KR20190005707A - 디옥시바이오라세인 생산능이 향상된 재조합 미생물 및 그를 이용한 디옥시바이오라세인을 생산하는 방법 - Google Patents

디옥시바이오라세인 생산능이 향상된 재조합 미생물 및 그를 이용한 디옥시바이오라세인을 생산하는 방법 Download PDF

Info

Publication number
KR20190005707A
KR20190005707A KR1020180001285A KR20180001285A KR20190005707A KR 20190005707 A KR20190005707 A KR 20190005707A KR 1020180001285 A KR1020180001285 A KR 1020180001285A KR 20180001285 A KR20180001285 A KR 20180001285A KR 20190005707 A KR20190005707 A KR 20190005707A
Authority
KR
South Korea
Prior art keywords
microorganism
gene
vioabce
cell
deoxyviolacein
Prior art date
Application number
KR1020180001285A
Other languages
English (en)
Other versions
KR102006904B1 (ko
Inventor
제임스 미첼 로버트
최성열
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of KR20190005707A publication Critical patent/KR20190005707A/ko
Application granted granted Critical
Publication of KR102006904B1 publication Critical patent/KR102006904B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/16Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing two or more hetero rings
    • C12P17/165Heterorings having nitrogen atoms as the only ring heteroatoms

Landscapes

  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

디옥시바이오라세인 생산능이 증가된 재조합 미생물, 및 그를 이용한 디옥시바이오라세인을 생산하는 방법에 관한 것이다. 일 양상에 따른 디옥시바이오라세인 생산능이 증가된 재조합 미생물을 사용하면 미생물의 생장 속도가 지연되지 않아 디옥시바이오라세인의 생산 단계를 단축할 수 있으므로 짧은 시간 동안 고효율 및 고수율로 디옥시바이오라세인을 생산할 수 있다.

