KR20180079338A - 몰딩 조립체 - Google Patents

몰딩 조립체 Download PDF

Info

Publication number
KR20180079338A
KR20180079338A KR1020187013190A KR20187013190A KR20180079338A KR 20180079338 A KR20180079338 A KR 20180079338A KR 1020187013190 A KR1020187013190 A KR 1020187013190A KR 20187013190 A KR20187013190 A KR 20187013190A KR 20180079338 A KR20180079338 A KR 20180079338A
Authority
KR
South Korea
Prior art keywords
barrel
screw
pressure
raw material
molding assembly
Prior art date
Application number
KR1020187013190A
Other languages
English (en)
Inventor
헨릭 홈
클라스 셰베르그
Original Assignee
테트라 라발 홀딩스 앤드 피낭스 소시에떼아노님
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 테트라 라발 홀딩스 앤드 피낭스 소시에떼아노님 filed Critical 테트라 라발 홀딩스 앤드 피낭스 소시에떼아노님
Publication of KR20180079338A publication Critical patent/KR20180079338A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • B29C2045/5032Drive means therefor using means for detecting injection or back pressures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/84Safety devices
    • B29C2045/848Safety devices detecting or preventing overload of an injection plunger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76006Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/7618Injection unit
    • B29C2945/7619Injection unit barrel

Abstract

토출되는 원료를 받아들이는 주입구(117)와, 상기 주입구(117)를 통해 받아들여진 상기 원료를 모아 처리하는 통(112)과, 상기 통 내부에서 상기 원료와 맞물려 돌아가는 스크류(110)와, 상기 원료를 액체 형태로 갈기 위해서 상기 스크류(110)를 회전시키도록 구성된 제1 구동부(170)를 구비하고, 상기 통(112) 내부의 압력에 따라 상기 통(112)의 내부와 외부에서 회전 방향에 실질적으로 수직한 방향으로 상기 스크류(110)를 변위시키도록 구성된 제2 구동부(120)를 더 구비하는, 몰딩 조립체(100).

