman spectroscopy-optical coherence tomography (rs-oct) system and applications of the same
CN110632618A (zh) * 2019-11-22 2019-12-31 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置
CN110762484A (zh) * 2019-10-15 2020-02-07 深圳星标科技股份有限公司 点光源分体式过渡聚光组件及其灯具
CN112098972A (zh) * 2019-06-17 2020-12-18 宁波舜宇车载光学技术有限公司 激光雷达系统及其异光路扫描装置
CN112513669A (zh) * 2020-01-03 2021-03-16 深圳市速腾聚创科技有限公司 激光收发模块和激光雷达
CN112789512A (zh) * 2019-08-23 2021-05-11 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021724A1 (en) * 2007-07-20 2009-01-22 Vanderbilt University Combined raman spectroscopy-optical coherence tomography (rs-oct) system and applications of the same
CN112098972A (zh) * 2019-06-17 2020-12-18 宁波舜宇车载光学技术有限公司 激光雷达系统及其异光路扫描装置
CN112789512A (zh) * 2019-08-23 2021-05-11 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备
CN110762484A (zh) * 2019-10-15 2020-02-07 深圳星标科技股份有限公司 点光源分体式过渡聚光组件及其灯具
CN110632618A (zh) * 2019-11-22 2019-12-31 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置
CN112513669A (zh) * 2020-01-03 2021-03-16 深圳市速腾聚创科技有限公司 激光收发模块和激光雷达

Similar Documents

Publication Publication Date Title
KR102387213B1 (ko) 조정가능한 해상도 및 페일세이프 동작을 갖는 lidar들을 위한 시스템들 및 방법들
JP6684841B2 (ja) Lidar装置及びlidar装置を操作するための方法
CN103278808B (zh) 一种多线扫描式激光雷达装置
US11428788B2 (en) Laser measurement module and laser radar
US20210341610A1 (en) Ranging device
CN111398969A (zh) 一种激光雷达及其收发装置
WO2024036582A1 (zh) 一种发射模组、接收模组、探测装置及终端设备
WO2023123447A1 (zh) 一种扫描模组、探测装置及终端设备
EP4369029A1 (en) Receiving optical system, lidar system and terminal device
EP4379421A1 (en) Lidar and terminal device
WO2022206373A1 (zh) 一种激光发射方法、装置、探测装置及移动平台
WO2023201596A1 (zh) 一种探测装置及终端设备
US20210341588A1 (en) Ranging device and mobile platform
WO2023225902A1 (zh) 一种发射模组、探测装置及终端设备
WO2021196929A1 (zh) 一种激光雷达接收系统
WO2024044905A1 (zh) 一种探测装置及终端设备
US11796678B2 (en) Optical device and LiDAR system including the same
WO2023019442A1 (zh) 一种探测系统、终端设备及探测控制方法
WO2024044997A1 (zh) 一种光学接收模组、接收系统、探测装置及终端设备
WO2023060374A1 (zh) 一种扫描系统、探测系统及终端设备
US20240183948A1 (en) Detection system, terminal device, and detection control method
CN219302659U (zh) 发射模组及激光雷达
WO2023155048A1 (zh) 一种探测装置、终端设备及分辨率的调控方法
WO2023056585A1 (zh) 一种探测系统、终端设备、控制探测方法及控制装置
US20210333369A1 (en) Ranging system and mobile platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969792

Country of ref document: EP

Kind code of ref document: A1