Description

디옥시바이오라세인 생산능이 향상된 재조합 미생물 및 그를 이용한 디옥시바이오라세인을 생산하는 방법{Microorganism including genetic modification that increase productivity of deoxyviolacein and method for producing deoxyviolacein using the same}
디옥시바이오라세인 생산능이 증가된 재조합 미생물, 및 그를 이용한 디옥시바이오라세인을 생산하는 방법에 관한 것이다.
인류의 항생제 사용으로부터 항생제에 내성을 갖는 슈퍼박테리아 문제가 대두되었으며 항생제의 사용량이 늘어날 때마다 슈퍼박테리아의 종류와 양이 늘어난다. 항생제 내성 균주 경우 기존의 항생제를 이용해 효과적인 살균, 정균 작용이 불가능하며 이로 인해 병원내 감염 또한 크게 증가하기 때문에 항생제 내성균에 대한 항생 작용을 할 수 있는 물질에 대한 요구가 증가하고 있다.
한편, 디옥시바이오라세인(Deoxyviolacein)은 바이오라세인의 공대사물질(co-metabolite)로, 항종양 활성이 있으며, 그람 양성균, 항생제 내성균(methicillin-resistant Staphylococcus aureus: MSRA) 및 곰팡이 식물 병원체에 대한 생물학적 활성을 갖는 물질로 알려져 있다. 이처럼 디옥시바이오라세인이 현재 병원내 감염의 대부분을 차지하는 MRSA를 효과적으로 제거하기 때문에 디옥시바이오라세인의 수요가 매우 증가하고 있는 추세이다. 그런데, 디옥시바이오라세인은 야생형 박테리아에서 내인적으로 생산되지만 매우 낮은 농도로 생산되기 때문에 이를 분리정제하여 대량생산 하지는 못하고 있는 실정이다.
따라서, MRSA를 효과적으로 제거할 수 있는 디옥시바이오라세인을 대량생산하기 위하여 디옥시바이오라세인 생산능이 증가된 재조합 미생물과 이러한 미생물로부터 디옥시바이오라세인을 생산하는 방법에 대한 연구가 필요하다.
일 양상은 모세포에 비하여 vioABCE 유전자 클러스터(gene cluster)의 활성이 증가되도록 하는 유전적 변형을 포함하는 재조합 미생물을 제공하는 것이다.
다른 양상은 상기 미생물을 배양하여 디옥시바이오라세인을 생산하는 방법을 제공한다.
다른 양상은 디옥시바이오라세인 생산능이 증가된 미생물을 제조하는 방법을 제공한다.
본 명세서에서 사용된 용어 "활성 증가 (increase in activity)", 또는 "증가된 활성 (increased activity)"은 세포, 폴리뉴클레오티드, 단백질, 또는 효소의 활성의 검출가능한 증가를 나타낼 수 있다. "활성 증가 (increase in activity)", 또는 "증가된 활성 (increased activity)"은 주어진 유전적 변형 (genetic modification)을 갖지 않은 세포, 폴리뉴클레오티드, 단백질, 또는 효소 (예, 본래 또는 "야생형 (wild-type)"의 세포, 폴리뉴클레오티드, 단백질, 또는 효소)와 같은, 동일한 타입의 비교 세포, 폴리뉴클레오티드, 단백질, 또는 효소의 수준 보다 더 높은 변형된 (예, 유전적으로 조작된) 세포, 폴리뉴클레오티드, 단백질, 또는 효소의 활성을 나타낼 수 있다. "세포의 활성 (cell activity)"이란 세포의 특정 폴리뉴클레오티드, 단백질 또는 효소의 활성을 나타낼 수 있다. 예를 들면, 상기 변형된 또는 조작된 세포, 폴리뉴클레오티드, 단백질, 또는 효소의 활성은 동일 타입의 조작되지 않은 세포, 폴리뉴클레오티드, 단백질, 또는 효소, 예를 들면, 야생형 세포, 폴리뉴클레오티드, 단백질, 또는 효소의 활성보다 약 5% 이상, 약 10% 이상, 약 15% 이상, 약 20% 이상, 약 30% 이상, 약 50% 이상, 약 60% 이상, 약 70% 이상, 또는 약 100% 이상 증가된 것일 수 있다. 세포 중 특정 폴리뉴클레오티드, 단백질 또는 효소의 활성은 모세포, 예를 들면, 조작되지 않은 세포 중의 동일 폴리뉴클레오티드, 단백질 또는 효소의 활성보다 약 5% 이상, 약 10% 이상, 약 15% 이상, 약 20% 이상, 약 30% 이상, 약 50% 이상, 약 60% 이상, 약 70% 이상, 또는 약 100% 이상 증가된 것일 수 있다. 폴리뉴클레오티드, 단백질 또는 효소의 증가된 활성을 갖는 세포는 당업계에 공지된 임의의 방법을 사용하여 확인될 수 있다. 상기 증가된 활성을 갖는 세포는, 유전적 변형을 갖지 않은 세포에 비하여 하나 이상의 폴리뉴클레오티드, 효소 또는 폴리펩티드의 활성을 증가시키는 유전적 변형 (genetic modification)을 갖는 것일 수 있다.
본 명세서에 있어서, 용어 "유전적 변형 (genetic modification)"은 폴리펩티드를 코딩하는 폴리뉴클레오티드를 도입하는 변형 (예, 유전자의 카피수의 증가), 모세포의 유전물질에 대한 하나 이상의 뉴클레오티드의 치환, 부가, 삽입, 또는 결실, 또는 모세포의 유전물질에 대한 화학적 변이를 포함한다. 그러한 유전적 변형은 언급된 종 (referenced species)에 대한 이질성 (heterologous), 동질성 (homologous), 또는 이질성 및 동질성 폴리펩티드를 위한 코딩 영역 (coding region) 및 그의 기능적 단편 (functional fragments thereof)에 대한 것을 포함한다. 또한, 상기 유전적 변형은 유전자 또는 오페론의 발현을 변경시키는 비코딩 조절 영역 (non-coding regulatory regions)의 변형을 포함한다. 비코딩 영역은 5'-비코딩 서열 (5'-non coding sequence) 및/또는 3'-비코딩 서열 (3'-non coding sequence)을 포함한다.
용어 "카피 수 증가 (copy number increase)"는 유전자의 도입 또는 증폭에 의한 것일 수 있으며, 조작되지 않은 세포에 존재하지 않는 유전자를 유전적 조작에 의해 갖게 되는 경우도 포함한다. 상기 유전자의 도입은 벡터와 같은 비히클을 매개하여 이루어질 수 있다. 상기 도입은 상기 유전자가 게놈에 통합되지 않은 임시적 (transient) 도입이거나 게놈에 삽입되는 것일 수 있다. 상기 도입은 예를 들면, 목적하는 폴리펩티드를 코딩하는 폴리뉴클레오티드가 삽입된 벡터를 상기 세포로 도입한 후, 상기 벡터가 세포 내에서 복제되거나 상기 폴리뉴클레오티드가 게놈으로 통합됨으로써 이루어질 수 있다.
외부에서 도입되거나 또는 카피 수가 증가되는 폴리뉴클레오티드는 내인성 (endogenous) 또는 외인성 (exogenous)일 수 있다. 상기 내인성 유전자는 미생물 내부에 포함된 유전물질 상에 존재하던 유전자를 말한다. 외인성 유전자는 숙주 세포 게놈으로 도입 (integration)되는 등의 숙주 세포 내로 유전자가 도입되는 것을 의미하며, 도입되는 유전자는 도입되는 숙주세포에 대해 동종 (homologous) 또는 이종 (heterologous)일 수 있다.
"이종성 (heterologous)"은 천연 (native)이 아닌 외인성 (foreign)을 의미할 수 있다.
용어 "유전자"는 전사 및 번역 중 하나 이상에 의하여 발현 산물, 예를 들면, mRNA 또는 단백질을 생성할 수 있는 핵산 단편을 의미하며, 코딩영역 또는 코딩영역 외 5'-비코딩 서열 (5'-non coding sequence)과 3'-비코딩 서열(3'-non coding sequence) 등의 조절 (regulatory) 서열을 포함할 수 있다.
"세포 (cell)", "균주 (strain)", 또는 "미생물 (microorganism)"은 교체 사용이 가능한 것으로서, 대장균, 효모, 박테리아, 또는 곰팡이 등을 포함할 수 있다.
반면, 본 명세서에서 사용된 용어 "활성 감소 (decrease in activity)" 또는 "감소된 활성 (decreased activity)"은 모세포 (예, 유전적으로 조작되지 않은 세포) 중에서 측정된 것보다 더 낮은 폴리뉴클레오티드, 효소 또는 폴리펩티드의 활성을 갖는 세포를 나타낸다. 또한, "활성 감소 (decrease in activity)" 또는 "감소된 활성 (decreased activity)"은 본래의 (original) 또는 야생형 (wild-type)의 폴리뉴클레오티드, 효소 또는 폴리펩티드보다 더 낮은 활성을 갖는 분리된 폴리뉴클레오티드, 효소 또는 폴리펩티드를 나타낸다. 활성 감소 또는 감소된 활성은 활성이 없는 것 (no activity)을 포함한다. 예를 들면, 변형된 (예, 유전적으로 조작된) 세포, 또는 효소에 대한 기질로부터 생성물로의 효소 전환 활성이 상기 변형을 갖지 않은 세포 또는 효소, 예를 들면, 모세포 또는 "야생형 (wild-type)"의 세포 또는 효소의 효소 전환활성에 비하여 약 20% 이상, 약 30% 이상, 약 40% 이상, 약 50% 이상, 약 55% 이상, 약 60% 이상, 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85% 이상, 약 90% 이상, 약 95% 이상, 또는 약 100% 감소된 것일 수 있다. 효소 또는 세포의 감소된 활성은 당업계에 공지된 임의의 방법을 사용하여 확인될 수 있다. 상기 활성 감소는 변형되지 않은 유전자를 갖는 세포, 예를 들면, 모세포 또는 야생형 세포에 비하여, 효소가 발현되더라도 효소의 활성이 없거나 감소된 경우, 효소를 코딩하는 유전자가 발현되지 않거나 발현되더라도 본래 유전자 조작이 되지 않은 유전자에 비하여 발현량이 감소된 경우를 포함한다. 상기 감소된 활성을 갖는 세포는, 유전적 변형을 갖지 않은 세포에 비하여 하나 이상의 폴리뉴클레오티드, 효소 또는 폴리펩티드의 활성을 감소시키는 유전적 변형 (genetic modification)을 갖는 것일 수 있다.
용어 "모세포 (parent cell)"는 본래 세포 (original cell), 예를 들면, 조작된 대장균 세포에 대하여 동일 타입의 유전적으로 조작되지 않은 세포를 나타낸다. 특정한 유전적 변형에 대하여, 상기 "모세포"는 상기 특정 유전적 변형 (genetic modification)을 갖지 않은 세포이지만, 다른 상황에 대하여는 동일한 것일 수 있다. 따라서, 상기 모세포는 주어진 폴리뉴클레오티드, 단백질의 증가된 활성을 갖는 유전적으로 조작된 대장균 세포를 생산하는데 출발 물질 (starting material)로 사용된 세포일 수 있다.
용어 “모세포(parent cell)” 또는 “모균주 (parent strain)”는 해당 유전적 변형(subject genetic modification)을 위해 사용된 것일 수 있다. 상기 모세포는 상기 유전적 변형을 제외하고는 해당 세포(subject cell)와 동일하기 때문에, 상기 유전적 변형에 대한 기준 세포(reference cell)일 수 있다. 상기 “유전적 변형(genetic modification)”은 세포의 유전물질의 구성 또는 구조가 인위적으로 변경된 것을 의미한다. 상기 모세포는 해당 유전적 변형, 예를 들면 활성이 증가되도록 하는 유전적 변형을 갖지 않는 세포일 수 있다. 상기 모세포는 모 대장균 세포(parent Escherichia cell)일 수 있다.
용어 “야생형(wild-type)” 폴리펩티드 또는 폴리뉴클레오티드는 특정 유전적 변형을 갖지 않는 폴리펩티드 또는 폴리뉴클레오티드일 수 있고, 상기 유전적 변형은 유전적으로 조작된 폴리펩티드 또는 폴리뉴클레오티드를 수득할 수 있게 하는 것일 수 있다.
용어 "파괴 (disruption)"는 언급된 유전자 (referenced gene)의 발현이 감소되도록 하는 유전적 변형을 나타낸다. 상기 파괴는 언급된 유전자의 발현이 없도록 하는 유전적 변형 (이하, 유전자의 "불활성화 (inactivation)"이라고 한다.) 또는 유전자의 발현은 있으나 감소된 수준으로 발현되도록 하는 유전적 변형 (이하, 유전자의 "감쇄 (attenuation)"이라고 한다.)을 포함한다. 상기 불활성화는 유전자의 기능적 산물 (functional product)이 발현되지 않는 것뿐만 아니라 발현은 되지만 기능적 산물이 발현되지 않는 것을 포함한다. 상기 감쇄는 유전자의 기능적 산물의 발현량 감소를 포함한다. 즉, 상기 감쇄는 유전자의 순 발현량은 증가하였더라도 기능적 산물의 발현량이 감소되는 것을 포함한다. 여기서 유전자의 기능적 산물이란 모세포 또는 야생형 세포에서 상기 유전자의 산물 (예, 효소)이 갖는 생화학적 또는 생리적 기능 (예, 효소 활성)을 보유하고 있는 것을 말한다. 따라서, 상기 파괴는 유전자의 기능적 파괴 (functional disruption)를 포함한다. 상기 유전적 변형은 폴리펩티드를 코딩하는 폴리뉴클레오티드를 도입하는 변형, 모세포의 유전물질에 대한 하나 이상의 뉴클레오티드의 치환, 부가, 삽입, 또는 결실, 또는 모세포의 유전물질에 대한 화학적 변이를 포함한다. 그러한 유전적 변형은 언급된 종 (referenced species)에 대한 이질성 (heterologous), 동질성 (homologous), 또는 이질성 및 동질성 폴리펩티드를 위한 코딩 영역 (coding region) 및 그의 기능적 단편 (functional fragments thereof)에 대한 것을 포함한다. 또한, 상기 유전적 변형은 유전자 또는 오페론의 발현을 변경시키는 비코딩 조절 영역 (non-coding regulatory regions)의 변형을 포함한다. 비코딩 영역은 5'-비코딩 서열(5'-non coding sequence) 및/또는 3'-비코딩 서열(3'-non coding sequence)을 포함한다.
상기 유전자의 파괴는 상동 재조합, 지향된 돌연변이유발 (directed mutagenesis), 또는 분자 진화 (molecular evolution)와 같은 유전적 조작법에 의해 달성될 수 있다. 세포가 복수 개의 동일 유전자, 또는 유전자의 2 이상의 파라로그 (paralogs)를 포함한 경우, 하나 이상의 유전자는 파괴될 수 있다. 예를 들면, 상기 유전적 변형은 유전자의 일부 서열을 포함하는 벡터를 세포에 형질전환하고, 세포를 배양하여 상기 서열이 세포의 내인성 유전자와 상동 재조합이 일어나도록 하여 상기 유전자를 파괴되도록 한 후, 상동 재조합이 일어난 세포를 선별 마커를 사용하여 선별함으로써 이루어질 수 있다.
본 명세서에서 사용된 용어 "유전자"는 특정 단백질을 발현하는 핵산 단편을 의미하며, 5'-비코딩 서열 (5'-non coding sequence) 및/또는 3'-비코딩 서열 (3'-non coding sequence)의 조절 서열 (regulatory sequence)을 포함하거나 포함하지 않을 수 있다.
본 발명에서 사용된 폴리펩티드 또는 폴리뉴클레오티드의 "서열 동일성 (sequence identity)"은 특정 비교 영역에서 양 서열을 최대한 일치되도록 얼라인시킨 후 서열간의 아미노산 잔기 또는 염기의 동일한 정도를 의미한다. 서열 동일성은 특정 비교 영역에서 2개의 서열을 최적으로 얼라인하여 비교함으로써 측정되는 값으로서, 비교 영역 내에서 서열의 일부는 대조 서열 (reference sequence)과 비교하여 부가, 삭제되어 있을 수 있다. 서열 동일성 백분율은 예를 들면, 비교 영역 전체에서 두 개의 최적으로 정렬된 서열을 비교하는 단계, 두 서열 모두에서 동일한 아미노산 또는 핵산이 나타나는 위치의 갯수를 결정하여 일치된 (matched) 위치의 갯수를 수득하는 단계, 상기 일치된 위치의 갯수를 비교 범위 내의 위치의 총 갯수 (즉, 범위 크기)로 나누는 단계, 및 상기 결과에 100을 곱하여 서열 동일성의 백분율을 수득하는 단계에 의해 계산될 수 있다. 상기 서열 동일성의 퍼센트는 공지의 서열 비교 프로그램을 사용하여 결정될 수 있으며, 일례로 BLASTN(NCBI), CLC Main Workbench (CLC bio), MegAlignTM(DNASTAR Inc) 등을 들 수 있다.
여러 종의 동일하거나 유사한 기능이나 활성을 가지는 폴리펩티드 또는 폴리뉴클레오티드를 확인하는데 있어 여러 수준의 서열 동일성을 사용할 수 있다. 예를 들어, 50%이상, 55%이상, 60%이상, 65%이상, 70%이상, 75%이상, 80%이상, 85%이상, 90%이상, 95%이상, 96%이상, 97%이상, 98%이상, 99%이상 또는 100% 등을 포함하는 서열 동일성이다.
본 명세서에 사용된 용어 "외인성 (exogenous)"은 언급된 분자 (referenced molecule) 또는 언급된 활성 (referenced activity)이 숙주 세포로 도입된 것을 의미한다. 분자는 예를 들면, 숙주 염색체 내로의 삽입에 의하는 것과 같은 코딩 핵산 (encoding nucleic acid)의 숙주 유전 물질 내로의 도입 또는 플라스미드와 같은 비염색체 유전물질로서 도입될 수 있다. 코딩 핵산의 발현과 관련하여, 상기 용어 "외인성"은 상기 코딩 핵산이 개체 내로 발현 가능한 형태로 도입된 것을 나타낸다. 생합성 활성과 관련하여, 상기 용어 "외인성"은 숙주 모세포에 도입된 활성을 나타낸다. 그 기원 (source)는 예를 들면, 숙주 모세포에 도입된 후 언급된 활성을 발현하는 동질성 (homologous) 또는 이질성 (heterologous) 코딩 핵산일 수 있다. 그러므로, 용어 "내인성 (endogenous)"은 상기 숙주 세포에 존재하는 언급된 분자 또는 활성을 나타낸다. 비슷하게, 코딩 핵산의 발현과 관련하여, 상기 용어 "내인성"은 개체 내에 포함된 코딩 핵산의 발현을 나타낸다. 용어 "이질성 (heterologous)"은 언급된 종 외의 다른 기원으로부터의 분자 또는 활성을 나타내고 용어 "동질성 (homologous)"은 숙주 모세포로부터의 분자 또는 활성을 나타낸다. 따라서, 코딩 핵산의 외인성 발현은 이질성 (heterologous) 또는 동질성 (homologous) 코딩 핵산 중 어느 하나 또는 둘 다를 이용할 수 있다.
