KR20180083273A - 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지 - Google Patents

겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
KR20180083273A
KR20180083273A KR1020180004665A KR20180004665A KR20180083273A KR 20180083273 A KR20180083273 A KR 20180083273A KR 1020180004665 A KR1020180004665 A KR 1020180004665A KR 20180004665 A KR20180004665 A KR 20180004665A KR 20180083273 A KR20180083273 A KR 20180083273A
Authority
KR
South Korea
Prior art keywords
group
formula
carbon atoms
gel polymer
polymer electrolyte
Prior art date
Application number
KR1020180004665A
Other languages
English (en)
Other versions
KR102109836B1 (ko
Inventor
이정훈
안경호
이철행
오정우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019516146A priority Critical patent/JP6793998B2/ja
Priority to PCT/KR2018/000647 priority patent/WO2018131953A1/ko
Priority to US16/316,540 priority patent/US10741874B2/en
Publication of KR20180083273A publication Critical patent/KR20180083273A/ko
Application granted granted Critical
Publication of KR102109836B1 publication Critical patent/KR102109836B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/33317Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

본 발명은 겔 폴리머 전해질용 조성물, 이를 중합하여 제조된 겔 폴리머 전해질, 및 이를 포함하는 이차전지에 관한 것으로, 구체적으로 고온 안전성이 향상된 겔 폴리머 전해질용 조성물, 이를 비활성 분위기하에서 중합시켜 형성된 겔 폴리머 전해질, 및 이를 포함하는 리튬 이차전지에 관한 것이다.