Description

몰딩 조립체
본 발명은, 용기의 몰딩 분야에 관한 것이다. 보다 구체적으로, 본 발명은, 용기를 몰딩하는 몰딩 조립체와 용기 몰딩 방법에 관한 것이다.
사출 및 압출 몰딩은, 폴리머, 유리, 세라믹 또는 심지어 금속으로부터 물품을 제조하는 2개의 잘 알려진 기술이고 수십 년간 알려져 연구되고 있다.
사출 몰딩에서는, 과립 형태의 원료를 과립 주입구에 공급하고 이 주입구로부터 통(barrel)에 공급하고, 이 통에서 열화학력의 영향하에 액체 멜트로 변환시킨다. 통상, 그 과립에 작용하는 기계력은, 그 통 내부에서 회전 가능하고 이동 가능한 스크류에 의해 가해진다. 특정한 대량의 용융 과립이 상기 통에 모였다면, 상기 스크류는 용융 덩어리의 체적의 증가로 인해 상기 통으로부터 수축된다. 다음 단계에서는, 용융 원료의 덩어리를 가압하에 상기 통으로부터 미는 원래의 위치로 상기 스크류를 역으로 민다. 가압된 용융 원료를 금형안으로 방출하기 위해서, 사출 금형에 대한 접근을 가깝게 하는 사출 바늘이 개방되어 상기 가압된 용융 원료가 상기 금형안으로 방출된다. 통상, 사출 바늘이 하나보다 많아서, 상기 용융 덩어리는 일부의 장소들로부터 상기 금형에 들어갈 수도 있다. 통상, 일부의 금형은, 상기와 같은 사출 몰딩장치에도 있다. 상기 금형내에서 냉각 후, 상기 용융 덩어리는, 고체 재료로 경화되고 나서 그 고체 재료는 상기 금형으로부터 밀리거나 불려질 수 있어, 또 다른 고체 물품의 사출 몰딩을 위한 공간을 만든다. 그 후, 공정 전체를 반복한다.
통상, 액체 상태로 변환될 수 있는 재료라면, 사출 몰딩용 원료, 이를테면 금속, 유리, 세라믹 및 각종 폴리머로서 사용되어도 된다. 압출 몰딩은, 사출 몰딩과 많은 공통점을 갖고 있는데, 그 이유는, 압출 몰딩에서는 회전 스크류와 열에 의해 원료를 액체 형태로 용융하기 때문이다. 그렇지만, 주요한 차이는, 상기 용융 원료가 2차원 틀을 통해 상기 통으로부터 연속적으로 상기 금형 내부에 공급된다는 것이다. 상기 2개의 방식간의 또 다른 차이는, 압출 몰딩에 있어서 상기 통 안으로 방출되기 전에 상기 통으로부터 압출기 스크류가 수축되지 않는다는 것이다.
산업 공정들에서 사출 몰딩 또는 압출 몰딩을 연속적으로 사용할 때 약간의 문제점이 생긴다.
첫째로, 종래의 사출 몰딩 및 압출 몰딩 공정들은, 압출 스크류의 이동 속도를 증가시키거나 감속시킬 시간이 필요한 상기 압출 스크류의 이동으로 인해 고유의 관성을 갖는다. 따라서, 이러한 종래의 시스템들에서의 액체 압력은 원하는 속도로 제어될 수 없다. 이에 따라, 종래의 시스템들은 속도가 필수적인 사출 몰딩 방식들에 덜 적합하다.
둘째로, 기존의 해결책은, 원료 멜트(melt) 버퍼로서 어큐물레이터의 존재에 의존한다. 종래의 어큐물레이터들은, 액체 원료를 누설하여 "버닝"할 위험이 있다. 게다가, 하나의 색의 원료가 다른 색의 다른 재료로 교환될 때 문제가 생길 수도 있다. 여기서, 예를 들면 흰색일 수도 있는 오래된 원료의 나머지가, 회색을 띤 사출 몰딩된 물체가 되는 검은색일 수도 있는 새로운 원료와 혼합되는 것을 의미하는, 소위 막다른 문제가, 예를 들면 상기 어큐물레이터에서 생긴다. 물론, 이것은 최종 제품에서 바람직하지 못하다. 따라서, 종래의 기술과 관련된 상기 문제점들의 적어도 일부를 해결하는 개선된 사출 몰딩 방법과 장치를 제공하고자 하는 소망이 있다.
본 발명에 따른 상기 해결책의 일 측면의 몰딩 조립체는,
- 토출되는 원료를 받아들이는 주입구;
- 상기 주입구를 통해 받아들여진 상기 원료를 모아 처리하는 통;
- 상기 통 내부에서 상기 원료와 맞물려 돌아가는 스크류;
- 상기 원료를 액체 형태로 갈기 위해서 상기 스크류를 회전시키도록 구성된 제1 구동부를 구비하고,
상기 몰딩 조립체는, 상기 통 내부의 압력에 따라 상기 통의 내부 및 외부에서 상기 회전 방향에 실질적으로 수직한 방향으로 상기 스크류를 변위시키도록 구성된 제2 구동부를 더 구비하는 것을 특징으로 한다.
이렇게 하여, 이러한 몰딩 조립체는, 상기 통 내부의 특정 액체 압력값을 유지하기 위해서, 또는 상기 통 내부에 특정 액체 압력이 증가될 때 일부의 수단에 의해 상기 압력값을 변경하기 위해서도, 상기 조립체에서의 압력을 증가시키기 위해 보다 신속하게 반응할 수 있다.
이 수단들 중 하나는, 공기 주입구와 공기 배출구 사이에 스프링이 달린 피스톤이 위치된 공기 주입구와 공기 배출구를 갖는 구동부를 갖고, 여기서 상기 공기 주입구와 상기 공기 배출구 사이의 공기 압력차를 제어하면 상기 피스톤을 변위시킬 수도 있다. 한편, 상기 피스톤은, 상기 (압출) 스크류에 연결되어, 그 피스톤의 이동으로 상기 스크류를 동일한 방향으로 이동시킨다. 이러한 이동은, 상기 갈린 액체 원료가 위치되는 상기 통 내부 또는 외부로 향하여서, 상기 통 내부의 액체 압력을 증가 또는 감소시킬 수도 있다.
기존의 해결책 중 상기 몰딩 조립체의 주요 이점의 하나는, 상기 사출 몰딩공정의 속도를 상당히 향상시킬 수 있다는 것인데, 그 이유는 상기 시스템 내의 액체 압력을 보다 신속하게 제어할 수 있기 때문이다. 이는, 상기 압출 스크류의 압력 조절 변위 및/또는 회전에 의해 이루어진다. 또한, 버퍼 챔버들이 없으므로, 막힌 끝이 일어날 가능성이 크지 않다, 즉 하나의 종류 및/또는 색의 원료가 상기 버퍼 챔버들에 고착되지 않고, 상기 압출 스크류와 사출 바늘의 이동에 영향을 미치는 압력 조절 및 압력 피드백 수단을 통해 신속하게 토출될 수 있다.
본 발명에 따른 상기 몰딩 조립체의 하나의 또 다른 이점은, 식품류를 함유하는 용기용 회전 충전기에서 사용하도록 구성된 회전 몰딩 조립체로 쉽게 제조될 수 있다는 것이다.
본 발명에 따른 해결책의 다른 측면의 몰딩 조립체에서의 제품 몰딩 방법은,
- 원료를 주입구를 통해 통 내부에 공급하는 단계;
- 상기 통 내부의 스크류를 회전시켜 상기 원료를 용융/액체 형태로 가는 단계;
- 상기 통 내부의 상기 원료의 액체 압력을 측정하는 단계;
- 상기 통 내부의 상기 측정된 액체 압력값과 임계 압력값을 비교하는 단계; 및
- 상기 스크류를 상기 통 외부로 이동시켜서 상기 통 내부의 상기 압력의 조절, 및/또는 상기 임계 압력값에 도달할 경우 상기 스크류의 회전속도의 조절을 행하는 단계를 포함한다.
상기 방법의 이점은, 상기 몰딩 조립체가 일부인 충전기의 상기 배출구에서의 문제에 기인할 수도 있는 정지신호를 상기 몰딩 조립체가 수신하는 경우에, 상기 임계 압력값을 초과하는 상기 통 내부의 임의의 액체 압력 증가가, 상기 통 내부의 스크류의 병진운동 및/또는 회전속도를 제어하여서 경감될 수 있다는 것이다. 따라서, 상기 시스템은, 어떠한 환경하에서도 안전할 것이고, 상기 정지조건을 제거하자마자 대부분 사출 몰딩을 계속할 수 있을 것이다.
도 1a는 본 발명에 따른 상기 몰딩 조립체의 일 실시예를 도시한 것이다.
도 1b는 도 1a의 상기 몰딩 조립체의 하부를 보다 상세히 도시한 실시예를 도시한 것이다.
도 1c는 원료 공급에 대한 도 1a의 실시예를 보다 상세히 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 몰딩 조립체의 기동 순서를 갖는 흐름도를 도시한 것이다.
도 3은 상기 시스템이 "예외 모드"일 때 취해진 단계들을 도시하는 흐름도를 도시한 것이다.