또한, 본 명세서에서 사용된 용어 "유전적 조작 (genetic engineering)" 또는 "유전적으로 조작된 (genetically engineered)"은 세포에 대하여 하나 이상의 유전적 변형 (genetic modification)을 도입하는 행위 또는 그에 의하여 만들어진 세포를 나타낸다.
본 명세서에 사용된 용어 디옥시바이오라세인(Deoxyviolacein)은 바이오라세인(Violacein)의 공대사물질로, IUPAC 명칭은 (3E)-3-[5-(1H-indol-3-yl)-2-oxo-1H-pyrrol-3-ylidene]-1H-indol-2-one이고, 하기와 같은 구조를 갖는다.
Figure pat00001
본 명세서에 사용된 용어 유전자 클러스터(gene cluster)는 특정 물질 대사에서 서로 관련된 유전자들이 게놈 내에서 긴밀하게 연결되어 있는 유전자 군을 의미할 수 있다.
일 양상은 모세포에 비하여 vioABCE 유전자 클러스터(gene cluster)의 활성이 증가되도록 하는 유전적 변형을 포함하는 재조합 미생물을 제공한다.
vioABCE 유전자 클러스터는 디옥시바이오라세인 생산에 관여하는 유전자 클러스터일 수 있다. 상기 vioABCE 유전자 클러스터는 vioA, vioB, vioC, 및 vioE 유전자를 지칭하는 것일 수 있다. 상기 vioABCE 유전자 클러스터의 활성 증가는 vioABCE 유전자 클러스터 발현의 증가를 포함할 수 있다.
상기 재조합 미생물은 vioABCE 유전자 클러스터의 활성이 증가되도록 하는 유전적 변형을 포함하거나, 외인성 vioABCE 유전자를 포함하는 것일 수 있다.
상기 재조합 미생물은 모세포에 비하여 vioABCE 유전자 클러스터의 활성이 증가되어 있는 유전적으로 조작된 세포일 수 있다. 상기 유전적으로 조작된 세포는 디옥시바이오라세인을 생산할 수 있다. 상기 세포는 vioABCE 유전자 클러스터를 코딩하는 유전자를 포함할 수 있다.
상기 재조합 미생물은 상기 vioABCE 유전자의 카피 수 증가를 갖는 것일 수 있다. 상기 재조합 미생물은 상기 vioABCE 유전자를 코딩하는 외인성(exogenous) 유전자를 포함하는 것일 수 있다. 즉, 상기 카피 수 증가는 상기 vioABCE 유전자의 세포 외부로부터 내부로의 도입에 의한 것일 수 있다. 상기 vioABCE 유전자 클러스터는 서열번호 2의 폴리뉴클레오티드 서열과 약 60% 이상, 70% 이상, 80% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상의 염기 서열 동일성을 갖는 폴리뉴클레오티드일 수 있다.
상기 외인성 유전자는 유전자에 작동 가능하도록 연결된 외인성 프로모터에 의해 적절히 조절되는 것일 수 있다. 상기 프로모터에 관해서는 후술할 바와 같다.
또한, 상기 재조합 미생물은 상기 vioABCE 유전자 클러스터의 발현 조절 서열의 변형을 갖는 것일 수 있다. 상기 유전자의 발현 조절 서열은 상기 유전자 발현을 위한 프로모터 또는 터미네이터일 수 있다. 상기 발현 조절 서열은 유전자 발현에 영향을 줄 수 있는 모티프를 코딩하는 서열일 수 있다. 상기 모티프는 예를 들면, 이차 구조-안정화 모티프, RNA 불안정화 모티프, 스플라이스-활성화 모티프, 폴리아데닐화 모티프, 아데닌-풍부 서열 (adenine-rich sequence), 또는 엔도뉴클레아제 인식 부위일 수 있다.
상기 프로모터는 상기 vioABCE 유전자와 작동가능하게 연결된 외인성 프로모터일 수 있다. 상기 프로모터는 구성적 프로모터(constitutive promoter)일 수 있다. 상기 프로모터는 숙주 세포 유전자에 대하여 천연인 프로모터와 약 50%, 60%, 70%, 80%, 90%, 95% 또는 95% 이상 상동(homologous)인 것일 수 있다. 또한 상기 프로모터는 숙주 세포에 대하여 천연인 유전자에 대한 프로모터와 약 50%, 60%, 70%, 80%, 90%, 95% 또는 95% 이상 상동인 것일 수 있다.
상기 터미네이터는 숙주 세포 유전자에 대하여 천연인 터미네이터와 약 50%, 60%, 70%, 80%, 90%, 95% 또는 95% 이상 상동(homologous)인 것일 수 있다. 또한 상기 프로모터는 숙주 세포에 대하여 천연인 유전자에 대한 터미네이터와 약 50%, 60%, 70%, 80%, 90%, 95% 또는 95% 이상 상동인 것일 수 있다.
상기 미생물은 Escherichia 속에 속하는 것일 수 있다.
상기 미생물은 대장균(Escherichia coli)일 수 있다. 상기 대장균은 대장균 W3110, GT 1002, MG1655, 또는 BL21 종을 포함할 수 있다.
상기 vioABCE 유전자 클러스터는 박테리아, 대장균, 진균, 포유동물 또는 파충류로부터 유래한 것을 포함할 수 있다. 상기 유전자 클러스터는 대장균과 같은 Escherichia 속, Chromobacterium 속, 또는 Janthinobacterium 속에서 유래한 vioABCE 유전자일 수 있으나 이제 제한되는 것은 아니다.
상기 vioABCE 유전자 클러스터는 벡터 내 포함될 수 있다. 상기 벡터는 복제개시점, 프로모터, vioABCE 유전자를 코딩하는 폴리뉴클레오티드, 및 터미네이터를 포함할 수 있다. 상기 프로모터는 상술한 바와 동일하다. 상기 터미네이터는 상술한 바와 동일하다. 상기 벡터는 서열번호 1의 서열을 갖는 것일 수 있다. 구체적으로, 상기 벡터는 플라스미드 BBa_J72214-BBa_J72090(Addgene Plasmid # 40782)을 포함할 수 있다. 상기 플라스미드 BBa_J72214-BBa_J72090는 BBa_J72214 벡터에 vioABCE 유전자를 도입하여 제조된 것일 수 있다. 또한 상기 플라스미드 BBa_J72214-BBa_J72090는 도 7의 구조를 가질 수 있다. vioABCE 유전자를 코딩하는 폴리뉴클레오티드가 세포 내에서 활성 폴리뉴클레오티드를 생산하기 위해 기능하는 경우, 상기 폴리뉴클레오티드는 세포 내에서 "기능성 (functional)"인 것으로 고려된다.
상기 재조합 미생물은 단일의 vioABCE 유전자 클러스터, 또는 2 내지 10 카피수의 복수의 vioABCE 유전자 클러스터를 포함할 수 있다. 상기 재조합 미생물은 예를 들면 1 내지 8, 1 내지 7, 1 내지 6, 1 내지 5, 1 내지 4, 또는 1 내지 3 카피의 vioABCE 유전자 클러스터를 포함할 수 있다. 상기 재조합 미생물이 복수의 vioABCE 유전자 클러스터를 포함하는 경우, 각각의 폴리뉴클레오티드는 동일하거나 둘 이상의 상이한 vioABCE 유전자의 조합일 수 있다. 외인성 vioABCE 유전자의 복수의 카피는 숙주 세포의 게놈 내에 동일한 유전자좌 (locus) 또는 여러 유전자좌에 포함될 수 있고, 각 카피의 프로모터나 터미네이터가 동일하거나 상이할 수 있다.
상기 미생물은 모세포에 비해 증가된 디옥시바이오라세인 생산능을 갖는 것일 수 있다.
본 명세서에서, 용어 "증가된 디옥시바이오라세인 생산능을 갖는 재조합 미생물"이란, 자연적으로 디옥시바이오라세인 생산능이 없는 야생형 미생물에 디옥시바이오라세인의 생산능이 부여된 미생물 또는 자연적으로 디옥시바이오라세인 생산능을 가지고 있는 야생형 미생물에 디옥시바이오라세인의 생산능이 증가된 미생물을 의미한다.
본 발명에서 용어 "생산능 증가"는 디옥시바이오라세인 생산의 검출가능한 증가를 나타낼 수 있다. 디옥시바이오라세인 생산 증가는 당업계에 공지된 임의의 방법을 사용하여 확인할 수 있다.
상기 재조합 미생물은 유전적 변형에 의하여 모세포에 비하여 생장 속도가 지연되지 않으므로 디옥시아비오라세인 생산의 단계에 소요되는 시간을 단축할 수 있다. 따라서, 짧은 시간 동안 고효율 및 고수율로 디옥시바이오라세인을 생산하는데 사용할 수 있다.
다른 양상은 상기한 재조합 미생물을 배양하여 디옥시바이오라세인을 생산하는 단계를 포함하는 디옥시바이오라세인을 생산하는 방법을 제공한다.
상기 “디옥시바이오라세인 생산능이 증가된 재조합 미생물”에 대해서는 상기한 바와 같다.
상기 배양은 탄소원, 예를 들면, 글루코스를 함유하는 배지에서 수행될 수 있다. 미생물 배양에 사용되는 배지는 적절한 보충물을 함유한 최소 또는 복합 배지와 같은, 숙주 세포의 성장에 적합한 임의의 통상적인 배지일 수 있다. 적합한 배지는 상업적인 판매자로부터 입수 가능하고 또는 공지된 제조법에 따라 제조될 수 있다.
상기 배지는 배양에 선택되는 산물에 따라 특정한 미생물의 요구 조건을 만족시킬 수 있는 배지일 수 있다. 상기 배지는 탄소원, 질소원, 염, 미량 원소, 및 이들의 조합으로 이루어진 군으로부터 선택되는 배지일 수 있다. 상기 배지는 예를 들면 MR 배지, LB 배지, HS 배지 또는 그의 조합인 것일 수 있다.
배양 조건은 미생물을 배양하기 위한 조건을 의미한다. 이러한 배양 조건은 예를 들어, 미생물이 이용하는 탄소원, 질소원 또는 산소 조건일 수 있다. 미생물이 이용할 수 있는 탄소원은 단당류, 이당류 또는 다당류가 포함할 수 있다. 상기 탄소원은 자화가능한 당으로서, 글루코스, 프럭토스, 만노스, 또는 갈락토스를 포함할 수 있다. 상기 질소원은 유기 질소 화합물, 또는 무기 질소 화합물일 수 있다. 상기 질소원은 아미노산, 아미드, 아민, 질산염, 또는 암모늄염 일 수 있다. 미생물을 배양하는 산소 조건에는 정상 산소 분압의 호기성 조건, 대기중에 0.1% 내지 10%의 산소를 포함하는 저산소 조건, 또는 산소가 없는 혐기성 조건이 있다. 대사 경로는 미생물이 실제로 이용 가능한 탄소원 및 질소원에 맞추어 수정될 수 있다.
상기 배양 조건은 선택되는 산물, 예를 들면, 디옥시바이오라세인 생산에 적합하게 적절히 조절될 수 있다. 상기 배양은 세포 증식을 위하여 호기성 또는 혐기성 조건에서 이루어질 수 있다. 상기 배양은 교반 없이 정치 배양 (static culture)하는 것일 수 있다.
상기 방법은 배양물로부터 디옥시바이오라세인을 분리하는 단계를 포함한다.
상기 분리는 예를 들면 침전된 디옥시바이오라세인에 에탄올을 첨가하여 추출함으로써 수행할 수 있다.
상기 분리하는 단계는 정제 공정을 포함할 수 있다. 정제는 당업계에서 일반적으로 사용되는 정제 공정을 선택하여 수행할 수 있다.
다른 양상은 미생물에 vioABCE 유전자 클러스터를 코딩하는 유전자를 도입하는 단계를 포함하는, 디옥시바이오라세인 생산능이 증가된 미생물을 제조하는 방법을 제공한다.
상기 유전자를 도입하는 단계는 상기 유전자를 포함하는 플라스미드를 상기 미생물에 도입하는 것일 수 있다. 상기 방법에 있어서, 상기 유전적 변형은 상기 유전자를 증폭하는 것, 유전자의 조절 서열을 조작하는 것, 또는 유전자 자체의 서열을 조작하는 것을 포함할 수 있다. 상기 유전자 증폭은 유전자의 카피 수 증가에 의한 것일 수 있다. 상기 조작은 뉴클레오티드의 삽입, 치환, 전환 또는 부가일 수 있다.
일 양상에 따른 재조합 미생물에 의하면, 디옥시바이오라세인을 고효율로 생산하는데 사용할 수 있다.
다른 양상에 따른 디옥시바이오라세인을 생산하는 방법에 의하면, 디옥시바이오라세인을 효율적으로 생산할 수 있다.
다른 양상에 따른 디옥시바이오라세인의 생산능이 증가된 미생물을 제조하는 방법에 의하면, 디옥시바이오라세인 생산능이 증가된 미생물을 효율적으로 제조할 수 있다.
일 양상에 따른 바이오라세인 생산능이 증가된 재조합 미생물을 사용하면 미생물의 생장 속도가 지연되지 않아 2차 대사산물인 디옥시바이오라세인의 생산 단계를 단축할 수 있으므로 짧은 시간 동안 고효율 및 고수율로 디옥시바이오라세인을 생산할 수 있다.
도 1은 일 구체예의 E. coli w3110 Dvio 균주를 배양한 배양기에서 생산된 미생물과 침전된 디옥시바이오라세인의 사진이다.
도 2는 일 구체예의 E. coli w3110 Dvio 균주를 24시간 동안 배양하여 얻은 1L 당 생산된 디옥시바이오라세인의 총량(g/L)을 계산한 그래프이다.
도 3은 일 구체예의 E. coli w3110 Dvio 균주의 시간에 따른 생장 곡선(OD600) 및 디옥시바이오라세인의 생산 곡선(디옥시바이오라세인(g/L)) 그래프이다.
도 4는 4 종의 재조합 대장균 균주(MG1655, W3110, BW25113, BL21)의 생장 정도를 나타낸 그래프이다(No BH: BH 플라스미드를 삽입하지 않음, BH1: BH1 플라스미드를 삽입, BH2: BH2 플라스미드를 삽입).
도 5는 4 종의 디옥시바이오라세인 생산 플라스미드를 삽입한 재조합 대장균 균주에서 디옥시바이오라세인의 생산량을 나타낸 그래프이다(No BH: BH 플라스미드를 삽입하지 않음, BH1: BH1 플라스미드를 삽입, BH2: BH2 플라스미드를 삽입).
도 6은 GPT Dvio 균주의 시간에 따른 생장 정도(OD600) 및 GPT Dvio 균주에서 디옥시바이오라세인 생산량(mg/L)을 나타낸 그래프이다.
도 7은 디옥시바이오라세인 생산 플라스미드의 구조도이다.
이하 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1. vioABCE 유전자 클러스터가 도입된 대장균의 제작
본 실시예에서는 야생형 대장균 균주인 E. coli W3110에 vioABCE 유전자 클러스터를 도입하여 제작한 재조합 미생물에서 디옥시바이오라세인 생산능이 증가되는지 여부를 확인하였다. 구체적인 과정은 다음과 같다.
E. coli W3110 균주(ATCC 17325)를 글리세롤 10% 용액에서 세척하여 염류를 제거한 뒤, 1800V 전기천공법을 활용하여 플라스미드 BBa_J72214-BBa_J72090(Addgene, Plasmid #40782)(서열번호 1)를 상기 균주에 삽입하였다. 삽입 후 클로람페니콜을 포함하는 배지에서 배양함으로써 수행한 스크리닝으로 vioABCE 유전자 클러스터가 삽입된 균주를 선발하였다.
상기와 같이 제작한 디옥시바이오라세인 생산능이 증가된 균주를 E. coli w3110 Dvio로 명명하였다.
실시예 2. vioABCE 유전자 클러스터가 도입된 대장균의 디옥시바이오라세인 생산량 확인
상기 실시예 1에서 제작한 vioABCE 유전자 클러스터가 도입된 대장균의 디옥시바이오라세인 생산성을 분석하기 위하여 3L 발효기를 이용해 배양하였다. 구체적인 과정은 다음과 같다.
2.1 미생물의 준비
스트리킹으로 접종하고자 하는 미생물인 E. coli w3110 Dvio를 LB 플레이트에 배양하여 준비하였다. 배양된 상기 균주의 콜로니 1개를 채취하여 배양하였다. 250 ml 플라스크에서 LB 배양액 100 ml를 넣고 250 RPM, 37℃에서 24시간 동안 배양하여 사전배양액을 준비하였다.
2.2 배양액의 준비
펩톤 35g/L, 효모추출물 20g/L, 염화나트륨 5g/L, 트립톤 1g/L를 이용하여 배양액 0.9L를 제작하였다. 상기 배양액에 대해 수산화나트륨을 통해 7.2로 pH를 적정하였다.
상기와 같이 제작한 액체를 배양기에 넣은 후, 클로람페니콜을 100mg/L의 농도가 되도록 추가하고, 안티폼(antifoam) 204를 0.5mL 추가하여 최종 배양액을 준비하였다.
2.3 미생물의 배양
상기 2.1에서 준비한 100 ml의 LB 사전배양액을 상기 2.2에서 준비한 배양액에 넣고 37℃, 500RPM에서 1.5vvm으로 대기공급을 통해 24시간 동안 배양하였다. pH는 수산화나트륨과 염산을 통해 pH 7.2±0.4이내에서 조절되도록 하였다.
2.4 미생물의 생장 및 디옥시바이오라세인의 생산 농도 확인
E. coli w3110 Dvio를 배양 중인 배양액을 채취하고 OD600으로 측정하여 대장균의 생장 정도를 측정하였다. 구체적으로, 대장균의 생장 정도는 OD600을 기준으로 OD의 값에 따라 생장 정도를 측정하였다. OD600 흡광도가 1일때 약 8×108 CFU/ml가 존재하며 이는 산술적으로 증가하는 값을 갖는다.
추가로 1mL의 배양액을 원심분리 한 뒤 같은 부피의 에탄올을 활용하여 디옥시바이오라세인을 추출하고, 농도를 측정하였다. 구체적으로, 원심분리된 배양액을 통해 형성된 펠렛을 에탄올로 세척하였다. 2~3회 세척하는 것으로 펠렛의 색상이 희게 변하며 생산량이 많을 경우 세척 횟수를 늘려 디옥시바이오라세인을 추출하였다. 이후 세척한 디옥시바이오라세인 추출 에탄올 용액을 OD575에서 흡광도를 측정하였다. 51.056L/(g*cm)의 흡광 파장을 통해 농도를 확인하였다.
도 1은 배양기에서 생산된 미생물과 침전된 디옥시바이오라세인의 사진이다.
도 2는 24시간 동안 1L당 생산된 디옥시바이오라세인의 총량을 계산한 그래프이다(총 12회 측정하여 계산, N=12).