Description

겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지{COMPOSITION FOR GEL POLYMER ELECTROLYTE AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}
본 발명은 고온 안전성이 개선된 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 특히, 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기자동차에 까지 그 적용분야가 확대되면서, 에너지 저장 기술을 개발하기 위한 연구와 노력이 점점 구체화되고 있다.
전기화학소자는 이러한 에너지 저장 기술 분야 중에서 가장 주목받고 있는 분야이며, 그 중에서도 충방전이 가능한 이차전지에 대한 관심이 대두되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 작동 전압이 높고 에너지 밀도가 월등히 크다는 점에서 각광을 받고 있다.
종래 이차전지는 비수계 유기 용매에 염을 용해한 이온 전도성 비수전해액이 주로 사용되어 왔다.
하지만, 상기 비수전해액은 전극 물질이 퇴화되고 유기 용매가 휘발될 가능성이 클 뿐만 아니라, 주변 온도 및 전지 자체의 온도 상승에 의한 연소에 의해 안전성이 낮다는 단점이 있다. 특히, 충방전 시 카보네이트 유기 용매의 분해 및/또는 유기 용매와 전극과의 부반응에 의해 전지 내부에 가스가 발생하여 전지 두께를 팽창시키는 문제점이 있다.
이러한 비수전해액의 단점을 개선하기 위하여 제안된 겔 폴리머 전해질은 전기화학적 안전성이 우수하여 전지의 두께를 일정하게 유지할 수 있을 뿐 아니라, 겔상 고유의 접착력으로 인해 전극과 전해질 사이의 접촉이 우수하기 때문에 박막형 전지 제조에 사용되고 있다.
상기 겔 폴리머 전해질을 적용한 이차전지의 제조 방법은 다음과 같이 2 가지 방법이 알려져 있다.
우선, 염이 용해된 비수계 유기 용매에 중합 가능한 단량체 및 중합개시제를 혼합하여 겔 형성용 조성물을 제조하고, 이를 양극, 음극, 및 분리막이 권취 또는 적층된 전극조립체가 들어 있는 전지에 주액한 후, 적절한 온도와 시간 조건하에서 겔화(가교)시켜 겔형 폴리머 전해질을 함유한 이차전지를 제조할 수 있다. 하지만, 상기 방법은 젖음성(wetting) 및 겔화(gelation)를 위한 가열 공정 시에 안전성이 낮다는 단점이 있다.
또 다른 방법은, 양극, 음극 분리막 표면에 겔 폴리머 전해질용 조성물을 코팅한 다음, 열이나 UV를 이용하여 겔화시킨 다음, 이를 조합하여 전지를 제조하고, 기존 전해액을 추가 주액하는 방법이 있다. 상기 방법은 비수계 유기용매를 추가로 포함하기 때문에 열적 안정성뿐만 아니라 이차전지의 성능면에서 만족하지 못하고 있는 실정이다.
이에, 젖음성 및 고온 안정성 등의 성능이 개선된 겔 폴리머 전해질의 개발이 필요한 실정이다.
대한민국 공개특허공보 제2015-0125928호
본 발명은 이와 같은 문제를 해결하기 위하여 안출된 것이다.
본 발명의 제1 기술적 과제는 젖음성 및 고온 안전성이 향상된 겔 폴리머 전해질용 조성물을 제공하는 것이다.
또한, 본 발명의 제2 기술적 과제는 상기 겔 폴리머 전해질용 조성물을 중합시켜 형성된 겔 폴리머 전해질을 제공하는 것이다.
또한, 본 발명의 제3 기술적 과제는 상기 겔 폴리머 전해질을 포함함으로써, 고온 안전성이 향상된 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에서는
리튬염;
비수성 유기용매;
하기 화학식 1로 표시되는 올리고머; 및
중합개시제;를 포함하는 겔 폴리머 전해질용 조성물을 제공한다.
[화학식 1]
Figure pat00001
상기 화학식 1에서,
R1 내지 R3는 각각 독립적으로 불소로 치환 또는 비치환된 탄소수 1 내지 4의 알킬렌기이고,
R4 및 R5는 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이며,
R6 및 R7은 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는
Figure pat00002
이고, 상기 R8 및 R9는 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는
Figure pat00003
이며,
R10은 지방족 탄화수소기 또는 방향족 탄화수소기이고,
R11은 탄소수 1 내지 3의 알킬렌기이며,
R12는 수소 또는 탄소수 1 내지 2의 알킬기이고,
n은 1 내지 70 중 어느 하나의 정수이고,
m은 1 내지 3 중 어느 하나의 정수이다.
상기 화학식 1로 표시되는 올리고머에서, 상기 지방족 탄화수소기는 지환족 탄화수소기 또는 선형 탄화수소기를 포함할 수 있다.
상기 지환족 탄화소수기는 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 이소시아네이트기(NCO)를 함유하는 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 치환 또는 비치환된 탄소수 4 내지 20의 시클로알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
상기 선형 탄화수소기는 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 이소시아네이트기(NCO)를 함유하는 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환 또는 비치환된 탄소수 1 내지 20의 알콕실렌기; 치환 또는 비치환된 탄소수 2 내지 20의 알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 알키닐렌기로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
또한, 상기 화학식 1로 표시되는 올리고머에서, 상기 방향족 탄화수소기는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴렌기를 들 수 있다.
구체적으로, 상기 화학식 1로 표시되는 올리고머는 하기 화학식 1a로 표시되는 올리고머를 들 수 있다.
[화학식 1a]
Figure pat00004
상기 화학식 1a에서,
R4 및 R5는 각각 독립적으로 지방족 탄화수소기이며,
R8 및 R9는 각각 독립적으로
Figure pat00005
이며,
R10은 지방족 탄화수소기이고, R11은 탄소수 1 내지 3의 알킬렌기이며,
R12는 수소 또는 탄소수 1 내지 2의 알킬기이고,
n은 10 내지 20 중 어느 하나의 정수이고,
m은 1 내지 2 중 어느 하나의 정수다.
보다 구체적으로, 상기 화학식 1a로 표시되는 올리고머는 하기 화학식 1a-1로 표시되는 올리고머를 들 수 있다.
[화학식 1a-1]
Figure pat00006
상기 화학식 1a-1에서,
n은 10 내지 20 중 어느 하나의 정수다.
상기 화학식 1 표시되는 올리고머는 겔 폴리머 전해질용 조성물의 전체 중량을 기준으로 0.5 중량% 내지 20 중량%, 구체적으로 0.5 중량% 내지 10 중량%로 포함될 수 있다.
또한, 상기 화학식 1로 표시되는 올리고머의 중량평균분자량(MW)은 1,000 g/mol 내지 10,000 g/mol, 구체적으로 3,000 g/mol 내지 8,000 g/mol, 보다 구체적으로 3,000 g/mol 내지 5,000 g/mol 일 수 있다.
또한, 본 발명의 일 실시예에서는 상기 겔 폴리머 전해질용 조성물을 비활성 분위기하에서 중합시켜 형성된 겔 폴리머 전해질을 제공한다.
또한, 본 발명의 일 실시예에서는
음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막, 및 본 발명의 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시예에 따르면 친수성 및 소수성 관능기를 가지는 올리고머를 포함함으로써 젖음성이 향상된 겔 폴리머 전해질용 조성물을 제조할 수 있다. 또한, 이를 이용하여 전극 표면과의 표면장력이 낮고, 초기 충전시 전극 표면에 안정한 이온전도성 피막을 형성하여 전해질 부반응을 방지할 수 있는 겔 폴리머 전해질을 제공할 수 있다. 나아가, 본 발명은 이러한 겔 폴리머 전해질을 구비함으로써 고온 안정성이 향상된 리튬 이차전지를 제조할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 안 된다.