이하, 본 발명의 가능한 실시예들에 대해 상세히 설명하기 전에, 이 실시예들은 어디까지나 설명 목적을 위한 것 일뿐 본 발명을 제한하려고 하는 것이 아니다는 것을 강조한다. 아래의 설명을 연구한 숙련자는 첨부된 청구범위내에서 있으면서 그 밖의 실시예를 개발할 수 있을 것이다. 따라서, 결국, 본 발명은, 첨부하는 청구항으로만 제한된다.
도 1a는, 본 발명에 따른 몰딩 조립체(100)의 일 실시예를 도시한 것이다.
우선, 압출 스크류(110)는, 본 실시예에서 플라스틱 과립의 형태로 존재하는 원료가 모여있는 통(barrel)(112)내에서 회전 가능하게 배치되어 있다. 그 원료는, 공급 주입구(117)를 통해 공급된다. 본 출원의 상기 배경 부분에서 상술한 것처럼, 플라스틱 과립의 사용은 예시일 뿐이다. 그것은, 상기 압출 스크류(110)의 회전운동에 기인한 기계력과 고체상태로부터 액체상태로의 천이를 용이하게 하는 열의 존재로 액체 형태로 갈아질 수도 있는 원료이면 좋다.
도 1a로 되돌아서, 가열 장치들(118)은, 상기 원료를 가는 상기 압출 스크류(110)의 회전과 함께, 상기 통(112) 내부의 상기 원료가 용융 액체 덩어리로 변할 때 도움이 되는 상기 통(112) 주위에 배치되어 있다. 상기 압출 스크류(110)의 회전운동은, 상기 통(112)으로부터 외부로 또한 하나 이상의 도관(152, 154) 내부로 흐르는 상기 용융 원료에 압력도 생성한다. 상기 용융 원료는, 상기 통(112)으로부터 하나 이상의 도관(152, 154) 내부로 공급되고, 이 도관들은 상기 가압된 액체 원료를 공급하는 도관의 수에 대응한 개구들의 수를 갖는 (도 1b에 도시된) 분배 허브(160)에 의해 상기 통(112)과 연결되어 있다.
도 1a의 실시예에서는, 2개의 도관(152, 154)이 도시되어 있지만, 상기 몰딩 조립체(100)는 대응한 토출 배출구(182, 184)에 각기 연결된 복수의 도관을 구비하여도 좋다. 그 토출 배출구는, 상기 용융 원료를 상기 금형 내부에 토출하기 전에 그 용융 원료가 위치되는 장소다. 상기 용융 원료의 토출은, 사출 바늘에 대해, 이동시켜서 그 용융 원료를 상기 금형 내부에 유입시키기 위한 상기 사출 배출구의 개폐를 지시하는 프로그램 가능 구동부에 의해 제어된, 상기 사출 바늘(168, 169)에 의해 시행된다. 도 1a에 도시된 사출 바늘(168, 169)의 제어가 본 특허출원의 초점은 아니므로, 여기서는 그 프로그램 가능 구동부에 대한 상세한 설명은 생략한다. 여기서는, 상기 몰딩 조립체(100)의 상기 용융 원료가 가압되고 이 때문에 상기 몰딩 조립체내에 존재하고 상기 금형에 들어가는 것을 언급해야 한다.
표준 몰딩 조립체와 도 1a의 본 발명의 실시예에 따른 몰딩 조립체간의 차이는, 상기 압출 스크류(110)가, 회전 가능하게 상기 통(112) 내부에 배치될 뿐만 아니라, 상기 어큐물레이터 챔버(120)에 부분적으로 배치되기도 한다는 것이다. 여기서, 상기 어큐물레이터 챔버의 용어는, 어떠한 액체나 고체 원료도 이 챔버에 축적된다는 것을 의미하지 않는다는 것을 주목해야 한다. 상기 주입구(117)를 통해 공급된 원료는, 상기 통(110) 내부나, 또는 상기 토출 배출구(182, 184)를 포함하는 상기 도관(152, 154) 내부에 있을 것이다. 더 정확히 말하면, 상기 어큐물레이터 챔버의 용어는, 본문에 후술할 상기 통(110) 내부의 잠재적 액체 압력 증가를 축적하는 경우에 사용된다. 상기 어큐물레이터 챔버(120)는, (미도시된) 스프링이 달린 피스톤이 내부에 위치된 공기 주입구(132)와 공기 배출구(136)를 갖는 캐비티를 구비한다. 상기 스프링이 달린 피스톤은, 선형 가이드(134)에 연결되어 있고, 이 선형 가이드는, 상기 피스톤의 병진운동을 도 1a에 도시된 화살표의 방향으로 선형 상향 운동 또는 선형 하향 운동으로 변환시키는 가늘고 긴 금속막대의 형태로 존재하여도 된다. 이 구체적인 실시예에서, 상기 어큐물레이터 챔버(120)는 2개의 부분, 즉 상기 통(112)의 좌측 챔버와 우측 챔버로, 분할된다. 그렇지만, 마찬가지로, 선형 가이드(134)가 하나만 있는 어큐물레이터 챔버(120) 하나만 갖는 것도 가능할 것이다. 우리는, 도 1a에서 내부를 볼 수 있는 상기 어큐물레이터 챔버(120)의 일부, 즉 상기 어큐물레이터 챔버(120)의 양측에 대해서도 마찬가지로 설명이 유효한 것을 잘 아는 우측을 설명하는 것으로 한정할 것이다. 상기 압출 스크류(110)는, 상기 선형 가이드(134) 내부에 도시된 화살표의 방향으로 이동 가능한 상기 선형 가이드(134)에 기계적으로 연결되어 있다. 게다가, 차동 압력 레귤레이터(130)는, 상기 어큐뮬레이터 챔버(120)에 연결되고, 상기 어큐뮬레이터 챔버(120)에 공기가 들어가고 나올 수 있는 공기 주입구(132)와 공기 배출구(136)에 연결된다. 상기 압력 레귤레이터(130)를 사용하여 공기 압력의 차이, 즉, 공기 주입구(132)를 통과하여 상기 어큐뮬레이터 챔버에 사출된 공기의 양과 상기 공기 배출구(136)를 통과하여 상기 어큐뮬레이터 챔버를 나오는 공기의 양을 제어함으로써, 상기 선형 가이드(134)를 거쳐 상기 압출 스크류(110)에 연결된 상기 어큐뮬레이터 챔버(120) 내측의 상기 피스톤은, 상기 통(112)의 중심축A-A의 방향으로 상기 압출 스크류(110)를 상기 통(112)의 내부 및 외부로 변위시킬 수 있다.
여기서는, 작업하는 개념상, 어떠한 유체도, 상기 어큐뮬레이터 챔버(120)에 사용될 수 있고, 상기 주입구(132)를 통해 상기 어큐뮬레이터 챔버(120)에 들어가는 유체와 상기 배출구(136)를 통해 상기 어큐뮬레이터 챔버(120)를 나오는 유체간의 차이를 제어하는 상기 압력 레귤레이터(130)에 의해 조절될 수 있다는 것이 언급되어야 한다. 그 유체들은, 그 밖의 기체들, 액체들, 또한 오일 등의 그 밖의 유동성 물질이어도 된다.
상기 압출 스크류(110)의 회전운동으로 인해, 상기 통(112) 내부의 상기 갈린 원료가, 팽창하여 가압하에 상기 통(112)을 빠져나감으로써, 상술한 것처럼 상기 도관(152, 154)에 들어갈 것이다. 여기서, 언급할 수도 있는 것은, 상기 도관(152, 154)은, 열과 높은 액체압력을 견딜 수 있는 어떠한 재료로도 제조되어도 된다는 것이다. 일례에 있어서, 상기 도관(152, 154)은 철강 또는, 그 밖의 열과 내온 내압 금속으로 제조되어도 된다. 상기 도관(152, 154) 내부의 용해된 원료에 대해 일정한 온도로 유지하기 위해서, 그 도관들에는 (미도시된) 가열수단이 장착되어도 된다.
제1 구동부(170), 이를테면 서보 모터로 행할 수 있는 상기 압출 스크류(110)의 회전속도의 가변, 및/또는 상기 압출 스크류(110)용 제2 구동부로서 기능하는 상기 압력 레귤레이터(130)에 의한 압출 스크류(110)의 병진운동의 제어를 행함으로써, 상기 통(112) 내부의 액체압력을 제어할 수도 있다.
상기 용융 원료가 상기 금형 내에 사출되면, 상기 사출 바늘(168, 169)이 수축되어 상기 가압된 액체 원료를 토출 배출구(182, 184)를 떠나 상기 금형 내에 들어가게 한다. 통상, 상기 사출공정은 매우 빨라서, 상기 사출 바늘(168, 169)은 다음의 공정의 일부분을 위한 상기 토출 배출구들이 다시 닫히기 전에, 그 토출 배출구들을 연다.
도 1a의 실시예에서, 압력 센서(131)는, 상기 통(11)에 배치되어 그 압력 레귤레이터(130)에 연결된다. 상기 압력 센서(131)로부터의 신호들을 사용하여, 상기 압력 레귤레이터는, 상기 어큐뮬레이터 챔버(120) 내부의 차동 압력(상기 주입구(132)와 배출구(136)간의 압력차)을 조절해야 하는지를 판정할 수도 있다. 상기 압력 센서(131)의 샘플링 간격이 선택되어도 되어, 급속한 압력 변화가 상기 압력 레귤레이터(130)에 영향을 미치지 않거나, 상기 압력 센서(131) 자체의 형태는 적산형(integrating)이어서, 급속한 압력 변화를 평균화할 수도 있다. 이것의 원인은, 통상, 상기와 같은 급속한 변화를 조절하는 것이 비효율적이고 상기 시스템내에서 원하지 않는 진동을 일으킬 가능성 있는 그런 단시간 간격 동안에 상기 사출 바늘(168, 169)의 개폐가 일어나고 있는 것이 원인이다.
그 밖의 실시예에서, 상기 압력 센서(131)는, 분배 허브(160)에 또는 상기 시스템 내에 어디에나 배치되어도 되고, 이때 큰 압력 변동을 쉽게 검출할 수 있다.
상기 압력 레귤레이터(130)는, 이러한 방식으로 셋업되어도 되어, 상기 시스템이 사출 몰딩 모드에 있을 때, 즉, 연속적으로 상기 용융 원료를 상기 금형 내부에 토출할 때 상기 공기 주입구들과 배출구들(132, 136)에 대해서 상기 차동 압력을 디폴트에 의해 조정하지 못할 수도 있다.
그렇지만, 상기 몰딩 조립체(100)가 정지 동작 모드에 있으면, 상기 사출 바늘(168, 169)은, 상기 사출 몰딩된 제품이 본 장치를 빠져나가는 상기 몰딩 조립체(100)의 배출구에 지장이 있었기 때문에, 또는 상기 몰딩 조립체의 주입구측에 문제들이 있기 때문에, 닫힐 것이다. 상기 시스템이 정지 동작 모드에 있지 않지만, 즉 상기 몰딩 조립체의 입력단이나 출력단에서 고장이 검출되지 않지만, 상기 사출 바늘들이 열리는 조건들의 일람이 충족되지 않을 또 다른 가능성이 있다. 이 경우에도, 상기 사출 바늘(168, 169)은 닫혀있는 채로 있을 것이다.
그 이유가 무엇이든지 간에, 상기 압출 스크류(110)는 처음에는 정지되지 않고, 그 스크류의 회전속도는 상기 몰딩 조립체(100)가 상기 용융 원료를 상기 하나 이상의 금형 내부로의 토출의 정지를 명령하기 전에 예전대로 같게 유지할 것이다. 그러나, 상기 용융된 원료의 덩어리의 팽창으로 인해 상기 통(112) 내부와 상기 도관(152, 154) 내부에서 압력이 증가할 것이기 때문에, 이 압력 증가는 상기 몰딩 조립체에서 처리될 필요가 있다. 상기 압력 증가는 상기 압력 센서(131)에 의해 등록되고, 상기 압력 레귤레이터(130)는, 상기 압출 스크류(110)에 대해 상기 통(110)의 상향 및 외부로의 이동을 지시, 및/또는 상기 서보 모터(170)에 대해 상기 압출 스크류(110)의 회전속도의 감속을 지시할 수도 있다.
상기 압력 레귤레이터(130)에서 취하는 최종적인 대책은, 상기 통(112) 내부의 액체 압력이 계속 상승하면, 상기 압출 스크류(110)의 이동을 함께 정지시킬 것을 상기 서보 모터(170)에 지시하는 것이다. 그러나, 상기 몰딩 조립체의 신속한 재시작을 위하여, 상기 정지하는 경우가 해결되었으면, 이것은, 상기 시스템이 과도한 액체 압력으로 폭발하는 것을 방지하기 위해서 최후의 수단이어야 한다.
도 1b는 상기 몰딩 조립체(100)의 하부를 보다 상세히 도시한 것이다. 본 도면에서 알 수 있듯이, 개구들(162)이 각기 대응한 도관에 연결된 분배 허브(160)는, 상기 가압되고 용융된 원료를, 도 1a에는 2개가 도시된 각기 각각의 도관 내부에 분배하는 작업을 한다. 상기 분배 허브가 또 다른 특허출원의 대상이므로, 여기서는 보다 상세히 설명하지 않겠다. 또한, 상기 몰딩 조립체는, 3개의 부분 - 상기 분배 허브(160)에 이르기까지 상기 몰딩 조립체(100)를 포함하는 도 1a에 도시된 회전하는 제1부분과, (상기 분배 허브(160), 상기 도관(152, 154) 및 핫 런너(hot runner)(164, 166)를 포함하는) 회전가능한 제2부분(192)과, 상기 몰딩 조립체(100)를 고정시키는 고정된 제3부분(194)으로 분할된다.
상기 몰딩 조립체의 회전가능한 부분(192)을 갖는 이유의 하나는, 인덱스형 충전기에서 보다 훨씬 빨리 사출 몰딩을 행할 필요가 있는 회전 충전기에서 회전하는 캐러셀(carousel)의 일부가 되도록 구성되는 것이다. 따라서, 상기 몰딩 조립체(100)는, 고정된 채로 있는 상기 고정 부분(194)을 제외한 상기 통(112)에 대한 대칭축A-A와 같아도 되는 중심축 둘레에서 상기 몰딩 조립체의 모든 부분을 회전시키도록 구성된다. 또한, 상기 몰딩 조립체(100)는, 상기 회전 충전기와 같은 속도로 회전 가능하도록 구성된다.
또한, 도 1b는, 상기 용융 원료를 상기 금형 내부에 사출하기 전에, 핫 런너 안의 그 용융 원료의 온도를 일정하게 유지하도록 배치된 가열부품의 조립체인 것이 기본인 핫 런너(164, 166) 내에 각 사출 바늘(168, 169)과 사출 배출구가 위치된 것을 도시한 것이다.
도 1c는 상술한 것처럼 과립의 형태로 원료를 공급하고 상기 원료 주입구(117)를 통과하여 상기 통(112)에 도달하는 공급관(116)을 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 상기 몰딩 조립체의 기동 순서에 의한 흐름도를 도시한 것이다. 여기서는, 기동에 있어서, 상기 압출 스크류, 이를테면 도 1a의 상기 몰딩 조립체(100)내의 상기 압출 스크류(110)가 정지해 있다, 즉 회전하지 않고 있고, 사출 바늘들, 이를테면 도 1a로부터 상기 사출 바늘(168, 169)이 닫혀진 위치에 있다고 가정한다. 또한, 상기 몰딩 조립체 자체는 정지해 있고, 즉 회전하지 않고 있다고 가정한다.
단계 200에서, 상기 몰딩 조립체내의 압출 스크류, 이를테면 상기 압출 스크류(110)는 회전하기 시작한다. 상술한 것처럼, 그 회전은 상기 압출 스크류를 구동하는 구동부, 이를테면 상기 구동부(170)에 의해 시작된다. 동시에, 상기 압출 스크류의 회전은, 상기 원료 주입구에 있는 플라스틱 과립들의 형태의 원료를 상기 몰딩 조립체의 통, 이를테면 도 1a의 상기 통(112) 내부로 끌어당기는 효과가 있다.
상기 압출 스크류 회전과 상기 주입구를 통한 원료를 받아들이는 단계는 동시에 일어나지 않는 것이 가능할 수도 있다, 즉 상기 압출 스크류가 회전하기 시작하고 상기 원료는 나중에 상기 주입구를 통해 공급되는 것이 가능할 수도 있다.
상기 문맥에서 상술한 것처럼, 아래의 방법에서는 플라스틱 과립들로부터 플라스틱의 사출 몰딩을 기재하였지만, 사출 몰딩용 원료는 열이 있을 경우 용융 형태로 갈릴 수 있는 유리나 금속, 세라믹 또는 임의의 다른 원료일 수도 있다.
상기 압출 스크류의 회전운동은 상기 원료를 액체 형태로 갈지만, 상기 원료의 고체상태에서 액체상태로의 천이는 상기 통(110) 둘레에 배치된 가열 수단에 의해 한층 더 용이해진다. 갈아진 액체 원료는, 상기 통(110)을 빠져나가 하나 이상의 도관, 이를테면 도 1a에 도시된 도관(152, 154) 내부로 들어갈 것이다. 상기 통 내부의 원료 증가와, 스크류 회전으로 상기 갈아진 원료에 대한 압력으로 인해, 상기 액체 원료는, 상기 통의 벽들과 상기 하나 이상의 도관의 벽들에 액체 압력을 가할 것이다. 압력 센서, 이를테면 도 1a의 압력 센서(131)는, 통 내부의 액체 압력을 측정하기 위해 상기 통 내부에 배치되어도 된다.
단계 210에서 상기 압력 센서로부터 수신된 압력 값들에 근거하여, 단계 220에서는, 압력 레귤레이터, 이를테면 상기 압력 센서로부터 압력 값들을 수신하도록 배치된 상기 압력 레귤레이터(130)는, 상기 통 내부의 액체 압력이 목표 압력 값에 도달하였는지를 판정하여도 된다. 상기 통 내부의 그 목표 액체 압력 값은 예를 들면 240bar이어도 된다.
상기 목표 압력 값에 도달하지 않았을 경우, 상기 압력 레귤레이터는, 임의의 압력 조절기능을 행하기 전에 단계 230에서는 기동 후 특정량의 시간을 대기하도록 사전에 프로그래밍되어도 된다. 그 이유는, 상기 기동 공정 초기에, 상기 통이 상대적으로 적은 상기 용융 원료를 함유하여서 상당한 압력 증가가 그 압력 센서에 의해 등록되지 않기 때문이다. 상기 통이 상기 용융 원료로 완전히 채워지면, 상기 압력 센서는 상기 통 내부의 보다 상당한 압력 증가를 등록할 것이다. 바로 그럴 경우와 단계 220에서 상기 압력 레귤레이터가 상기 목표 압력에 여전히 도달하지 않으면, 단계 230에서는 상기 구동부에 대해 상기 압출 스크류의 회전속도를 증가시키는 것을 지시하여도 된다. 이에 따라 상기 통 내부의 액체 압력이 증가하게 될 것이다. 상기 압출 스크류의 회전속도의 증가는, 상기 압력 레귤레이터가 상기 압력 센서로부터 상기 통 내부의 목표 액체 압력에 도달한 액체 압력 값을 수신할 때까지 여러 번 반복하여 지시되어도 된다.
그 경우에, 단계 240에서 상기 제1 구동부는 상기 압출 스크류의 회전속도를 유지하고, 단계 250에서는 상기 몰딩 조립체 내부의 사출 바늘들의 개폐를 제어하는 제어 시스템은 상기 사출 바늘이나 바늘들을 개방하기 위한 모든 조건을 충족시키는 것을 나타내는 신호를 기다린다. 이 조건들은, 그 중에서 상기 통 내부의 목표 액체 압력에 도달하는 조건, 사출 몰딩을 위한 하나 이상의 금형을 폐쇄하는 조건, 및 정지 신호들을 수신하지 않는 조건이어도 된다.
단계 240에서 사출 바늘들을 개방하기 위한 모든 조건을 충족시키지 않으면, 상기 몰딩 조립체에서의 변화는 발생하지 않는다, 즉 상기 제1 구동부는 상기 압출 스크류의 회전속도를 유지하고 상기 사출 바늘이나 바늘들은 폐쇄된 채로 있을 것이다. 그렇지만, 상기 사출 바늘들의 개폐를 제어하는 상기 제어 시스템이 상기 사출 바늘들을 개방하기 위한 모든 조건을 충족시킨 신호를 수신하였으면, 상기 제어 시스템은 단계 260에서 상기 사출 바늘들에 대해 개방을 지시하고, 통상의 사출 몰딩 공정이 시작된다.
단계 270에서, 상기 몰딩 조립체는, 통상의 동작의 상태에 있지만, 예외 조건을 가리키는 임의의 신호가 상기 사출 바늘들이나 상기 압력 레귤레이터의 상기 제어 시스템에서 수신되었는지를 감시하고 있다. 상기 사출 바늘들을 개방하기 위한 상기 조건들이 갑자기 더 이상 충족되지 않고 상기 사출 바늘들이 폐쇄될 필요가 있을 하나의 가능성이 있다. 일부의 문제가 상기 몰딩 조립체의 입력측 또는 출력측에서 일어나, 상기 사출 몰딩 공정을 정지시킬 필요가 있을 또 다른 가능성이 있다.
그럴 경우, 단계 280에서 상기 몰딩 조립체는 예외 모드로 설정되고, 도 3의 방법 단계들이 실행된다.
따라서, 도 3은 상기 몰딩 조립체가 예외 모드에서 작용하는 방법을 도시하는 것이다.
단계 300에서, 상기 몰딩 조립체는, 정지 신호를 수신한다. 상기 사출 바늘들의 개폐를 제어하는 상기 제어부는, 그 바늘들에 대해 폐쇄하거나 상기 예외 조건이 유지되는 한 폐쇄된 채로 있도록 지시한다. 동시에, 상기 구동부는 상기 예외 조건 전과 같은 회전속도로 상기 스크류를 계속 구동한다. 그렇지만, 상기 사출 바늘들이 폐쇄되므로, 상기 통 내부에 위치된 압력 센서에 의해 단계 310에서 검출되는 상기 통 내부의 액체 압력 증가가 생길 것이다.
단계 320에서 상기 액체 압력이 소정의 임계 역치값에 도달하지 않았을 경우에, 상기 압력 레귤레이터는, 상기 어큐물레이터 챔버에서의 압력차에 의한 어떠한 변화에도 영향을 미치지도, 상기 제1 구동부(도 1a의 서보모터(170))에 대해 단계 240에서 상기 압출 스크류의 이동의 속도를 느리게 하도록 지시하지도 않을 것이다. 따라서, 상기 압출 스크류의 회전속도는 단계 320에서 유지될 것이다. 이러한 액션의 과정의 하나의 이유는, 상기 예외 조건이 제거되었으면, 상기 몰딩 조립체가 통상의 사출 몰딩으로 어떠한 현저한 지연 없이도 신속하게 진행될 수도 있기 때문이다.
그렇지만, 단계 320에서 상기 압력 센서가 상기 통 내부의 압력에 대한 상기 임계 역치에 도달한 것을 검출하면, 단계 340에서 상기 압력 레귤레이터는 우선, 상기 몰딩 조립체의 상기 어큐물레이터 챔버, 이를테면 도 1a의 상기 어큐물레이터 챔버(120)에서의 압력차를 조절하여서 상기 임계 역치 이하로 그 압력을 조절하려고 시도하여, 상기 어큐물레이터 챔버의 상기 주입구를 통해 들어가는 것보다 상기 배출구를 통해 유체가 보다 많이 빠져나갈 것이다. 이것은, 상기 어큐물레이터 챔버 내측의 피스톤과 이에 따라서 선형 가이드(이를테면, 도 1a의 선형 가이드(134))가 도 1a의 화살표들의 방향으로 상향 이동하는 효과를 가질 것이다. 이것은, 상기 압출 스크류가 상기 통 외부로 움직이는 효과를 가질 것이다.
또한, 이러한 방식으로 상기 압력 레귤레이터가 프로그래밍될 수도 있어, 상기 압력 센서에서의 일부의 측정 기간에 대한 급속한 압력의 상승은 상기 통 내부의 압력의 상기 역치에 도달하기 전에 시간 t만큼 상기 압력 레귤레이터에 의해 보상될 수도 있다.
단계 350에서는, 상기 통 내부의 압력을 다시 측정하여 상기 통으로부터 상기 압출 스크류의 병진운동에 의해 압력이 감소하게 되는지 않는지를 확인한다.
상기 통 내부의 액체 압력이 단계 360에서 여전히 너무 높으면, 단계 370에서 상기 압력 레귤레이터는 상기 제1 구동부에 대해 상기 압출 스크류의 회전운동의 속도를 느리게 하도록 지시한다. 상기 압출 스크류를 회전을 느리게 하는 것이 상기 통 내부의 액체 압력을 상기 역치 아래로 감소시키는데 영향을 미치지 않으면, 상기 압력 레귤레이터는 상기 제1 구동부(이를테면, 도 1a의 서보부)에 대해 상기 스크류 회전을 함께 정지시키도록 지시하여도 된다는 것이 언급될 수도 있다. 한편, 단계 360에서 상기 통 내부의 상기 압력 센서에 의해 압력 저하/변화를 검출하면, 상기 압력 레귤레이터는 단계 380에서 제거 신호를 기다린다, 즉 예외 조건이 제거되기를 기다린다. 그 경우에, 상기 압력 레귤레이터는 상기 어큐물레이터 챔버에서의 차동 압력을 변화시켜, 상기 압출 스크류가 다시 디폴트 위치로 상기 통 내부에 하향 이동한다. 이러한 변화는, 상기 유체 배출구를 나오는 유체의 양과 비교하여, 상기 유체 주입구를 통해 상기 어큐물레이터 챔버에 들어가는 유체의 양을 증가시킴으로써 이루어진다. 단계 380 후에, 상기 몰딩 조립체는 통상의 동작으로 되돌아가고 단계 210으로 다시 점프한다.
본 발명의 이들 및 다른 실시예들은, 상기의 상세한 설명과 첨부하는 청구항들을 연구한 숙련자에게는 보다 분명할 것이다.

Claims (16)

  1. 몰딩 조립체로서,
    - 토출되는 원료를 받아들이는 주입구;
    - 상기 주입구를 통해 받아들여진 상기 원료를 모아 처리하는 통;
    - 상기 통 내부에서 상기 원료와 맞물려 돌아가는 스크류;
    - 상기 원료를 액체 형태로 갈기 위해서 상기 스크류를 회전시키도록 구성된 제1 구동부를 구비하고,
    상기 몰딩 조립체는, 상기 통 내부의 압력에 따라 상기 통의 내부와 외부에서 상기 회전 방향에 실질적으로 수직한 방향으로 상기 스크류를 변위시키도록 구성된 제2 구동부를 더 구비하는 것을 특징으로 하는, 몰딩 조립체.
  2. 제 1 항에 있어서,
    상기 몰딩 조립체는, 제1 축과 실질적으로 평행한 제2 축 둘레에서 회전 가능한, 몰딩 조립체.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 통으로부터 상기 용융 원료를 받아들여 토출 배출구에 수송하도록 구성된 적어도 하나의 도관을 더 구비하는, 몰딩 조립체.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 복수의 도관이 가열되는, 몰딩 조립체.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 통 내부에서 갈아진 상기 원료를 가열하도록 구성된 제1 가열부를 더 구비하는, 몰딩 조립체.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 제1 구동부는 서보 모터인, 몰딩 조립체.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 제2 구동부는 공기 주입구 및 공기 배출구와, 스프링이 달린 피스톤을 구비하되, 상기 제2 구동부는 상기 공기 주입구와 상기 공기 배출구 사이의 공기 압력차를 가변시킴으로써 상기 피스톤을 이동시켜 상기 스크류를 제어하도록 구성되는, 몰딩 조립체.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 제2 구동부는, 상기 통 내부의 압력에 관한 피드백을 추가로 받아서 상기 스크류의 이동을 제어하도록 구성되는, 몰딩 조립체.
  9. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 몰딩 조립체는 회전하게 배치된 충전기에서 중앙에 있고, 상기 몰딩 조립체는 사출 몰딩에 의해 포장 용기의 적어도 일부를 몰딩하도록 구성되는, 몰딩 조립체.
  10. 용융 원료를 통으로부터 복수의 대응한 토출 배출구에 수송하기 위한 복수의 도관을 구비한 몰딩 조립체로서, 상기 몰딩 조립체의 회전시에, 상기 용융 원료를 대응한 복수의 금형에 공급하는, 몰딩 조립체.
  11. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 원료는 폴리머 과립, 금속 과립, 실리카 또는 유사한 것 중 하나인, 몰딩 조립체.
  12. 몰딩 조립체에서의 제품 몰딩 방법으로서,
    - 원료를 주입구를 통해 통 내부에 공급하는 단계;
    - 상기 통 내부의 스크류를 회전시켜 상기 원료를 용융/액체 형태로 가는 단계;
    - 상기 통 내부의 상기 원료의 액체 압력을 측정하는 단계;
    - 상기 통 내부의 상기 측정된 액체 압력값과 임계 압력값을 비교하는 단계; 및
    - 상기 스크류를 상기 통 외부로 이동시켜서 상기 통 내부의 상기 압력의 조절, 및/또는 상기 임계 압력값에 도달할 경우 상기 스크류의 회전속도의 조절을 행하는 단계를 포함하는, 몰딩 방법.
  13. 제 12 항에 있어서,
    상기 스크류의 상기 통 외부로의 이동은 압력 레귤레이터에 의해 영향을 받는, 몰딩 방법.
  14. 제 13 항에 있어서,
    상기 압력 레귤레이터는, 상기 어큐물레이터 챔버에 들어가는 유체의 양과, 상기 어큐물레이터 챔버를 빠져나가는 유체의 양을 조절하는 것에 의해, 상기 스크류의 이동에 영향을 미치는, 몰딩 방법.
  15. 제 14 항에 있어서,
    상기 스크류의 이동은 상기 어큐물레이터 챔버에서의 압력차로 인해 상기 어큐물레이터 챔버 내부의 선형 가이드의 이동에 의해 영향을 받고, 이때의 상기 선형 가이드는 상기 스크류와 기계적으로 연결되어 있는, 몰딩 방법.
  16. 제 11 항 내지 제 15 항 중 어느 한 항에 있어서,
    상기 통 내부의 압력의 조정은, 상기 몰딩 조립체의 정지의 신호를 보내는 예외 신호가 수신될 때 행해지는, 몰딩 방법.
KR1020187013190A 2015-11-02 2016-10-25 몰딩 조립체 KR20180079338A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1551413-6 2015-11-02
SE1551413 2015-11-02
PCT/EP2016/075707 WO2017076703A1 (en) 2015-11-02 2016-10-25 Moulding assembly

Publications (1)

Publication Number Publication Date
KR20180079338A true KR20180079338A (ko) 2018-07-10

Family

ID=57223667

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187013190A KR20180079338A (ko) 2015-11-02 2016-10-25 몰딩 조립체

Country Status (9)

Country Link
US (1) US10695967B2 (ko)
EP (1) EP3370941A1 (ko)
JP (1) JP6893922B2 (ko)
KR (1) KR20180079338A (ko)
CN (1) CN108349138B (ko)
BR (1) BR112018008563A2 (ko)
MX (1) MX2018005124A (ko)
RU (1) RU2738386C2 (ko)
WO (1) WO2017076703A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10201503B1 (en) 2018-01-09 2019-02-12 Triastek, Inc. Precision pharmaceutical 3D printing device
CN115635668A (zh) * 2018-08-30 2023-01-24 赫斯基注塑系统有限公司 模制系统、模制塑料制品的方法和用于模制物品的方法
JP6795716B1 (ja) 2020-02-28 2020-12-02 株式会社ソディック 射出装置および射出制御方法
JP6804674B1 (ja) * 2020-03-02 2020-12-23 株式会社ソディック 射出成形機および射出成形方法
EP4178783A1 (en) * 2020-07-10 2023-05-17 Triastek, Inc. High-precision additive manufacturing device and high-throughput additive manufacturing system

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723037A (en) * 1970-11-04 1973-03-27 Plastics Inc Apparatus for injection molding articles from aminoplastic material
JPS51123271A (en) * 1975-04-18 1976-10-27 Purasuchitsuku Kougaku Kenkiyu Synthetic resin extruder
US4293229A (en) * 1980-04-15 1981-10-06 Karl Hehl Hydraulic controls for injection unit of injection molding machine
JPH0298421A (ja) * 1988-10-04 1990-04-10 Toyo Mach & Metal Co Ltd 射出成形機の射出制御方法
JP2577083B2 (ja) * 1989-04-05 1997-01-29 住友重機械工業株式会社 射出装置
US5217725A (en) * 1989-04-26 1993-06-08 Canon Kabushiki Kaisha Electrically driven type injection molding apparatus
JPH07115391B2 (ja) * 1989-04-26 1995-12-13 キヤノン株式会社 電動式射出装置
US5518672A (en) * 1994-05-31 1996-05-21 Randcastle Extrusion Systems, Inc. Extrusion surge controller and method
US6109910A (en) * 1997-04-02 2000-08-29 Tohkai Juken Kogyo Kabushiki Kaisha Injection molding machine for thermoplastic resin
JP3220788B2 (ja) * 1997-11-10 2001-10-22 日精樹脂工業株式会社 射出成形機の駆動方法及び装置
JP3593671B2 (ja) * 1998-05-01 2004-11-24 日創電機株式会社 成形機
JP4101378B2 (ja) * 1998-12-15 2008-06-18 株式会社ニイガタマシンテクノ 発泡成形用射出成形機及び溶解促進工程における樹脂圧の制御方法
JP2001124169A (ja) 1999-10-26 2001-05-08 Fanuc Ltd リニアモータを用いた駆動装置
JP3716904B2 (ja) * 1999-12-01 2005-11-16 株式会社日本製鋼所 発泡体の成形方法および成形装置
JP2001277283A (ja) * 2000-03-30 2001-10-09 Netsukoo Kk 射出成形機
CN1564733A (zh) * 2001-08-16 2005-01-12 Ispa股份有限公司 挤出复合物挤压注射方法和装置
JP2003170471A (ja) * 2001-12-10 2003-06-17 Toshiba Mach Co Ltd 射出成形機等の射出装置
JP2004058571A (ja) * 2002-07-31 2004-02-26 Victor Co Of Japan Ltd 射出成形用樹脂供給装置
JP3795440B2 (ja) * 2002-09-10 2006-07-12 日精樹脂工業株式会社 射出機構及びそれの制御方法
JP4464072B2 (ja) * 2003-05-29 2010-05-19 ノードソン コーポレーション 熱溶融材料の圧力を制御する方法及び装置、及び熱可塑性樹脂で保護被覆された電気部品を生産する方法
US20050255189A1 (en) * 2004-05-17 2005-11-17 Manda Jan M Method and apparatus for coupling melt conduits in a molding system and/or a runner system
JP4027381B2 (ja) 2005-06-28 2007-12-26 ファナック株式会社 射出成形機の射出装置
DE102007049689A1 (de) * 2007-10-17 2009-04-23 Krones Ag Vorrichtung zum Streckblasen und Verfahren zum Herstellen von Preforms
US7954991B2 (en) * 2007-11-09 2011-06-07 Leistritz Extrusionstechnik Gmbh Screw extruder with plunger feeder
JP5781471B2 (ja) 2011-06-16 2015-09-24 富士フイルム株式会社 射出成形方法
JP5954658B2 (ja) * 2012-07-13 2016-07-20 パナソニックIpマネジメント株式会社 便座の製造方法
DK2906405T3 (en) * 2012-10-15 2019-04-15 Mold Masters 2007 Ltd Positioner for an injection unit
AT515479B1 (de) * 2014-02-28 2015-12-15 Engel Austria Gmbh Einspritzaggregat für eine Formgebungsmaschine
KR101471360B1 (ko) * 2014-05-20 2014-12-10 신덕수 수직 사출성형기의 사출장치

Also Published As

Publication number Publication date
RU2018120323A (ru) 2019-12-04
CN108349138B (zh) 2020-11-06
RU2738386C2 (ru) 2020-12-11
CN108349138A (zh) 2018-07-31
RU2018120323A3 (ko) 2020-06-15
JP2018533511A (ja) 2018-11-15
US10695967B2 (en) 2020-06-30
JP6893922B2 (ja) 2021-06-23
WO2017076703A1 (en) 2017-05-11
EP3370941A1 (en) 2018-09-12
BR112018008563A2 (pt) 2018-10-30
MX2018005124A (es) 2018-06-06
US20180319065A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
KR20180079338A (ko) 몰딩 조립체
US8182724B2 (en) Method of energy distribution and consumption control based on melt quality improvement for plastic injection and extrusion processes
KR102523046B1 (ko) 사출 성형기를 작동시키기 위한 방법
US20090057938A1 (en) Closed Loop Control for an Injection Unit
EP2979837B1 (en) Injection molding method
US20160158985A1 (en) Control system for injection molding
GB2276017A (en) Mould temperature control
KR20140001253A (ko) 박육부의 실질적인 정압 사출 성형을 위한 방법 및 장치
KR20140001250A (ko) 낮은, 실질적으로 일정한 압력에서의 사출 성형을 위한 방법
EP3037235B1 (en) Device and method for melted plastic material supply to a mold cavity
KR20140006065A (ko) 낮은, 실질적으로 일정한 압력에서의 사출 성형을 위한 방법
CN108430731B (zh) 用于通过将反馈信号从本地控制器转向远程控制器来控制设备的远程控制器以及其方法
JPH11320631A (ja) 二段階射出成形機の動作方法、二段階射出成形機における材料の可塑化及び溶融体の移送方法及びシステム
JP5868738B2 (ja) 射出成形機
CN108369063A (zh) 控制用于减湿和/或干燥的装置的方法和系统
CA2660482C (en) Thermal management of extruder of molding system
CN108290333B (zh) 用于通过将反馈信号从本地控制器转向远程控制器来控制设备的远程控制器以及其方法
CN101952103B (zh) 用于控制模制系统中的填充速度的方法
US20150140148A1 (en) Controller for injection molding machine
JP2016221878A (ja) 射出成形機
CN105764666B (zh) 调控至少一个腔室的灌装的方法
CN108290334B (zh) 用于通过将反馈信号从本地控制器转向远程控制器来控制设备的远程控制器以及其方法
CN110341153B (zh) 塑料加工中的温度调控
EP2442960B1 (en) In an injection unit having a filter, a method of controlling melt pressure in accordance with a target pressure range
EP3778167B1 (en) Gas vent blockage detection device, mold system, injection molding system, and gas vent blockage detection method