도 3은 E. coli w3110 Dvio의 생장 곡선 및 디옥시바이오라세인의 생산 곡선 그래프이다.
도 1에 나타낸 바와 같이, 본 발명에서 제작한 재조합 미생물이 디옥시바이오라세인을 과량 생산하여 보라색을 나타내며 침전된 것을 확인하였다.
도 2에 나타낸 바와 같이, 일 실시예에서 제작한 재조합 미생물이 24시간 동안 1.12 g/L의 디옥시바이오라세인을 생산하였다.
도 3에 나타낸 바와 같이, 일 실시예에서 제작한 재조합 미생물은 생장 속도가 지연되지 않고 디옥시바이오라세인을 생산하였다.
따라서, 본 발명의 E. coli w3110 Dvio는 디옥시바이오라세인 생산능이 야생형 대장균에 비하여 매우 향상되었음을 확인하였다. 또한 E . coli w3110 Dvio는 생장 속도가 지연되지 않아 2차 대사산물인 디옥시바이오라세인의 생산 단계를 단축할 수 있으므로 짧은 시간 동안 고효율 및 고수율로 디옥시바이오라세인을 생산할 수 있다.
비교예 1. E. coli 종에 따른 디옥시바이오라세인 생산능 비교
상이한 4종의 E. coli에서 디옥시바이오라세인의 생산능을 비교하였다. 구체적인 비교 과정은 다음과 같다.
상기 실시예 1에 기재한 바와 같이, 야생형 대장균 균주 MG1655, W3110, BW25113, 및 BL21 종에 플라스미드 BBa_J72214-BBa_J72090를 삽입하여 vioABCE 유전자 클러스터가 삽입된 재조합 대장균을 제작하였다. 동시에, 박테리아 헤모글로빈을 통한 추가 산소 활용이 디옥시바이오라세인 생산량과 관계가 있는지 여부를 확인하기 위하여, 삽입된 플라스미드 BBa_J72214-BBa_J72090 이외에 추가적인 플라스미드인 박테리아 헤모글로빈 플라스미드 BH1(pUC8:16 vgb, S.C. Liu et al. 1994), 및 BH2(pTrc_VHb_His, Byung Hoon Jo et al. 2014)를 도입하여 재조합 대장균을 제작하였다. 상기 재조합 대장균 각각을 24시간 또는 48시간 동안 배양하여 미생물의 생장 정도 및 디옥시바이오라세인 생산량을 측정하고, 미생물의 생장 정도를 도 4에, 디옥시바이오라세인 생산량을 도 5에 나타내었다.
도 4에 나타낸 바와 같이, 추가적인 플라스미드 삽입에 의해 미생물의 생장 정도가 유의적으로 변화하지 않았으므로, vioABCE 유전자 클러스터의 삽입이 대장균의 생장 정도에 유의적인 영향을 주지 않았음을 확인하였다.
또한, 도 5에 나타낸 바와 같이, 추가적인 플라스미드 삽입에 의해 디옥시바이오라세인의 생산 정도가 유의적으로 변하지 않았으므로, 박테리아 헤모글로빈을 통한 추가 산소 활용이 디옥시바이오라세인 생산량과 관계가 없음을 확인하였다.
또한, 미생물의 생장 정도와 디옥시바이오라세인 생산량을 비교한 결과, 생장 정도 대비 디옥시바이오라세인 생산능이 상기 4종의 E. coli 종 중 W3110 균주에서 가장 우수함을 확인하였다.
비교예 2. 트립토판 생산 대장균 균주에서 디옥시바이오라세인 생산능 비교
트립토판 생산 대장균 균주에서 디옥시바이오라세인 생산능을 확인하였다. 구체적인 확인 과정은 다음과 같다.
E. coli w3110 균주에서 일부 유전자를 변형하여 제조한 트립토판을 생산하는 대장균 균주인 GPT 1002에 상기 실시예 1에 기술한 바와 같이 플라스미드 BBa_J72214_BBa_J72090를 삽입하여 재조합 대장균을 제작하고, 이를 GPT Dvio로 명명하였다. GPT Dvio 균주의 생장 정도(OD600) 및 GPT Dvio 균주에서 디옥시바이오라세인 생산량(디옥시바이오라세인(mg/L))을 측정하여 도 6에 나타내었다.
도 6에 나타낸 바와 같이, 트립토판을 과생산하는 대장균 균주에 vioABCE 유전자 클러스터를 도입한 후, 도입 전(도 2, 약 1.1g/L)보다 디옥시바이오라세인 생산량이 감소(약 0.55g/L)하였음을 확인하였다.
<110> ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY <120> Microorganism including genetic modification that increase productivity of deoxyviolacein and method for producing deoxyviolacein using the same <130> PN119243 <150> KR 17/086614 <151> 2017-07-07 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 12793 <212> DNA <213> Artificial Sequence <220> <223> plasmid BBa_J72214-BBa_J72090 <400> 1 gaattcatga gatctttaag gaggtaaaaa aaatgaaaca ttcttccgat atctgcattg 60 ttggtgctgg tatttctggt ttgacgtgcg caagccatct gctggacagc ccggcatgcc 120 gtggtctgag cctgcgtatc tttgacatgc agcaagaagc cggtggccgt atccgcagca 180 aaatgctgga tggtaaggca agcattgaac tgggcgcagg tcgctactcc cctcagttgc 240 acccgcattt ccaaagcgca atgcagcact atagccaaaa gagcgaagtc tatccgttca 300 cccagttgaa gttcaaatct cacgtgcagc aaaagctgaa gcgcgccatg aatgaactgt 360 ccccgcgtct gaaagagcat ggtaaagaga gctttttgca gtttgtcagc cgttatcaag 420 gtcacgatag cgcggttggt atgatccgct ctatgggtta cgacgcactg ttcctgccgg 480 atatcagcgc agaaatggcc tacgacattg tgggtaagca cccggagatc cagagcgtga 540 cggacaacga cgcgaaccaa tggtttgcag cggaaacggg ctttgctggt ctgattcagg 600 gcatcaaggc taaggttaag gcggcaggtg cgcgttttag cctgggttat cgtctgctga 660 gcgtccgtac cgacggtgac ggctacctgc tgcaactggc aggtgacgac ggctggaaac 720 tggagcaccg tacccgccat ctgattctgg cgattccgcc gagcgcgatg gcgggtttga 780 atgttgattt tccagaagcc tggtccggtg cgcgctatgg cagcctgccg ctgtttaagg 840 gctttctgac gtacggtgag ccgtggtggt tggactacaa actggacgat caggtgctga 900 ttgttgacaa cccgctgcgc aaaatctatt tcaaaggcga taagtacctg ttcttctata 960 ccgatagcga gatggcgaat tactggcgcg gttgtgtcgc ggagggcgag gacggttacc 1020 tggagcaaat tcgcacccat ttggctagcg cactgggtat cgtccgtgaa cgtatcccgc 1080 aaccgctggc acacgttcac aagtattggg cgcacggcgt tgagttttgc cgtgattctg 1140 atattgacca cccgagcgca ctgtctcatc gcgacagcgg tatcatcgcg tgctccgatg 1200 cgtacacgga gcattgtggt tggatggagg gcggtctgct gagcgcccgt gaggcaagcc 1260 gtctgctgtt gcagcgtatc gccgcgtgat taaggaggta aaaaaaatga gcattctgga 1320 tttcccgcgt atccacttcc gtggctgggc ccgtgtcaat gcgccgaccg cgaaccgcga 1380 tccgcacggc cacatcgata tggccagcaa taccgtggcg atggcgggtg agccgttcga 1440 cctggcacgc catcctacgg agttccaccg tcacctgcgc tccctgggtc cgcgcttcgg 1500 cttggatggt cgtgctgacc cggaaggccc gttcagcctg gccgagggct acaacgctgc 1560 cggtaacaac cacttttcgt gggagagcgc aaccgttagc cacgtgcaat gggatggcgg 1620 tgaggcggat cgtggtgacg gtctggtcgg tgctcgtttg gcactgtggg gtcactacaa 1680 tgattatctg cgtaccacct tcaatcgtgc tcgttgggtc gacagcgacc cgacgcgccg 1740 tgacgctgca caaatctatg cgggccaatt caccattagc ccggctggtg ccggtccggg 1800 tacgccgtgg ctgtttacgg cagacattga tgatagccat ggtgcacgtt ggacgcgtgg 1860 cggccacatt gcagagcgtg gcggccactt cttggatgaa gagtttggtc tggcacgcct 1920 gtttcagttc tctgtgccga aagatcaccc acattttctg tttcacccgg gtccgtttga 1980 ttccgaggcc tggcgtcgtc tgcaattggc tctggaggat gacgacgttc tgggtctgac 2040 cgtgcaatat gcgttgttca atatgagcac cccgcctcag ccgaacagcc cggtttttca 2100 cgatatggtc ggtgttgtcg gtctgtggcg tcgtggtgaa ctggcgagct acccggctgg 2160 tcgtctgctg cgtccgcgtc aaccgggtct gggtgacctg accctgcgcg tcaacggtgg 2220 tcgcgttgcg ctgaatttgg cgtgtgccat tccgttcagc actcgtgccg cgcagccaag 2280 cgcaccggac cgcctgaccc cggacctggg tgccaaactg ccgctgggcg atctgctgct 2340 gcgtgatgag gacggcgcac tgttggcacg tgtgccgcag gctctgtacc aagactattg 2400 gacgaatcac ggtattgtgg acctgccgct gctgcgcgaa ccgcgtggta gcttgaccct 2460 gagcagcgaa ctggcggagt ggcgtgagca agactgggtc acccaaagcg acgcgtctaa 2520 cctgtacctg gaggcaccgg atcgccgtca cggtcgcttt ttccctgaga gcatcgcgct 2580 gcgcagctac tttcgcggtg aagcgcgtgc gcgtccggat atcccgcatc gtatcgaggg 2640 catgggcctg gtcggcgtcg aatctcgtca ggatggcgac gctgcggaat ggcgtctgac 2700 gggtctgcgt ccgggtccgg cacgcattgt tctggacgat ggtgccgagg cgatccctct 2760 gcgtgttctg cctgacgatt gggcgctgga tgacgcgacc gtcgaagaag tggattacgc 2820 ctttttgtac cgccacgtta tggcgtatta cgagctggtg tatccattca tgagcgacaa 2880 ggtgttttcc ctggctgatc gttgcaaatg tgaaacgtac gcacgtctga tgtggcagat 2940 gtgtgatccg cagaaccgca acaagtccta ttacatgccg agcacccgcg aactgtcggc 3000 accgaaagct cgtttgttct tgaagtatct ggcccacgtg gaaggccagg cacgcctgca 3060 agcacctccg ccagcgggtc cggcacgcat tgaatctaaa gcccagttgg cggcagagct 3120 gcgtaaagcc gtcgacctgg agctgtctgt gatgctgcaa tacctgtacg cggcgtatag 3180 cattccgaac tatgcacagg gccaacaacg tgttcgtgac ggtgcgtgga ccgccgagca 3240 gctgcaactg gcgtgcggta gcggtgaccg tcgccgtgat ggcggtattc gtgcagcact 3300 gctggaaatt gctcatgaag aaatgattca ttacctggtc gttaacaacc tgctgatggc 3360 cctgggcgag ccgttctacg cgggtgtccc gctgatgggc gaagcggcac gtcaggcgtt 3420 tggcctggac accgagttcg ctctggaacc gtttagcgaa agcacgctgg cacgttttgt 3480 tcgtctggaa tggccgcact ttatcccagc accgggcaaa tccatcgcgg actgctatgc 3540 cgccattcgt caggcgtttt tggatctgcc ggacttgttt ggtggcgagg caggtaagcg 3600 tggcggtgaa caccacctgt tcctgaatga gctgaccaac cgtgcgcatc cgggttatca 3660 actggaagtt ttcgatcgcg actcggcgct gtttggtatt gcatttgtga ccgatcaggg 3720 cgaaggtggc gctctggaca gcccgcacta cgaacatagc cattttcaac gtctgcgtga 3780 aatgagcgcg cgtatcatgg ctcaaagcgc accgttcgaa ccggcgctgc cggcgttgcg 3840 taatccggtt ctggatgaga gcccgggttg ccaacgtgtc gcagacggtc gtgcgcgtgc 3900 gctgatggca ttgtaccaag gcgtttatga gctgatgttt gcgatgatgg cgcagcactt 3960 cgccgtgaaa ccgctgggta gcttgcgtcg cagccgcctg atgaacgcag caatcgatct 4020 gatgaccggt ctgttgcgtc cgctgagctg cgcgctgatg aacctgccaa gcggcatcgc 4080 cggtcgcacg gccggtccgc cgctgccggg tccggttgac acccgtagct atgacgacta 4140 cgcgctgggc tgtcgcatgc tggcacgccg ttgcgagcgt ctgctggagc aggcgagcat 4200 gctggaaccg ggttggctgc cggatgcgca gatggagctg ctggatttct atcgtcgcca 4260 aatgctggac ttggcgtgcg gcaaactgag ccgcgaggcc taatgatcct taaggaggta 4320 aaaaaaatga aacgtgcgat tatcgttggt ggcggcctgg cgggtggcct gaccgcgatc 4380 tacctggcga agcgtggcta cgaagtgcac gtcgtggaga agcgtggtga tcctctgcgc 4440 gatctgagct cttacgtgga cgttgttagc agccgtgcga tcggcgtgag catgaccgtt 4500 cgtggtatca agagcgtttt ggctgcgggc attccgcgtg cagagctgga tgcgtgtggc 4560 gaaccgatcg tggcaatggc tttctccgtg ggtggtcagt atcgcatgcg cgaactgaag 4620 ccgttggagg atttccgtcc gctgagcttg aaccgtgcgg cgtttcaaaa gctgctgaac 4680 aaatacgcga acctggcagg cgttcgttac tactttgagc ataagtgcct ggatgttgac 4740 ctggatggta agagcgtgtt gattcagggc aaagatggtc agccgcagcg tctgcaaggt 4800 gacatgatta tcggtgcgga tggcgcccac agcgccgtcc gtcaggcgat gcagagcggc 4860 ctgcgtcgtt tcgagttcca gcaaacgttc ttccgccatg gctacaaaac cctggttttg 4920 ccggacgcgc aagcactggg ttaccgtaaa gacacgctgt actttttcgg catggattcc 4980 ggtggcctgt tcgcgggtcg tgcggctacg atcccagatg gtagcgtcag catcgccgtt 5040 tgcctgccgt actcgggtag cccttccctg acgaccaccg acgaaccgac gatgcgtgcg 5100 ttcttcgatc gttacttcgg tggcctgccg cgtgacgcgc gtgacgaaat gctgcgtcag 5160 tttctggcga agccgagcaa cgacctgatt aacgtgcgct ctagcacctt tcactataag 5220 ggtaatgtgc tgttgctggg tgatgctgcg catgcgactg