도 1은 본 발명의 실험예 1에 따른 이차전지의 고온 안전성 측정 결과를 나타낸 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 특별한 언급이 없는 한 " * "는 동일하거나, 상이한 원자 또는 화학식의 말단부 간의 연결된 부분을 의미한다.
본 발명의 일 실시예에서는
비수성 유기용매;
리튬염;
하기 화학식 1로 표시되는 올리고머; 및
중합개시제;를 포함하는 겔 폴리머 전해질용 조성물을 제공한다.
[화학식 1]
Figure pat00007
상기 화학식 1에서,
R1 내지 R3는 각각 독립적으로 불소로 치환 또는 비치환된 탄소수 1 내지 4의 알킬렌기이고,
R4 및 R5는 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이며,
R6 및 R7은 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는
Figure pat00008
이고, 상기 R8 및 R9는 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는
Figure pat00009
이며,
이때 R10은 지방족 탄화수소기 또는 방향족 탄화수소기이고,
R11은 탄소수 1 내지 3의 알킬렌기이며,
R12는 수소 또는 탄소수 1 내지 2의 알킬기이고,
n은 1 내지 70 중 어느 하나의 정수이고,
m은 1 내지 3 중 어느 하나의 정수이다.
이때, 상기 화학식 1로 표시되는 올리고머에서, 상기 지방족 탄화수소기는 지환족 탄화수소기 또는 선형 탄화수소기를 포함할 수 있다.
상기 지환족 탄화소수기는 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 이소시아네이트기(NCO)를 함유하는 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 치환 또는 비치환된 탄소수 4 내지 20의 시클로알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
상기 선형 탄화수소기는 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 이소시아네이트기(NCO)를 함유하는 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환 또는 비치환된 탄소수 1 내지 20의 알콕실렌기; 치환 또는 비치환된 탄소수 2 내지 20의 알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 알키닐렌기로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
또한, 상기 화학식 1로 표시되는 올리고머에서, 상기 방향족 탄화수소기는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴렌기를 들 수 있다.
구체적으로, 상기 화학식 1로 표시되는 올리고머는 하기 화학식 1a로 표시되는 올리고머를 들 수 있다.
[화학식 1a]
Figure pat00010
상기 화학식 1a에서,
R4 및 R5는 각각 독립적으로 지방족 탄화수소기이며,
R8 및 R9는 각각 독립적으로
Figure pat00011
이며,
R10은 지방족 탄화수소기이고, R11은 탄소수 1 내지 3의 알킬렌기이며,
R12는 수소 또는 탄소수 1 내지 2의 알킬기이고,
n은 10 내지 20 중 어느 하나의 정수이고,
m은 1 내지 2 중 어느 하나의 정수다.
보다 구체적으로, 상기 화학식 1a로 표시되는 올리고머는 하기 화학식 1a-1로 표시되는 올리고머를 들 수 있다.
[화학식 1a-1]
Figure pat00012
상기 화학식 1a-1에서,
n은 10 내지 20 중 어느 하나의 정수다.
본 발명의 겔 폴리머 전해질용 조성물에 있어서, 상기 화학식 1로 표시되는 올리고머는 양 말단에 자체적으로 가교 결합을 형성할 수 있는 친수성 부분인 아크릴레이트계 작용기를 함유하는 동시에, 소수성 부분인 불소 치환 에틸렌기를 포함하고 있기 때문에, 전지 내에서 계면활성제(surfactant) 역할을 부여하여 전극 계면과의 표면 저항을 낮출 수 있다. 따라서, 상기 화학식 1로 표시되는 올리고머를 포함하는 겔 폴리머 전해질용 조성물은 젖음성 효과가 보다 향상될 수 있다. 뿐만 아니라, 상기 화학식 1로 표시되는 올리고머는 주사슬 단위로 구조 중에 아미드기(amide group) 및 전기화학적으로 매우 안정한 불소 치환 에틸렌기를 포함함으로써, 리튬 이온 (Li+)의 부반응 및 리튬염(salt)의 분해 반응 등을 제어할 수 있으므로, 과충전 시에 CO 또는 CO2 등의 가스 발생을 저감할 수 있다. 이러한 겔 폴리머 전해질용 조성물을 이용하여 우수한 기계적 물성과 열적, 화학적 및 산화 안정성을 가지며, 전극 표면과의 표면장력이 낮고, 초기 충전시 전극 표면에 안정한 이온전도성 피막을 형성하여 전해질 부반응을 방지할 수 있는 겔 폴리머 전해질을 제조할 수 있으며, 이를 포함함으로써 고온 안전성이 향상된 리튬 이차전지를 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 올리고머는 겔 폴리머 전해질용 조성물의 전체 중량을 기준으로 0.5 중량% 내지 20 중량%, 구체적으로 0.5 중량% 내지 10 중량%로 포함될 수 있다. 만약, 상기 올리고머의 함량이 0.5 중량% 미만이면 전해질 전체의 겔 반응 형성 효과가 불충분하고, 올리고머의 함량이 20 중량%를 초과하면 올리고머가 과량 함유되어 저항이 증가하고, 이온전도도가 감소하는 단점이 발생할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 올리고머의 중량평균 분자량(MW)은 반복 단위의 개수에 의해 조절될 수 있으며, 약 1,000 g/mol 내지 10,000 g/mol, 구체적으로 3,000 g/mol 내지 8,000 g/mol, 보다 구체적으로 3,000 g/mol 내지 5,000 g/mol일 수 있다.
상기 올리고머의 중량평균분자량이 상기 범위 내인 경우, 이를 포함하는 전지의 기계적 강도를 효과적으로 개선할 수 있다.
만약, 상기 올리고머의 중량평균분자량이 1,000 g/mol 미만이면, 겔 반응 진행 시 고분자 매트릭스 형성이 어렵기 때문에, 전해질 부반응 억제 효과가 감소될 수 있다. 상기 올리고머의 중량평균분자량이 10,000 g/mol을 초과하면, 올리고머의 물성 자체가 경직(rigid)되고, 전해질 용매와 친화성이 낮아져 용해가 어려워질 뿐만 아니라, 일부 용해된 전해질도 그 점도가 높아 초기 전지 내 전해질 젖음성을 현저히 떨어뜨려, 이차전지의 성능 저하를 야기할 수 있다.
상기 중량평균분자량은 GPC(Gel Permeation Chromatograph)로 측정한 표준 폴리스티렌에 대한 환산 수치를 의미할 수 있고, 특별하게 달리 규정하지 않는 한, 분자량은 중량평균분자량을 의미할 수 있다. 예컨대, 본 발명에서는 GPC 조건으로 Agilent社 1200시리즈를 이용하여 측정하며, 이때 사용된 컬럼은 Agilent社 PL mixed B 컬럼을 이용할 수 있고, 용매는 THF를 사용할 수 있다.
한편, 본 발명의 일 실시예에 따른 겔 폴리머 전해질용 조성물에 포함되는 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 양이온으로 Li+를 포함하고, 음이온으로 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (F2SO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함할 수 있다. 상기 리튬염은 1종 또는 필요에 따라서 2종 이상을 혼합하여 사용할 수도 있다. 상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 겔 폴리머 전해질용 조성물 내에 0.8 M 내지 2M, 구체적으로 0.8M 내지 1.5M의 농도로 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 겔 폴리머 전해질용 조성물에 포함되는 비수성 유기 용매는 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없다. 예를 들면 에테르계 용매, 에스테르계 용매, 또는 아미드계 용매 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
상기 유기용매 중 에테르계 용매로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 에스테르계 용매는 환형 카보네이트 화합물, 선형 카보네이트 화합물, 선형 에스테르 화합물, 및 환형 에스테르 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함할 수 있다.
이중 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다.
또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 선형 에스테르 화합물은 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 환형 에스테르 화합물은 그 구체적인 예로 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, ε-카프로락톤과 같은 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 에스테르계 용매 중에서 환형 카보네이트계 화합물은 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트계 화합물에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트계 화합물 및 선형 에스테르계 화합물을 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 겔 폴리머 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
또한, 본 발명의 일 실시예에 따른 겔 폴리머 전해질용 조성물에 있어서, 상기 중합개시제는 당 업계에 알려진 통상적인 중합개시제가 사용될 수 있다. 예를 들면, 상기 중합개시제의 그 대표적인 예로 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 디라우릴 퍼옥사이드(dilauryl peroxide), 디-tert-부틸 퍼옥사이드(di-tert-butyl peroxide), t-부틸 퍼옥시-2-에틸-헥사노에이트(t-butyl peroxy-2-ethyl-hexanoate), 큐밀 하이드로퍼옥사이드(cumyl hydroperoxide) 및 하이드로겐 퍼옥사이드(hydrogen peroxide) 등의 유기과산화물류나 히드로과산화물류와 2,2'-아조비스(2-시아노부탄), 디메틸 2,2'-아조비스(2-메틸프로피오네이트), 2,2'-아조비스(메틸부티로니트릴), 2,2'-아조비스(이소부티로니트릴)(AIBN; 2,2'-Azobis(iso-butyronitrile)) 및 2,2'-아조비스디메틸-발레로니트릴(AMVN; 2,2'-Azobisdimethyl-Valeronitrile)로 이루어진 군에서 선택된 1종 이상 아조 화합물류 등이 있으나, 이에 한정하지 않는다.
상기 중합개시제는 전지 내에서 열, 비제한적인 예로 30℃ 내지 100℃, 구체적으로 60℃ 내지 80℃의 열에 의해 분해되거나 상온(5℃ 내지 30℃)에서 분해되어 라디칼을 형성하고, 자유라디칼 중합에 의해 중합성 올리고머가 반응하여 겔 폴리머 전해질을 형성할 수 있다.
상기 중합개시제는 상기 올리고머 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다. 상기 중합개시제가 5 중량부를 초과하는 경우, 겔 폴리머 전해질 제조 시에 미반응 중합개시제가 잔류하여 전지 성능에 악영향을 미질 수 있다. 반대로 상기 중합개시제가 0.1 중량부 미만이면 일정 온도 이상의 조건에서도 겔화가 잘 이루어지지 않는 문제가 있다.
한편, 본 발명의 일 실시예에 따른 리튬 이차전지용 겔 폴리머 전해질용 조성물은 필요에 따라서 부가적 첨가제를 더 포함할 수도 있다. 본 발명에서 사용 가능한 부가적 첨가제로는 비닐렌 카보네이트, 비닐에틸렌카보네이트, 플루오로에틸렌 카보네이트, 비닐에틸렌 카보네이트, 환형 설파이트, 포화 설톤, 불포화 설톤, 비환형 설폰 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
이때, 상기 환형 설파이트로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 1,3-부틸렌 글리콜 설파이트 등을 들 수 있으며, 포화 설톤으로는 1,3-프로판 설톤, 1,4-부탄 설톤 등을 들 수 있으며, 불포화 설톤으로는 에텐설톤, 1,3-프로펜 설톤, 1,4-부텐 설톤, 1-메틸-1,3-프로펜 설톤 등을 들 수 있으며, 비환형 설폰으로는 디비닐설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 메틸비닐 설폰 등을 들 수 있다.
상기 부가적 첨가제들은 2 종 이상이 혼합되어 겔 폴리머 전해질용 조성물 총량을 기준으로 0.01 내지 5 중량%, 구체적으로 0.01 내지 3 중량%로 포함될 수 있으며, 바람직하게는 0.05 내지 3 중량% 일 수 있다. 상기 부가적 첨가제의 함량이 0.01 중량% 보다 적으면 전지의 저온 출력 개선 및 고온 저장 특성 및 고온 수명 특성 개선의 효과가 미미하고, 상기 부가적 첨가제의 함량이 5 중량%를 초과하면 전지의 충방전시 전해질 내의 부반응이 과도하게 발생할 가능성이 있다. 특히, 상기 SEI 막 형성용 첨가제들이 과량으로 첨가될 시에 고온에서 충분히 분해되지 못하여, 상온에서 전해질 내에서 미반응물 또는 석출된 채로 존재하고 있을 수 있다. 이에 따라 이차전지의 수명 또는 저항특성이 저하되는 부반응이 발생할 수 있다.
또한, 본 발명의 일 실시예에서는 상기 겔 폴리머 전해질용 조성물을 비활성 분위기하에서 중합시켜 형성된 겔 폴리머 전해질을 제공한다.
또한, 본 발명의 일 실시예에서는
음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막, 및
본 발명의 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제공한다.
구체적으로, 상기 겔 폴리머 전해질은 이차전지 내에 상기 겔 폴리머 전해질용 조성물을 주액한 후 경화반응시켜 제조될 수 있다.
예를 들면, 겔 폴리머 전해질은 이차전지의 내부에서 상기 겔 폴리머 전해질용 조성물을 in-situ 중합하여 형성될 수 있다.
더욱 구체적인 일 실시 형태를 들면, (a) 양극, 음극, 및 상기 양극과 음극 사이에 개재된 분리막으로 이루어진 전극 조립체를 전지 케이스에 삽입하는 단계 및 (b) 상기 전지 케이스에 본 발명에 따른 겔 폴리머 전해질용 조성물을 주입한 후 중합시켜 겔 폴리머 전해질을 형성하는 단계를 포함할 수 있다.
리튬 이차전지 내 in-situ 중합 반응은 전자빔(E-BEAM), 감마선, 상온 또는 고온 에이징 공정을 통하여 가능하며, 본 발명의 일 실시예에 따르면 열 중합을 통해 진행될 수 있다. 이때, 중합 시간은 대략 2분 내지 12시간 정도 소요되며, 열 중합 온도는 60℃ 내지 100℃, 구체적으로 60℃ 내지 80℃ 가 될 수 있다.
보다 구체적으로 리튬 이차전지 내 in-situ 중합 반응은 리튬염이 포함되어 있는 겔 폴리머 전해질용 조성물에 중합개시제와 상기 올리고머를 소정량 첨가하여 혼합한 후 전지셀에 주액한다. 그러한 전지셀의 주액구를 밀봉한 후, 예를 들면 60℃ 내지 80℃로 1 내지 20 시간 동안 가열하여 중합을 행하면, 리튬염 함유 겔 폴리머 전해질용 조성물이 겔화되면서 겔 폴리머 전해질이 제조된다.
본 발명의 일 실시예에 따른 상기 리튬 이차전지는 충전 전압이 3.0V 내지 5.0V 범위로, 일반전압 및 고전압 영역 모두에서 리튬 이차전지의 용량 특성이 우수하다.
또한, 상기 본 발명의 겔 폴리머 전해질을 이용하여 코팅형 겔 폴리머 전해질을 구현하는 경우, 상기 겔 폴리머 전해질의 전체 중량에 대하여 10 중량% 내지 25 중량% 범위의 무기물 입자를 추가로 함유할 수 있다.
상기 무기물 입자는 폴리머 네트워크에 함침되어, 무기물 입자 간의 빈 공간에 의해 형성된 기공들을 통하여 고점도 용매가 잘 스며들도록 할 수 있다. 즉, 무기물 입자를 포함함으로써, 극성 물질 간의 친화력과 모세관 현상에 의해 고점도 용매에 대한 습윤성을 보다 향상되는 효과를 얻을 수 있다.
이러한 무기물 입자로는 유전율이 높고, 리튬 이차전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0 내지 5V)에서 산화 및/또는 환원 반응이 일어나지 않는 무기물 입자를 사용할 수 있다.
구체적으로, 상기 무기물 입자는 그 대표적인 예로서 유전율 상수가 5 이상인 BaTiO3, BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1 - aLaaZr1 - bTibO3 (PLZT, 여기서, 0<a<1, 0<b<1임), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 및 이들의 혼합체로부터 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 들 수 있다.
또한, 상기 무기물 입자 외에도 리튬 이온 전달 능력을 갖는 무기물 입자, 즉 리튬포스페이트 (Li3PO4), 리튬티타늄포스페이트 (LicTid(PO4)3, 0<d<2, 0<d<3), 리튬알루미늄티타늄포스페이트 (Lia1Alb1Tic1(PO4)3, 0<a1<2, 0<b1<1, 0<c1<3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)a2Ob2 계열 글래스(glass) (0<a2<4, 0<b2<13), 리튬란탄티타네이트 (Lia3Lab3TiO3, 0<a3<2, 0<b3<3), Li3 . 25Ge0 .25P0. 75S4 등과 같은 리튬게르마니움티오포스페이트 (Lia4Geb4Pc2Sd, 0<a4<4, 0<b4<1, 0<c2<1, 0<d<5), Li3N 등과 같은 리튬나이트라이드 (Lia5Nb5, 0<a5<4, 0<b5<2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 글래스 (Lia6Sib6Sc3, 0<a6<3, 0<b6<2, 0<c4<4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 글래스 (Lia7Pb7Sc5, 0<a7<3, 0<b7<3, 0<c5<7) 또는 이들의 혼합물 등을 더 포함할 수 있다.
상기 무기물 입자들의 평균 입경은 겔 폴리머 전해질 내에 균일한 두께로 적절한 공극률을 가지도록 형성하기 위하여, 약 0.001 내지 10㎛ 범위인 것이 바람직하다. 만약, 평균 입경이 0.001㎛ 미만인 경우 분산성이 저하될 수 있고, 평균 입경이 10㎛를 초과하는 경우 다공성 코팅층의 두께가 증가할 수 있을 뿐만 아니라, 무기물 입자가 뭉치는 현상이 발생하여 겔 폴리머 전해질 밖으로 노출되면서 기계적 강도가 저하될 수 있다.
한편, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 개재된 분리막으로 이루어진 전극 구조체에 본 발명의 겔 폴리머 전해질용 조성물을 주액한 후, 겔화하여 제조할 수 있다. 이때, 전극 구조체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1 -Y2MnY2O2(여기에서, 0<Y2<1), LiMn2 - z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 자립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이 중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물 (예를 들면 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99.5 중량%, 구체적으로 85 중량% 내지 95 중량%로 포함될 수 있다.
상기 양극 활물질 함량이 80 중량% 이하인 경우 에너지 밀도가 낮아져 용량이 저하될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 중량부 내지 50 중량부, 더욱 상세하게는 3 중량부 내지 15 중량부로 첨가된다. 상기 바인더가 1 중량부 미만이면 전극활물질과 집전체와의 접착력이 불충분해질 수 있으며, 50 중량부를 초과하면 접착력은 향상되지만 그만큼 전극활물질의 함량이 감소하여 전지 용량이 낮아질 수 있다.
이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
또한, 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 부여하는 물질로서, 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 
이러한 도전재는 그 대표적인 예로 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있으며, 현재 아세틸렌 블랙 계열 도전재 (Chevron Chemical Company 제조, 덴카 블랙(Denka Singapore Private Limited 제조), 또는 Gulf Oil Company 제조), 케첸 블랙(Ketjenblack), EC 계열(Armak Company 제조), 불칸 XC-72 (Cabot Company 제조) 및 수퍼(Super)-P(Timcal 제조) 등의 명칭으로 시판되고 있는 것을 사용할 수도 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 10 중량% 내지 60 중량%, 바람직하게 20 중량% 내지 50 중량%가 되도록 포함될 수 있다.
또한, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 슬러리를 음극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질, 및 전이 금속 산화물 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), 및 SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 양극 제조 시 사용된 것과 동일한 물질을 사용할 수 있으며, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 
상기 용매는 물 또는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
또한, 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
<리튬 이차전지의 제조>
실시예 1
(겔 폴리머 전해질용 조성물 제조)
1M LiPF6가 용해된 비수성 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)= 3:7 부피비) 94.8g에 상기 화학식 1a-1의 화합물 (n=10, 중량평균분자량(Mw): 3,000 g/mol) 5g 및 중합개시제로서 디메틸 2,2'-아조비스(2-메틸프로피오네이트) (CAS No. 2589-57-3) 0.2g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다.
(리튬 이차전지의 제조)
양극 활물질로 (LiNi1 / 3Co1 / 3Mn1 / 3O2; NCM) 94 중량%, 도전재로 카본 블랙(carbon black) 3 중량%, 바인더로 폴리비닐리덴플루오라이드(PVDF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 활물질 슬러리 (고형분 함량 50%)를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로 탄소 분말, 바인더로 PVDF, 도전재로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 활물질 슬러리 (고형분 함량 80%)를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 순차적으로 적층하여 전극조립체를 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 이용하여 전극조립체를 제조하고, 이를 전지케이스에 수납하고 상기 제조된 겔 폴리머 전해질용 조성물을 주액하였다.
이어서, 2일 동안 상온에서 저장한 다음, 65℃에서 5시간 가열하여 열 중합된 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
실시예 2
겔 폴리머 전해질용 조성물 제조 시에, 비수성 유기용매 89.8g에 상기 화학식 1a-1의 화합물 10g 및 중합개시제 0.2g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 이차전지를 제조하였다.
실시예 3.
겔 폴리머 전해질용 조성물 제조 시에, 비수성 유기용매 98.98g에 상기 화학식 1a-1의 화합물 1g 및 중합개시제 0.02g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 이차전지를 제조하였다.
실시예 4.
겔 폴리머 전해질용 조성물 제조 시에, 비수성 유기용매 94.8g에 상기 화학식 1a-1의 화합물 (중량평균분자량(Mw): 1,000 g/mol) 5g 및 중합개시제 0.2g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 이차전지를 제조하였다.
실시예 5.
겔 폴리머 전해질용 조성물 제조 시에, 비수성 유기용매 78g에 상기 화학식 1a-1의 화합물 20g 및 중합개시제 2g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 이차전지를 제조하였다.
실시예 6.
겔 폴리머 전해질용 조성물 제조 시에, 비수성 유기용매 94.8g에 상기 화학식 1a-1의 화합물 (중량평균분자량(Mw): 10,000 g/mol) 5g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 이차전지를 제조하였다.
실시예 7.
겔 폴리머 전해질용 조성물 제조 시에, 비수성 유기용매 99.68g에 상기 화학식 1a-1의 화합물 (n=10, 중량평균분자량(Mw): 3,000 g/mol) 0.3g 및 중합개시제 0.02g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 이차전지를 제조하였다.
실시예 8.
겔 폴리머 전해질용 조성물 제조 시에, 비수성 유기용매 70g에 상기 화학식 1a-1의 화합물 (n=10, 중량평균분자량(Mw): 3,000 g/mol) 25g 및 중합개시제 5g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 이차전지를 제조하였다.
실시예 9.
겔 폴리머 전해질용 조성물 제조 시에, 비수성 유기용매 94.8g에 상기 화학식 1a-1의 화합물 (n=10, 중량평균분자량(Mw): 500 g/mol) 5g 및 중합개시제 0.2g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 이차전지를 제조하였다.
실시예 10.
겔 폴리머 전해질용 조성물 제조 시에, 비수성 유기용매 94.8g에 상기 화학식 1a-1의 화합물 (n=10, 중량평균분자량(Mw): 20,000 g/mol) 5g 및 중합개시제 0.2g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 이차전지를 제조하였다.
비교예 1.
(비수전해액 제조)
1M LiPF6를 비수성 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)= 3:7 부피비)에 용해하여 비수전해액을 제조하였다.
(리튬 이차전지의 제조)
양극 활물질로 (LiNi1 / 3Co1 / 3Mn1 / 3O2; NCM) 94 중량%, 도전재로 카본 블랙(carbon black) 3 중량%, 바인더로 폴리비닐리덴플루오라이드(PVDF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 활물질 슬러리 (고형분 함량 50%)를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로 탄소 분말, 바인더로 PVDF, 도전재로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 활물질 슬러리 (고형분 함량 80%)를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 순차적으로 적층하여 전극조립체를 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 이용하여 전극조립체를 제조하고, 이를 전지케이스에 수납하고 상기 제조된 비수전해액을 주액하여 리튬 이차전지(Full cell)를 제조하였다.
비교예 2.
(겔 폴리머 전해질용 조성물 제조)
1M LiPF6가 용해된 비수성 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)= 3:7 부피비) 95g에 하기 화학식 3으로 표시되는 ETPTA (ethoxylated tri-methylolpropane triacrylate) 올리고머 5g 및 중합개시제로서 디메틸 2,2'-아조비스(2-메틸프로피오네이트) (CAS No. 2589-57-3) 0.2g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다.
[화학식 3]
Figure pat00013
(리튬 이차전지의 제조)
상기 제조된 겔 폴리머 전해질용 조성물을 이용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
하기 표 1에 실시예 1 내지 10의 겔 폴리머 전해질용 조성물과 비교예 1 및 2의 겔 폴리머 조성물용 조성물의 구성을 정리하였다.
Figure pat00014
실험예
실험예 1: 고온 안정성 평가(1)
실시예 1 및 2의 겔 폴리머 전해질을 포함하는 이차전지와 비교예 1의 비수전해액을 포함하는 이차전지 및 비교예 2의 겔 폴리머 전해질을 포함하는 이차전지를 각각 SOC 100% 상태에서 고온 저장(60℃)한 후, 두께 증가율(%)을 측정하였다. 그 결과를 도 1에 나타내었다.
도 1의 두께 증가율(%)을 살펴보면, 본 발명의 실시예에 따른 올리고머를 포함하는 겔 폴리머 전해질용 조성물을 사용한 실시예 1 및 2의 이차전지의 경우, 올리고머를 포함하지 않은 비수전해액을 사용한 비교예 1의 이차전지와 겔 폴리머 전해질용 조성물을 사용한 비교예 2의 이차전지에 비해 60℃에서 4주간 이후부터 두께 증가율이 현저히 감소함을 확인할 수 있다.
실험예 2: 고온 안정성 평가(2)
실시예 3 내지 10에서 제조한 리튬 이차전지를 0.1C rate로 3시간 충전하였다. 이어서, 탈가스 (degas)/재밀봉 (reseal)하고 실온에서 0.2C로 4.15V까지 정전류/정전압조건으로 충전하고, 0.2C로 3.0V까지 정전류 조건으로 방전하여 초기 충방전을 수행하였다. 초기 충방전 후, 각각 4.15V로 충전하고, 60℃에서 6주 동안 저장(SOC (state of charge) 100%)하면서, 0 주차 대비 6주 차의 cell의 용량 유지율(%) 및 두께 변화율(swelling)을 측정하였다.
그 결과를 하기 표 2에 나타내었다.
Figure pat00015
상기 표 2에 나타낸 바와 같이, 실시예 3 내지 6에서 제조한 리튬 이차전지는 고온 저장 후 용량 유지율이 약 94% 이상이고, 고온 저장 후 두께 증가율은 약 7.5% 이하인 것을 알 수 있다.
한편, 올리고머가 소량 포함된 겔 폴리머 전해질용 조성물을 구비한 실시예 7의 리튬 이차전지는 겔 화가 어려워 성능 테스트가 불가하였다.
또한, 올리고머가 과량 포함된 겔 폴리머 전해질을 구비한 실시예 8의 리튬 이차전지는 전해질 내의 저항 증가로 인하여 고온 저장 후 용량 유지율은 90.1% 이상이고, 고온 저장 후 두께 증가율은 15.9%로 실시예 3 내지 6에서 제조한 리튬 이차전지 대비 열화된 것을 알 수 있다.
또한, 중량평균분자량이 낮은 올리고머를 포함하는 겔 폴리머 전해질을 구비한 실시예 9의 리튬 이차전지의 고온 저장 후 용량 유지율은 91% 이상이고, 고온 저장 후 두께 증가율은 10.8%로 동일 조건의 겔 고분자 반응에서 반응 열위를 일으켜, 실시예 3 내지 6에서 제조한 리튬 이차전지 대비 열화된 것을 알 수 있다.
또한, 중량평균분자량이 높은 올리고머를 포함하는 겔 폴리머 전해질을 구비한 실시예 10의 리튬 이차전지는 겔 폴리머 전해질용 조성물의 점도 증가로 웨팅 효과가 저하되기 때문에, 실시예 3 내지 6에서 제조한 리튬 이차전지 대비 열화된 것을 알 수 있다.

Claims (11)

  1. 리튬염;
    비수성 유기용매;
    하기 화학식 1로 표시되는 올리고머; 및
    중합개시제;를 포함하는 것인 겔 폴리머 전해질용 조성물.
    [화학식 1]
    Figure pat00016

    상기 화학식 1에서,
    R1 내지 R3는 각각 독립적으로 불소로 치환 또는 비치환된 탄소수 1 내지 4의 알킬렌기이고,
    R4 및 R5는 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이며,
    R6 및 R7은 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는
    Figure pat00017
    이고, 상기 R8 및 R9는 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는
    Figure pat00018
    이며,
    이때 R10은 지방족 탄화수소기 또는 방향족 탄화수소기이고,
    R11은 탄소수 1 내지 3의 알킬렌기이며,
    R12는 수소 또는 탄소수 1 내지 2의 알킬기이고,
    n은 1 내지 70 중 어느 하나의 정수이고,
    m은 1 내지 3 중 어느 하나의 정수이다.
  2. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 올리고머에서,
    상기 지방족 탄화수소기는 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 이소시아네이트기(NCO)를 함유하는 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 치환 또는 비치환된 탄소수 4 내지 20의 시클로알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기로 이루어진 군으로부터 선택된 적어도 하나 이상의 지환족 탄화수소기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 이소시아네이트기(NCO)를 함유하는 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환 또는 비치환된 탄소수 1 내지 20의 알콕실렌기; 치환 또는 비치환된 탄소수 2 내지 20의 알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 알키닐렌기로 이루어진 군으로부터 선택된 적어도 하나 이상의 선형 탄화수소기이고,
    상기 방향족 탄화수소기는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴렌기인 것인 겔 폴리머 전해질용 조성물.
  3. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 올리고머는 하기 화학식 1a로 표시되는 올리고머를 포함하는 것인 겔 폴리머 전해질용 조성물:
    [화학식 1a]
    Figure pat00019

    상기 화학식 1a에서,
    R4 및 R5는 각각 독립적으로 지방족 탄화수소기이며,
    R8 및 R9는 각각 독립적으로
    Figure pat00020
    이며,
    R10은 지방족 탄화수소기이고,
    R11은 탄소수 1 내지 3의 알킬렌기이며,
    R12는 수소 또는 탄소수 1 내지 2의 알킬기이고,
    n은 10 내지 20 중 어느 하나의 정수이고,
    m은 1 내지 2 중 어느 하나의 정수다.
  4. 청구항 3에 있어서,
    상기 화학식 1a로 표시되는 올리고머는 하기 화학식 1a-1로 표시되는 올리고머를 포함하는 것인 겔 폴리머 전해질용 조성물:
    [화학식 1a-1]
    Figure pat00021

    상기 화학식 1a-1에서,
    n은 10 내지 20 중 어느 하나의 정수이다.
  5. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 올리고머는 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.5 중량% 내지 20 중량%로 포함되는 것인 겔 폴리머 전해질용 조성물.
  6. 청구항 5에 있어서,
    상기 화학식 1로 표시되는 올리고머는 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.5 중량% 내지 10 중량%로 포함되는 것인 겔 폴리머 전해질용 조성물.
  7. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 올리고머의 중량평균분자량(MW)은 1,000 g/mol 내지 10,000 g/mol인 것인 겔 폴리머 전해질용 조성물.
  8. 청구항 7에 있어서,
    상기 화학식 1로 표시되는 올리고머의 중량평균분자량(MW)은 3,000 g/mol 내지 8,000 g/mol인 것인 겔 폴리머 전해질용 조성물.
  9. 청구항 8에 있어서,
    상기 화학식 1로 표시되는 올리고머의 중량평균분자량(MW)은 3,000 g/mol 내지 5,000 g/mol인 것인 겔 폴리머 전해질용 조성물.
  10. 청구항 1의 겔 폴리머 전해질용 조성물을 비활성 분위기하에서 전지에 주액 후, 중합시켜 형성된 것인 겔 폴리머 전해질.
  11. 음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막, 및
    청구항 10의 겔 폴리머 전해질을 포함하는 것인 리튬 이차전지.
KR1020180004665A 2017-01-12 2018-01-12 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지 KR102109836B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019516146A JP6793998B2 (ja) 2017-01-12 2018-01-12 ゲルポリマー電解質用組成物およびそれを含むリチウム二次電池
PCT/KR2018/000647 WO2018131953A1 (ko) 2017-01-12 2018-01-12 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지
US16/316,540 US10741874B2 (en) 2017-01-12 2018-01-12 Composition for gel polymer electrolyte and lithium secondary battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170005599 2017-01-12
KR20170005599 2017-01-12

Publications (2)

Publication Number Publication Date
KR20180083273A true KR20180083273A (ko) 2018-07-20
KR102109836B1 KR102109836B1 (ko) 2020-05-13

Family

ID=63103595

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180004665A KR102109836B1 (ko) 2017-01-12 2018-01-12 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US10741874B2 (ko)
EP (1) EP3467927B1 (ko)
JP (1) JP6793998B2 (ko)
KR (1) KR102109836B1 (ko)
CN (1) CN109451769B (ko)
PL (1) PL3467927T3 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111670514A (zh) * 2018-09-21 2020-09-15 株式会社Lg化学 用于凝胶聚合物电解质的组合物和包括由该组合物形成的凝胶聚合物电解质的锂二次电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125928A (ko) 2013-02-27 2015-11-10 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 그것을 이용한 비수계 전해액 전지
KR20160040127A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1188043A (en) * 1978-12-29 1985-05-28 Ching-Jen Chang Methacrylic acid emulsion copolymers for thickening purposes
SE518564C2 (sv) * 1999-12-20 2002-10-22 Ericsson Telefon Ab L M Polymer elektrolyt, battericell innefattande elektrolyten, förfarande för framställning av elektrolyten samt användning av elektrolyten och battericellen
JP2004342537A (ja) 2003-05-19 2004-12-02 Nitto Denko Corp ゲル電解質とこれを用いる非水電解質電池
JP4157055B2 (ja) * 2004-02-23 2008-09-24 三星エスディアイ株式会社 ゲルポリマー電解質およびリチウム二次電池
CN1296426C (zh) * 2005-02-04 2007-01-24 武汉大学 一种非水/水两相凝胶电解质及其制备方法和电池
KR101350316B1 (ko) * 2009-07-24 2014-01-16 주식회사 엘지화학 겔 폴리머 전해질용 퍼플루오르화 포스페이트계 아크릴레이트 가교제 및 이로부터 제조된 겔 폴리머 전해질과 이를 포함하는 전기화학소자
EP3203565B1 (en) 2014-10-02 2018-03-28 LG Chem, Ltd. Gel polymer electrolyte and lithium secondary battery comprising same
WO2016161465A1 (en) * 2015-04-03 2016-10-06 Seeo, Inc. Fluorinated alkali ion electrolytes with urethane groups

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125928A (ko) 2013-02-27 2015-11-10 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 그것을 이용한 비수계 전해액 전지
KR20160040127A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111670514A (zh) * 2018-09-21 2020-09-15 株式会社Lg化学 用于凝胶聚合物电解质的组合物和包括由该组合物形成的凝胶聚合物电解质的锂二次电池
US11735767B2 (en) 2018-09-21 2023-08-22 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte and lithium secondary battery including gel polymer electrolyte formed therefrom
CN111670514B (zh) * 2018-09-21 2023-08-22 株式会社Lg新能源 用于凝胶聚合物电解质的组合物和包括由该组合物形成的凝胶聚合物电解质的锂二次电池

Also Published As

Publication number Publication date
EP3467927A1 (en) 2019-04-10
PL3467927T3 (pl) 2021-11-02
US10741874B2 (en) 2020-08-11
CN109451769B (zh) 2021-11-02
EP3467927B1 (en) 2021-06-16
CN109451769A (zh) 2019-03-08
EP3467927A4 (en) 2019-10-16
US20190267660A1 (en) 2019-08-29
JP2019530958A (ja) 2019-10-24
JP6793998B2 (ja) 2020-12-02
KR102109836B1 (ko) 2020-05-13

Similar Documents

Publication Publication Date Title
KR102102985B1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
US11431019B2 (en) Lithium secondary battery
KR20180083272A (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
CN110178258B (zh) 用于锂二次电池的电解质和包括该电解质的锂二次电池
KR20190024761A (ko) 리튬 이차전지
KR20180054499A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20190062310A (ko) 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지
KR20180026356A (ko) 고분자 전해질 및 이를 포함하는 리튬 이차전지
KR20180041602A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20200020169A (ko) 리튬 이차 전지용 전해질
KR102389888B1 (ko) 저온 특성 및 고온 특성이 향상된 리튬 이차전지
KR20200004768A (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR102109836B1 (ko) 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지
KR20190088333A (ko) 고체 전해질 전지용 전극 및 그를 포함하는 고체 전해질 전지
CN114051665A (zh) 非水电解质溶液和包含该非水电解质溶液的锂二次电池
KR20190054981A (ko) 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
CN111344890A (zh) 凝胶聚合物电解质组合物、由该凝胶聚合物电解质组合物制备的凝胶聚合物电解质以及包括该凝胶聚合物电解质的锂二次电池
KR20190075345A (ko) 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
JP7278657B2 (ja) 非水電解液及びこれを含むリチウム二次電池
JP7486886B2 (ja) 電解質組成物、ゲルポリマー電解質、およびそれを含むリチウム二次電池
CN117280512A (zh) 凝胶聚合物电解质二次电池的制造方法及由此得到的凝胶聚合物电解质二次电池
KR20230012430A (ko) 전해질 조성물, 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR20190088427A (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
KR20190054941A (ko) 양극 슬러리 조성물, 이를 포함하는 이차전지용 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right