KR20190092233A - 이차 전지용 절연판 및 그의 제조 방법 - Google Patents

이차 전지용 절연판 및 그의 제조 방법 Download PDF

Info

Publication number
KR20190092233A
KR20190092233A KR1020180125530A KR20180125530A KR20190092233A KR 20190092233 A KR20190092233 A KR 20190092233A KR 1020180125530 A KR1020180125530 A KR 1020180125530A KR 20180125530 A KR20180125530 A KR 20180125530A KR 20190092233 A KR20190092233 A KR 20190092233A
Authority
KR
South Korea
Prior art keywords
insulating plate
secondary battery
glass fiber
silicone rubber
manufacturing
Prior art date
Application number
KR1020180125530A
Other languages
English (en)
Other versions
KR102268405B1 (ko
Inventor
이병구
김도균
정상석
신항수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980003502.0A priority Critical patent/CN110870091B/zh
Priority to JP2019569935A priority patent/JP6947362B2/ja
Priority to PL19743871.6T priority patent/PL3644393T3/pl
Priority to US16/632,694 priority patent/US11552358B2/en
Priority to PCT/KR2019/000113 priority patent/WO2019146927A1/ko
Priority to EP19743871.6A priority patent/EP3644393B1/en
Publication of KR20190092233A publication Critical patent/KR20190092233A/ko
Application granted granted Critical
Publication of KR102268405B1 publication Critical patent/KR102268405B1/ko
Priority to US18/085,431 priority patent/US20230124306A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • H01M2/065
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

상기 과제를 해결하기 위한 본 발명의 실시예에 따른 이차 전지용 절연판 제조 방법은 이차 전지의 케이스에 삽입되는 절연판을 제조하는 방법에 있어서, 유리 섬유 원사들이 씨실과 날실로 서로 교차하여 형성되는 유리 섬유 원단의 적어도 하나의 면에, 실리콘 고무를 코팅하여 절연판 원단을 제조하는 단계; 및 상기 절연판 원단을 타발하는 단계를 포함한다.

Description

이차 전지용 절연판 및 그의 제조 방법{Top Insulator For Secondary Battery And The Method For Manufacturing Thereof}
본 발명은 이차 전지용 절연판 및 그의 제조 방법에 관한 것으로서, 보다 상세하게는 내열성, 내화학성 등의 성질을 향상시키고, 타발 시 분진 발생을 억제하는 이차 전지용 절연판 및 그의 제조 방법에 관한 것이다.
일반적으로, 이차 전지의 종류로는 니켈 카드뮴 전지, 니켈 수소 전지, 리튬 이온 전지 및 리튬 이온 폴리머 전지 등이 있다. 이러한 이차 전지는 디지털 카메라, P-DVD, MP3P, 휴대폰, PDA, Portable Game Device, Power Tool 및 E-bike 등의 소형 제품뿐만 아니라, 전기 자동차나 하이브리드 자동차와 같은 고출력이 요구되는 대형 제품과 잉여 발전 전력이나 신재생 에너지를 저장하는 전력 저장 장치와 백업용 전력 저장 장치에도 적용되어 사용되고 있다.
이러한 이차 전지를 제조하기 위해, 먼저 전극 활물질 슬러리를 양극 집전체 및 음극 집전체에 도포하여 양극과 음극을 제조하고, 이를 분리막(Separator)의 양 측에 적층함으로써 소정 형상의 전극 조립체(Electrode Assembly)를 형성한다. 그리고 전지 케이스에 전극 조립체를 수납하고 전해액 주입 후 실링한다.
이차 전지는 전극 조립체를 수용하는 케이스의 재질에 따라, 파우치 형(Pouch Type) 및 캔 형(Can Type) 등으로 분류된다. 파우치 형(Pouch Type)은 형태가 일정하지 않은 연성의 폴리머 재질로 제조된 파우치에 전극 조립체를 수용한다. 그리고, 캔 형(Can Type)은 형태가 일정한 금속 또는 플라스틱 등의 재질로 제조된 케이스에 전극 조립체를 수용한다.
이러한 캔 형(Can Type) 이차 전지는 전지 케이스의 형상에 따라, 케이스가 다각면체의 형상을 가지는 각 형(Prismatic Type), 케이스가 원기둥의 형상을 가지는 원통형(Cylinder Type) 등으로 분류된다.
도 1은 종래의 원통형 이차 전지(2)의 부분 단면도이다.
일반적으로 원통형 이차 전지(2)는 도 1에 도시된 바와 같이, 원통형 전지 캔(12), 전지 캔(12)의 내부에 수용되는 젤리-롤 형태의 전극 조립체(13), 전지 캔(12)의 상부에 결합되는 캡 조립체(11), 캡 조립체(11)를 장착하기 위해 전지 캔(12)의 선단에 마련된 비딩부(14) 및 전지 캔(12)을 밀봉하기 위한 크림핑부(15)를 포함한다.
캡 조립체(11)는 전지 캔(12)의 개방부를 밀봉하고 양극 단자를 형성하는 탑 캡(111), 전지 내부의 온도 상승시 저항이 증가하여 전류를 차단하는 PTC 소자(112), 비정상 전류로 인하여 전지 내부의 압력 상승시 전류를 차단하고 내부의 기체를 배기하는 안전 벤트(113), 특정 부분을 제외하고 안전 벤트(113)를 CID 필터(115)로부터 전기적으로 분리시키는 CID 가스켓(114), 양극에 연결된 양극 리드(131)가 접속되고 전지 내의 고압 발생 시 전류를 차단하는 CID 필터(115)가 순차적으로 적층된 구조를 가진다.
그리고 캡 조립체(11)는 크림핑 가스켓(116)에 장착된 상태로 전지 캔(12)의 비딩부(14)에 설치된다. 따라서, 정상적인 작동 조건에서 전극 조립체(13)의 양극은 양극 리드(131), CID 필터(115), 안전 벤트(113) 및 PTC 소자(112)를 경유하여 탑 캡(111)에 연결되어 통전을 이룬다.
전극 조립체(13)의 상단 및 하단에는 각각 절연판(26)이 배치된다. 이 때 상단에 배치되는 상부 절연판(26)은 전극 조립체(13)와 캡 조립체(11) 사이를 절연하고, 하단에 배치되는 하부 절연판(미도시)은 전극 조립체(13)와 전지 캔(12)의 바닥부 사이를 절연한다.
그런데 종래의 원통형 이차 전지(2)의 경우에는, 상기 절연판(26)의 재질이 절연성을 가지면서, 내전해액성을 가지며 펀칭 가공성이 우수한, 예를 들어 폴리에틸렌 또는 폴리프로필렌 등의 열가소성 수지로 제조되었다. 그런데 이러한 열가소성 수지는 녹는점이 200 내지 250로 상당히 낮았다. 그리고 열가소성 수지로 제조되므로, 이차 전지(2)의 내부 온도가 급격히 상승하여 250를 초과하면, 절연판(26)이 용융되어 쇼트가 발생하는 문제가 있었다. 이를 해결하기 위해, 상기 절연판(26)의 두께를 증가시키는 기술도 제안되었으나, 이차 전지(2)의 내부 공간이 감소하여 전지의 용량 및 효율이 감소하는 문제가 있었다.
최근에는 유리 섬유(Glass Fiber)의 원단에 열경화성 수지인 페놀(Phenol)을 코팅하여 상기 절연판(26)을 제조하는 기술이 제안되었다. 그러나, 페놀 자체의 녹는점은 40로 매우 낮았고, 이를 유리 섬유 원단에 코팅하더라도 600가 되면 이산화탄소 또는 일산화탄소로 산화되어 질량이 감소하는 문제가 있었다. 또한, 유리 섬유 원단에 페놀을 코팅한 후, 둥근 원반 형상으로 타발할 때, 분진이 많이 발생하여 연속적인 생산이 어려웠고, 그로 인해 생산량이 저하되며 제조 단가가 증가하는 문제도 있었다.
일본공개공보 제1994-187863호
본 발명이 해결하고자 하는 과제는, 내열성, 내화학성 등의 성질을 향상시키고, 타발 시 분진 발생을 억제하는 이차 전지용 절연판 및 그의 제조 방법을 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 이차 전지용 절연판 제조 방법은 이차 전지의 케이스에 삽입되는 절연판을 제조하는 방법에 있어서, 유리 섬유 원사들이 씨실과 날실로 서로 교차하여 형성되는 유리 섬유 원단의 적어도 하나의 면에, 실리콘 고무를 코팅하여 절연판 원단을 제조하는 단계; 및 상기 절연판 원단을 타발하는 단계를 포함한다.
또한, 상기 절연판 원단을 제조하는 단계는, 제1 실리콘 고무를 코팅하는 단계를 포함하고, 상기 제1 실리콘 고무를 코팅하는 단계는, 상기 적어도 하나의 면에, 제1 실리콘 폴리머가 제1 용매에 용해되어 제조된 제1 용액을 도포하는 단계; 및 상기 도포된 제1 용액을 건조하여 제1 실리콘 고무를 코팅하는 단계를 포함할 수 있다.
또한, 상기 절연판 원단을 제조하는 단계는, 제2 실리콘 고무를 코팅하는 단계를 더 포함하고, 상기 제2 실리콘 고무를 코팅하는 단계는, 상기 제1 실리콘 고무를 코팅하는 단계 이후에, 상기 적어도 하나의 면에, 제2 실리콘 폴리머가 제2 용매에 용해되어 제조된 제2 용액을 도포하는 단계; 및 상기 도포된 제2 용액을 건조하여 제2 실리콘 고무를 코팅하는 단계를 더 포함할 수 있다.
또한, 상기 제1 실리콘 고무를 코팅하는 단계는, 상기 유리 섬유 원사에 상기 제1 실리콘 고무가 부착되고, 상기 유리 섬유 원사들 사이에 공극이 형성되도록 수행될 수 있다.
또한, 상기 공극은, 직교하는 상기 유리 섬유 원사들 사이에서 형성되는 공극일 수 있다.
또한, 상기 제2 실리콘 고무를 코팅하는 단계는, 상기 제2 실리콘 고무가 상기 발생한 공극에 삽입될 수 있다.
또한, 상기 제1 용액은, 상기 제2 용액보다 점도가 더 낮을 수 있다.
또한, 상기 제2 실리콘 고무를 코팅하는 단계가 수행되면, 상기 유리 섬유 원단의 적어도 하나의 면에, 상기 제1 실리콘 고무 및 상기 제2 실리콘 고무가 적층될 수 있다.
또한, 상기 제1 실리콘 고무를 코팅하는 단계가 수행되면, 상기 유리 섬유 원단의 적어도 하나의 면에, 상기 제1 실리콘 고무가 적층될 수 있다.
또한, 상기 절연판 원단을 제조하는 단계가 수행되면, 상기 유리 섬유 원단과 상기 절연판 원단의 두께가 서로 동일할 수 있다.
또한, 상기 유리 섬유를 타발하는 단계에 있어서, 상기 유리 섬유를 원반 형상으로 타발할 수 있다.
또한, 상기 절연판 원단을 제조하는 단계에 있어서, 상기 실리콘 고무는, 상기 유리 섬유 원단의 양면에 모두 코팅될 수 있다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 이차 전지용 절연판 은 이차 전지의 케이스에 삽입되는 절연판에 있어서, 유리 섬유 원사들이 씨실과 날실로 서로 교차하여 형성되는 유리 섬유; 상기 유리 섬유의 적어도 하나의 면에 코팅되는 실리콘 고무를 포함한다.
또한, 600℃ 이상의 온도로 가열하였을 때, 열분해에 따른 질량 손실이 10 내지 15 wt% 일 수 있다.
또한, 950℃ 이상의 온도로 가열하였을 때, 상기 질량 손실이 10 내지 15 wt% 일 수 있다.
또한, 상기 질량 손실이 12 내지 14 wt% 일 수 있다.
또한, 리튬비스(플루오로술포닐)이미드(LIFSI, Lithium bis(fluorosulfonyl)imide)이 10 wt% 이상 포함된 전해액에 함침 후, 72℃에서 1주일 이상 보관하였을 때, 상기 리튬비스(플루오로술포닐)이미드(LIFSI)의 감소량이 1 내지 3 wt% 이하일 수 있다.
또한, 상기 리튬비스(플루오로술포닐)이미드(LIFSI)의 감소량이 1.5 내지 2.5 wt% 이하일 수 있다.
또한, 상기 이차 전지를 600℃ 이상의 온도로 가열하여 상기 이차 전지가 폭발할 때, 전지 케이스에 핀 홀이 형성되지 않을 수 있다.
또한, 양 측으로 인장시켰을 때, 인장 강도가 120 내지 150 N/mm2이고, 연신율이 5 내지 10 %일 수 있다.
또한, 상기 인장 강도가 130 내지 140 N/mm2이고, 상기 연신율이 7 내지 8 %일 수 있다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.
유리 섬유 원단에 실리콘 고무를 코팅하여 이차 전지용 절연판을 제조함으로써, 내열성, 내화학성 등의 성질을 향상시킬 수 있다.
또한, 절연판 원단을 타발하여 이차 전지용 절연판을 제조할 때, 분진 발생이 억제되어, 연속 생산이 가능하고 생산량이 증가하며 제조 단가를 감소시킬 수 있다.
또한, 절연판 원단이 유연성을 가져, 이를 권취하여 마더-롤(Mother Roll)을 용이하게 형성함으로써, 이차 전지용 절연판을 용이하게 제조할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 종래의 원통형 이차 전지의 부분 단면도이다.
도 2는 본 발명의 일 실시예에 따른 절연판을 제조하는 방법을 나타낸 흐름도이다.
도 3은 본 발명의 일 실시예에 따른 원통형 이차 전지의 부분 단면도이다.
도 4는 본 발명의 일 실시예에 따른 절연판의 평면도이다.
도 5는 본 발명의 일 실시예에 따른 절연판의 측면도이다.
도 6은 본 발명의 다른 실시예에 따른 절연판을 제조하는 방법을 나타낸 흐름도이다.
도 7은 본 발명의 다른 실시예에 따른 원통형 이차 전지의 부분 단면도이다.
도 8은 본 발명의 다른 실시예에 따른 절연판의 측면도이다.
도 9는 본 발명의 또 다른 실시예에 따른 원통형 이차 전지의 부분 단면도이다.
도 10은 본 발명의 또 다른 실시예에 따른 유리 섬유 원단에 제1 실리콘 고무가 코팅된 개략도이다.
도 11은 본 발명의 또 다른 실시예에 따른 유리 섬유 원단에 제2 실리콘 고무가 코팅된 개략도이다.
도 12는 도 11에서 본 발명의 또 다른 실시예에 따른 절연판을 A-A'으로 절단한 단면도이다.
도 13은 본 발명의 또 다른 실시예에 따른 절연판을 실제로 제조하여, 1500배 확대 촬영한 SEM 사진이다.
도 14는 본 발명의 또 다른 실시예에 따른 절연판을 실제로 제조하여, 1000배 확대 촬영한 SEM 사진이다.
도 15는 본 발명의 또 다른 실시예에 따른 절연판을 실제로 제조하여, 200배 확대 촬영한 SEM 사진이다.
도 16은 본 발명의 또 다른 실시예에 따른 절연판을 실제로 제조하여, 40배 확대 촬영한 SEM 사진이다.
도 17은 본 발명의 제조예에 따른 절연판에 대하여 내열성 실험한 결과 그래프이다.
도 18은 비교예 2에 따른 절연판에 대하여 내열성 실험한 결과 그래프이다.
도 19는 내화학성 실험한 후 각각의 전해액 시료들의 모습을 나타낸 사진이다.
도 20은 각각의 전해액 시료들에 대하여 GC-MS 실험한 결과 그래프이다.
도 21은 안정성 실험한 후 본 발명의 제조예에 따른 절연판이 조립된 이차 전지의 분해 모습을 나타낸 사진이다.
도 22는 안정성 실험한 후 비교예 1의 절연판이 조립된 이차 전지의 분해 모습을 나타낸 사진이다.
도 23은 안정성 실험한 후 비교예 2의 절연판이 조립된 이차 전지의 분해 모습을 나타낸 사진이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 2는 본 발명의 일 실시예에 따른 절연판(16)을 제조하는 방법을 나타낸 흐름도이다.
본 발명의 일 실시예에 따른 절연판(16)은, 유리 섬유 원단(161)에 실리콘 고무(162)를 코팅하여 제조된다. 그럼으로써, 내열성, 내화학성 등의 성질을 향상시킬 수 있고, 절연판 원단을 타발하여 이차 전지용 절연판(16)을 제조할 때, 분진 발생이 억제되어, 연속 생산이 가능하고 생산량이 증가하며 제조 단가를 감소시킬 수 있다. 또한, 절연판 원단이 유연성을 가져, 이를 권취하여 마더-롤(Mother Roll)을 용이하게 형성함으로써, 이차 전지용 절연판(16)을 용이하게 제조할 수 있다.
이하, 도 2의 흐름도에 도시된 각 단계들의 구체적인 내용을, 도 3 내지 도 5를 참고하여 설명한다.
도 3은 본 발명의 일 실시예에 따른 원통형 이차 전지(1)의 부분 단면도이다.
본 발명의 일 실시예에 따른 원통형 이차 전지(1)는, 도 3에 도시된 바와 같이, 전지 캔(12), 전지 캔(12)의 내부에 수용되는 젤리-롤 형태의 전극 조립체(13), 전지 캔(12)의 상부에 결합되는 캡 조립체(11), 캡 조립체(11)를 장착하기 위해 전지 캔(12)의 선단에 마련된 비딩부(14) 및 전지 캔(12)을 밀봉하기 위한 크림핑부(15)를 포함한다. 이러한 원통형 이차 전지(1)는, 일정한 출력을 안정적으로 제공하는 휴대폰, 노트북, 전기 자동차 등의 전원으로 사용될 수 있다.
전지 캔(12)은 알루미늄, 니켈, 스테인리스 스틸 또는 이들의 합금과 같은 경량의 전도성 금속 재질로 구성되며, 상단이 개방된 개방부와 그와 대향되는 밀폐된 바닥부를 가질 수 있다. 이러한 전지 캔(12)의 내부 공간에는 상기 전극 조립체(13)와 함께 전해액이 수용된다. 이러한 전지 캔(12)은 원통형으로 형성될 수 있으나, 각형과 같이 원통형 이외의 다양한 형태로 형성될 수도 있다.
전극 조립체(13)는 롤 형태의 넓은 판형을 가진 양극판 및 음극판 등 두 개의 전극판과, 전극판들을 상호 절연시키기 위해 전극판들 사이에 개재되거나 어느 하나의 전극판의 좌측 또는 우측에 배치되는 분리막을 구비한 적층 구조체일 수 있다. 상기 적층 구조체는 젤리 롤(Jelly Roll) 형태로 권취될 수 있고, 소정 규격의 양극판과 음극판이 분리막을 사이에 두고 적층될 수도 있는 등 제한되지 않고 다양한 형태일 수 있다. 두 개의 전극판은 각각 알루미늄과 구리를 포함하는 금속 포일 또는 금속 메쉬 형태의 집전체에 활물질 슬러리가 도포된 구조이다. 슬러리는 통상적으로 입상의 활물질, 보조 도체, 바인더 및 가소제 등이 용매가 첨가된 상태에서 교반되어 형성될 수 있다. 용매는 후속 공정에서 제거된다. 전극판이 감기는 방향으로 집전체의 시작단과 끝단에는 슬러리가 도포되지 않는 무지부가 존재할 수 있다. 무지부에는 각각의 전극판에 대응되는 한 쌍의 리드가 부착된다. 전극 조립체(13)의 상단에 부착되는 양극 리드(131)는 캡 조립체(11)에 전기적으로 연결되고, 전극 조립체(13)의 하단에 부착되는 음극 리드(미도시)는 전지 캔(12)의 하면에 연결된다. 다만 이에 제한되지 않고, 양극 리드(131)와 음극 리드는 모두 캡 조립체(11)를 향하는 방향으로 인출될 수도 있다.
전극 조립체(13)의 상단 및 하단에는 각각 전극 조립체(13)를 절연하는 절연판(16)이 배치된다. 이 때 상단에 배치되는 상부 절연판(16)은 전극 조립체(13)와 캡 조립체(11) 사이에 배치되어 전극 조립체(13)를 절연하고, 하단에 배치되는 하부 절연판(미도시)은 전극 조립체(13)와 전지 캔(12)의 바닥부 사이에 배치되어 전극 조립체(13)를 절연한다. 본 발명의 일 실시예에 따른 절연판(16)은 도 3에 도시된 바와 같이, 전극 조립체의 상부에 배치되는 상부 절연판(16)일 수 있으나, 이에 제한되지 않고 전극 조립체의 하부에 배치되는 하부 절연판(미도시)일 수도 있다. 본 발명의 일 실시예에 따른 절연판(16)에 대한 자세한 설명은 후술한다.
전지 캔(12)의 중앙에는 젤리 롤 형태로 권취된 전극 조립체(13)가 권출되는 것을 방지하고 이차 전지(1) 내부의 가스의 이동 통로의 역할을 수행하는 센터핀(미도시)이 삽입될 수도 있다.
전지 캔(12) 내에 충진되는 전해액은 이차 전지(1)의 충, 방전 시 전극판의 전기 화학적 반응에 의해 생성되는 리튬 이온을 이동시키기 위한 것으로, 리튬염과 고순도 유기 용매류의 혼합물인 비수질계 유기 전해액 또는 고분자 전해질을 이용한 폴리머를 포함할 수 있다.
캡 조립체(11)는 전지 캔(12)의 상단에 형성된 개방부에 결합되어 전지 캔(12)의 개방부를 밀폐시킨다. 이러한 캡 조립체(11)는, 전지 캔(12)의 형태에 따라 원형 또는 각형 등 다양한 형태로 형성될 수 있다. 본 발명의 일 실시예에 따르면, 전지 캔(12)이 원통형으로 형성되므로, 이 경우에는 캡 조립체(11)도 이에 대응되는 형상인 원반 형상으로 형성되는 것이 바람직하다.
본 발명의 일 실시예에 따르면, 캡 조립체(11)는 전지 캔(12)의 개방부를 밀봉하고 양극 단자를 형성하는 탑 캡(111), 비정상 전류로 인하여 전지 내부의 압력 상승시 전류를 차단하고 내부의 기체를 배기하는 안전 벤트(113) 및 상기 전극 조립체(13)의 양극에 연결된 양극 리드(131)가 접속되고 전지 내의 고압 발생 시 전류를 차단하는 전류차단부재가 순차적으로 적층된 구조를 가질 수 있다. 그리고, 캡 조립체(11)는 크림핑 가스켓(116)에 장착된 상태로 전지 캔(12)의 비딩부(14)에 설치된다. 따라서, 정상적인 작동 조건에서 전극 조립체(13)의 양극은 양극 리드(131), 전류차단부재, 안전 벤트(113) 및 PTC 소자(112)를 경유하여 탑 캡(111)에 연결되어 통전을 이룬다.
탑 캡(111)은 캡 조립체(11)의 최상부에, 상부 방향으로 돌출된 형태로 배치되어 양극 단자를 형성한다. 따라서, 상기 탑 캡(111)은 부하 또는 충전 장치와 같은 외부 장치에 전기적으로 접속될 수 있다. 탑 캡(111)에는 이차 전지(1)의 내부에서 발생한 기체가 배출되는 기체 구멍(1111)이 형성될 수 있다. 따라서, 과충전 등과 같은 원인에 의해 전극 조립체(13)쪽으로부터 기체가 발생하여 내압이 증가하면, 전류차단부재의 CID 필터(115) 및 안전 벤트(113)가 파열되고, 내부의 기체는 상기 파열된 부분 및 기체 구멍(1111)을 통해 외부로 배출될 수 있다. 따라서, 충방전이 더 이상 진행되지 않고 이차 전지(1)의 안전성을 확보할 수 있다. 이러한 탑 캡(111)은 스테인리스 스틸 또는 알루미늄과 같은 금속 재질로 제조될 수 있다.
안전 벤트(113)와 접촉되는 탑 캡(111) 부위의 두께는, 외부로부터 인가되는 압력으로부터 캡 조립체(11)의 여러 구성 요소들을 보호할 수 있는 범위라면 특별히 제한되는 것은 아니며, 예를 들면, 0.3 내지 0.5mm일 수 있다. 탑 캡(111) 부위의 두께가 너무 얇으면 기계적 강성을 발휘하기 어렵고, 반대로 너무 두꺼우면 크기 및 중량 증가에 의해 동일 규격 대비 전지의 용량을 감소시킬 수 있다.
안전 벤트(113)는 비정상 전류로 인하여 전지 내부의 압력 상승시 전류를 차단하거나 가스를 배기하는 역할을 하며, 금속 재질일 수 있다. 안전 벤트(113)의 두께는 소재 및 구조 등에 따라 달라질 수 있으며, 전지 내부의 소정의 고압 발생시 파열되면서 가스 등을 배출할 수 있다면 특별히 제한되는 것은 아니며, 예를 들면 0.2 내지 0.6 mm일 수 있다.
전류차단부재(CID, Current Interrupt Device)는 안전 벤트(113)와 전극 조립체(13) 사이에 위치하여, 전극 조립체(13)와 안전 벤트(113)를 전기적으로 접속시킨다. 이러한 전류차단부재는 안전 벤트(113)와 접촉하여 전류를 전달하는 CID 필터(115) 및 일부 영역을 제외하고 상기 CID 필터(115)와 안전 벤트(113) 사이를 공간적으로 분리하여 절연시키는 CID 가스켓(114)을 포함한다.
따라서, 정상적인 상태에서는 전극 조립체(13)로부터 생성된 전류가 양극 리드(131)를 거쳐 CID 필터(115)를 경유하여 안전 벤트(113)로 흐름으로써 이차 전지(1)의 방전이 이루어질 수 있다. 그러나, 비정상 전류로 인하여 이차 전지(1)의 내압이 증가하면, 비정상 전류로 인하여 이차 전지(1)의 내부에서 발생한 기체로 인하여 전지의 내압이 증가하면, 안전 벤트(113)와 CID 필터(114) 사이의 연결이 탈착되거나, CID 필터(114)가 파열된다. 그럼으로써, 안전 벤트(113)와 전극 조립체(13) 사이의 전기적 접속이 차단되어, 안전성을 확보할 수 있다.
캡 조립체(11)는 안전 벤트(113)와 탑 캡(111) 사이에 PTC 소자(Positive Temperature Coefficient element, 112)를 더 포함할 수도 있다. PTC 소자(112)는 전지 내부의 온도 상승시 전지 저항이 증가하여 전류를 차단한다. 즉, PTC 소자(112)는, 정상적인 상태에서는 탑 캡(111)과 안전 벤트(113)를 전기적으로 연결시킨다. 그러나 비정상 상태, 예를 들어 온도가 비정상적으로 상승 할 때에는, PTC 소자(112)는 탑 캡(111)과 안전 벤트(113) 간의 전기적 연결을 차단시킨다. 이러한 PTC 소자(112)의 두께 역시 소재 및 구조 등에 따라 달라질 수 있으며, 예를 들면 0.2 내지 0.4mm일 수 있다. PTC 소자(112)의 두께가 0.4mm 보다 두꺼우면 내부 저항이 상승하고, 전지의 크기를 증가시켜 동일 규격 대비 전지 용량을 감소시킬 수 있다. 반대로, PTC 소자(112)의 두께가 0.2mm 보다 얇으면, 고온에서 전류 차단 효과를 발휘하기 어렵고 약한 외부 충격에 의해서도 파괴될 수 있다. 따라서, PTC 소자(112)의 두께는 이러한 점들을 복합적으로 고려하여 상기 두께 범위 내에서 적절히 결정될 수 있다.
이와 같은 캡 조립체(11)를 포함하는 이차 전지(1)는, 전동드릴 등과 같은 파워툴의 동력원으로 사용되는 경우에는 순간적으로 높은 출력을 제공할 수 있고 진동, 낙하 등과 같은 외부의 물리적 충격에 대해서도 안정적일 수 있다.
전지 캔(12)의 상부에는 외측에서 내측으로 절곡된 비딩부(14)가 형성된다. 비딩부(14)는 상기 탑 캡(111), PTC 소자(112), 안전 벤트(113) 및 전류차단부재가 적층된 캡 조립체(11)를 전지 캔(12)의 상단에 위치시키고, 전극 조립체(13)의 상하 방향의 이동을 방지한다.
상기 기술한 바와 같이, 캡 조립체(11)는 크림핑 가스켓(116)에 장착된 상태로 전지 캔(12)의 비딩부(14)에 설치된다. 크림핑 가스켓(116)은 양단이 개방된 원통형의 형태를 가지며, 전지 캔(12)의 내부를 향하는 일측 단은 도 2에 도시된 바와 같이, 중심축을 향해 대략 수직으로 1차 절곡된 후, 다시 전지 캔(12)의 내부를 향해 대략 수직으로 2차 절곡되어 비딩부(14)에 안착된다. 그리고 크림핑 가스켓(116)의 타측 단은, 최초에는 중심축과 평행한 방향으로 연장되어 있다. 그러나, 추후에 캡 조립체(11)를 결합하고 전지 캔(12)의 상단 외벽을 가압하여 크림핑부(15)를 형성하는 공정이 진행되면, 크림핑부(15)의 형상을 따라 함께 대략 수직으로 절곡되어 중심축을 향한다. 따라서, 크림핑 가스켓(116)의 내주면은 캡 조립체(11), 외주면은 전지 캔(12)의 내주면에 밀착된다.
도 4는 본 발명의 일 실시예에 따른 절연판(16)의 평면도이다.
본 발명의 일 실시예에 따른 이차 전지(1)용 절연판(16)은, 이차 전지(1)의 케이스에 삽입되는 절연판(16)에 있어서, 유리 섬유(161) 원사들이 씨실과 날실로 서로 교차하여 형성되는 원반 형상의 유리 섬유(161); 상기 유리 섬유(161)의 적어도 하나의 면에 코팅되는 실리콘 고무(162)를 포함한다. 그리고 상기 유리 섬유(161)의 적어도 하나의 면에, 상기 실리콘 고무(162)가 적층된다.
유리 섬유(Glass Fiber, 161)는 유리를 백금로에 용융한 후, 직경이 작은 홀을 통해 인출하여 긴 섬유 형태로 제조한 것이다. 내열성, 내구성, 흡음성, 전기 절연성이 뛰어나고 녹슬지 않으며, 가공이 쉬워 건물 단열재, 공기 여과재, 전기 절연제 등으로 주로 사용된다. 본 발명의 일 실시예에 따르면, 이러한 유리 섬유(161)의 원사들이 씨실과 날실로 서로 교차하여 조직한 직물 형태의 유리 섬유(161)의 원단을 마련하고, 이러한 유리 섬유(161) 원단에 실리콘 고무(162)를 코팅한다. 상기 유리 섬유(161) 원사를 풀어낸 한 가닥의 단면의 직경은 대략 4 내지 15 μm인 것이 바람직하다.
실리콘 고무(Si Rubber, 162)는 실리콘이 포함된 고무이다. 내열성 및 내한성이 우수하여, 250℃에서 3일간 방치하여도 강도나 신장률의 변화를 10% 이내로 유지할 수 있고, -45℃에서도 탄성을 유지할 수 있다. 전기적 특성 또한 온도에 민감하게 변화하지 않으므로, 내열성을 요구하는 전기, 전자, 통신 분야에서 다양하게 사용된다. 이러한 실리콘 고무(162)에는, 다양한 물질들이 혼합되어 제조된다. 예를 들어, 주원료로 사용되는 오르가노폴리실록산과 같은 실리콘 폴리머, 실리카계 충진제, 부피를 증대하고 내유성을 향상시키는 증량제, 유기과산화물과 같은 가류제, 저분량의 실리콘 올리고머과 같은 가공조제, 또는 BaO, CaO, MgO, ZnO와 같은 각종 특성 향상제 등이 혼합될 수 있다. 나아가, 난연성을 증대시키기 위해, Al(OH)3, Mg(OH)2, BH3O3 등의 난연제가 더 포함되거나, 육안으로 용이하게 품질 검사를 하기 위해, 색소가 더 포함될 수도 있다. 그리고 상기 물질들을 혼합하고 가열한 후, 가황 공정을 거치고 건조시킴으로써 실리콘 고무(162)가 제조될 수 있다. 상기 가황 공정에는 과산화벤조일, 디큐밀페르옥시드 등의 과산화물을 사용할 수 있다.
본 발명의 일 실시예에 따른 이차 전지용 절연판(16)을 제조하기 위해, 먼저 실리콘 폴리머를 포함하는 상기 다양한 물질들을 혼합한 후 경화시키기 전에, 특정 용매에 용해시켜 용액을 제조한다. 용매는 상기 물질들을 용이하게 용해시킬 수 있는 유기 용매인 것이 바람직하며, 예를 들면 톨루엔, 자일렌, MEK 등이 있다.
한편, 상기 제조된 용액은 실리콘 폴리머가 용해된 농도에 따라, 점도(Viscosity)가 상이하다. 이 때, 상기 점도가 너무 낮으면 유리 섬유(161) 원단의 씨실과 날실들이 서로 풀릴 수 있어, 코팅을 하는 효과가 현저하지 않을 수 있다. 반대로, 점도가 너무 높으면 유리 섬유(161)의 원단의 씨실과 날실들 사이의 공극(3)으로 침투되지 않아, 상기 공극(3)이 메워지지 않을 수 있다. 이러한 용액의 점도는 실험적으로 최적의 점도로 선정될 수 있다.
그리고 상기 제조된 용액을 유리 섬유(161) 원단에 도포하고(S201), 이를 건조한다(S202). 용액을 도포할 때에는, 스프레이 등을 이용하여 용액을 유리 섬유(161) 원단에 분사할 수도 있으나, 용액이 담긴 통에 유리 섬유(161) 원단을 침지시키는 것이 바람직하다. 그럼으로써, 빠르게 많은 양의 용액을 유리 섬유(161) 원단에 도포할 수 있다. 상기 용액을 도포하고 건조시키면, 용매가 증발하고 유리 섬유(161) 원단에 실리콘 고무(162)가 코팅되어 절연판 원단이 된다(S203). 그리고 상기 절연판 원단을, 특정 형상으로 타발하면, 본 발명의 일 실시예에 따른 절연판(16)이 제조된다(S204). 이 때, 절연판(16)이 원통형 이차 전지(1)에 설치된다면, 이러한 원통형 이차 전지(1)의 전지 캔(12)에 용이하게 삽입되기 위해, 도 4에 도시된 바와 같이, 절연판 원단을 원반 형상으로 타발하는 것이 바람직하다. 그럼으로써 절연판(16)은, 전체적으로 원반 형상을 가지는 유리 섬유(161)에 실리콘 고무(162)가 코팅되어 형성된다.
도 5는 본 발명의 일 실시예에 따른 절연판(16)의 측면도이다.
본 발명의 일 실시예에 따른 절연판(16)은 도 5에 도시된 바와 같이, 유리 섬유(Glass Fiber, 161)의 적어도 하나의 면에, 실리콘 고무(Si Rubber, 162)가 코팅되어, 복수의 층으로 적층된 형태를 가진다.
상기 용액은 유리 섬유(161) 원단의 일면에만 도포할 수도 있으나, 본 발명의 일 실시예에 따르면, 양면에 모두 도포하는 것이 바람직하다. 그럼으로써, 유리 섬유(161)의 양면에 실리콘 고무(162)가 코팅되어, 본 발명의 일 실시예에 따른 절연판(16)은, 복수의 층이 적층된 형상을 가질 수 있다. 도 5에는 3개의 층이 적층된 것으로 도시되어 있으나, 이에 제한되지 않고 유리 섬유(161)와 실리콘 고무(162)의 사이에 별도의 층이 더 포함될 수도 있다.
도 6은 본 발명의 다른 실시예에 따른 절연판(16a)을 제조하는 방법을 나타낸 흐름도이다.
본 발명의 일 실시예에 따른 절연판(16)은, 유리 섬유(161)의 적어도 일면에 실리콘 고무(162)를 일 회 코팅하여 제조된다. 반면에, 본 발명의 다른 실시예에 따른 절연판(16a)은, 유리 섬유(161a)의 적어도 일면에 실리콘 고무(162a)를 복수 회 코팅하여 제조된다.
이하, 도 6의 흐름도에 도시된 각 단계들의 구체적인 내용을, 도 7 내지 도 8을 참고하여 설명한다.
도 7은 본 발명의 다른 실시예에 따른 원통형 이차 전지(1a)의 부분 단면도이다.
이하, 본 발명의 다른 실시예에 따른 원통형 이차 전지(1a) 및 절연판(16a)에 대하여, 상기 기술한 내용과 중복되는 내용은, 설명을 생략한다. 이는 설명의 편의를 위한 것이며, 권리범위를 제한하기 위함이 아니다.
전극 조립체(13)의 상단 및 하단에는 각각 전극 조립체(13)를 절연하는 절연판(16a)이 배치된다. 본 발명의 다른 실시예에 따른 절연판(16a)은 도 7에 도시된 바와 같이, 전극 조립체의 상부에 배치되는 상부 절연판(16a)일 수 있으나, 이에 제한되지 않고 전극 조립체의 하부에 배치되는 하부 절연판(미도시)일 수도 있다.
본 발명의 다른 실시예에 따른 절연판(16a)은 이차 전지(1a)의 케이스에 삽입되는 절연판에 있어서, 유리 섬유(161a) 원사들이 씨실과 날실로 서로 교차하여 형성되는 유리 섬유(161a); 상기 유리 섬유(161a)의 적어도 하나의 면에 코팅되는 실리콘 고무(162a)를 포함한다. 그리고 상기 실리콘 고무(162a)는, 상기 유리 섬유(161a)의 적어도 하나의 면에 먼저 코팅되는 제1 실리콘 고무(1621a) 및; 상기 제1 실리콘 고무(1621a)에 코팅되는 제2 실리콘 고무(1622a)를 포함한다. 이러한 본 발명의 다른 실시예에 따른 절연판(16a)을 제조하기 위해, 먼저 실리콘 폴리머를 포함하는 상기 다양한 물질들을 혼합한 후 경화시키기 전에, 특정 용매에 용해시켜 제1 및 제2 용액을 제조한다.
구체적으로, 제1 실리콘 폴리머를 제1 용매에 용해시켜 제1 용액을 제조하고, 제2 실리콘 폴리머를 제2 용매에 용해시켜 제2 용액을 제조한다. 상기 제조된 용액은 실리콘 폴리머가 용해된 농도에 따라, 점도(Viscosity)가 상이하다. 이 때, 제1 용액의 점도가 제2 용액의 점도보다 낮은 것이 바람직하다.
그리고 상기 제조된 제1 용액을 유리 섬유(161a) 원단의 적어도 하나의 면에 도포하고(S601), 이를 건조한다(S602). 상기 제1 용액은 유리 섬유(161a) 원단의 일면에만 도포할 수도 있으나, 본 발명의 다른 실시예에 따르면, 양면에 모두 도포하는 것이 바람직하다. 상기 제1 용액을 도포하고 건조시키면, 제1 용매가 증발하고 유리 섬유(161a) 원단에 제1 실리콘 고무(1621a)가 코팅된다(S603). 그 후에, 상기 제조된 제2 용액을, 상기 제1 실리콘 고무(1621a)가 코팅된 적어도 하나의 면에 도포하고(S604), 이를 건조한다(S605). 상기 제2 용액을 도포하고 건조시키면, 제2 용매가 증발하고 제1 실리콘 고무(1621a) 상에 제2 실리콘 고무(1622a)가 코팅된다(S606). 그럼으로써, 절연판 원단이 제조된다.
제1 용액은 점도가 낮아, 유리 섬유(161a)의 원단의 씨실과 날실들 사이의 공극(3)으로 용이하게 침투하여 상기 공극(3)을 메울 수 있다. 반면에, 제2 용액은 점도가 높아, 유리 섬유(161a) 원단의 씨실과 날실들이 서로 풀리지 않도록 고정시켜, 홀딩력이 증가할 수 있다. 따라서, 본 발명의 다른 실시예에 따른 절연판(16a)은, 실리콘 고무(162a)가 유리 섬유(161a)와 더욱 잘 혼합되면서, 홀딩력이 증가할 수 있다.
상기 절연판 원단을, 특정 형상으로 타발하면, 본 발명의 다른 실시예에 따른 절연판(16a)이 제조된다(S607). 이 때, 절연판(16a)이 원통형 이차 전지(1a)에 설치된다면, 이러한 원통형 이차 전지(1a)의 전지 캔에 용이하게 삽입되기 위해, 절연판 원단을 원반 형상으로 타발되는 것이 바람직하다.
도 8은 본 발명의 다른 실시예에 따른 절연판(16a)의 측면도이다.
이와 같이 제조된 본 발명의 다른 실시예에 따른 절연판(16a)은 도 8에 도시된 바와 같이, 유리 섬유(161a)의 적어도 하나의 면에 제1 실리콘 고무(1621a)가 적층되고, 제1 실리콘 고무(1621a) 상에 제2 실리콘 고무(1622a)가 적층된다. 즉, 제1 및 제2 실리콘 고무(1621a, 1622a)가 순차적으로 코팅되어, 복수의 층으로 적층된 형태를 가진다.
상기 제1 및 제2 용액은 유리 섬유(161a) 원단의 일면에만 도포할 수도 있으나, 본 발명의 다른 실시예에 따르면, 양면에 모두 도포하는 것이 바람직하다. 그럼으로써, 유리 섬유(161a)의 양면에 제1 및 제2 실리콘 고무(1621a, 1622a)가 코팅되어, 본 발명의 다른 실시예에 따른 절연판(16a)은, 복수의 층이 적층된 형상을 가질 수 있다. 특히, 제1 실리콘 고무(1621a)가 제2 실리콘 고무(1622a)보다 먼저 코팅되므로, 제1 실리콘 고무(1621a)는 보다 더 내부에 적층되고, 제2 실리콘 고무(1622a)는 보다 더 외부에 적층된다. 도 8에는 5개의 층이 적층된 것으로 도시되어 있으나, 이에 제한되지 않고 유리 섬유(161a), 제1 및 제2 실리콘 고무(1621a, 1622a)의 사이에 별도의 층이 더 포함될 수도 있다.
도 9는 본 발명의 또 다른 실시예에 따른 원통형 이차 전지(1b)의 부분 단면도이다.
본 발명의 일 실시예에 따른 절연판(16) 및 본 발명의 다른 실시예에 따른 절연판(16a)은, 모두 유리 섬유(161, 161a)의 적어도 하나의 면에 실리콘 고무(162, 162a)가 코팅되어, 복수의 층이 적층된 형상을 가진다. 그러나, 본 발명의 또 다른 실시예에 따른 절연판(16b)은, 실리콘 고무(162b)가 유리 섬유(161a)에 적층되지 않으므로, 두께가 유리 섬유(161b)의 두께와 동일하다.
다만, 본 발명의 또 다른 실시예에 따른 절연판(16b)의 제조 방법이, 본 발명의 다른 실시예에 따른 절연판(16a)의 제조 방법과 유사하므로, 상기 도 6의 흐름도에 도시된 각 단계들의 구체적인 내용을, 도 9 내지 도 16를 참고하여 다시 설명한다. 이하, 본 발명의 또 다른 실시예에 따른 원통형 이차 전지(1b) 및 절연판(16b)에 대하여, 상기 기술한 내용과 중복되는 내용은, 설명을 생략한다. 이는 설명의 편의를 위한 것이며, 권리범위를 제한하기 위함이 아니다.
본 발명의 또 다른 실시예에 따른 절연판(16b)은 이차 전지의 케이스에 삽입되는 절연판에 있어서, 유리 섬유(161b) 원사들이 씨실과 날실로 서로 교차하여 형성되는 유리 섬유(161b); 상기 유리 섬유(161b)의 적어도 하나의 면에 코팅되는 실리콘 고무(162b)를 포함한다. 그리고 상기 실리콘 고무(162b)는, 상기 유리 섬유(161b) 원사들에 부착되는 제1 실리콘 고무(1621b) 및; 상기 유리 섬유(161b) 원사들 사이에 형성된 공극(3)에 삽입되는 제2 실리콘 고무(1622b)를 포함한다.
본 발명의 또 다른 실시예에 따른 절연판(16b)을 제조하기 위해, 제1 용액을 유리 섬유(161b) 원단의 적어도 하나의 면에 도포하고(S601), 이를 건조한다(S602)한다. 본 발명의 또 다른 실시예에 따르면, 유리 섬유(161b) 원단의 양면에 모두 도포하는 것이 바람직하다.
도 10은 본 발명의 또 다른 실시예에 따른 유리 섬유(161b) 원단에 제1 실리콘 고무(1621b)가 코팅된 개략도이다.
한편, 유리 섬유(161b)는 유리 섬유(161b) 원사들이 직교하는 형태로 서로 교차하여 형성되고, 이러한 직교하는 유리 섬유(161b) 원사들 사이에 공극(3)이 형성된다. 이 때, 제1 용액의 점도는 제2 용액의 점도보다 낮으며, 상기 본 발명의 다른 실시예에 따른 제1 용액의 점도보다도 더욱 낮다. 따라서, 유리 섬유(161b) 원단을 형성하는 유리 섬유(161b) 원사들의 주변에만, 제1 용액이 점착된다.
제1 용액을 도포한 후 나이프 등을 이용하여 유리 섬유(161b) 원단의 표면을 긁어낸다. 그럼으로써, 유리 섬유(161b) 원단의 두께를 조절할 수 있고, 또한 유리 섬유(161b) 원단의 표면을 매끄럽게 할 수 있다. 그리고 상기 제1 용액을 건조하면(S602) 제1 용매가 증발하고, 도 10에 도시된 바와 같이, 유리 섬유(161b) 원단에 제1 실리콘 고무(1621b)가 코팅된다(S603). 이 때, 본 발명의 또 다른 실시예에 따르면, 제1 실리콘 고무(1621b)는 유리 섬유(161b)의 원사에만 밀착되어 부착되므로, 직교하는 유리 섬유(161b)의 원사들 사이에 형성된 공극(3)을 메우지 않는다.
도 11은 본 발명의 또 다른 실시예에 따른 유리 섬유(161b) 원단에 제2 실리콘 고무(1622b)가 코팅된 개략도이다.
그 후에, 제2 용액을 유리 섬유(161b) 원단의 적어도 하나의 면에 도포하고(S604), 이를 건조한다(S605). 이 때, 제2 용액은 점도가 제1 용액보다는 높으나, 상기 본 발명의 다른 실시예에 따른 제2 용액보다는 점도가 낮다. 따라서, 제2 용액은 상기 유리 섬유(161b) 원사들 사이에 형성된 공극(3)에 삽입된다.
제2 용액을 도포한 후, 다시 나이프 등을 이용하여 유리 섬유(161b) 원단의 표면을 긁어낸다. 그럼으로써, 유리 섬유(161b) 원단의 두께를 조절할 수 있고, 또한 유리 섬유(161b) 원단의 표면을 매끄럽게 할 수 있다. 그리고 상기 제2 용액을 건조하면(S605), 제2 용매가 증발하고, 도 11에 도시된 바와 같이, 유리 섬유(161b) 원단에 제2 실리콘 고무(1622b)가 코팅된다(S606). 이 때, 본 발명의 또 다른 실시예에 따르면, 제2 실리콘 고무(1622b)는 직교하는 유리 섬유(161b)의 원사들 사이에 형성된 공극(3)에 삽입되어, 공극(3)을 메울 수 있다. 그럼으로써, 절연판 원단이 제조된다.
상기 절연판 원단을, 특정 형상으로 타발하면, 본 발명의 또 다른 실시예에 따른 절연판(16b)이 제조된다(S607). 이 때, 절연판(16b)이 원통형 이차 전지(1b)에 설치된다면, 이러한 원통형 이차 전지(1b)의 전지 캔(12)에 용이하게 삽입되기 위해, 절연판 원단을 원반 형상으로 타발되는 것이 바람직하다.
도 12는 도 11에서 본 발명의 또 다른 실시예에 따른 절연판(16b)을 A-A'으로 절단한 단면도이다.
본 발명의 또 다른 실시예에 따른 절연판(16b)은 도 12에 도시된 바와 같이, 제1 및 제2 실리콘 고무(162b)가 별도의 층을 형성하지 않는다. 즉, 제1 실리콘 고무(1621b)는 유리 섬유(161b) 원사들에만 밀착되어 부착되고, 제2 실리콘 고무(1622b)는 직교하는 유리 섬유(161b)의 원사들 사이에 형성된 공극(3)에 삽입된다. 따라서, 제1 및 제2 실리콘 고무(162b)가 별도의 층을 가지지 않으므로, 완성된 절연판(16b)의 두께는, 실리콘 고무(162b)가 코팅되지 않았을 때의 유리 섬유(161b)의 두께와 동일하거나 거의 유사하다.
한편 상기 기술한 바와 같이, 전극 조립체(13)의 상단 및 하단에는 각각 전극 조립체(13)를 절연하는 절연판(16b)이 배치된다. 본 발명의 또 다른 실시예에 따른 절연판(16b)은 도 9에 도시된 바와 같이, 전극 조립체의 상부에 배치되는 상부 절연판(16b)일 수 있으나, 이에 제한되지 않고 전극 조립체의 하부에 배치되는 하부 절연판(미도시)일 수도 있다.
본 발명의 또 다른 실시예에 따른 절연판(16b)이 상부 절연판으로 사용되는 경우, 내열성, 내화학성 등의 성질이 향상되므로 열 및 화학 안정성을 확보할 수 있다. 반면에, 하부 절연판으로 사용되는 경우, 열 및 화학 안정성을 확보할 수 있을 뿐만 아니라, 전극 조립체(13)의 하부에서 퍼져 나가는 열전달 경로를 차단한다. 종래에는, 전극 조립체(13)의 음극 탭을 통해 퍼져 나가는 열에 의해, 전극 조립체(13)의 하부 분리막이 소실될 수 있었고, 그에 따라 전극 조립체(13)의 하부의 모서리 단락(Edge Short)이 발생할 수 있었다. 그러나, 본 발명의 또 다른 실시예에 따른 절연판(16b)이 하부 절연판으로 사용되어, 전극 조립체(13)의 하부에서 퍼져 나가는 열전달 경로를 차단하므로, 전극 조립체(13)의 하부의 모서리 단락(Edge Short)를 방지할 수 있다.
도 13은 본 발명의 또 다른 실시예에 따른 절연판(16b)을 실제로 제조하여, 1500배 확대 촬영한 SEM 사진이고, 도 14는 본 발명의 또 다른 실시예에 따른 절연판(16b)을 실제로 제조하여, 1000배 확대 촬영한 SEM 사진이며, 도 15는 본 발명의 또 다른 실시예에 따른 절연판(16b)을 실제로 제조하여, 200배 확대 촬영한 SEM 사진이고, 도 16은 본 발명의 또 다른 실시예에 따른 절연판(16b)을 실제로 제조하여, 40배 확대 촬영한 SEM 사진이다.
도 13 및 도 14에서, 크고 둥근 원형의 형상들이, 유리 섬유(161b)의 원사들의 횡단면이고, 유리 섬유(161b)의 원사들 주변에 부착된 물질들이 실리콘 고무(162b)이다.
도 13 및 도 14에 도시된 바와 같이, 제1 실리콘 고무(1621b)가 유리 섬유(161b)의 원사들 사이에 밀착되어 부착된다. 그리고, 도 15 및 도 16에 도시된 바와 같이, 실리콘 고무(162b)가 별도의 층을 형성하지 않는다.
도 13 내지 도 16에는, 유리 섬유(161b)의 원사들 사이의 공극(3) 및 제2 실리콘 고무(1622b)가 상기 공극(3)에 삽입된 모습까지 SEM 사진에 촬영되지는 않았다. 그러나, 유리 섬유(161b)에 제2 실리콘 고무(1622b)까지 코팅되었음에도 실리콘 고무(162b)가 별도의 층을 형성하지 않은 것으로 미루어 볼 때, 제2 실리콘 고무(1622b)가 상기 공극(3)에 삽입된 것으로 판단할 수 있다.
한편, 본 발명의 또 다른 실시예에 따른 절연판(16b)을 실제로 제조한 후, 조성비를 측정하면, 다음과 같다.
물질명 조성비(wt%)
유리 섬유(Glass Fiber(Fabric)) 70 ~ 80
Siloxanes and silicones, di-Me, vinyl group-terminated 10 ~ 15
Dimethylvinylated and trimethylated silica 0 ~ 5
Aluminum trihydroxide 10 ~ 15
Titanium dioxide 0 ~ 5
표 1은 제조예의 절연판의 조성비이다.
표 1에 기재된 바와 같이, 유리 섬유는 조성비가 70 ~ 80 wt%이고, 실리콘 고무는 조성비가 20 내지 30 wt%이다. 특히, 실리콘 폴리머의 주요 사슬(Main Chain)인 Siloxanes and silicones, di-Me, vinyl group-terminated는 10 ~ 15 wt%, Dimethylvinylated and trimethylated silica는 0 ~ 5 wt%이다. 즉, 이를 합치면 실리콘 폴리머의 조성비는 10 ~ 20 wt%이다. 그리고, 난연제인 Aluminum trihydroxide는 10 ~ 15 wt%이고, 색소인 Titanium dioxide는 0 ~ 5 wt%이다. 즉, Dimethylvinylated and trimethylated silica와 Titanium dioxide는 최소값이 0 wt%이므로, 전혀 포함되지 않아도 무방하다.
본 발명의 일 실시예에 따른 이차 전지용 절연판은 이차 전지의 케이스에 삽입되는 절연판에 있어서, 유리 섬유 원사들이 씨실과 날실로 서로 교차하여 형성되는 유리 섬유; 상기 유리 섬유의 적어도 하나의 면에 코팅되는 실리콘 고무를 포함한다.
이러한 이차 전지용 절연판을 600 ℃ 이상, 심지어는 950 ℃ 이상의 온도로 가열하였을 때에도, 열분해에 따른 질량 손실이 10 내지 15 wt%, 바람직하게는 12 내지 14 wt%일 수 있다. 따라서, 본 발명의 일 실시예에 따른 이차 전지용 절연판은 내열성이 우수하다.
또한, 이러한 이차 전지용 절연판을 리튬비스(플루오로술포닐)이미드(LIFSI, Lithium bis(fluorosulfonyl)imide)이 10 wt% 이상 포함된 전해액에 함침 후, 72℃에서 1주일 이상 보관하였을 때, 상기 리튬비스(플루오로술포닐)이미드(LIFSI)의 감소량이 1 내지 3 wt% 이하, 바람직하게는 1.5 내지 2.5 wt% 이하일 수 있다. 따라서, 본 발명의 일 실시예에 따른 이차 전지용 절연판은 내화학성도 우수하다.
또한, 본 발명의 일 실시예에 따른 이차 전지용 절연판을 이용하여 이차 전지를 제조하면, 600 ℃ 이상의 온도로 가열하여 상기 이차 전지가 폭발할 때, 전지 케이스에 핀 홀이 형성되지 않을 수 있다. 따라서, 본 발명의 일 실시예에 따른 이차 전지용 절연판은 안전성도 우수하다.
또한, 본 발명의 일 실시예에 따른 이차 전지용 절연판은 양 측으로 인장시켰을 때, 인장 강도가 120 내지 150 N/mm2, 바람직하게는 인장 강도가 130 내지 140 N/mm2이고, 연신율이 5 내지 10 %, 바람직하게는 연신율이 7 내지 8 %일 수 있다. 따라서, 본 발명의 일 실시예에 따른 이차 전지용 절연판은 인장 강도 및 연신율도 우수하다.
제조예
가로 1,040 mm, 세로 300,000 mm, 두께 0.3 mm의 유리 섬유 원단을 마련하였다. 그리고, 톨루엔(Toluene) 용매 20 kg 에 실리콘 폴리머의 주요 사슬(Main Chain)로서 Siloxanes and silicones, di-Me, vinyl group-terminated 12 kg, Dimethylvinylated and trimethylated silica 4 kg을 첨가하였고, 난연제로서 Aluminum trihydroxide 13 kg을 첨가하였다. 또한, 색소로서 Titanium dioxide 3 kg을 더 첨가하여, 제1 용액 52 kg을 제조하였다.
유리 섬유 원단의 양 측에 롤러를 각각 배치시킨 후, 각각의 롤러 상단에 나이프를 배치시켰다. 그리고 제1 용액을 통에 담고, 롤러를 회전시켜 유리 섬유 원단을 제1 용액에 침지시켰다. 롤러를 역회전하여 유리 섬유 원단을 꺼내면서, 나이프가 유리 섬유 원단의 표면에 남아있는 제1 용액을 긁어냈다. 그리고, 건조로에 유리 섬유 원단을 삽입하여, 170 ℃에서 5분 동안 제1 용액을 건조시켰다.
한편, 톨루엔(Toluene) 용매 10 kg에 실리콘 폴리머의 주요 사슬(Main Chain)로서 Siloxanes and silicones, di-Me, vinyl group-terminated 12 kg, Dimethylvinylated and trimethylated silica 3 kg을 첨가하였고, 난연제로서 Aluminum trihydroxide 13 kg을 첨가하였다. 또한, 색소로서 Titanium dioxide 3 kg을 더 첨가하여, 제2 용액 41 kg을 제조하였다.
유리 섬유 원단의 양 측에 롤러를 각각 배치시킨 후, 각각의 롤러 상단에 나이프를 배치시켰다. 그리고 제2 용액을 통에 담고, 롤러를 회전시켜 유리 섬유 원단을 제2 용액에 침지시켰다. 롤러를 역회전하여 유리 섬유 원단을 꺼내면서, 나이프가 유리 섬유 원단의 표면에 남아있는 제2 용액을 긁어냈다. 그리고, 건조로에 유리 섬유 원단을 삽입하여, 170 ℃에서 5분 동안 제2 용액을 건조시켰다.
이와 같이 절연판 원단이 제조되면, 타발 장비에 삽입하여, 지름 20 mm의 원반 형상으로 타발하여, 제조예의 절연판을 제조하였다.
비교예 1
전기 방사방법을 이용하여 PET원료로 부직포 크기 가로 30 mm, 세로 30 mm, 두께 0.3 mm의 PET를 마련하였다.
이와 같이 절연판 원단이 제조되면, 타발 장비에 삽입하여, 지름 20 mm의 원반 형상으로 타발하여, 비교예 1의 절연판을 제조하였다.
비교예 2
가로 270 mm, 세로 270 mm, 두께 0.3 mm의 유리 섬유 원단을 마련하였다. 그리고, 톨루엔(Toluene) 용매 10 kg에 페놀수지 5 kg, Aluminum trihydroxide 5 kg을 첨가하여 용액 20 kg을 제조하였다.
함침된 원단 3장을 겹친 상태에서 Hot press를 이용하여 열과 압력을 가해주고, 이를 통해 경화가 완료된 페놀 절연판을 제조하였다.
이와 같이 절연판 원단이 제조되면, 타발 장비에 삽입하여, 지름 20 mm의 원반 형상으로 타발하여, 비교예 2의 절연판을 제조하였다.
물성 측정방법
1. 내열성
TA instruments 사의 내열성 시험기(모델: TGA Q500)에 상기 제조예, 비교예 1, 비교예 2의 절연판들을 각각 삽입하고, 온도 범위 25 ~ 950 ℃, 승온 속도 10 ℃/min으로 점점 열을 인가하였다. 그리고, 실시간으로 각각의 절연판들의 질량을 측정하여, 열분해에 따른 질량 손실량을 확인하였다.
2. 내화학성
용매에 염과 첨가제를 혼합하여 전해액을 제조한다. 용매는 EC(탄산에틸렌, Ethylene Carbonate), DMC(탄산디메틸, Dimethyl Carbonate), EMC(탄산에틸메틸, Ethyl Methyl Carbonate)를 혼합하여 제조하고, 염으로 LiPF6(리튬헥사플루오르포스페이트, Lithium hexafluorophosphate), LiFSI(리튬비스(플루오로술포닐)이미드, Lithium bis(fluorosulfonyl)imide) 및 각종 첨가제들을 혼합하였다.
이렇게 제조된 전해액에 상기 제조예, 비교예 1, 비교예 2의 절연판들을 각각 함침하고, 72 ℃에서 1 주일을 보관하였다. 그리고, 각각의 절연판들을 제거한 후, NMR 장비(제조사 Varian, 모델명 EQC-0279) 및 GC-MS 장비(제조사 SHIMADZU, 모델 GC2010 Plus/QP2020, EQC-0291)에 상기 전해액 시료들을 주입하여 NMR 및 GC 분석을 수행함으로써, 각 전해액 시료들의 조성비 및 반응 부산물을 분석하였다.
3. 화염전파성
본 실험에서는, 비교예 1 및 2의 절연판에 대하여 실험하지 않고, 단지 제조예의 절연판에 대하여만 실험하였다. 그럼으로써, 제조예의 절연판이 화염 전파성 성능 기준을 만족하는지를 확인하였다. 시험 기준은 IMO RESOLUTION MSC.307(88)에 따른다.
구체적으로, 주 열원과 보조 열원을 가지는 장비에 제조예의 절연판을 설치하여, 화염을 인가한다. 주 열원으로, 가로 483 mm, 세로 284 mm의 복사열판에, 순도 99.99 %의 메탄 가스를 연료로 하여 화염을 발생시킨다. 이 때 열량은 50 mm 지점에서 50.5 kW/m2, 350 mm 지점에서 23.9 kW/m2 이다. 그리고 보조 열원으로, 파일롯 불꽃의 길이는 약 230 mm이며, 프로판 가스를 연료로 하여 화염을 발생시킨다.
먼저, 장비의 작동 상태를 표준하 하기 위해, 조정 시험편을 설치한 뒤, 복사열판과 파일롯 화염을 점화하고, 최소 180초 동안 굴뚝 신호값이 연속적으로 안정되는지 확인하였다. 신호값이 안정되면 조정 시험편을 제거하고, 10초 내에 상기 제조예의 절연판을 설치하였다. 그리고 굴뚝 신호값을 연속적으로 측정하고, 불꽃 선단이 제조예의 절연판의 매 50 mm 지점에 도달하는 시간, 화염이 소멸되는 지점과 그 때의 시간을 각각 기록하였다.
만약, 시험 시작 600 초 후에도 착화되지 않거나, 화염이 소멸된 후 180 초가 경과하면, 제조예의 절연판을 제거하고 다시 표준 시험편을 설치하였다. 상기 제조예의 절연판을 총 3개 제조하여, 이러한 과정을 총 3회 반복 실시하였다.
4. 안정성
상기 제조예, 비교예 1, 비교예 2의 절연판들을 이용하여 이차 전지를 제조하고, 모두 만충전시킨다. 그리고, 600 ℃를 유지하는 가열로에 상기 이차 전지들을 넣고, 3분 내지 5분 동안 가열하면, 상기 이차 전지들이 폭발한다. 그리고 폭발한 이차 전지들을 상온에서 식힌 후, 캡 조립체를 분해하여 전지 캔의 상부 모서리에 발생한 핀 홀의 발생 여부를 확인하였다.
5. 인장강도 및 연신율
Instron 사의 만능 재료 시험기(Universal Testing Machine, UTM, 모델 3340)의 상부 지그 및 하부 지그에 상기 제조예, 비교예 1, 비교예 2의 절연판들을 각각 고정시킨다. 그리고, 300 mm/min의 속도로 인장시키면서 요구되는 힘을 측정하고, 이 힘을 인장 강도로 평가하였다. 또한, 이러한 인장 강도에 의해 연신된 길이의 비율을 연신율로 평가하였다. 이러한 실험을 2회 진행하여, 각각의 결과들의 평균을 연산하였다.
물성 측정결과
1. 내열성
온도 구간 0 ~ 320 ℃ 320 ~ 600 ℃ 600 ~ 700 ℃ Residue
제조예 3.8 wt% 9.3 wt% 0.3 wt% 86.6 wt%
비교예 1 - 100 wt% - 0 wt%
비교예 2 40.5 wt% - 59.5 wt%
도 17은 본 발명의 제조예에 따른 절연판에 대하여 내열성 실험한 결과 그래프이고, 도 18은 비교예 2에 따른 절연판에 대하여 내열성 실험한 결과 그래프이다. 그리고, 표 2는 온도 구간에 따른 각각의 절연판들의 질량 손실량과 남은 질량이다.
도 17에 도시된 바와 같이, 제조예의 절연판은 단계적으로 점차 질량이 감소하였다. 그리고, 감소한 질량 폭을 수치로 나타내어, 상기 표 2에 기재하였다. 표 2에 기재된 바와 같이, 제조예의 절연판은 0 ~ 320 ℃ 구간에서 3.8 wt%, 320 ~ 600 ℃ 구간에서 9.3 wt%, 600 ~ 700 ℃ 구간에서 0.3 wt%의 질량 손실량이 확인되었다.
반면에, 도 18에 도시된 바와 같이, 비교예 2의 절연판은 600 ℃까지 연속적으로 질량이 감소하였으며, 특히 320 ~ 600 ℃ 구간에서 급격하게 질량이 감소하였다. 표 2에 기재된 바와 같이, 비교예 2의 절연판은 0 ~ 600 ℃ 구간에서 40.5 wt%의 질량 손실량이 확인되었다.
한편, 비교예 1의 절연판은 600 ℃가 되면, 전부 연소되어 100 wt% 질량이 손실되며, 빠르게 연소되므로 그래프로 나타낼 수 없었다.
따라서, 제조예의 절연판이 600 ℃ 이상에서 열분해에 따른 질량 손실량이 13.4 wt%로 가장 적으며, 심지어는 950 ℃까지도 열 안정성을 가지는 것으로 확인되었다.
2. 내화학성
LiPF6 LiFSI 나머지 성분
Ref. 9.5 11.4 79.1
제조예 6.5 9.3 84.2
비교예 1 9.4 11.1 79.5
비교예 2 7.8 0.8 91.4
도 19는 내화학성 실험한 후 각각의 전해액 시료들의 모습을 나타낸 사진이고, 도 20은 각각의 전해액 시료들에 대하여 GC-MS 실험한 결과 그래프이다. 그리고 표 3은 각각의 전해액 시료들의 성분을 분석한 조성비이다.
표 3에 기재된 바와 같이, 모든 샘플들에서 LiPF6, LiFSI가 상대적으로 감소하고, 나머지 성분은 상대적으로 증가하는 경향이 강하다. 다만 이는, 절대적인 질량이 변한 것이 아니므로, LiPF6, LiFSI가 분해되어 전해액의 나머지 성분들로 변화하였다는 것을 의미하는 것이 아니다. 표 3에 기재된 수치들은 상대적인 질량 비율이므로, 단순히 LiPF6, LiFSI가 나머지 성분들에 비해 상대적으로 많이 분해되었다는 것을 의미한다.
표 3에 기재된 바와 같이, 본 발명의 제조예에 따른 절연판은 Ref. 전해액과 비교하였을 때, LiPF6가 3 wt%, LiFSI가 2.1 wt% 감소하였다. 그러나, 비교예 1에 따른 절연판은 LiPF6가 0.1 wt%, LiFSI가 0.3 wt% 감소하였고, 비교예 2에 따른 절연판은 LiPF6가 1.7 wt%, LiFSI가 10.6 wt% 감소하였다. 즉, 비교예 2의 절연판에서 LiFSI가 가장 많이 감소하였으며, 이는 비교예 2의 절연판이 가장 화학반응이 활발했다는 것을 알 수 있다.
도 19의 사진을 참고하더라도, 비교예 2의 절연판이 담겼던 전해액의 색상이 가장 많이 변하였다는 것을 육안으로도 확인할 수 있고, 도 20의 그래프에서도, 비교예 2의 절연판이 담겼던 전해액에서, 초기에 존재하지 않았던 부산물들이 많이 검출되었으므로, 비교예 2의 절연판이 가장 내화학성이 취약하다는 것을 확인하였다.
따라서, 제조예의 절연판이 비교예 2의 절연판보다 내화학성이 더욱 우수하다는 것을 확인하였다.
다만, 비교예 1의 절연판이 가장 내화학성이 우수하였다. 그러나, 상기 내열성 실험에서 비교예 1의 절연판이 가장 내열성이 취약하였으므로, 제조예의 절연판이 내열성과 내화학성 모두 우수하다는 것을 확인하였다.
3. 화염전파성
시험체 번호 제조예 1 제조예 2 제조예 3 평균 기준
평균연소지속열(MJ/m2) - - - - ≥1.5
소화시 임계복사열유속(kW/m2) 48.7 49.1 47.9 48.6 ≥20.0
총 열방출량(MJ) 0.01 0.06 0.02 0.03 ≤0.7
최대 열방출율(kW) 0.01 0.33 0.29 0.21 ≤4.0
불꽃 낙하 없음 없음 없음 없음 없을 것
시험체 번호 제조예 1 제조예 2 제조예 3
측정 항목 경과시간
(분:초)
평균연소지속열(MJ/m2) 경과시간
(분:초)
평균연소지속열(MJ/m2) 경과시간
(분:초)
평균연소지속열(MJ/m2)
화염 도달거리(mm) 50 00:16 0.81 00:14 0.71 00:15 0.76
100 00:28 1.39 00:20 0.99 00:21 1.04
150 - - - - - -
착화시간(분:초) 00:13 00:12 00:13
소화시간(분:초) 00:54 00:31 00:50
시험시간(분:초) 10:00 10:00 10:00
표 4은 제조예의 절연판에 대한 소화시 임계복사열유속, 총 열방출량, 최대 열방출율 및 불꽃 낙하 여부의 결과이고, 표 5는 제조예의 절연판에 대한 평균연소지속열의 결과이다.
연소 지속열이란, 시험체의 최초 노출로부터 불꽃 선단이 각 지점에 도달할 때까지의 시간과 그와 동일한 지점에서 불연성 교정판에 대응하여 투시된 복사 열류량을 곱한 값이다. 그리고 평균 연소 지속열은 연속 지속열에 의해 각기 다른 위치에서 측정한 특성값의 평균이다. 제조예의 절연판의 평균 연소 지속열은 표 5에 기재된 바와 같이, 화염 도달거리가 50 mm일 때와 100 mm일 때에는 모두 기준인 1.5에 미치지 못하였다.
그러나, 제조예 1 내지 3의 절연판들은, 각각 13초, 12초, 13초에 착화가 시작되었으나, 54초, 31초, 50초에 각각 소화가 되었고, 그 이후로는 더 이상 착화가 되지 않았다. 따라서, 연소가 되었을 때에는 평균 연소 지속열이 비록 낮을 수 있으나, 짧은 시간 내에 바로 소화되므로, 화염이 상기 절연판에서 유지되지 않는다는 것을 확인하였다. 즉, 화염이 주변에 쉽게 전파되지 않아, 안전성을 확보할 수 있다는 것을 확인하였다.
소화시 임계복사열유속이란, 연소하는 시험체의 중심선상에서 가장 멀리까지 화염이 전파되어 정지한 위치에서의 열의 유속을 의미한다. 이 기록된 열류량은 교정판을 이용하여 실시한 시험기의 교정 시험에 의해 얻어진 값을 이용한다. 제조예의 절연판의 소화시 임계복사열유속의 평균은 표 4에 기재된 바와 같이, 48.6 kW/m2 으로, 기준인 20.0 kW/m2 보다 크므로 기준을 만족한다.
총 열방출량이란 시험 기간 동안의 전체 열방출량을 의미하고, 최대 열방출율이란 시험 기간 동안의 최대 열방출량을 의미한다. 제조예의 절연판의 총 열방출량의 평균은 표 4에 기재된 바와 같이, 0.03 MJ 으로, 기준인 0.7 MJ 보다 작고, 최대 열방출율의 평균은 0.21 kW 로, 기준인 4.0 kW 보다 작으므로, 기준을 만족한다.
4. 안정성
총 개수 핀 홀 발생 수 핀 홀 발생 비율
제조예 41 0 0 %
비교예 1 15 3 20 %
비교예 2 15 0 0 %
도 21은 안정성 실험한 후 본 발명의 제조예에 따른 절연판이 조립된 이차 전지의 분해 모습을 나타낸 사진이고, 도 22는 안정성 실험한 후 비교예 1의 절연판이 조립된 이차 전지의 분해 모습을 나타낸 사진이며, 도 23은 안정성 실험한 후 비교예 2의 절연판이 조립된 이차 전지의 분해 모습을 나타낸 사진이다. 그리고, 표 6는 각각의 절연판들의 핀 홀 발생 수 및 비율이다.
도 22에 도시된 바와 같이, 비교예 1의 절연판이 조립된 이차 전지에서는 핀 홀이 발생하였다. 구체적으로 표 6에 기재된 바와 같이, 비교예 1의 절연판이 조립된 총 15개의 이차 전지 중에서, 3개의 이차 전지에서 핀 홀이 발생하였다.
반면에, 도 21 및 도 23에 도시된 바와 같이, 제조예의 절연판과 비교예 2의 절연판은 핀 홀이 전혀 발생하지 않아, 전지의 폭발에도 안정성이 가장 우수하다는 것을 확인하였다.
다만, 비교예 2의 절연판은 내열성 및 내화학성이 제조예의 절연판에 비해 취약하므로, 제조예의 절연판이 내열성, 내화학성 및 안정성까지 모두 우수하다는 것을 확인하였다.
5. 인장강도 및 연신율
인장 강도(N/mm2) 연신율(%)
1 2 평균 1 2 평균
제조예 130.12 137.16 133.64 6.89 7.37 7.13
비교예 1 60.3 53.4 56.9 47.0 51.0 49.0
비교예 2 - - - 0 0 0
표 7은 각각의 절연판들의 인장 강도 및 연신율이다.
표 7에 기재된 바와 같이, 제조예의 절연판은 평균 133.64 N/mm2 의 인장 강도에서 파단이 발생하였다. 그리고, 이 때의 연신율은 평균 7.13 %이었다.
그러나, 비교예 1의 절연판은 평균 56.9 N/mm2 의 인장 강도에서 파단이 발생하였다. 그리고, 이 때의 연신율은 평균 49.0 %이었다.
그리고, 비교예 2의 절연판은 만능 재료 시험기의 최대 허용 중량인 1000N까지 연신이 전혀 되지 않았다. 따라서, 인장 강도는 측정할 수가 없었고, 그에 따른 연신율을 평균 0 %이었다.
따라서, 비교예 1의 절연판은 인장 강도가 낮고 연신율이 높아, 작은 힘에도 쉽게 변형되는 문제가 있다. 그리고 비교예 2의 절연판은 연신 특성을 가지지 않아 Roll type으로 제작이 불가능하고, 그에 따라 Line에 투입이 될 수 없어 연속 생산이 불가능하고, 생산속도가 저하될 수 있다. 그러나, 제조예의 절연판은 인장 강도가 높고 연신율이 낮으면서, 어느 정도 연신이 가능한 특성 때문에 일측으로 권취한 Roll type으로 제작이 가능하다.
상기 기술한 바와 같이 유리 섬유(161)에 실리콘 고무(162)를 코팅하면, 종래의 열가소성 수지 또는 페놀 등으로 코팅하는 것에 비해 이차 전지용 절연판(16)을 제조함으로써, 내열성, 내화학성 등의 성질을 향상시킬 수 있다. 특히, 페놀은 중심 원소가 탄소(C)인 체인 결합 형태를 가지나, 실리콘 고무(162)의 주 원료인 실리콘 폴리머는 중심 원소가 규소(Si)인 체인 결합 형태를 가진다. 따라서, 높은 열 안정성을 가질 수 있다. 또한, 이차 전지용 절연판(16)을 타발 시 분진 발생이 억제되어, 연속 생산이 가능하고 생산량이 증가하며 제조 단가를 감소시킬 수 있다. 나아가, 이차 전지용 절연판(16)의 타발 전 절연판 원단이 유연성을 가져, 이를 권취하여 마더-롤(Mother Roll)을 용이하게 형성함으로써, 이차 전지용 절연판(16)을 용이하게 제조할 수 있다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
1, 2: 이차 전지 11: 캡 조립체
12: 전지 캔 13: 전극 조립체
131: 양극 리드 14: 비딩부
15: 크림핑부 16, 26: 절연판
111: 탑 캡 112: PTC 소자
113: 안전 벤트 114: CID 가스켓
115: CID 필터 116: 크림핑 가스켓
161: 유리 섬유 162: 실리콘 고무
1111: 기체 구멍 1621: 제1 실리콘 고무
1622: 제2 실리콘 고무

Claims (21)

  1. 이차 전지의 케이스에 삽입되는 절연판을 제조하는 방법에 있어서,
    유리 섬유 원사들이 씨실과 날실로 서로 교차하여 형성되는 유리 섬유 원단의 적어도 하나의 면에, 실리콘 고무를 코팅하여 절연판 원단을 제조하는 단계; 및
    상기 절연판 원단을 타발하는 단계를 포함하는 이차 전지용 절연판 제조 방법.
  2. 제1항에 있어서,
    상기 절연판 원단을 제조하는 단계는,
    제1 실리콘 고무를 코팅하는 단계를 포함하고,
    상기 제1 실리콘 고무를 코팅하는 단계는,
    상기 적어도 하나의 면에, 제1 실리콘 폴리머가 제1 용매에 용해되어 제조된 제1 용액을 도포하는 단계; 및
    상기 도포된 제1 용액을 건조하여 제1 실리콘 고무를 코팅하는 단계를 포함하는, 이차 전지용 절연판 제조 방법.
  3. 제2항에 있어서,
    상기 절연판 원단을 제조하는 단계는,
    제2 실리콘 고무를 코팅하는 단계를 더 포함하고,
    상기 제2 실리콘 고무를 코팅하는 단계는,
    상기 제1 실리콘 고무를 코팅하는 단계 이후에,
    상기 적어도 하나의 면에, 제2 실리콘 폴리머가 제2 용매에 용해되어 제조된 제2 용액을 도포하는 단계; 및
    상기 도포된 제2 용액을 건조하여 제2 실리콘 고무를 코팅하는 단계를 더 포함하는 이차 전지용 절연판 제조 방법.
  4. 제3항에 있어서,
    상기 제1 실리콘 고무를 코팅하는 단계는,
    상기 유리 섬유 원사에 상기 제1 실리콘 고무가 부착되고, 상기 유리 섬유 원사들 사이에 공극이 형성되도록 수행되는, 이차 전지용 절연판 제조 방법.
  5. 제4항에 있어서,
    상기 공극은,
    직교하는 상기 유리 섬유 원사들 사이에서 형성되는 공극인, 이차 전지용 절연판 제조 방법
  6. 제4항에 있어서,
    상기 제2 실리콘 고무를 코팅하는 단계는,
    상기 제2 실리콘 고무가 상기 발생한 공극에 삽입되는, 이차 전지용 절연판 제조 방법.
  7. 제3항에 있어서,
    상기 제1 용액은,
    상기 제2 용액보다 점도가 더 낮은, 이차 전지용 절연판 제조 방법.
  8. 제3항에 있어서,
    상기 제2 실리콘 고무를 코팅하는 단계가 수행되면,
    상기 유리 섬유 원단의 적어도 하나의 면에, 상기 제1 실리콘 고무 및 상기 제2 실리콘 고무가 적층되는, 이차 전지용 절연판 제조 방법.
  9. 제2항에 있어서,
    상기 제1 실리콘 고무를 코팅하는 단계가 수행되면,
    상기 유리 섬유 원단의 적어도 하나의 면에, 상기 제1 실리콘 고무가 적층되는, 이차 전지용 절연판 제조 방법.
  10. 제1항에 있어서,
    상기 절연판 원단을 제조하는 단계가 수행되면,
    상기 유리 섬유 원단과 상기 절연판 원단의 두께가 서로 동일한, 이차 전지용 절연판 제조 방법.
  11. 제1항에 있어서,
    상기 유리 섬유를 타발하는 단계에 있어서,
    상기 유리 섬유를 원반 형상으로 타발하는, 이차 전지용 절연판 제조 방법.
  12. 제1항에 있어서,
    상기 절연판 원단을 제조하는 단계에 있어서,
    상기 실리콘 고무는,
    상기 유리 섬유 원단의 양면에 모두 코팅되는, 이차 전지용 절연판 제조 방법.
  13. 이차 전지의 케이스에 삽입되는 절연판에 있어서,
    유리 섬유 원사들이 씨실과 날실로 서로 교차하여 형성되는 유리 섬유;
    상기 유리 섬유의 적어도 하나의 면에 코팅되는 실리콘 고무를 포함하는, 이차 전지용 절연판.
  14. 제13항에 있어서,
    600℃ 이상의 온도로 가열하였을 때, 열분해에 따른 질량 손실이 10 내지 15 wt% 인, 이차 전지용 절연판.
  15. 제14항에 있어서,
    950℃ 이상의 온도로 가열하였을 때, 상기 질량 손실이 10 내지 15 wt% 인, 이차 전지용 절연판.
  16. 제15항에 있어서,
    상기 질량 손실이 12 내지 14 wt% 인, 이차 전지용 절연판.
  17. 제13항에 있어서,
    리튬비스(플루오로술포닐)이미드(LIFSI, Lithium bis(fluorosulfonyl)imide)이 10 wt% 이상 포함된 전해액에 함침 후, 72℃에서 1주일 이상 보관하였을 때, 상기 리튬비스(플루오로술포닐)이미드(LIFSI)의 감소량이 1 내지 3 wt% 이하인, 이차 전지용 절연판.
  18. 제17항에 있어서,
    상기 리튬비스(플루오로술포닐)이미드(LIFSI)의 감소량이 1.5 내지 2.5 wt% 이하인, 이차 전지용 절연판.
  19. 제13항에 있어서,
    상기 이차 전지를 600℃ 이상의 온도로 가열하여 상기 이차 전지가 폭발할 때, 전지 케이스에 핀 홀이 형성되지 않는, 이차 전지용 절연판.
  20. 제13항에 있어서,
    양 측으로 인장시켰을 때, 인장 강도가 120 내지 150 N/mm2이고, 연신율이 5 내지 10 %인, 이차 전지용 절연판.
  21. 제20항에 있어서,
    상기 인장 강도가 130 내지 140 N/mm2이고, 상기 연신율이 7 내지 8 %인, 이차 전지용 절연판.
KR1020180125530A 2018-01-29 2018-10-19 이차 전지용 절연판 및 그의 제조 방법 KR102268405B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980003502.0A CN110870091B (zh) 2018-01-29 2019-01-03 用于二次电池的顶部绝缘体及其制造方法
JP2019569935A JP6947362B2 (ja) 2018-01-29 2019-01-03 二次電池用絶縁板及びその製造方法
PL19743871.6T PL3644393T3 (pl) 2018-01-29 2019-01-03 Izolator górny dla baterii akumulatorowej oraz sposób jego wytwarzania
US16/632,694 US11552358B2 (en) 2018-01-29 2019-01-03 Top insulator for secondary battery and method for manufacturing the same
PCT/KR2019/000113 WO2019146927A1 (ko) 2018-01-29 2019-01-03 이차 전지용 절연판 및 그의 제조 방법
EP19743871.6A EP3644393B1 (en) 2018-01-29 2019-01-03 Top insulator for secondary battery and method for manufacturing the same
US18/085,431 US20230124306A1 (en) 2018-01-29 2022-12-20 Top insulator for secondary battery and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180010900 2018-01-29
KR20180010900 2018-01-29

Publications (2)

Publication Number Publication Date
KR20190092233A true KR20190092233A (ko) 2019-08-07
KR102268405B1 KR102268405B1 (ko) 2021-06-24

Family

ID=67621318

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020180125530A KR102268405B1 (ko) 2018-01-29 2018-10-19 이차 전지용 절연판 및 그의 제조 방법
KR1020180125529A KR102242251B1 (ko) 2018-01-29 2018-10-19 이차 전지 및 이차 전지용 절연판

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020180125529A KR102242251B1 (ko) 2018-01-29 2018-10-19 이차 전지 및 이차 전지용 절연판

Country Status (6)

Country Link
US (3) US11552358B2 (ko)
EP (2) EP3644393B1 (ko)
JP (2) JP6947362B2 (ko)
KR (2) KR102268405B1 (ko)
CN (2) CN110870091B (ko)
PL (2) PL3644392T3 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102268405B1 (ko) * 2018-01-29 2021-06-24 주식회사 엘지에너지솔루션 이차 전지용 절연판 및 그의 제조 방법
WO2019146926A1 (ko) * 2018-01-29 2019-08-01 주식회사 엘지화학 이차 전지 및 이차 전지용 절연판
KR20210061779A (ko) * 2019-11-20 2021-05-28 주식회사 엘지에너지솔루션 이차 전지 및 이를 포함하는 디바이스
WO2024076106A1 (ko) * 2022-10-04 2024-04-11 주식회사 엘지에너지솔루션 원통형 이차전지, 그리고 이를 포함하는 배터리 팩 및 자동차

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187863A (ja) 1992-05-04 1994-07-08 Martin J Weinberg 電気絶縁材料及び絶縁された電気導体
KR20100007974A (ko) * 2007-07-18 2010-01-22 다이이치 고교 세이야쿠 가부시키가이샤 리튬 이차전지
KR20170072525A (ko) * 2015-12-17 2017-06-27 주식회사 엘지화학 절연부재를 포함하는 원통형 전지셀의 제조방법
JP2017170769A (ja) * 2016-03-24 2017-09-28 デンカ株式会社 高熱伝導性ロール状放熱シート素材の製造方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161140A (en) * 1980-05-16 1981-12-11 Denki Kagaku Kogyo Kk Manufacture of insulating heat radiating sheet
JPS58218710A (ja) * 1982-06-14 1983-12-20 日立電線株式会社 熱伝導性電気絶縁シ−ト
JPH01172280A (ja) * 1987-12-26 1989-07-07 Kuraray Co Ltd 無機繊維シート状物
JP2728607B2 (ja) 1992-11-17 1998-03-18 信越化学工業株式会社 熱伝導性複合シートの製造方法
JP2906953B2 (ja) 1993-11-05 1999-06-21 信越化学工業株式会社 絶縁性放熱シート及びその製造方法
JP2938340B2 (ja) 1994-03-29 1999-08-23 信越化学工業株式会社 熱伝導性複合シート
JPH08336878A (ja) 1995-06-13 1996-12-24 Denki Kagaku Kogyo Kk 樹脂シートの製造方法
JP3029556B2 (ja) 1995-06-22 2000-04-04 信越化学工業株式会社 熱伝導性複合シリコーンゴムシート
US6153337A (en) 1997-12-19 2000-11-28 Moltech Corporation Separators for electrochemical cells
JP3437448B2 (ja) 1998-06-09 2003-08-18 株式会社ユアサコーポレーション 密閉電池用セパレータ
JP2001283664A (ja) * 2000-03-30 2001-10-12 Kazuo Okabe 柔軟な絶縁シールドカバー材
JP3686368B2 (ja) * 2000-11-28 2005-08-24 松下電器産業株式会社 非水電解液二次電池
JP2002184391A (ja) 2000-12-18 2002-06-28 Sony Corp 円筒型電池の絶縁ワッシャー組立方法及び装置と円筒型電池
JP4030499B2 (ja) * 2003-01-22 2008-01-09 セントラル硝子株式会社 ゴム補強用ガラス繊維
CN1560158A (zh) * 2004-02-24 2005-01-05 南京康特复合材料有限责任公司 涂覆玻璃纤维布用水性硅橡胶乳液
KR100561297B1 (ko) 2004-09-09 2006-03-15 삼성에스디아이 주식회사 리튬 이차 전지
KR20090007710A (ko) * 2006-03-17 2009-01-20 산요덴키가부시키가이샤 비수 전해질 전지 및 그 제조 방법
FR2914657A1 (fr) * 2007-04-03 2008-10-10 Bluestar Silicones France Soc Procede d'obtention d'un composite materiau fibreux/silicone et ledit composite materiau fibreux/silicone
JP4748193B2 (ja) * 2008-09-01 2011-08-17 ソニー株式会社 非水電解質二次電池の絶縁板、非水電解質二次電池および非水電解質二次電池の絶縁板の製造方法
JP2011007256A (ja) * 2009-06-25 2011-01-13 Takagi Chemicals Inc 低温加工性チタン合金を用いたクランプ
JP5529002B2 (ja) * 2010-12-28 2014-06-25 日本パイオニクス株式会社 面状ヒータ
JP5885317B2 (ja) 2011-06-30 2016-03-15 エルジー ケム. エルティーディ. 優れた製造工程性と安全性を有する二次電池
KR101300585B1 (ko) 2011-06-30 2013-08-27 주식회사 엘지화학 절연부재가 장착된 이차전지
JP6083025B2 (ja) 2012-08-09 2017-02-22 新生化学工業株式会社 絶縁用樹脂成形品
JP2014192027A (ja) 2013-03-27 2014-10-06 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用セパレータの製造装置および製造方法
JP2015016397A (ja) 2013-07-09 2015-01-29 三菱製紙株式会社 不織布用塗工装置およびリチウムイオン二次電池用セパレータの製造方法
EP3163648B1 (en) * 2014-09-26 2021-08-18 LG Chem, Ltd. Case for secondary battery comprising insulating layer and lithium secondary battery comprising same
CN107112472B (zh) 2014-10-31 2020-04-07 三洋电机株式会社 电池
JP2018028962A (ja) * 2014-12-26 2018-02-22 三洋電機株式会社 円筒形電池
CN204749409U (zh) 2015-07-23 2015-11-11 海宁杰特玻纤布业有限公司 一种阻燃软膜
CN106283675B (zh) * 2016-08-10 2018-02-16 浙江凯澳新材料有限公司 在玻璃纤维织物表面涂覆硅橡胶树脂的制作方法
JP6879491B2 (ja) * 2017-04-27 2021-06-02 エルジー・ケム・リミテッド 絶縁部材、絶縁部材の製造方法及び前記絶縁部材を含む円筒形電池の製造方法
CN107627682B (zh) 2017-08-21 2019-08-13 朴商俅 一种一体化硅橡胶复合布制备方法
KR102268405B1 (ko) * 2018-01-29 2021-06-24 주식회사 엘지에너지솔루션 이차 전지용 절연판 및 그의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187863A (ja) 1992-05-04 1994-07-08 Martin J Weinberg 電気絶縁材料及び絶縁された電気導体
KR20100007974A (ko) * 2007-07-18 2010-01-22 다이이치 고교 세이야쿠 가부시키가이샤 리튬 이차전지
KR20170072525A (ko) * 2015-12-17 2017-06-27 주식회사 엘지화학 절연부재를 포함하는 원통형 전지셀의 제조방법
JP2017170769A (ja) * 2016-03-24 2017-09-28 デンカ株式会社 高熱伝導性ロール状放熱シート素材の製造方法

Also Published As

Publication number Publication date
EP3644392A1 (en) 2020-04-29
KR102268405B1 (ko) 2021-06-24
US11532846B2 (en) 2022-12-20
US20200144563A1 (en) 2020-05-07
JP2020524374A (ja) 2020-08-13
CN110870091A (zh) 2020-03-06
US20200185666A1 (en) 2020-06-11
JP6947362B2 (ja) 2021-10-13
PL3644392T3 (pl) 2024-06-10
KR102242251B1 (ko) 2021-04-21
JP6947361B2 (ja) 2021-10-13
CN110870091B (zh) 2022-10-18
US11552358B2 (en) 2023-01-10
EP3644393B1 (en) 2024-04-03
EP3644393A4 (en) 2020-10-21
PL3644393T3 (pl) 2024-06-17
JP2020524372A (ja) 2020-08-13
EP3644392B1 (en) 2024-03-06
EP3644392A4 (en) 2020-11-25
KR20190092232A (ko) 2019-08-07
CN209447923U (zh) 2019-09-27
EP3644393A1 (en) 2020-04-29
US20230124306A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
US20230124306A1 (en) Top insulator for secondary battery and method for manufacturing the same
KR100997043B1 (ko) 누액 차단에 의해 안전성이 향상된 캡 어셈블리 및 이를포함하고 있는 원통형 이차전지
KR101595607B1 (ko) 안전성이 향상된 이차전지
KR20110020756A (ko) 원통형 비수 전해액 이차전지
JP2009522714A (ja) 二次電池
US20180026238A1 (en) Sealed batteries
JP4862528B2 (ja) 電気化学素子
KR101670364B1 (ko) 이차전지용 cid조립체의 제조방법 및 그 조립체
KR101025415B1 (ko) 전기 화학 소자용 외장재, 그 제조방법, 및 이를 구비한전기 화학 소자
KR101968345B1 (ko) 이차 전지
KR102656799B1 (ko) 전지의 내부단락 유도장치, 이를 포함하는 전지 및 전지의 내부단락을 통한 안전성 평가방법
KR20150056944A (ko) 산도 인디케이터를 포함하고 있는 파우치형 이차전지
KR20170068332A (ko) 파우치형 이차 전지 및 이의 제조방법
CN110098371B (zh) 二次电池和用于二次电池的顶部绝缘体
KR20160016202A (ko) 미세 캡슐이 포함된 분리막, 그의 제조방법 및 상기 분리막을 포함하는 이차전지
KR100898670B1 (ko) 리튬 이차 전지용 세퍼레이터 및 이를 채용한 리튬 이차전지
JP2015210846A (ja) 非水電解質二次電池用正極および非水電解質電池
US20240154280A1 (en) Cylindrical non-aqueous electrolyte secondary battery
KR101311493B1 (ko) 리튬 이차전지
KR102176432B1 (ko) 원통형 이차 전지 절연부재
KR20210017557A (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right