cgccgttcct gggtcagggt 5280 atgaacatgg cgctggagga cgcccgcacg tttgtcgagc tgctggaccg ccaccagggc 5340 gaccaagaca aagcctttcc ggagttcacg gagctgcgca aagtccaggc agacgcaatg 5400 caagacatgg ctcgcgccaa ctatgacgtt ttgagctgct cgaacccgat ctttttcatg 5460 cgtgcgcgtt acacgcgtta catgcattcc aagtttccgg gcctgtatcc gccggatatg 5520 gccgagaaac tgtactttac gagcgagccg tacgatcgtc tgcaacaaat ccagcgtaaa 5580 cagaatgttt ggtacaagat tggtcgcgtg aattgatgat ctttaaggag gtaaaaaaaa 5640 tggagaaccg tgagccacca ctgttgccag cccgttggag cagcgcctat gtctcttatt 5700 ggagcccgat gctgccggat gaccagctga ccagcggcta ttgctggttc gactatgaac 5760 gtgacatctg tcgtattgac ggcctgttca atccgtggag cgagcgtgat actggttatc 5820 gcctgtggat gtcggaggtt ggtaatgcgg ccagcggccg tacctggaaa caaaaagtcg 5880 cctatggtcg tgagcgtacc gccctgggtg aacagctgtg tgagcgtccg ctggatgatg 5940 agactggccc ttttgccgaa ttgttcctgc cacgcgatgt cctgcgccgt ctgggtgccc 6000 gtcacattgg ccgtcgcgtg gttctgggtc gcgaagcgga cggttggcgt taccagcgcc 6060 caggtaaagg tccgagcacc ctgtacctgg atgcggcgag cggcactcca ctgcgcatgg 6120 tcaccggcga tgaagcgtcg cgtgcaagcc tgcgtgattt tccgaatgtg agcgaggcgg 6180 agatcccgga cgcggttttc gcggccaagc gctaaggatc cgaggcttgg attctcacca 6240 ataaaaaacg cccggcggca accgagcgtt ctgaacaaat ccagatggag ttctgaggtc 6300 attactggat ctatcaacag gagtccaagc gagctcgata tcaaattacg ccccgccctg 6360 ccactcatcg cagtactgtt gtaattcatt aagcattctg ccgacatgga agccatcaca 6420 aacggcatga tgaacctgaa tcgccagcgg catcagcacc ttgtcgcctt gcgtataata 6480 tttgcccatg gtgaaaacgg gggcgaagaa gttgtccata ttggccacgt ttaaatcaaa 6540 actggtgaaa ctcacccagg gattggctga gacgaaaaac atattctcaa taaacccttt 6600 agggaaatag gccaggtttt caccgtaaca cgccacatct tgcgaatata tgtgtagaaa 6660 ctgccggaaa tcgtcgtggt attcactcca gagcgatgaa aacgtttcag tttgctcatg 6720 gaaaacggtg taacaagggt gaacactatc ccatatcacc agctcaccgt ctttcattgc 6780 catacgaaat tccggatgag cattcatcag gcgggcaaga atgtgaataa aggccggata 6840 aaacttgtgc ttatttttct ttacggtctt taaaaaggcc gtaatatcca gctgaacggt 6900 ctggttatag gtacattgag caactgactg aaatgcctca aaatgttctt tacgatgcca 6960 ttgggatata tcaacggtgg tatatccagt gatttttttc tccattttag cttccttagc 7020 tcctgaaaat ctcgataact caaaaaatac gcccggtagt gatcttattt cattatggtg 7080 aaagttggaa cctcttacgt gcccgatcaa agatccgcac cgccggacat cagcgctagc 7140 ggagtgtata ctggcttact atgttggcac tgatgagggt gtcagtgaag tgcttcatgt 7200 ggcaggagaa aaaaggctgc accggtgcgt cagcagaata tgtgatacag gatatattcc 7260 gcttcctcgc tcactgactc gctacgctcg gtcgttcgac tgcggcgagc ggaaatggct 7320 tacgaacggg gcggagattt cctggaagat gccaggaaga tacttaacag ggaagtgaga 7380 gggccgcggc aaagccgttt ttccataggc tccgcccccc tgacaagcat cacgaaatct 7440 gacgctcaaa tcagtggtgg cgaaacccga caggactata aagataccag gcgtttcccc 7500 ctggcggctc cctcgtgcgc tctcctgttc ctgcctttcg gtttaccggt gtcattccgc 7560 tgttatggcc gcgtttgtct cattccacgc ctgacactca gttccgggta ggcagttcgc 7620 tccaagctgg actgtatgca cgaacccccc gttcagtccg accgctgcgc cttatccggt 7680 aactatcgtc ttgagtccaa cccggaaaga catgcaaaag caccactggc agcagccact 7740 ggtaattgat ttagaggagt tagtcttgaa gtcatgcgcc ggttaaggct aaactgaaag 7800 gacaagtttt ggtgactgcg ctcctccaag ccagttacct cggttcaaag agttggtagc 7860 tcagagaacc ttcgaaaaac cgccctgcaa ggcggttttt tcgttttcag agcaagagat 7920 tacgcgcaga ccaaaacgat ctcaagaaga tcatcttatt aatcagataa aatatttcta 7980 aggcctcccc tgattctgtg gataaccggg atctgtaagg atcaaccact ttgtacaaga 8040 aagctgggtc gaattgagat ccgaacggtt tattacgtac atcaggtaaa actgaccgat 8100 aagccgcttt cttttgggta tagtgtcgtg gacagtcatt catctttctg cccctccaaa 8160 agtaaaaacc cgccgaagcg ggtttttacg taaaacaggt gaaactgacc gataagccgc 8220 tttcttttgg gtatagtgtc gtggacagtc attcatcttt ctgcccctcc aaaagcaaaa 8280 acccgccgaa gcgggttttt acgtaaacca ggtgaaactg accgataagc cgctttcttt 8340 tgggtatagc gtcgtggaca gtcattcatc tttctgcccc tccaaaagca aaaacccgcc 8400 gaagcgggtt tttacgtaaa tcaggtgaaa ctgaccgata agccgggttc tgtcgtggac 8460 agtcattcat ctaggccagc aatcgctcag atccttaatc atcatccccg tacagtttgc 8520 gggtaacttc ttcgtcttcc tcctcgtctt cgtccagatc ctgttcaagc catgcttcgt 8580 ttgatatgcc ttccgcatcg acatcaccat aaccacctgt atcgacgata tcggcaattt 8640 cttctctacg atgctcaatc cacaatgcgg catcagcgcg gcggctggcg gcccgttctc 8700 gcgcgatttt atccagatcc tcaagtgatg gagcgccaga tgctgtttgg ttttcctcat 8760 catcggtatt ggtcttagga gcacgcagat cggctttgat ttgctccagc atcaggggcg 8820 gcacttttcc tccatgcgcc tcgatgaact cagccgcttc cagcactgac cagttatttt 8880 cacgctttcg ttcgtatgcc agcttaacaa tgccagcttg ccccatagat aaagcgtgct 8940 tttccgcctc ccggctttct tttcgatagt tattccggat gctgtaaatg gtgttgatca 9000 ggctgcttat ctgcgcggaa cagctgttta gcatgctcgc gatacggtat tcaggcggag 9060 taccttcatc atcgtctttt tgctgatcgc gcatttcctg caccaggcga atacacgtat 9120 ccctggcgtt ctccagcata aggagatgag aaagagactt ttccagaaga gtggtttcca 9180 gaacatcggc cccggaccga cgcaacatag cgcgcgcggc cttccgcgct tcaacgttat 9240 ctatcaggta atcgccaact tcgaactcaa agcgttcacc atcatcatcc agggtgtcgc 9300 gttccaggcg atcacgtaag gtccggtggg cgcgggtgat cacgtcatga tcatctgaac 9360 gatcatttat gcgcttattt tggcgcttcg cattctcgac tgcggcactg acaacggcat 9420 taactctttg tttttccgct atttcagccg caatgtgatc acctgcatgt tgatcattag 9480 agtgatcaat gatcatgctt tttagtggct tcctgactgg cttatttggc ttgcggctgt 9540 ccgtagtcct ggtgtcttct ttgaaggcac ggagataacg acgtgcggta ttagggttaa 9600 gattaaactc ggcggcatac tgtgcgatgg tgtaaccacc atctcgcgcc aggcgagcaa 9660 aattcttctt gtgatcgtcc caggtcactt atgcttcctt tcgagatccc aacaatattc 9720 ctactcaatg aacaaatgac tactcgtaga atcggttaac acaccagatt cagatcctta 9780 ccctctgaat cctgccggta taccccattg ttcgttatct ttatttttgg ctaaaaccgc 9840 attaagagct tcgtttaccg tcatgcaatg cggtaggtta tcgaagtttg atatcccgcc 9900 aatatcaggc gaacgcttgt ttttcaggta agcatatttc cgcgcagccg cctctacttt 9960 ctgcttgaac tcatgttttt gagtgcgttt tttggataac cgcagattgt cagcctttgc 10020 ttttgcctta gcgatccatg aagtcaattt tttgaggctg gttgttccgg caccgccgga 10080 aactgatctt tttgtttttt taacttgtga cttcttattc tttattgcca cgtcatcctg 10140 acagggggag ggggtatcat tttgacatgg gggtgtggat aaaaaattaa ataaagccaa 10200 tgtcttagcg agaacagctt taaccttggt tgccgctgac gaaatcttta atttgctttc 10260 tatcagcgca tttttggctt gttgtgcgaa ggccaaaaag gatggtgtaa accggtacag 10320 gttagcgcga cgttcacggt gatcgccgat aacaatctct acagacagaa tacctttgtt 10380 tacagcttca cggaatgcac gaacgacggt tgattggcta taaccagttt ctgccgcgat 10440 caggcggtga ggcttgtgaa tgaagtattc actggttgtt gccgcgagat ttgcacattg 10500 cgacaggata tgcccggcgc tacgggatag accggagtgt gttacaaagc aggccaattc 10560 atagccagaa aaagtaaaat cgctttaaga tccccgagtt ctcttaaacc aaggtttagg 10620 attgaaatga tgacgccgga aacttcttat aaagcgtgga aacagccaca tcatagatga 10680 ttgcaacctg cttacggggg atgcccttct ccagcaatcg ccgcatttgc tgccatgttt 10740 cttcttggta tttaggccga cgcccaccta tacgaccttc tgcgcgagct gcatcaagtc 10800 cagcgcgtgt acgttcaacg ataagctcac gttccatttc tgccagcgcc cccattacgt 10860 gaaagaaaaa gcgccccatt ggtgtactgg tgtcgatgga gtcagtgaga ctccggaagt 10920 taatgcctct gtcacgcagc tcttccacca gcacaactaa gtgacgcatg ctgcgcccaa 10980 gacggtctaa cttccatacg accagggtat cacctctgga aagttacgga gtaccttttt 11040 taacccaggg cgctcagcct ttttgccgct cgccttgtcc tcaaaaatta gctcacatcc 11100 tgcgctttca agagcgtttc gttgtaaagc agtgttttgt tcatttgttg atacgcgtac 11160 atagcctatt agagatccta taaacgcaga aaggcccacc cgaaggtgag ccagtgtgac 11220 tctagtagag agcgttcacc gacaaacaac agataaaacg aaaggcccag tctttcgact 11280 gagcctttcg ttttatttga tgcctggaga tccttattgt gagtctggct ggttagtggc 11340 catgagatat tcgattgtgt cagtgagatc atccaggtcg tcttgggtga tgcggtactc 11400 ctgattggat atctttgagt agtgttcagc aatggcgcgg gcagcgtcgg tttcggcggg 11460 gtctacagat aaagcgttag agcaatgtct aacgtcgtcg atggttggtg gaatgaaagc 11520 cataattatg cctcactgta agatccgggt atggagaaac agtagagagt tgcgataaaa 11580 agcgtcaggt aagatccgct aatcttatgg ataaaaatgc tatggcatag caaagtgtga 11640 cgccgtgcaa ataatcaatg tggacttttc tgccgtgatt atagacactt ttgttacgcg 11700 tttttgtcat ggctttggtc ccgctttgtt acagaatgct tttaataagc ggggttaccg 11760 gtttggttag cgagaagagc cagtaaaaga cgcagtgacg gcaatgtctg atgcaatatg 11820 gacaattggt ttcttctctg aatggcggga gtatgaaaag tatggctgaa gcgcaaaatg 11880 atcccctgct gccgggatac tcgtttaatg cccatctggt ggcgggttta acgccgattg 11940 aggccaacgg ttatctcgat ttttttatcg accgaccgct gggaatgaaa ggttatattc 12000 tcaatctcac cattcgcggt cagggggtgg tgaaaaatca gggacgagaa tttgtttgcc 12060 gaccgggtga tattttgctg ttcccgccag gagagattca tcactacggt cgtcatccgg 12120 aggctcgcga atggtatcac cagtgggttt actttcgtcc gcgcgcctac tggcatgaat 12180 ggcttaactg gccgtcaata tttgccaata cggggttctt tcgcccggat gaagcgcacc 12240 agccgcattt cagcgacctg tttgggcaaa tcattaacgc cgggcaaggg gaagggcgct 12300 attcggagct gctggcgata aatctgcttg agcaattgtt actgcggcgc atggaagcga 12360 ttaacgagtc gctccatcca ccgatggata atcgggtacg cgaggcttgt cagtacatca 12420 gcgatcacct ggcagacagc aattttgata tcgccagcgt cgcacagcat gtttgcttgt 12480 cgccgtcgcg tctgtcacat cttttccgcc agcagttagg gattagcgtc ttaagctggc 12540 gcgaggacca acgtatcagc caggcgaagc tgcttttgag caccacccgg atgcctatcg 12600 ccaccgtcgg tcgcaatgtt ggttttgacg atcaactcta tttctcgcgg gtatttaaaa 12660 aatgcaccgg ggccagcccg agcgagttcc gtgccggttg tgaagaaaaa gtgaatgatg 12720 tagccgtcaa gttgtcataa ttggtaacga atcagacaat tgacggctcg atggagtagc 12780 atagagatct cat 12793 <210> 2 <211> 6743 <212> DNA <213> Unknown <220> <223> vioABCE <400> 2 gaattcatga gatctttaag gaggtaaaaa aaatgaaaca ttcttccgat atctgcattg 60 ttggtgctgg tatttctggt ttgacgtgcg caagccatct gctggacagc ccggcatgcc 120 gtggtctgag cctgcgtatc tttgacatgc agcaagaagc cggtggccgt atccgcagca 180 aaatgctgga tggtaaggca agcattgaac tgggcgcagg tcgctactcc cctcagttgc 240 acccgcattt ccaaagcgca atgcagcact atagccaaaa gagcgaagtc tatccgttca 300 cccagttgaa gttcaaatct cacgtgcagc aaaagctgaa gcgcgccatg aatgaactgt 360 ccccgcgtct gaaagagcat ggtaaagaga gctttttgca gtttgtcagc cgttatcaag 420 gtcacgatag cgcggttggt atgatccgct ctatgggtta cgacgcactg ttcctgccgg 480 atatcagcgc agaaatggcc tacgacattg tgggtaagca cccggagatc cagagcgtga 540 cggacaacga cgcgaaccaa atgaaacatt cttccgatat ctgcattgtt ggtgctggta 600 tttctggttt gacgtgcgca agccatctgc tggacagccc ggcatgccgt ggtctgagcc 660 tgcgtatctt tgacatgcag caagaagccg gtggccgtat ccgcagcaaa atgctggatg 720 gtaaggcaag cattgaactg ggcgcaggtc gctactcccc tcagttgcac ccgcatttcc 780 aaagcgcaat gcagcactat agccaaaaga gcgaagtcta tccgttcacc cagttgaagt 840 tcaaatctca cgtgcagcaa aagctgaagc gcgccatgaa tgaactgtcc ccgcgtctga 900 aagagcatgg taaagagagc tttttgcagt ttgtcagccg ttatcaaggt cacgatagcg 960 cggttggtat gatccgctct atgggttacg acgcactgtt cctgccggat atcagcgcag 1020 aaatggccta cgacattgtg ggtaagcacc cggagatcca gagcgtgacg gacaacgacg 1080 cgaaccaatg gtttgcagcg gaaacgggct ttgctggtct gattcagggc atcaaggcta 1140 aggttaaggc ggcaggtgcg cgttttagcc tgggttatcg tctgctgagc gtccgtaccg 1200 acggtgacgg ctacctgctg caactggcag gtgacgacgg ctggaaactg gagcaccgta 1260 cccgccatct gattctggcg attccgccga gcgcgatggc gggtttgaat gttgattttc 1320 cagaagcctg gtccggtgcg cgctatggca gcctgccgct gtttaagggc tttctgacgt 1380 acggtgagcc gtggtggttg gactacaaac tggacgatca ggtgctgatt gttgacaacc 1440 cgctgcgcaa aatctatttc aaaggcgata agtacctgtt cttctatacc gatagcgaga 1500 tggcgaatta ctggcgcggt tgtgtcgcgg agggcgagga cggttacctg gagcaaattc 1560 gcacccattt ggctagcgca ctgggtatcg tccgtgaacg tatcccgcaa ccgctggcac 1620 acgttcacaa gtattgggcg cacggcgttg agttttgccg tgattctgat attgaccacc 1680 cgagcgcact gtctcatcgc gacagcggta tcatcgcgtg ctccgatgcg tacacggagc 1740 attgtggttg gatggagggc ggtctgctga gcgcccgtga ggcaagccgt ctgctgttgc 1800 agcgtatcgc cgcgtgatta aggaggtaaa aaaaatgagc attctggatt tcccgcgtat 1860 ccacttccgt ggctgggccc gtgtcaatgc gccgaccgcg aaccgcgatc cgcacggcca 1920 catcgatatg gccagcaata ccgtggcgat ggcgggtgag ccgttcgacc tggcacgcca 1980 tcctacggag ttccaccgtc acctgcgctc cctgggtccg cgcttcggct tggatggtcg 2040 tgctgacccg gaaggcccgt tcagcctggc cgagggctac aacgctgccg gtaacaacca 2100 cttttcgtgg gagagcgcaa ccgttagcca cgtgcaatgg gatggcggtg aggcggatcg 2160 tggtgacggt ctggtcggtg ctcgtttggc actgtggggt cactacaatg attatctgcg 2220 taccaccttc aatcgtgctc gttgggtcga cagcgacccg acgcgccgtg acgctgcaca 2280 aatctatgcg ggccaattca ccattagccc ggctggtgcc ggtccgggta cgccgtggct 2340 gtttacggca gacattgatg atagccatgg tgcacgttgg acgcgtggcg gccacattgc 2400 agagcgtggc ggccacttct tggatgaaga gtttggtctg gcacgcctgt ttcagttctc 2460 tgtgccgaaa gatcacccac attttctgtt tcacccgggt ccgtttgatt ccgaggcctg 2520 gcgtcgtctg caattggctc tggaggatga cgacgttctg ggtctgaccg tgcaatatgc 2580 gttgttcaat atgagcaccc cgcctcagcc gaacagcccg gtttttcacg atatggtcgg 2640 tgttgtcggt ctgtggcgtc gtggtgaact ggcgagctac ccggctggtc gtctgctgcg 2700 tccgcgtcaa ccgggtctgg gtgacctgac cctgcgcgtc aacggtggtc gcgttgcgct 2760 gaatttggcg tgtgccattc cgttcagcac tcgtgccgcg cagccaagcg caccggaccg 2820 cctgaccccg gacctgggtg ccaaactgcc gctgggcgat ctgctgctgc gtgatgagga 2880 cggcgcactg ttggcacgtg tgccgcaggc tctgtaccaa gactattgga cgaatcacgg 2940 tattgtggac ctgccgctgc tgcgcgaacc gcgtggtagc ttgaccctga gcagcgaact 3000 ggcggagtgg cgtgagcaag actgggtcac ccaaagcgac gcgtctaacc tgtacctgga 3060 ggcaccggat cgccgtcacg gtcgcttttt ccctgagagc atcgcgctgc gcagctactt 3120 tcgcggtgaa gcgcgtgcgc gtccggatat cccgcatcgt atcgagggca tgggcctggt 3180 cggcgtcgaa tctcgtcagg atggcgacgc tgcggaatgg cgtctgacgg gtctgcgtcc 3240 gggtccggca cgcattgttc tggacgatgg tgccgaggcg atccctctgc gtgttctgcc 3300 tgacgattgg gcgctggatg acgcgaccgt cgaagaagtg gattacgcct ttttgtaccg 3360 ccacgttatg gcgtattacg agctggtgta tccattcatg agcgacaagg tgttttccct 3420 ggctgatcgt tgcaaatgtg aaacgtacgc acgtctgatg tggcagatgt gtgatccgca 3480 gaaccgcaac aagtcctatt acatgccgag cacccgcgaa ctgtcggcac cgaaagctcg 3540 tttgttcttg aagtatctgg cccacgtgga aggccaggca cgcctgcaag cacctccgcc 3600 agcgggtccg gcacgcattg aatctaaagc ccagttggcg gcagagctgc gtaaagccgt 3660 cgacctggag ctgtctgtga tgctgcaata cctgtacgcg gcgtatagca ttccgaacta 3720 tgcacagggc caacaacgtg ttcgtgacgg tgcgtggacc gccgagcagc tgcaactggc 3780 gtgcggtagc ggtgaccgtc gccgtgatgg cggtattcgt gcagcactgc tggaaattgc 3840 tcatgaagaa atgattcatt acctggtcgt taacaacctg ctgatggccc tgggcgagcc 3900 gttctacgcg ggtgtcccgc tgatgggcga agcggcacgt caggcgtttg gcctggacac 3960 cgagttcgct ctggaaccgt ttagcgaaag cacgctggca cgttttgttc gtctggaatg 4020 gccgcacttt atcccagcac cgggcaaatc catcgcggac tgctatgccg ccattcgtca 4080 ggcgtttttg gatctgccgg acttgtttgg tggcgaggca ggtaagcgtg gcggtgaaca 4140 ccacctgttc ctgaatgagc tgaccaaccg tgcgcatccg ggttatcaac tggaagtttt 4200 cgatcgcgac tcggcgctgt ttggtattgc atttgtgacc gatcagggcg aaggtggcgc 4260 tctggacagc ccgcactacg aacatagcca ttttcaacgt ctgcgtgaaa tgagcgcgcg 4320 tatcatggct caaagcgcac cgttcgaacc ggcgctgccg gcgttgcgta atccggttct 4380 ggatgagagc ccgggttgcc aacgtgtcgc agacggtcgt gcgcgtgcgc tgatggcatt 4440 gtaccaaggc gtttatgagc tgatgtttgc gatgatggcg cagcacttcg ccgtgaaacc 4500 gctgggtagc ttgcgtcgca gccgcctgat gaacgcagca atcgatctga tgaccggtct 4560 gttgcgtccg ctgagctgcg cgctgatgaa cctgccaagc ggcatcgccg gtcgcacggc 4620 cggtccgccg ctgccgggtc cggttgacac ccgtagctat gacgactacg cgctgggctg 4680 tcgcatgctg gcacgccgtt gcgagcgtct gctggagcag gcgagcatgc tggaaccggg 4740 ttggctgccg gatgcgcaga tggagctgct ggatttctat cgtcgccaaa tgctggactt 4800 ggcgtgcggc aaactgagcc gcgaggccta atgatcctta aggaggtaaa aaaaatgaaa 4860 cgtgcgatta tcgttggtgg cggcctggcg ggtggcctga ccgcgatcta cctggcgaag 4920 cgtggctacg aagtgcacgt cgtggagaag cgtggtgatc ctctgcgcga tctgagctct 4980 tacgtggacg ttgttagcag ccgtgcgatc ggcgtgagca tgaccgttcg tggtatcaag 5040 agcgttttgg ctgcgggcat tccgcgtgca gagctggatg cgtgtggcga accgatcgtg 5100 gcaatggctt tctccgtggg tggtcagtat cgcatgcgcg aactgaagcc gttggaggat 5160 ttccgtccgc tgagcttgaa ccgtgcggcg tttcaaaagc tgctgaacaa atacgcgaac 5220 ctggcaggcg ttcgttacta ctttgagcat aagtgcctgg atgttgacct ggatggtaag 5280 agcgtgttga ttcagggcaa agatggtcag ccgcagcgtc tgcaaggtga catgattatc 5340 ggtgcggatg gcgcccacag cgccgtccgt caggcgatgc agagcggcct gcgtcgtttc 5400 gagttccagc aaacgttctt ccgccatggc tacaaaaccc tggttttgcc ggacgcgcaa 5460 gcactgggtt accgtaaaga cacgctgtac tttttcggca tggattccgg tggcctgttc 5520 gcgggtcgtg cggctacgat cccagatggt agcgtcagca tcgccgtttg cctgccgtac 5580 tcgggtagcc cttccctgac gaccaccgac gaaccgacga tgcgtgcgtt cttcgatcgt 5640 tacttcggtg gcctgccgcg tgacgcgcgt gacgaaatgc tgcgtcagtt tctggcgaag 5700 ccgagcaacg acctgattaa cgtgcgctct agcacctttc actataaggg taatgtgctg 5760 ttgctgggtg atgctgcgca tgcgactgcg ccgttcctgg gtcagggtat gaacatggcg 5820 ctggaggacg cccgcacgtt tgtcgagctg ctggaccgcc accagggcga ccaagacaaa 5880 gcctttccgg agttcacgga gctgcgcaaa gtccaggcag acgcaatgca agacatggct 5940 cgcgccaact atgacgtttt gagctgctcg aacccgatct ttttcatgcg tgcgcgttac 6000 acgcgttaca tgcattccaa gtttccgggc ctgtatccgc cggatatggc cgagaaactg 6060 tactttacga gcgagccgta cgatcgtctg caacaaatcc agcgtaaaca gaatgtttgg 6120 tacaagattg gtcgcgtgaa ttgatgatct ttaaggaggt aaaaaaaatg gagaaccgtg 6180 agccaccact gttgccagcc cgttggagca gcgcctatgt ctcttattgg agcccgatgc 6240 tgccggatga ccagctgacc agcggctatt gctggttcga ctatgaacgt gacatctgtc 6300 gtattgacgg cctgttcaat ccgtggagcg agcgtgatac tggttatcgc ctgtggatgt 6360 cggaggttgg taatgcggcc agcggccgta cctggaaaca aaaagtcgcc tatggtcgtg 6420 agcgtaccgc cctgggtgaa cagctgtgtg agcgtccgct ggatgatgag actggccctt 6480 ttgccgaatt gttcctgcca cgcgatgtcc tgcgccgtct gggtgcccgt cacattggcc 6540 gtcgcgtggt tctgggtcgc gaagcggacg gttggcgtta ccagcgccca ggtaaaggtc 6600 cgagcaccct gtacctggat gcggcgagcg gcactccact gcgcatggtc accggcgatg 6660 aagcgtcgcg tgcaagcctg cgtgattttc cgaatgtgag cgaggcggag atcccggacg 6720 cggttttcgc ggccaagcgc taa 6743

Claims (11)

  1. 모세포에 비하여 vioABCE 유전자 클러스터(gene cluster)의 활성이 증가되도록 하는 유전적 변형을 포함하는 재조합 미생물.
  2. 청구항 1에 있어서, 상기 유전적 변형은 상기 vioABCE 유전자 클러스터의 카피 수 증가, 상기 vioABCE 유전자 클러스터의 발현 조절 서열의 변형, 또는 그 조합인 것인 미생물.
  3. 청구항 2에 있어서, 상기 카피 수 증가는 상기 vioABCE 유전자 클러스터의 세포 외부로부터 내부로의 도입에 의한 것인 미생물.
  4. 청구항 1에 있어서, 상기 vioABCE 유전자 클러스터는 서열번호 2의 폴리뉴클레오티드 서열을 갖는 것인 미생물.
  5. 청구항 1에 있어서, 상기 미생물은 Escherichia 속에 속하는 것인 미생물.
  6. 청구항 5에 있어서, 상기 미생물은 대장균(Escherichia coli )인 것인 미생물.
  7. 청구항 1에 있어서, 상기 미생물은 모세포에 비해 증가된 디옥시바이오라세인(Deoxyviolacein) 생산능을 갖는 것인 미생물.
  8. 청구항 1의 미생물을 배양하여 디옥시바이오라세인(Deoxyviolacein)을 생산하는 단계를 포함하는 디옥시바이오라세인을 생산하는 방법.
  9. 청구항 8에 있어서, 배양물로부터 디옥시바이오라세인을 회수하는 단계를 더 포함하는 것인 방법.
  10. 청구항 8에 있어서, 상기 미생물은 대장균(Escherichia coli )인 것인 방법.
  11. 미생물에 vioABCE 유전자 클러스터를 코딩하는 유전자를 도입하는 단계를 포함하는 디옥시바이오라세인 생산능이 증가된 미생물을 제조하는 방법.
KR1020180001285A 2017-07-07 2018-01-04 디옥시바이오라세인 생산능이 향상된 재조합 미생물 및 그를 이용한 디옥시바이오라세인을 생산하는 방법 KR102006904B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170086614 2017-07-07
KR1020170086614 2017-07-07

Publications (2)

Publication Number Publication Date
KR20190005707A true KR20190005707A (ko) 2019-01-16
KR102006904B1 KR102006904B1 (ko) 2019-08-02

Family

ID=65280925

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180001285A KR102006904B1 (ko) 2017-07-07 2018-01-04 디옥시바이오라세인 생산능이 향상된 재조합 미생물 및 그를 이용한 디옥시바이오라세인을 생산하는 방법

Country Status (1)

Country Link
KR (1) KR102006904B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125494A1 (ko) * 2019-12-20 2021-06-24 씨제이제일제당(주) 다중약물 유출펌프 변이체, 상기 변이체를 코딩하는 폴리뉴클레오티드, 상기 변이체를 포함하는 미생물, 및 이를 이용하여 비올라세인 또는 디옥시비올라세인을 제조하는 방법
WO2021125867A1 (ko) * 2019-12-20 2021-06-24 씨제이제일제당 (주) 화합물을 생산하는 미생물 및 이를 이용한 화합물의 생산 방법
WO2021125493A1 (ko) * 2019-12-20 2021-06-24 씨제이제일제당(주) 다중약물 수송체의 활성을 증가시키는 유전적 변형을 포함하는 미생물, 및 그를 이용한 트립토판 대사체의 생산 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230129762A (ko) 2022-03-02 2023-09-11 경희대학교 산학협력단 바이오라세인 생산능이 증대된 형질전환 메탄올자화균 및 이를 이용한 바이오라세인 생산방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110183384A1 (en) * 2008-07-11 2011-07-28 Xinhui Xing Recombinant bacteria for producing deoxyviolacein and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110183384A1 (en) * 2008-07-11 2011-07-28 Xinhui Xing Recombinant bacteria for producing deoxyviolacein and uses thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125494A1 (ko) * 2019-12-20 2021-06-24 씨제이제일제당(주) 다중약물 유출펌프 변이체, 상기 변이체를 코딩하는 폴리뉴클레오티드, 상기 변이체를 포함하는 미생물, 및 이를 이용하여 비올라세인 또는 디옥시비올라세인을 제조하는 방법
WO2021125867A1 (ko) * 2019-12-20 2021-06-24 씨제이제일제당 (주) 화합물을 생산하는 미생물 및 이를 이용한 화합물의 생산 방법
WO2021125493A1 (ko) * 2019-12-20 2021-06-24 씨제이제일제당(주) 다중약물 수송체의 활성을 증가시키는 유전적 변형을 포함하는 미생물, 및 그를 이용한 트립토판 대사체의 생산 방법
KR20210079888A (ko) * 2019-12-20 2021-06-30 씨제이제일제당 (주) 다중약물 유출펌프 변이체, 상기 변이체를 코딩하는 폴리뉴클레오티드, 상기 변이체를 포함하는 미생물, 및 이를 이용하여 비올라세인 또는 디옥시비올라세인을 제조하는 방법
KR20210079889A (ko) * 2019-12-20 2021-06-30 씨제이제일제당 (주) 다중약물 수송체의 활성을 증가시키는 유전적 변형을 포함하는 미생물, 및 그를 이용한 트립토판 대사체의 생산 방법

Also Published As

Publication number Publication date
KR102006904B1 (ko) 2019-08-02

Similar Documents

Publication Publication Date Title
KR102006904B1 (ko) 디옥시바이오라세인 생산능이 향상된 재조합 미생물 및 그를 이용한 디옥시바이오라세인을 생산하는 방법
CN1225125A (zh) 用于将木糖发酵为乙醇的稳定的重组酵母
KR20210128742A (ko) 글리세롤 생성이 억제된 재조합 내산성 효모 및 이를 이용한 젖산의 제조방법
KR20210158676A (ko) 젖산 생산능이 증가된 재조합 내산성 효모
CN101463358A (zh) 一种腈水合酶基因簇及其应用
CN111378673B (zh) 转录调控因子tr2的突变体在制备维生素b12中的应用
CN110846333B (zh) 一种deoB基因改造的重组菌株及其构建方法与应用
WO2014092345A1 (ko) 푸자리시딘 생산 균주 및 이를 이용한 푸자리시딘의 대량 생산방법
EP2267126A1 (en) Process for the stable gene interruption in clostridia
DE112019000467T5 (de) Rekombinanter Mikroorganismus, Verfahren zu dessen Herstellung und seine Anwendung bei der Herstellung von Coenzym Q10
CN107223152A (zh) 具有改变的一氧化碳脱氢酶(codh)活性的遗传工程细菌
CN102203238A (zh) 鲨肌醇产生细胞和使用该细胞的鲨肌醇制造方法
KR102303662B1 (ko) 화합물을 생산하는 미생물 및 이를 이용한 화합물의 생산 방법
CN109293751B (zh) 鼠疫耶尔森菌毒力相关蛋白sORF34及其编码基因与应用
CN111041020B (zh) 异柠檬酸裂合酶突变体、突变基因及其在制备维生素b12中的应用
CN109929853B (zh) 嗜热菌来源的热激蛋白基因的应用
CN1989255A (zh) 降低细胞中的自发突变率
Chen et al. Multiple-copy-gene integration on chromosome of Escherichia coli for beta-galactosidase production
CN113403246A (zh) 溶藻弧菌Hfq基因敲除突变株及其应用
CN105755013A (zh) 一种红霉素的合成调控基因phoP及其制备方法和应用
CN102268431B (zh) 乳清酸核苷-5’-磷酸脱羧酶启动子及应用和构建体与载体
CN107810269A (zh) 新颖的启动子及其用途
CN115851632B (zh) 一种漆酶突变体及其应用
CN112251457B (zh) 一种4-羟基异亮氨酸生产菌的适应性进化方法及其应用
CN114606170B (zh) 一种基于CRISPR-Cas9的麦角硫因生物合成方法及应用

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant