KR20190106201A - 냉장고 - Google Patents

냉장고 Download PDF

Info

Publication number
KR20190106201A
KR20190106201A KR1020180027353A KR20180027353A KR20190106201A KR 20190106201 A KR20190106201 A KR 20190106201A KR 1020180027353 A KR1020180027353 A KR 1020180027353A KR 20180027353 A KR20180027353 A KR 20180027353A KR 20190106201 A KR20190106201 A KR 20190106201A
Authority
KR
South Korea
Prior art keywords
sensor
wall
flow path
heating element
bypass flow
Prior art date
Application number
KR1020180027353A
Other languages
English (en)
Other versions
KR102521994B1 (ko
Inventor
김성욱
박경배
최상복
지성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020180027353A priority Critical patent/KR102521994B1/ko
Priority to CN201880089735.2A priority patent/CN111771093B/zh
Priority to EP18908949.3A priority patent/EP3764032B1/en
Priority to PCT/KR2018/012709 priority patent/WO2019172497A1/ko
Priority to AU2018412301A priority patent/AU2018412301B2/en
Publication of KR20190106201A publication Critical patent/KR20190106201A/ko
Priority to US16/992,669 priority patent/US11530866B2/en
Application granted granted Critical
Publication of KR102521994B1 publication Critical patent/KR102521994B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)
  • Measuring Volume Flow (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

본 발명의 냉장고는, 저장실을 형성하는 인너 케이스; 상기 저장실 내에서 공기의 유동을 안내하며 상기 인너 케이스와 함께 열교환 공간을 형성하는 냉기 덕트; 상기 인너 케이스와 상기 냉기 덕트 사이의 열교환 공간에 위치되는 증발기; 상기 냉기 덕트에서 배치되며, 공기가 상기 증발기를 바이패스하여 유동하도록 하는 바이패스 유로; 상기 바이패스 유로 내에 배치되며, 센서 하우징과, 상기 센서 하우징에 수용되는 센서 피씨비와, 상기 센서 피씨비에 설치되며 전류가 인가되면 발열하는 발열 소자, 및 상기 발열 소자의 온도를 감지하기 위한 온도 소자와, 상기 센서 하우징에 채워지는 몰딩 물질을 포함하는 센서; 상기 증발기의 표면에 생성된 성에를 제거하기 위한 제상 수단; 및 상기 센서의 출력 값에 기초하여 상기 제상 수단을 제어하는 제어부를 포함한다.

Description

냉장고{Refrigerator}
본 명세서는 냉장고에 관한 것이다.
냉장고는 캐비닛에 구비된 저장실에 음식물과 같은 대상물을 저온 저장할 수 있는 가전기기이다. 상기 저장실은 단열벽으로 둘러싸이므로 상기 저장실 내부는 외부 온도보다 낮은 온도가 되도록 유지될 수 있다.
상기 저장실의 온도 대역에 따라 상기 저장실은 냉장실 또는 냉동실로 구분될 수 있다.
상기 냉장고는, 상기 저장실로 냉기를 공급하기 위한 증발기를 포함할 수 있다. 상기 저장실의 공기는 상기 증발기가 위치되는 공간으로 유동하여 상기 증발기와 열교환되는 과정에서 냉각되고, 냉각된 공기가 다시 상기 저장실로 공급된다.
이때, 상기 증발기와 열교환되는 공기가 수분을 포함하는 경우에는, 상기 공기가 상기 증발기와 열교환될 때, 수분이 상기 증발기의 표면에서 응결되어 상기 증발기의 표면에 성에가 생성된다.
상기 성에는 공기의 유동 저항으로 작용하므로, 상기 증발기의 표면에 응결되는 성에의 양이 많을 수록 성에가 유동 저항이 커지게 되어, 상기 증발기의 열교환 효율을 저하시키고 소비 전력이 증가된다.
따라서, 상기 냉장고는 상기 증발기의 성에를 제거하기 위한 제상 수단을 더 포함한다.
선행문헌인 한국공개특허공보 특2000-0004806에는 제상주기 가변방법이 개시된다.
선행문헌에서는, 압축기의 누적 운전 시간과 외기 온도를 이용하여 제상주기를 조절한다.
그런데, 선행문헌과 같이 단지 압축기의 누적 운전 시간과 외기 온도를 이용하여 제상주기를 결정하는 경우, 실제 증발기의 성에의 양(이하 "착상량" 이라함)을 반영하지 못하는 문제가 있어, 실제로 제상이 필요한 시점을 정확하게 판단하기 어려운 단점이 있다.
즉, 사용자의 냉장고 사용패턴, 공기가 수분을 머금은 정도 등 다양한 환경에 따라서, 증발기의 착상량이 많거나 적을 수 있는데, 선행문헌의 경우, 이러한 다양한 환경을 반영하지 못하고, 제상주기를 결정하는 단점이 있다.
따라서, 착상량이 많음에도 불구하고 제상이 시작되지 않아 냉방 성능이 저하되거나, 착상량이 적음에도 불구하여 제상이 시작되어 불필요한 제상에 따른 소비 전력이 증가되는 단점이 있다.
본 발명의 과제는, 증발기의 착상량에 따라 달라지는 패러미터를 이용하여 제상 운전 여부를 결정할 수 있는 냉장고를 제공하는 것에 있다.
또한, 본 발명의 과제는, 착상 감지를 위한 바이패스 유로를 이용함으로써, 증발기의 착상량에 따른 제상 필요 시점을 정확하게 판단할 수 있는 냉장고를 제공하는 것에 있다.
또한, 본 발명의 과제는, 제상 시점을 결정하기 위하여 사용되는 센서의 정밀도가 낮아도 제상 시점을 정확하게 결정할 수 있는 냉장고를 제공하는 것에 있다.
또한, 본 발명의 과제는, 감지 소자가 발열 소자의 발열량을 정확하게 측정할 수 있는 냉장고를 제공하는 것에 있다.
또한, 본 발명의 과제는, 착상 감지를 위한 센서 주변에 성에가 생성되는 것이 방지되는 냉장고를 제공하는 것에 있다.
상기의 과제를 해결하기 위한 냉장고는, 저장실을 형성하는 인너 케이스의 내측에 냉기 덕트가 구비되며, 냉기 덕트가 인너 케이스와 함께 열교환 공간을 형성한다.
상기 열교환 공간에는 증발기가 위치되고, 상기 냉기 덕트에는 함몰된 형태의 바이패스 유로가 형성되며, 상기 바이패스 유로에 센서가 배치된다.
본 발명에서 상기 센서는 상기 바이패스 유로를 유동하는 공기의 유량에 따라 출력 값이 다른 센서로서, 상기 센서의 출력 값을 이용하여 상기 증발기의 제상 필요 시점이 결정될 수 있다.
본 실시 예에서 상기 센서는, 센서 하우징과, 상기 센서 하우징에 수용되는 센서 피씨비와, 상기 센서 피씨비에 설치되며 전류가 인가되면 발열하는 발열 소자, 및 상기 발열 소자의 온도를 감지하기 위한 온도 소자와, 상기 센서 하우징에 채워지는 몰딩 물질을 포함한다.
본 실시 예의 냉장고는, 상기 증발기의 표면에 생성된 성에를 제거하기 위한 제상 수단; 및 상기 센서의 출력 값에 기초하여 상기 제상 수단을 제어하는 제어부를 포함하며, 제상이 필요한 것으로 판단되면, 상기 제어부는 상기 제상 수단을 작동시킬 수 있다.
본 실시 예에서, 상기 감지 소자는, 상기 센서 피씨비에 설치되며, 상기 바이패스 유로 내에서 공기의 유동을 기준으로 상기 발열 소자의 상류에 위치될 수 있다. 일 예로, 상기 바이패스 유로는 상기 냉기 덕트에서 상하 방향으로 연장되고, 상기 바이패스 유로에서 상기 감지 소자와 상기 발열 소자는 상하 방향으로 배열되며, 상기 감지 소자가 상기 발열 소자의 하방에 위치될 수 있다.
상기 센서가 상기 발열 소자의 열에 민감하게 반응할 수 있도록, 상기 센서 피씨비에서 상기 감지 소자는 상기 발열 소자의 좌우 폭을 이등분하는 선 상에 위치될 수 있다. 일 예로, 상기 감지 소자는 상기 발열 소자의 중앙부와 대응되는 위치에 배치될 수 있다.
상기 센서 하우징은, 일면이 개구되며 나머지 부분은 상기 센서 피씨비와, 상기 감지 소자 및 발열 소자를 둘러쌀 수 있다.
일 예로, 상기 센서 하우징은, 상기 센서 피씨비가 안착되는 안착벽과, 공기 유동 방향을 기준으로 상기 안착벽의 전단과 후단에서 상방으로 연장되는 전면벽 및 후면벽과, 상기 전면벽과 상기 후면벽을 연결하는 측벽과, 상기 전면벽과 상기 후면벽을 연결하며, 상기 발열 소자 및 상기 감지 소자를 커버하는 커버벽과, 상기 측벽의 반대편에 위치되는 개구를 포함할 수 있다.
본 실시 예에서 상기 몰딩 물질은 상기 개구를 통해 상기 센서 하우징에 주입된 후에 경화되어 상기 센서 피씨비, 상기 감지 소자 및 상기 발열 소자를 둘러쌀 수 있다.
본 실시 예에서, 상기 커버벽은, 공기의 유로 저항이 줄어들도록 라운드부를 포함할 수 있다.
또한, 본 실시 예에서 상기 전면벽과 상기 안착벽의 연결 부위 및 상기 후면벽과 상기 안착벽의 연결 부위 중 하나 이상은 라운드지게 형성될 수 있다.
다른 측면에서, 상기 센서 하우징은, 상기 센서 피씨비가 안착되는 안착벽과, 공기 유동 방향을 기준으로 상기 안착벽의 전단과 후단에서 상방으로 연장되는 전면벽 및 후면벽과, 상기 전면벽과 상기 후면벽을 연결하는 양측벽과, 상기 안착벽의 양측벽에 위치되는 노출 개구를 포함하며, 상기 노출 개구를 통해 상기 센서 피씨비가 상기 센서 하우징에 수용될 수 있다. 그리고, 상기 몰딩 물질은 상기 노출 개구를 통해 외부로 노출될 수 있다. 상기 센서 하우징에는 상기 센서 피씨비에 연결된 전선의 위치를 고정하기 위한 후크 형태의 고정 가이드가 구비될 수 있다.
상기 냉기 덕트는, 상기 바이패스 유로를 형성하기 위한 바닥벽, 및 양측벽을 포함하고, 상기 유로 커버는 상기 바닥벽과 이격된 상태에서 상기 바이패스 유로를 커버하는 커버 플레이트를 포함할 수 있다. 상기 센서는, 상기 바이패스 유로에서, 상기 바닥벽 및 상기 커버 플레이트와 이격되도록 배치될 수 있다.
제안되는 발명에 의하면, 바이패스 유로에 증발기의 착상량에 따라 출력 값이 달라지는 센서를 이용하여 제상 필요 시점을 결정하므로, 제상 필요 시점을 정확하게 판단할 수 있는 장점이 있다.
또한, 공기 유동을 기준으로 감지 소자가 발열 소자의 전방에 위치되므로, 감지 소자에 대한 공기의 유량에 의한 영향이 최대화되어 감지 소자의 공기 유량에 대한 민감도가 증가될 수 있다.
또한, 상기 감지 소자가 상기 발열 소자의 좌우 폭을 이등분하는 선 상에 위치되므로, 상기 감지 소자가 상기 발열 소자의 열에 가장 민감하게 반응할 수 있다.
또한, 본 발명에서 센서 하우징이 라운드부를 포함하므로, 공기의 유동 저항이 줄어들고, 센서의 주변에서 성에가 생성되는 것이 방지될 수 있다.
또한, 본 발명에서 센서가 바이패스 유로의 바닥멱과 유로 커버와 이격되어 배치되므로, 센서의 주변에서 성에가 생성되는 것이 방지될 수 있다.
또한, 본 발명에서 센서는, 바이패스 유로 내에서 유동 변화량의 영향이 적은 지점에 위치되고, 완전유동발달 영역에서 유로의 중앙 영역에 위치되므로, 센서의 감지 정확성이 향상될 수 있다. 따라서, 상기 센서의 정밀도가 낮아도 제상 시점을 정확하게 결정할 수 있는 장점이 있다.
도 1은 본 발명의 제 1 실시 예에 따른 냉장고의 구성을 개략적으로 보여주는 종단면도.
도 2는 본 발명의 제 1 실시 예에 따른 냉기 덕트의 사시도.
도 3은 냉기 덕트에서 유로 커버 및 센서가 분리된 상태를 보여주는 분해 사시도.
도 4는 증발기의 착상 전과 착상 후의 열교환 공간과 바이패스 유로에서의 공기 유동을 주는 도면.
도 5는 바이패스 유로 내에 센서가 배치되어 있는 상태를 개략적으로 보여주는 도면.
도 6은 본 발명의 제 1 실시 예에 따른 센서를 보여주는 도면.
도 7은 바이패스 유로를 유동하는 공기의 유량에 따른 센서 주변의 열 유동을 보여주는 도면이다.
도 8은 바이패스 유로 상에서의 센서 위치를 보여주는 도면.
도 9는 본 발명의 제 1 실시 예에 따른 센서의 단면도.
도 10은 본 발명의 제 1 실시 예에 따른 센서 피씨비에서 발열 소자와 감지 소자의 배치를 보여주는 평면도.
도 11은 바이패스 내에서의 공기 유동 패턴을 보여주는 도면.
도 12는 바이패스 유로 내에서 센서가 설치된 상태에서의 공기의 유동을 보여주는 도면.
도 13은 본 발명의 일 실시 예에 따른 바이패스 유로 및 제상수 유입 방지를 위한 리브를 보여주는 확대도.
도 14는 본 발명의 제 1 실시 예에 따른 냉장고의 제어 블록도.
도 15는 본 발명의 제 2 실시 예에 따른 센서의 단면도.
도 16은 본 발명의 제 3 실시 예에 따른 센서의 단면도.
도 17은 본 발명의 제 4 실시 예에 따른 센서의 사시도.
도 18은 본 발명의 제 4 실시 예에 따른 센서의 단면도.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 제 1 실시 예에 따른 냉장고의 구성을 개략적으로 보여주는 종단면도이고, 도 2는 본 발명의 제 1 실시 예에 따른 냉기 덕트의 사시도이고, 도 3은 냉기 덕트에서 유로 커버 및 센서가 분리된 상태를 보여주는 분해 사시도이다.
도 1 내지 도 3을 참조하면, 본 발명의 제 1 실시 예에 따른 냉장고(1)는, 저장실(11)을 형성하는 인너 케이스(12)를 포함할 수 있다.
상기 저장실(11)은 냉장실 및 냉장실 중 하나 이상을 포함할 수 있다.
상기 저장실(11)의 후측 공간에는 상기 저장실(11)로 공급된 냉기가 유동하는 유로를 형성하는 냉기 덕트(20)가 구비된다. 그리고, 상기 냉기 덕트(20)와 상기 인너 케이스(12)의 후측벽(13) 사이에는 증발기(30)가 배치된다. 즉, 상기 냉기 덕트(20)와 상기 후측벽(13) 사이에는 상기 증발기(30)가 배치되는 열교환 공간(222)이 정의된다.
따라서, 상기 저장실(11)의 공기는 상기 냉기 덕트(20)와 상기 인너 케이스(12)의 후측벽(13) 사이의 열교환 공간(222)으로 유동하여 상기 증발기(30)와 열교환되고, 상기 냉기 덕트(20) 내부를 유동한 후에 상기 저장실(11)로 공급된다.
상기 냉기 덕트(20)는, 제한적이지는 않으나, 제1덕트(210)와 ,상기 제1덕트(210)의 후면에 결합되는 제2덕트(220)를 포함할 수 있다.
상기 제1덕트(210)의 전면은 상기 저장실(11)을 바라보는 면이고, 상기 제1덕트(220)의 후면은 상기 인너 케이스(12)의 후측벽(13)을 바라보는 면이다.
상기 제1덕트(210)와 상기 제2덕트(220)가 결합된 상태에서 상기 제1덕트(210)와 상기 제2덕트(220) 사이에는 냉기 유로(212)가 형성될 수 있다.
그리고, 상기 제2덕트(220)에는 냉기 유입홀(221)이 형성될 수 있고, 상기 제1덕트(210)에는 냉기 토출홀(211)이 형성될 수 있다.
상기 냉기 유로(212)에는 송풍팬(미도시)이 구비될 수 있다. 따라서, 상기 송풍팬이 회전되면, 상기 증발기(30)를 지난 공기가 상기 냉기 유입홀(221)을 통해 상기 냉기 유로(212)로 유입되고, 상기 냉기 토출홀(211)을 통해 상기 저장실(11)로 토출된다.
상기 냉기 덕트(20)와 상기 후측벽(13) 사이에 상기 증발기(30)가 위치되되, 상기 증발기(30)는 상기 냉기 유입홀(221)의 하방에 위치될 수 있다.
따라서, 상기 저장실(11)의 공기는 상승하면서 상기 증발기(30)와 열교환된 후에 상기 냉기 유입홀(221)로 유입될 수 있다.
이러한 배치에 의하면, 상기 증발기(30)의 착상량이 증가되면, 상기 증발기(30)를 통과하는 공기의 양이 줄어들게 되어 열교환 효율이 감소된다.
본 실시 예에서는 상기 증발기(30)의 착상량에 따라서 변화되는 패러미터를 이용하여 상기 증발기(30)의 제상 필요 시점을 결정할 수 있다.
일 예로 상기 냉기 덕트(20)에는 상기 열교환 공간(222)을 유동하기 위한 공기 중 적어도 일부가 바이패스되도록 하고, 공기의 유량에 따라 출력 값이 다른 센서를 이용하여 제상 필요 시점을 결정하는 착상 감지 수단을 더 포함할 수 있다.
상기 착상 감지 수단은, 상기 열교환 공간(222)을 유동하는 적어도 일부가 바이패스 되기 위한 바이패스 유로(230)와, 상기 바이패스 유로(230) 상에 위치되는 센서(270)를 포함할 수 있다.
제한적이지는 않으나, 상기 바이패스 유로(230)는 상기 제1덕트(210)에 함몰된 형태로 형성될 수 있다. 이와 달리 상기 바이패스 유로(230)가 상기 제2덕트(220)에 구비되는 것도 가능하다.
상기 바이패스 유로(230)는 상기 제1덕트(210) 또는 상기 제2덕트(220)의 일부가 상기 증발기(30)와 멀어지는 방향으로 함몰됨에 따라 형성될 수 있다.
상기 바이패스 유로(230)는 상기 냉기 덕트(20)에서 상하 방향으로 연장될 수 있다.
상기 열교환 공간(222)의 공기가 상기 바이패스 유로(230)로 바이패스 될 수 있도록, 상기 바이패스 유로(230)는 상기 증발기(30)의 좌우 폭 범위 내에서 상기 증발기(30)와 마주보도록 배치될 수 있다.
상기 착상 감지 수단은, 상기 바이패스 유로(230)가 상기 열교환 공간(222)과 구획되도록 하기 위한 유로 커버(260)를 더 포함할 수 있다.
상기 유로 커버(260)에 의해서 상기 열교환 공간(222)을 유동하는 공기가 상기 바이패스 유로(230) 측으로 유동하는 것이 방지될 수 있다.
상기 유로 커버(260)는 상기 냉기 덕트(20)에 결합되며, 상하로 연장되는 바이패스 유로(230)의 적어도 일부를 커버할 수 있다.
상기 유로 커버(260)는, 커버 플레이트(261), 상기 커버 플레이트(261)의 상측에서 연장되는 상측 연장부(262) 및 상기 커버 플레이트(261)의 하측에 구비되는 배리어(263)를 포함할 수 있다.
상기 배리어(263)는 상기 바이패스 유로(230)의 외측에 위치되어, 상기 증발기(30)의 착상량이 적은 상태에서 상기 바이패스 유로(230)로 인입되는 공기의 양이 줄어드도록 하기 위한 유로 저항 역할을 한다.
도 4는 증발기의 착상 전과 착상 후의 열교환 공간과 바이패스 유로에서의 공기 유동을 주는 도면이다.
도 4의 (a)는 착상 전의 공기 유동을 보여주고, 도 4의 (b)는 착상 후의 공기 유동을 보여준다. 본 실시 예에서는 일 예로 제상 운전이 완료된 후가 착상 전의 상태인 것으로 가정한다.
먼저, 도 4의 (a)를 참조하면, 상기 증발기(30)에 성에가 존재하지 않거나 착상량이 현저히 적은 경우에는 공기의 대부분이 상기 열교환 공간(222)에서 상기 증발기(30)를 통과한다(화살표 A 참조). 반면, 공기 중 일부가 상기 바이패스 유로(230)를 유동할 수 있다(화살표 B 참조).
도 4의 (b)를 참조하면, 상기 증발기(30)의 착상량이 많은 경우(제상이 필요한 경우임), 상기 증발기(30)의 성에가 유로 저항으로 작용하므로, 상기 열교환 공간(222)을 유동하는 공기의 양은 줄어들고(화살표 C 참조), 상기 바이패스 유로(230)를 유동하는 공기의 양은 증가된다(화살표 D 참조).
이와 같이 상기 증발기(30)의 착상량에 따라서 상기 바이패스 유로(230)를 유동하는 공기의 유량(또는 유속)이 달라진다.
본 실시 예에서, 상기 센서(270)는, 상기 바이패스 유로(230)를 유동하는 공기의 유량 변화에 따라 출력값이 달라질 수 있다. 이러한 센서(270)의 출력값 변화에 기초하여 제상 필요 여부가 판단될 수 있다.
이하에서는 센서(270)의 구조에 대해서 설명하기로 한다.
도 5는 바이패스 유로 내에 센서가 배치되어 있는 상태를 개략적으로 보여주는 도면이고, 도 6은 본 발명의 제 1 실시 예에 따른 센서를 보여주는 도면이며, 도 7은 바이패스 유로를 유동하는 공기의 유량에 따른 센서 주변의 열 유동을 보여주는 도면이다.
도 5 내지 도 7을 참조하면, 상기 바이패스 유로(230) 내의 일 지점에 상기 센서(270)가 배치될 수 있다. 따라서, 상기 센서(270)는 상기 바이패스 유로(230)를 따라 유동하는 공기와 접촉할 수 있으며, 공기의 유량 변화에 대응하여 출력값이 달라질 수 있다.
상기 센서(270)는 상기 바이패스 유로(230)의 입구(231)와 출구(232) 각각에서 이격된 위치에 배치될 수 있다. 상기 바이패스 유로(230)에서의 센서(270)의 구체적인 위치는 도면을 참조하여 후술하기로 한다.
상기 센서(270)가 상기 바이패스 유로(230) 상에 위치하므로, 상기 센서(270)는 상기 증발기(30)의 좌우 폭 범위 내에서 상기 증발기(30)와 마주볼 수 있다.
상기 센서(270)는 일 예로 발열 온도 센서일 수 있다. 구체적으로, 상기 센서(270)는, 센서 피씨비(272)와, 상기 센서 피씨비(272)에 설치되는 발열 소자(273)와, 상기 센서 피씨비(272)에 설치되며 상기 발열 소자(273)의 온도를 감지하는 감지 소자(274)를 포함할 수 있다.
상기 발열 소자(273)는, 전류를 인가하면 발열하는 저항일 수 있다. 상기 발열 소자(273)는, 센서 피씨비(272)의 표면에 실장되는 SMD 저항일 수 있다.
상기 감지 소자(274)는 상기 발열 소자(273)의 온도를 감지할 수 있다.
상기 바이패스 유로(230)로 유동하는 공기의 유량이 적으면, 공기에 의한 상기 발열 소자(273)의 냉각량이 적어 상기 감지 소자(274)에서 감지되는 온도가 높다.
반면, 상기 바이패스 유로(230)로 유동하는 공기의 유량이 많으면, 상기 바이패스 유로(230)를 유동하는 공기에 의해서 상기 발열 소자(273)의 냉각량이 증가되므로, 상기 감지 소자(274)에서 감지되는 온도가 낮게 된다.
상기 센서 피씨비(272)는, 상기 발열 소자(273)의 오프 상태에서 상기 감지 소자(274)에서 감지되는 온도와, 상기 발열 소자(273)가 온된 상태에서 상기 감지 소자(274)에서 감지되는 온도의 차이를 판단할 수 있다.
상기 센서 피씨비(272)는 상기 발열 소자(273)의 온/오프 상태의 온도 차이값(일 예로 최대값)이 기준값 이하인지 여부를 판단할 수 있다.
예를 들어, 도 4 및 도 7을 참조하면, 상기 증발기(30)의 착상량이 적은 경우 상기 바이패스 유로(230)로 유동하는 공기의 유량이 적다. 이 경우, 상기 발열 소자(273)의 열의 유동이 거의 없고, 공기에 의해서 냉각되는 양이 적다.
반면, 상기 증발기(30)의 착상량이 많은 경우, 상기 바이패스 유로(230)로 유동하는 공기의 유량이 많다. 그러면, 상기 바이패스 유로(230)를 따라 유동하는 공기에 의해서 상기 발열 소자(273)의 열의 유동이 많고 냉각량이 많다.
따라서, 상기 증발기(30)의 착상량이 많은 경우에 상기 감지 소자(274)에서 감지되는 온도가 상기 증발기(30)의 착상량이 적은 경우에 상기 감지 소자(274)에서 감지되는 온도 보다 작다.
따라서, 본 실시 예에서는 상기 발열 소자(273)가 온된 상태에서 상기 감지 소자(274)에서 감지된 온도와 상기 발열 소자(273)가 오프된 상태에서 상기 감지 소자(274)에서 감지된 온도의 차가 기준값 이하인 경우, 제상이 필요한 것으로 판단할 수 있다.
본 실시 예에 의하면, 상기 센서(270)는, 상기 증발기(30)의 착상량에 따라 유량이 가변되는 공기에 의해서, 발열 소자(273)의 온도의 변화를 감지하므로, 상기 증발기(30)의 착상량에 따라 제상 필요 시점을 정확하게 판단할 수 있다.
상기 바이패스 유로(230)를 유동하는 공기가 직접 상기 센서 피씨비(272), 발열 소자(273) 및 상기 온도 센서(274)와 접촉하는 것이 방지되도록, 상기 센서(270)는 센서 하우징(271)을 더 포함할 수 있다.
상기 센서 하우징(271)은 상기 센서 피씨비(272), 발열 소자(273) 및 상기 온도 센서(274)를 둘러쌀 수 있다. 따라서, 상기 센서 하우징(271)은 방수 역할을 한다.
도 8은 바이패스 유로 상에서의 센서 위치를 보여주는 도면이고, 도 9는 본 발명의 제 1 실시 예에 따른 센서의 단면도이고, 도 10은 본 발명의 제 1 실시 예에 따른 센서 피씨비에서 발열 소자와 감지 소자의 배치를 보여주는 평면도이다.
도 11은 바이패스 내에서의 공기 유동 패턴을 보여주는 도면이고, 도 12는 바이패스 유로 내에서 센서가 설치된 상태에서의 공기의 유동을 보여주는 도면이다.
도 5, 도 8 내지 도 12를 참조하면, 상기 유로 커버(260)는 상하 방향으로 상기 바이패스 유로(230)의 일부를 커버할 수 있다.
따라서, 공기는 상기 바이패스 유로(230) 중에서 실질적으로 상기 유로 커버(260)가 존재하는 영역(열교환 공간과 구획된 영역임)을 따라 유동하게 된다.
상기 센서(270)는 상술한 바와 같이 상기 바이패스 유로(230)의 입구(231)와 출구(232)에서 이격되어 위치될 수 있다.
상기 센서(270)는 상기 바이패스 유로(230)를 유동하는 공기의 유동 변화의 영향을 적게 받는 위치에 배치될 수 있다.
일 예로, 상기 센서(270)는, 상기 바이패스 유로(230)의 입구(실제로 상기 유로 커버(260)의 하단부임)에서 적어도 6Dg (또는 6 * 유로의 직경) 이격된 위치(이하 "입구 기준 위치"라 함)에 배치될 수 있다.
또한, 상기 센서(270)는 상기 바이패스 유로(230)의 출구(실제로 상기 유로 커버(260)의 상단부임)에서 적어도 3Dg (또는 3 * 유로의 직경) 이격된 위치(이하 "출구 기준 위치"라 함)에 배치될 수 있다.
공기가 상기 바이패스 유로(230)로 유입되는 과정 또는 상기 바이패스 유로(230)에서 배출되는 과정에서 유동 변화가 심하다. 만약, 공기의 유동 변화량이 큰 경우, 착상량이 적음에도 불구하고 제상이 필요한 것으로 판단될 수 있다.
따라서, 본 실시 예에서는 공기가 상기 바이패스 유로(230)를 따라 유동할 때, 유동 변화가 적은 위치에 센서(270)를 설치하여 감지 오류를 줄인다.
일 예로 상기 센서(270)는 상기 입구 기준 위치와 상기 출구 기준 위치 사이에 범위 내에서 위치될 수 있다. 상기 센서(270)는 상기 입구 기준 위치 보다 상기 출구 기준 위치에 가깝게 위치될 수 있다. 따라서, 상기 센서(270)는 상기 바이패스 유로(230)에서 입구(231) 보다 출구(232)에 가깝게 위치될 수 있다.
적어도 상기 입구 기준 위치에서 유동이 안정화되고 상기 출구 기준 위치까지는 유동이 안정화된 상태가 유지되므로, 상기 센서(270)를 상기 출구 기준 위치에 가까게 위치시키면, 유동이 안정화된 공기가 상기 센서(270)와 접촉하게 된다.
따라서, 착상량의 많고 적음에 따른 유동 변화 외의 영향을 받지 않게 되어, 상기 센서(270)의 감지 정확성이 향상될 수 있다.
또한, 도 11을 참조하면, 상기 바이패스 유로(230) 내에서 입구(231) 측에서 멀어질수록 공기는 완전발달유동 형태가 된다.
상기 센서(270)는 공기의 유동 변화에 매우 민감하므로, 상기 센서(270)가 완전발달유동을 가지는 지점에서 상기 바이패스 유로(230)의 중앙부에 위치시키는 경우, 상기 센서(270)에서 공기의 유동 변화를 정확하게 감지할 수 있다.
따라서, 도 12와 같이 상기 바이패스 유로(230) 내의 중앙 영역에 상기 센서(270)가 설치될 수 있다.
이때, 상기 바이패스 유로(230)의 중앙 영역은 상기 바이패스 유로(230)에서 함몰된 부분의 바닥벽(236)과, 상기 유로 커버(260)를 이등분 하는 지점을 포함하는 영역이다. 즉, 상기 센서(270)의 일부는 상기 바이패스 유로(230)에서 함몰된 부분의 바닥벽(236)과 상기 유로 커버(260)를 이등분 하는 지점에 위치될 수 있다.
도 12을 참조하면, 상기 센서(270)는 상기 바이패스 유로(230)의 바닥벽(236) 및 상기 유로 커버(260)와 이격될 수 있다. 따라서, 상기 바이패스 유로(230) 내의 공기 중 일부는 상기 바닥벽(236)과 상기 센서(270) 사이 공간을 유동하고, 다른 일부는 상기 센서(270)와 상기 유로 커버(260) 사이 공간을 유동할 수 있다.
정리하면, 상기 센서(270)는, 상기 바이패스 유로(230) 내에서 공기의 유동 변화가 최소인 지점, 완전발달유동이 흐르는 지점에서 유로의 중앙 영역에 설치되어야 감지 정확성이 향상될 수 있다.
이러한 배치에 의해서 상기 센서(270)는 착상량의 많고 적음에 따른 공기의 유동 변화에 민감하게 반응할 수 있다. 즉, 상기 센서(270)에서 감지되는 온도 변화량을 크게 할 수 있다.
이와 같이 상기 센서(270)에서 감지되는 온도의 변화량이 커지게 되면, 상기 센서(270) 자체의 온도 감지 정밀도를 낮추어도 제상 필요 시점의 판단이 가능하게 된다. 상기 센서(270) 자체의 온도 감지 정밀도는 가격과 관련되므로, 정밀도가 낮아 비교적 가격이 저렴한 센서(270)를 사용하여도 상기 제상 필요 시점의 판단이 가능하게 된다.
한편, 도 9를 참조하면, 공기 유동 방향과 나란한 방향으로 상기 감지 소자(274)와 상기 발열 소자(273)가 배열될 수 있다.
이때, 공기의 유동에 따른 영향이 최대화되도록 상기 감지 소자(274)는 상기 발열 소자(273) 보다 상류에 위치된다.
따라서, 상기 발열 소자(273)의 온도를 감지하는 감지 소자(274)가 공기의 유동을 기준으로 상기 발열 소자(273)의 전방에 위치되므로, 공기의 유량 변화에 민감하게 반응할 수 있다. 즉, 상기 발열 소자(273)에 영향을 받지 않은 공기에 의해서 감지 소자(274) 주변이 냉각될 수 있다.
일 예로 상기 바이패스 유로(230)는 상하 방향으로 연장되므로, 상기 센서(270)가 상기 바이패스 유로(230)에 위치된 상태에서 상기 감지 소자(274)는 상기 발열 소자(273)의 하방에 위치된다.
상기 감지 소자(274)가 상기 발열 소자(273)의 열에 가장 민감하게 반응할 수 있도록, 상기 감지 소자(274)는 상기 발열 소자(273)의 좌우 폭을 이등분하는 선 상에 위치될 수 있다. 즉, 상기 감지 소자(274)는 상기 발열 소자(273)의 중앙부와 대응되는 영역에 위치될 수 있다.
상기 센서 피씨비(272)에는 전선 연결을 위한 터미널(275)이 구비될 수 있다. 상기 터미널(275)은 좌우 방향으로 상기 발열 소자(273)와 상기 감지 소자(274)의 측방에 위치될 수 있다.
도 6 및 도 9를 참조하면, 상기 센서 하우징(271)은, 일 예로 플라스틱 재질의 사출물일 수 있다. 상기 센서 하우징(271)은, 제한적이지는 않으나, ABS(acrylonitrile-butadiene-styrene) 또는, PVA(polyvinyl alcohol)로 형성될 수 있다.
상기 센서 하우징(271)은, 일면이 개구되며 나머지 부분은 상기 센서 피씨비(272)와, 상기 감지 소자(274) 및 발열 소자(273)를 둘러쌀 수 있다.
상기 센서 하우징(271)은, 상기 센서 피씨비(272)가 안착되는 안착벽(271a)과, 공기 유동 방향을 기준으로 상기 안착벽(271a)의 전단과 후단에서 상방으로 연장되는 전면벽(271b) 및 후면벽(271c)을 포함할 수 있다.
또한, 상기 센서 하우징(271)은, 전면벽(271b) 및 후면벽(271c)을 커버하는 커버벽(271d)을 포함할 수 있다.
상기 커버벽(271d)은, 상기 안착면(271a)에 센서 피씨비(272)가 안착된 상태에서 상기 센서 피씨비(272)의 상면 일부를 커버하는 피씨비 커버부(271f)와, 상기 피씨비 커버부(271f)에서 상방으로 연장되는 소자 커버부(271e)를 포함할 수 있다.
상기 소자 커버부(271e)는 상기 센서 피씨비(272), 발열 소자(273) 및 감지 소자(274)와 이격된다. 따라서, 상기 소자 커버부(271e)는 상기 센서 피씨비(272), 발열 소자(273) 및 감지 소자(274) 사이에는 몰딩 물질(276)이 채워지기 위한 공간이 형성된다. 상기 몰딩 물질(276)은 일 예로 에폭시 일 수 있다.
본 실시 예에서 상기 발열 소자(273)가 발열하므로, 상기 발열 소자(273)의 열이 상기 하우징(271)으로 전달될 수 있다. 이때, 상기 하우징(271)으로 전달될 열이 신속하게 냉각되어야 상기 하우징(271)의 열변형이 방지될 수 있다.
상기 발열 소자(273)가 상기 센서 피씨비(272)의 표면에 구비되므로, 상기 발열 소자(273)의 열은 상기 센시 피씨비(272)로 전달되고, 상기 센서 피씨비(272)로 전달된 열은 상기 센서 피씨비(272)에서 상기 센서 피씨비(272)가 접촉되어 있는 상기 안착벽(271a)으로 전달된다. 열이 상기 안착벽(271a)로 전달되므로, 상기 센서 하우징(271) 전체에서 방열되는 부분은 제한적이다.
상기 센서 피씨비(272) 및 상기 발열 소자(273)가 상기 커버벽(271d)과 이격되어 있으므로, 상기 센서 피씨비(272)와 상기 커버벽(271d) 사이에 아무런 물질이 존재하지 않는 경우, 상기 발열 소자(274)의 열이 상기 커버벽(271d)으로 전달되는 양이 적다.
따라서, 본 실시 예에서는 상기 센서 피씨비(272)와 상기 커버벽(271d) 사이 공간으로 몰딩 물질(276)이 채워져서 상기 몰딩 물질(276)이 상기 발열 소자(273)의 열을 상기 커버벽(271d)로 전도하는 하게 되어 상기 커버벽(271d)에서 방열이 원활히 이루어질 수 있고 이에 따라 상기 센서 하우징(271)의 열 변형이 최소화될 수 있다.
상기 전면벽(271b)과 상기 후면벽(271c)의 간격은, 공기의 유동 방향("제1방향"이라 함)을 기준으로 상기 센서 피씨비(272)의 전후 길이와 동일할 수 있다.
이 경우에는, 상기 전면벽(271b)과 상기 후면벽(271c)과 상기 센서 피씨비(272)가 접촉하게 되어, 상기 센서 피씨비(272)가 상기 전면벽(271b)과 상기 후면벽(271c)에 의해서 전후 방향으로 이동하는 것이 방지될 수 있다.
상기 피씨비 커버부(271f)는 상기 센서 피씨비(272)를 기준으로 상기 안착벽(271a)의 반대편에서 상기 센서 피씨비(272)를 커버할 수 있다.
상기 피씨비 커버부(271f)와 상기 센서 피씨비(272) 및 상기 안착벽(271a)의 배열 방향은, 공기의 유동 방향(제1방향)과 수직한 제2방향(도면 상 상하 방향임)이다.
상기 피씨비 커버부(271f)와 상기 안착벽(271a) 사이에 상기 센서 피씨비(272)가 위치되므로, 상기 피씨비 커버부(271f)와 상기 안착벽(271a)에 의해서 상기 센서 피씨비(272)의 상기 제2방향 움직임이 제한될 수 있다.
한편, 상기 커버벽(271d)은, 공기의 유로 저항이 줄어들도록 라운드부(271g)를 포함할 수 있다.
상기 라운드부(271g)는 상기 커버벽(271d)에서 상기 전면벽(271b)과 후면벽(271c)와 인접한 위치 또는 상기 커버벽(271d)에서 상기 전면벽(271b) 및 후면벽(271c)과 연결되는 부분에 형성될 수 있다.
또는, 상기 라운드부(271g)는 상기 피씨비 커버부(271f)와 소자 커버부(271e)의 연결 부위에 형성될 수 있다.
상기 증발기(30)의 제상 과정에서 제상수가 상기 바이패스 유로(230)를 유동할 가능성이 있는데, 상기 커버벽(271d)이 상기 라운드부(271d)를 포함하므로, 상기 센서 하우징(271)의 표면에 제상수가 맺히는 현상이 방지되고, 이에 따라 상기 센서 하우징(271) 표면에서 제상수가 응결되는 것이 방지될 수 있다.
또한, 상기 안착벽(271a)과 상기 전면벽(271b)의 연결 부위 및 상기 안착벽(271a)과 상기 후면벽(271c)의 연결 부위도 라운드질 수 있다.
상기 센서 하우징(271)에서, 상기 제1방향 및 제2방향과 각각 수직하는 제3방향으로의 길이(도 6을 기준으로 좌우 길이는)는 상기 센서 피씨비의 제3방향으로의 길이 보다 길게 형성된다.
그리고, 상기 제3방향으로 상기 센서 하우징(271)의 일측에는 측벽(277)이 형성되고, 상기 센서 하우징(271)의 타측에는 개구(278)가 형성된다.
따라서, 상기 개구(278)를 통해 상기 센서 피씨비(272)가 상기 센서 하우징(271) 내부로 인입될 수 있다.
상기 센서 피씨비(272)는 상기 센서 하우징(271)에서 상기 측벽(277)과 접촉될 수 있다. 이 경우, 상기 센서 피씨비(272)가 상기 측벽(277)에 의해서 이동이 제한될 수 있다.
상기 센서 피씨비(272)가 상기 센서 하우징(271)에 수용된 상태에서 상기 센서 피씨비(272)는 상기 센서 하우징(271)의 개구(278)와 이격된다.
상기 센서 피씨비(272)와 상기 개구(278) 간의 이격 거리가 일정 거리 이상으로 확보되는 경우, 상기 개구(278)를 통해 상기 센서 하우징(271)으로 주입된 몰딩 물질(276) 중에서 상기 센서 피씨비(272)와 상기 개구(278) 간의 두께가 충분히 확보될 수 있다. 따라서, 상기 센서 하우징(271)의 외측에서 수분이 상기 센서 하우징(271) 내부로 인입되는 것이 효과적으로 방지될 수 있다.
제한적이지는 않으나, 상기 센서 피씨비(272)와 상기 개구(278) 사이에서의 몰딩 물질(276)의 두께는 5mm 이상으로 형성될 수 있다.
이때, 상기 터미널(275)에 연결된 전선은 상기 개구(288)에 의해서 상기 센서 하우징(271)의 외측으로 연장되고, 이 상태에서 상기 센서 하우징(271) 내로 몰리딩액이 주입될 수 있다.
상기 센서 하우징(271)으로 몰딩 물질(276)이 주입된 후에 몰딩 물질(276)이 경화되면, 경화된 몰딩 물질에 의해서 상기 센서 하우징(271)의 위치가 고정될 수 있다.
본 실시 예에 의하면, 상기 센서(270)의 조립 과정에서, 상기 센서 하우징(271) 내에서 센서 피씨비의 위치가 거의 동일하게 되어, 제조되는 복수의 센서(270)들 간의 산포가 최소화될 수 있는 장점이 있다.
도 13은 본 발명의 일 실시 예에 따른 바이패스 유로 및 제상수 유입 방지를 위한 리브를 보여주는 확대도이다.
도 12 및 도 13을 참조하면, 상기 바이패스 유로(230)를 유동하는 공기가 수분을 포함하고 있으므로, 상기 바이패스 유로(230)에서 상기 센서(270)와 상기 바이패스 유로(230)를 형성하는 벽 간의 공간에서 모세관 현상에 따라 유로 내 착상이 발생할 수 있다.
따라서, 본 실시 예에서는 유로 내 착상이 방지되도록, 상기 센서(270)는, 상기 바이패스 유로(230)의 바닥벽(236) 및 상기 유로 커버(260)와 이격될 수 있다.
제한적이지는 않으나, 상기 센서(270)는 상기 바닥벽(236) 및 상기 유로 커버(260) 각각과 1.5mm 이상 이격("최소 이격 거리"라고 할 수 있음)되도록 설계될 수 있다.
따라서, 상기 바이패스 유로(230)의 깊이는 (2 * 최소 이격 거리)와 센서(270)의 두께와 동일하거나 크게 형성될 수 있다.
한편, 상기 바이패스 유로(230)의 좌우 폭(W)은 깊이 보다 크게 형성될 수 있다.
상기 바이패스 유로(230)의 좌우 폭(W)을 깊이 보다 크게 형성하게 되면, 상기 바이패스 유로(230)로 공기가 유동될 때, 공기와 상기 센서(270)의 접촉 면적을 증가시킬 수 있고, 이에 따라 상기 센서(270)에서 감지되는 온도의 변화량을 크게 할 수 있다.
상기 냉기 덕트(20)에는 제상 과정에서 녹아서 형성된 제상수 또는 수분 등과 같은 액체가 상기 바이패스 유로(230) 내부로 인입되는 것을 방지하기 위한 차단 리브(240)가 구비될 수 있다.
상기 차단 리브(240)는 상기 바이패스 유로(230)의 출구(232)의 상방에 위치될 수 있다. 상기 차단 리브(240)는 상기 냉기 덕트(20)에서 돌출되는 돌출부 형태를 가질 수 있다.
상기 차단 리브(240)는 낙하되는 액체를 좌우로 퍼지도록 하여 상기 바이패스 유로(230)로 유입되는 것을 방지한다.
상기 차단 리브(240)는 좌우로 직선 형태로 형성되는 것도 가능하고, 상방으로 볼록하도록 라운드진 형태로 형성되는 것도 가능하다.
상기 차단 리브(240)는 상기 바이패스 유로(230)의 좌우 전체와 상하 방향으로 중첩되도록 배치되며, 좌우 최소 길이가 상기 바이패스 유로(230)의 좌우 폭 보다 크도록 형성될 수 있다.
상기 차단 리브(240)가 상기 냉기 덕트(20)에 형성되는 경우, 상기 차단 리브(240)가 공기의 유동 저항 역할을 하므로, 상기 차단 리브(240)의 좌우 최소 길이는 상기 바이패스 유로(230)의 좌우 폭(W)의 2배 이하로 설정될 수 있다.
상기 차단 리브(240)가 상기 바이패스 유로(230)와 가깝게 위치될 수록 상기 차단 리브(240)의 길이는 줄어들 수 있으나, 반면, 제상수가 상기 차단 리브(240)를 타고 넘어 상기 바이패스 유로(230)로 인입될 우려가 있다.
따라서, 상기 차단 리브(240)는 상기 바이패스 유로(230)와 상하 방향으로 이격되되, 최대 이격 거리는 상기 바이패스 유로(230)의 좌우 폭(W) 범위 내로 설정될 수 있다.
상기 냉기 덕트(20)는 상기 센서(270)를 설치하기 위하여 함몰되는 센서 설치홈(235)을 포함할 수 있다.
상기 냉기 덕트(20)는, 상기 바이패스 유로(230)를 형성하기 위한 바닥벽(236), 양측벽(233, 234)을 포함하며, 상기 센서 설치홈(235)은 상기 양측벽(233, 234) 중 하나 이상에서 함몰될 수 있다.
상기 센서(270)가 상기 센서 설치홈(235)에 설치된 상태에서 상기 센서(270)가 상술한 바와 같이 최소 이격 거리 만큼 상기 바닥벽(236) 및 상기 유로 커버(260)와 이격될 수 있다.
이를 위하여, 상기 센서 설치홈(235)의 깊이는(D)는, 센서(270)의 도 12를 기준으로 센서(270)의 수평 방향으로의 두께 보다 크게 형성될 수 있다.
그리고, 상기 양측벽(233, 234) 중 일 측벽에는 상기 센서(270)에 연결된 전선(미도시)을 안내하는 안내 홈(234a)이 형성될 수 있다. 따라서, 상기 안내 홈(234a)에 의해서 상기 센서(270)가 상기 센서 설치홈(235)에 설치된 상태에서 상기 전선이 상기 바이패스 유로(230)의 외부로 인출될 수 있다.
도 14는 본 발명의 제 1 실시 예에 따른 냉장고의 제어 블록도이다.
도 14를 참조하면, 본 발명의 일 실시 예에 따른 냉장고(1)는, 상기 증발기(30)의 제상을 위하여 작동하는 제상 수단(50)과, 상기 제상 수단(50)을 제어하는 제어부(40)를 더 포함할 수 있다.
상기 제상 수단(50)은 일 예로 히터를 포함할 수 있다. 상기 히터가 온되면 상기 히터에 의해서 발생되는 열이 상기 증발기(30)로 전달되어 상기 증발기(30)의 표면에 생성된 성에가 녹게 된다.
상기 제어부(40)는 일정 주기로 상기 센서(270)의 발열 소자(273)가 온되도록 제어할 수 있다.
제상 필요 시점의 판단을 위하여, 상기 발열 소자(273)가 일정 시간 동안 온 상태를 유지하고, 상기 감지 소자(274)에서는 상기 발열 소자(273)의 온도가 감지될 수 있다.
상기 발열 소자(273)가 상기 일정 시간 동안 온된 후에는 상기 발열 소자(273)가 오프되고, 상기 감지 소자(274)는 오프된 발열 소자(273)의 온도를 감지할 수 있다. 그리고, 상기 센서 피씨비(272)는 상기 발열 소자(273)의 온/오프 상태의 온도 차이값의 최대값이 상기 기준 차이값 이하인지 여부를 판단할 수 있다.
그리고, 상기 발열 소자(273)의 온/오프 상태의 온도 차이값의 최대값이 기준 차이값 이하인 경우가 제상 필요한 경우로 판단되고, 상기 제어부(40)에 의해서 상기 제상 수단(50)이 온될 수 있다.
위에서는 상기 센서 피씨비(272)에서 상기 발열 소자(273)의 온/오프 상태의 온도 차이값이 기준 차이값 이하인지 여부를 판단하는 것으로 설명하였으나, 이와 달리 상기 제어부(40)가 상기 발열 소자(273)의 온/오프 상태의 온도 차이값이 기준 차이값 이하인지 여부를 판단하고, 판단 결과에 따라 상기 제상 수단(50)을 제어할 수 있다.
도 15는 본 발명의 제 2 실시 예에 따른 센서의 단면도이다.
본 실시 예는 다른 부분에 있어서는 제 1 실시 예와 동일하고, 다만, 센서 하우징의 형상에 있어서 차이가 있다. 따라서, 이하에서는 본 실시 예의 특징적인 부분에 대해서만 설명하기로 하고, 제 1 실시 예와 동일한 부분에 대해서는 제 1 실시 예의 설명을 원용하기로 한다.
도 15를 참조하면, 본 발명의 제 2 실시 에에 따른 센서(370)는 센서 하우징(371)을 포함한다. 상기 센서 하우징(371)은, 상기 센서 피씨비(272)의 제1면(272a)이 안착되는 안착벽(371b)을 포함한다.
이때, 제 1 실시 예와 달리 상기 센서 피씨비(272)의 제1면(272a)의 일부는 상기 안착벽(371a)에 안착되고, 다른 일부는 상기 안착벽(371b)과 이격된다.
상기 센서 피씨비(272)의 제1면의 다른 일부가 상기 안착벽(271b)과 이격되기 위하여 상기 안착벽(371a)은 함몰된 형태의 홈(371b)을 포함할 수 있다. 다른 측면에서, 상기 안착벽(371a)은 상기 센서 피씨비(272)의 제1면(272a)의 일부를 지지하기 위하여 돌출된 형태의 돌출부를 포함할 수 있다.
어느 경우든, 상기 안착벽(371a)과 상기 센서 피씨비(272)의 제1면(272a) 사이에 공간이 형성되고, 상기 공간에 몰딩 물질(276)이 채워질 수 있다.
본 실시 예에서 상기 몰딩 물질(276)의 열 전도율은 상기 센서 피씨비(272)의 열 전도율 보다 크다.
제 1 실시 예에서 설명한 바와 같이 상기 센서 하우징(371)의 열 변형을 최소화할 필요가 있다. 본 실시 예의 경우, 상기 센서 하우징(371) 내에서의 몰딩 물질(276)은 상기 센서 피씨비의 측방에 위치할 뿐만 아니라 상기 센서 피씨비(276)와 상기 안착벽(371a) 사이에도 위치되므로, 상기 몰딩 물질이 상기 발열 소자의 열을 상기 센서 하우징(371)으로 직접 전달한다. 따라서, 상기 센서 하우징(371)의 방열 성능이 더욱 향상될 수 있다.
도 16은 본 발명의 제 3 실시 예에 따른 센서의 단면도이다.
본 실시 예는 다른 부분에 있어서는 제 1 실시 예와 동일하고, 다만, 센서 하우징의 형상 및 재질에 있어서 차이가 있다. 따라서, 이하에서는 본 실시 예의 특징적인 부분에 대해서만 설명하기로 하고, 제 1 실시 예와 동일한 부분에 대해서는 제 1 실시 예의 설명을 원용하기로 한다.
도 16을 참조하면, 본 발명의 제 3 실시 예에 따른 센서(470)는, 센서 하우징(471)을 포함한다.
상기 센서 하우징(471)은 일 예로 금속 재질로 형성될 수 있다. 상기 센서 하우징(471)이 금속 재질로 형성됨에 따라서 플라스틱 재질의 센서 하우징에 비하여 열전도율이 높다. 따라서, 상기 감지 소자(274)의 공기 유량에 따른 민감도가 향상될 수 있다.
상기 센서 하우징(471)은 일 예로, 알루미늄 재질 또는 스테인리스 재질로 형성될 수 있다.
상기 센서 하우징(471)이 금속 재질로 형성되면, 상기 센서 하우징(471)의 두께를 줄일 수 있어, 발열 체적을 줄일 수 있다.
상기 센서 하우징(471)의 발열 체적을 줄이는 경우 상기 바애패스 유로(230)를 유동하는 공기의 유량에 의한 영향이 커질 수 있다. 즉, 발열 체적이 줄어들 수록 발열 소자의 열에 의한 온도 변화가 커질 수 있고, 공기의 유량 변화에 따라 온도 변화도 커질 수 있다.
다만, 상기 센서 하우징(471)이 금속 재질로 형성되는 경우에는 상기 센서 하우징(471)이 플라스틱 재질로 형성되는 경우에 비하여, 복잡한 형상의 제조가 어려우므로, 간단한 구조로 형성될 수 있다.
예를 들어, 상기 센서 하우징(471)은 센서 피씨비(272)가 안착되는 안착벽(471a)과, 상기 안착벽(471a)에서 연장되는 전면벽(472) 및 후면벽(473)과, 상기 전면벽(472) 및 후면벽(473)을 연결하는 커버벽(474)을 포함할 수 있다.
상기 커버벽(474)은 상기 센서 피씨비(272), 감지 소자(274) 및 발열 소자(273)와 이격될 수 있다.
상기 커버벽(474)은 상기 센서 피씨비(272)에서 멀어질수록 공기 유동 방향과 나란한 방향으로의 절개한 단면적이 줄어들도록 형성될 수 있다. 일 예로 상기 커버벽(474)은 상기 전면벽(472) 및 상기 후면벽(473)에서 멀어질수록 가까워지는 방향으로 연장되는 경사벽(475)을 포함할 수 있다.
상기 경사벽(475)에 의해서 공기의 유동이 원활해질 수 있을 뿐만 아니라, 상기 바이패스 유로(230)를 유동하는 제상수가 상기 센서 하우징(471)의 표면에서 응결되는 것이 방지될 수 있다.
도 17은 본 발명의 제 4 실시 예에 따른 센서의 사시도이고, 도 18은 본 발명의 제 4 실시 예에 따른 센서의 단면도이다.
도 17에는 몰딩 물질이 채워지지 않은 상태의 센서가 도시되고, 도 18에는 몰딩 물질이 채워진 상태의 센서가 도시된다.
본 실시 예는 다른 부분에 있어서는 제 1 실시 예와 동일하고, 다만, 센서 하우징의 형상 및 재질에 있어서 차이가 있다. 따라서, 이하에서는 본 실시 예의 특징적인 부분에 대해서만 설명하기로 하고, 제 1 실시 예와 동일한 부분에 대해서는 제 1 실시 예의 설명을 원용하기로 한다.
도 17 및 도 18을 참조하면, 본 발명의 제 4 실시 예에 따른 센서(570)는, 센서 하우징(571)을 포함한다.
상기 센서 하우징(571)은 안착벽(571a)과, 상기 안착벽(571a)에서 연장되는 전면벽(572) 및 후면벽(573)을 포함할 수 있다.
상기 안착벽(571a)에는 센서 피씨비(272)의 제1면(272a)의 일부가 상기 안착벽(571a)과 이격되도록 하기 위한 함몰된 형태의 홈(571b)이 형성될 수 있다.
다른 측면에서, 상기 안착벽(571a)은 상기 센서 피씨비(272)의 제1면(272a)의 일부를 지지하기 위하여 돌출된 형태의 돌출부를 포함할 수 있다.
어느 경우든, 상기 안착벽(571a)과 상기 센서 피씨비(272)의 제1면(272a) 사이에 공간이 형성되고, 상기 공간에 몰딩 물질(276)이 채워질 수 있다.
또한, 상기 전면벽(572) 및 상기 후면벽(573) 중 하나 이상에도 몰딩 물질(276)이 채워지기 위한 홈(574)이 형성될 수 있다. 상기 홈(574)에 의해서 상기 센서 하우징(571)의 발열 체적이 줄어들 수 있고, 상기 홈(574)에 위치한 몰딩 물질에 의해서 상기 센서 하우징(571)으로의 열전달이 효과적으로 이루어질 수 있다.
상기 센서 하우징(571)은 양측벽(576)을 더 포함할 수 있다. 상기 센서 하우징(571)에서 안착벽(571a)의 반대편에는 노출 개구(575)가 형성된다.
본 실시 예에 의하면, 상기 노출 개구(575)를 통해 상기 센서 피씨비(272)가 센서 하우징(571)에 수용될 수 있다. 또한, 상기 노출 개구(575)를 통해 상기 센서 하우징(571)으로 몰딩 물질(276)이 주입될 수 있다. 그리고, 상기 몰딩 물질(276)이 주입 및 경화된 후에 상기 몰딩 물질(276)은 상기 노출 개구(575)에 의해서 외부로 노출된다.
이러한 구조에 의하면, 상기 바이패스 유로(230)의 공기는 상기 몰딩 물질(276)과 직접 접촉할 수 있다. 본 발명에 의하면, 상기 노출 개구(575)에 대응하는 부분에 열저항 역할을 하는 벽이 존재하지 않므로, 상기 감지 소자(273)의 반응 속도가 빨라지는 장점이 있다.
한편, 상기 노출 개구(575)를 통해 몰딩 물질이 주입되므로, 상기 전선도 상기 노출 개구(575)를 통해 상기 센서 하우징(571)의 외부로 연장될 수 있다.
그런데, 본 실시 예의 경우, 상기 노출 개구(575)와 상기 센서 피씨비(272) 간의 간격이 작기 때문에 상기 센서 하우징(571)으로 주입된 몰딩 물질(276)이 상기 전선을 따라 상기 센서 하우징(571)의 외측으로 유동하게 되고, 이 상태에서 상기 몰딩 물질(276)이 경화될 수 있다. 이 경우, 상기 몰딩 물질(276)이 상기 전선와 일체화된 상태로 경화되므로, 상기 전선을 도시되지 않는 커넥터와 연결시키기 위하여 전선을 벤딩하는 과정에서 전선이 부러질 우려가 있다.
따라서, 본 실시 예에서 상기 센서 하우징(571)에는 상기 센서 피씨비(272)에 연결된 전선이 상기 센서 하우징(571)의 외측에서 위치를 가고정시키기 위한 후크 형태의 고정 가이드(577)가 구비될 수 있다.
상기 전선이 상기 고정 가이드(577)에 의해서 형성되는 공간(577a)에 놓여진 상태에서 상기 센서 하우징(571)으로 몰딩 물질(576)이 주입되는 경우, 상기 몰딩 물질(576)이 상기 고정 가이드(577) 까지 유동하지는 못하므로, 상기 공간(577a)을 통과한 전선을 움직여도 상기 전선이 파손될 우려는 없다.
상기 센서 하우징(571)에서 상기 고정 가이드(577) 부분이 추가로 형성되므로, 이에 의해서 증가된 발열 체적을 줄이기 위하여 상기 센서 하우징(571)에서 상기 고정 가이드(577)의 하측 부분에는 홈(578)이 구비될 수 있다.
위의 실시 예의 경우 상기 고정 가이드(577)에 의해서 상기 센서 하우징(571)의 구조가 복잡하고, 상기 홈(578)을 형성하더라도 상기 센서 하우징의 발열 체적이 커지게 된다.
따라서, 다른 실시 예로서, 상기 고정 가이드(577)를 상기 센서 하우징(571)에서 제거하고, 상기 고정 가이드(577)의 형태를 냉기 덕트(20)에 형성하는 것도 가능하다. 이 경우, 상기 고정 가이드(577)는 상기 냉기 덕트(20)에서 상기 바이패스 유로(230)와 이격된 위치에 배치될 수 있다. 그리고, 상기 고정 가이드(577)의 공간(577a)을 통과한 부분이 커넥터에 연결되도록 할 수 있다. 따라서, 상기 고정 가이드(577)의 공간(577a)을 통과한 부분을 움직여도 상기 전선이 파손될 우려는 없다.
1: 냉장고 11: 저장실
12: 인너 케이스 20: 냉기 덕트
230: 바이패스 유로 260: 유로 커버
270: 센서 271: 센서 하우징
272: 센서 피씨비 273: 발열 소자
274: 감지 소자 276: 몰딩 물질

Claims (16)

  1. 저장실을 형성하는 인너 케이스;
    상기 저장실 내에서 공기의 유동을 안내하며 상기 인너 케이스와 함께 열교환 공간을 형성하는 냉기 덕트;
    상기 인너 케이스와 상기 냉기 덕트 사이의 열교환 공간에 위치되는 증발기;
    상기 냉기 덕트에서 배치되며, 공기가 상기 증발기를 바이패스하여 유동하도록 하는 바이패스 유로;
    상기 바이패스 유로 내에 배치되며, 센서 하우징과, 상기 센서 하우징에 수용되는 센서 피씨비와, 상기 센서 피씨비에 설치되며 전류가 인가되면 발열하는 발열 소자, 및 상기 발열 소자의 온도를 감지하기 위한 온도 소자와, 상기 센서 하우징에 채워지는 몰딩 물질을 포함하는 센서;
    상기 증발기의 표면에 생성된 성에를 제거하기 위한 제상 수단; 및
    상기 센서의 출력 값에 기초하여 상기 제상 수단을 제어하는 제어부를 포함하는 냉장고.
  2. 제 1 항에 있어서,
    상기 감지 소자는, 상기 센서 피씨비에 설치되며,
    상기 바이패스 유로 내에서 공기의 유동을 기준으로 상기 발열 소자의 상류에 위치되는 냉장고.
  3. 제 2 항에 있어서,
    상기 바이패스 유로는 상기 냉기 덕트에서 상하 방향으로 연장되고,
    상기 바이패스 유로에서 상기 감지 소자와 상기 발열 소자는 상하 방향으로 배열되며,
    상기 감지 소자가 상기 발열 소자의 하방에 위치되는 냉장고.
  4. 제 2 항에 있어서,
    상기 바이패스 유로에서 공기는 제 1 방향으로 유동할 수 있고,
    상기 센서 피씨비에서 상기 감지 소자는 상기 제 1 방향과 수직한 제 2 방향을 기준으로 상기 발열 소자의 좌우 폭을 이등분하는 선 상에 위치되는 냉장고.
  5. 제 1 항에 있어서,
    상기 센서 하우징은, 상기 센서 피씨비가 안착되는 안착벽과,
    공기 유동 방향을 기준으로 상기 안착벽의 전단과 후단에서 상방으로 연장되는 전면벽 및 후면벽과,
    상기 전면벽과 상기 후면벽을 연결하는 측벽과,
    상기 전면벽과 상기 후면벽을 연결하며, 상기 발열 소자 및 상기 감지 소자를 커버하는 커버벽과,
    상기 측벽의 반대편에 위치되는 개구를 포함하며,
    상기 개구를 통해 상기 센서 피씨비가 상기 센서 하우징에 수용될 수 있는 냉장고.
  6. 제 5 항에 있어서,
    상기 몰딩 물질은 상기 개구를 통해 상기 센서 하우징에 주입된 후에 경화되어 상기 센서 피씨비, 상기 감지 소자 및 상기 발열 소자를 둘러싸는 냉장고.
  7. 제 5 항에 있어서,
    상기 바이패스 유로에서 공기는 제 1 방향으로 유동할 수 있고,
    상기 제 1 방향과 수직한 제 2 방향으로의 상기 센서 피씨비의 길이는 상기 센서 하우징의 길이 보다 짧게 형성되어, 상기 센서 피씨비는 상기 개구와 이격되고, 상기 센서 피씨비와 상기 개구 사이에 상기 몰딩 물질의 일부가 위치되는 냉장고.
  8. 제 5 항에 있어서,
    상기 안착벽에는, 상기 안착벽의 일부가 상기 센서 피씨비와 이격되도록 하기 위한 함몰된 형태의 홈이 형성되거나 돌출된 형태의 돌출부가 구비되는 냉장고.
  9. 제 5 항에 있어서,
    상기 커버벽은 상기 발열 소자 및 상기 감지 소자와 이격되며,
    상기 커버벽과 상기 발열 소자 사이 및 상기 감지 소자 및 상기 커버벽 사이에는 상기 몰딩 물질의 일부가 위치되는 냉장고.
  10. 제 5 항에 있어서,
    상기 커버벽은, 공기의 유로 저항이 줄어들도록 라운드부를 포함하는 냉장고.
  11. 제 5 항에 있어서,
    상기 전면벽과 상기 안착벽의 연결 부위 및 상기 후면벽과 상기 안착벽의 연결 부위 중 하나 이상은 라운드지게 형성되는 냉장고.
  12. 제 5 항에 있어서,
    상기 커버벽은 상기 센서 피씨비에서 멀어질수록 상기 공기 유동 방향으로 절개한 단면적이 줄어들도록 형성되는 냉장고.
  13. 제 1 항에 있어서,
    상기 센서 하우징은, 상기 센서 피씨비가 안착되는 안착벽과,
    공기 유동 방향을 기준으로 상기 안착벽의 전단과 후단에서 상방으로 연장되는 전면벽 및 후면벽과,
    상기 전면벽과 상기 후면벽을 연결하는 양측벽과,
    상기 안착벽의 양측벽에 위치되는 노출 개구를 포함하며,
    상기 노출 개구를 통해 상기 센서 피씨비가 상기 센서 하우징에 수용될 수 있고,
    상기 몰딩 물질은 상기 노출 개구를 통해 외부로 노출되는 냉장고.
  14. 제 13 항에 있어서,
    상기 센서 하우징에는 상기 센서 피씨비에 연결된 전선의 위치를 고정하기 위한 후크 형태의 고정 가이드가 구비되는 냉장고.
  15. 제 1 항에 있어서,
    상기 냉기 덕트는, 상기 바이패스 유로를 형성하기 위한 바닥벽, 및 양측벽을 포함하고,
    상기 유로 커버는 상기 바닥벽과 이격된 상태에서 상기 바이패스 유로를 커버하는 커버 플레이트를 포함하고,
    상기 센서는, 상기 바이패스 유로에서, 상기 바닥벽 및 상기 커버 플레이트와 이격되도록 배치되는 냉장고.
  16. 제 1 항에 있어서,
    상기 발열 소자가 온된 상태에서 상기 감지 소자에서 감지되는 온도와 상기 발열 소자가 오프된 상태에서 상기 감지 소자에서 감지되는 온도의 차이값이 기준 온도값 이하인 경우에, 상기 제어부는 상기 제상 수단을 작동시키는 냉장고.
KR1020180027353A 2018-03-08 2018-03-08 냉장고 KR102521994B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020180027353A KR102521994B1 (ko) 2018-03-08 2018-03-08 냉장고
CN201880089735.2A CN111771093B (zh) 2018-03-08 2018-10-25 冰箱
EP18908949.3A EP3764032B1 (en) 2018-03-08 2018-10-25 Refrigerator
PCT/KR2018/012709 WO2019172497A1 (ko) 2018-03-08 2018-10-25 냉장고
AU2018412301A AU2018412301B2 (en) 2018-03-08 2018-10-25 Refrigerator
US16/992,669 US11530866B2 (en) 2018-03-08 2020-08-13 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180027353A KR102521994B1 (ko) 2018-03-08 2018-03-08 냉장고

Publications (2)

Publication Number Publication Date
KR20190106201A true KR20190106201A (ko) 2019-09-18
KR102521994B1 KR102521994B1 (ko) 2023-04-17

Family

ID=67846651

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180027353A KR102521994B1 (ko) 2018-03-08 2018-03-08 냉장고

Country Status (6)

Country Link
US (1) US11530866B2 (ko)
EP (1) EP3764032B1 (ko)
KR (1) KR102521994B1 (ko)
CN (1) CN111771093B (ko)
AU (1) AU2018412301B2 (ko)
WO (1) WO2019172497A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030810A1 (ko) 2020-08-06 2022-02-10 엘지전자 주식회사 냉장고
WO2022030807A1 (ko) 2020-08-06 2022-02-10 엘지전자 주식회사 냉장고
WO2022030808A1 (ko) 2020-08-06 2022-02-10 엘지전자 주식회사 냉장고
WO2022030809A1 (ko) 2020-08-06 2022-02-10 엘지전자 주식회사 냉장고 및 그의 운전 제어방법
WO2022030806A1 (ko) 2020-08-06 2022-02-10 엘지전자 주식회사 냉장고
KR20220018181A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고
KR20220018182A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고
KR20220018177A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고
KR20220018176A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고
WO2022270772A1 (ko) * 2021-06-24 2022-12-29 엘지전자 주식회사 냉장고
KR20230000232A (ko) 2021-06-24 2023-01-02 엘지전자 주식회사 냉장고

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355904A (en) * 1966-01-21 1967-12-05 Texas Instruments Inc Differential fluid velocity sensing
JPH01312378A (ja) * 1988-06-10 1989-12-18 Toshiba Corp 熱交換器の霜センサ
JPH10197135A (ja) * 1996-12-27 1998-07-31 Shimadzu Corp 結霜結氷センサおよび結霜結氷の検出方法
KR101536284B1 (ko) * 2015-04-15 2015-07-14 주식회사 대일 히트펌프 시스템의 실외기 제상작업용 적상감지센서
WO2017131426A1 (ko) * 2016-01-29 2017-08-03 엘지전자 주식회사 냉장고

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444698A (en) * 1968-01-04 1969-05-20 Ranco Inc Control apparatus for refrigerated display case
US3845637A (en) * 1973-09-06 1974-11-05 Texas Instruments Inc Defrost cycle initiation system
FR2538518B1 (fr) * 1982-12-22 1986-04-04 Elf Aquitaine Procede et dispositif de surveillance et de commande d'un evaporateur
SE444609B (sv) * 1983-10-14 1986-04-21 Elektro Standard Regleranordning for avfrostning av kylbatteriet i en franluftvermepump
KR0120536B1 (ko) * 1992-11-11 1997-10-22 윤종용 냉장고의 성에제거방법 및 그 장치
IL109278A (en) * 1994-04-11 1996-08-04 Meitav Contr & Regulation Circ Defrost control system
KR100292187B1 (ko) 1998-06-30 2001-11-26 전주범 제상주기가변방법
US6964172B2 (en) * 2004-02-24 2005-11-15 Carrier Corporation Adaptive defrost method
AU2008226387B2 (en) * 2007-03-09 2011-09-01 Stuart Christopher James Kearns A refrigeration control system
KR20100072944A (ko) * 2008-12-22 2010-07-01 삼성전자주식회사 냉장고 및 그 제어방법
CA2776382C (en) * 2009-10-02 2018-01-30 The Controls Group, Inc. Removal of an accumulated frozen substance from a cooling unit
WO2011105717A2 (ko) * 2010-02-23 2011-09-01 엘지전자 주식회사 냉장고 및 그 제어방법
ITTO20120923A1 (it) * 2012-10-19 2014-04-20 Indesit Co Spa Apparecchio refrigerante no frost
DE102012110822A1 (de) * 2012-11-12 2014-05-15 Epcos Ag Temperatursensorsystem und Verfahren zur Herstellung eines Temperatursensorsystems
WO2014137060A1 (ko) * 2013-03-04 2014-09-12 주식회사 두텍 바이패스 공기 흐름 측정에 의한 증발열교환기의 제상시점 검출장치 및 그 운전 제어방법
EP3351286A4 (en) * 2015-09-14 2019-05-01 Terumo Kabushiki Kaisha DEVICE FOR THE ADMINISTRATION OF A MEDICAMENT SOLUTION

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355904A (en) * 1966-01-21 1967-12-05 Texas Instruments Inc Differential fluid velocity sensing
JPH01312378A (ja) * 1988-06-10 1989-12-18 Toshiba Corp 熱交換器の霜センサ
JPH10197135A (ja) * 1996-12-27 1998-07-31 Shimadzu Corp 結霜結氷センサおよび結霜結氷の検出方法
KR101536284B1 (ko) * 2015-04-15 2015-07-14 주식회사 대일 히트펌프 시스템의 실외기 제상작업용 적상감지센서
WO2017131426A1 (ko) * 2016-01-29 2017-08-03 엘지전자 주식회사 냉장고

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030810A1 (ko) 2020-08-06 2022-02-10 엘지전자 주식회사 냉장고
WO2022030807A1 (ko) 2020-08-06 2022-02-10 엘지전자 주식회사 냉장고
WO2022030808A1 (ko) 2020-08-06 2022-02-10 엘지전자 주식회사 냉장고
WO2022030809A1 (ko) 2020-08-06 2022-02-10 엘지전자 주식회사 냉장고 및 그의 운전 제어방법
WO2022030806A1 (ko) 2020-08-06 2022-02-10 엘지전자 주식회사 냉장고
KR20220018175A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고
KR20220018179A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고
KR20220018181A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고
KR20220018182A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고
KR20220018177A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고
KR20220018178A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고 및 그의 운전 제어방법
KR20220018180A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고
KR20220018176A (ko) 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고
WO2022270772A1 (ko) * 2021-06-24 2022-12-29 엘지전자 주식회사 냉장고
KR20230000231A (ko) 2021-06-24 2023-01-02 엘지전자 주식회사 냉장고
KR20230000232A (ko) 2021-06-24 2023-01-02 엘지전자 주식회사 냉장고

Also Published As

Publication number Publication date
US11530866B2 (en) 2022-12-20
WO2019172497A1 (ko) 2019-09-12
AU2018412301B2 (en) 2022-07-07
US20200370814A1 (en) 2020-11-26
CN111771093B (zh) 2022-09-02
AU2018412301A1 (en) 2020-10-08
EP3764032A1 (en) 2021-01-13
EP3764032A4 (en) 2021-12-01
CN111771093A (zh) 2020-10-13
EP3764032B1 (en) 2023-11-29
KR102521994B1 (ko) 2023-04-17

Similar Documents

Publication Publication Date Title
KR20190106201A (ko) 냉장고
KR102627972B1 (ko) 냉장고
KR20190106242A (ko) 냉장고 및 그 제어방법
KR102604129B1 (ko) 냉장고 및 그 제어방법
KR20190112482A (ko) 냉장고 및 그 제어방법
KR20160111707A (ko) 조리기기 및 그 제어방법
KR101753755B1 (ko) 간접 냉각 시스템의 제상 제어 장치 및 방법
AU2015410544A1 (en) Refrigerator
US6006531A (en) Refrigerator temperature control system incorporating freezer compartment temperature sensor
KR20220018181A (ko) 냉장고
US20230288123A1 (en) Refrigerator
EP4194778A1 (en) Refrigerator
KR100608583B1 (ko) 냉장고의 센서 설치구조
US20230304723A1 (en) Refrigerator
EP4194777A1 (en) Refrigerator
JP6041986B2 (ja) 液位検出装置、それを備えた冷凍サイクル装置、及び、液位検出方法
KR200217536Y1 (ko) 냉장고
KR20220018177A (ko) 냉장고
JPH08200777A (ja) 空気調和機のサーミスタ取付装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant