KR20170018332A - 황 충전된 탄소 나노튜브를 생산하기 위한 방법 및 리튬 이온 배터리를 위한 캐소드 - Google Patents

황 충전된 탄소 나노튜브를 생산하기 위한 방법 및 리튬 이온 배터리를 위한 캐소드 Download PDF

Info

Publication number
KR20170018332A
KR20170018332A KR1020167035021A KR20167035021A KR20170018332A KR 20170018332 A KR20170018332 A KR 20170018332A KR 1020167035021 A KR1020167035021 A KR 1020167035021A KR 20167035021 A KR20167035021 A KR 20167035021A KR 20170018332 A KR20170018332 A KR 20170018332A
Authority
KR
South Korea
Prior art keywords
sulfur
carbon nanotubes
lithium
anode
solution
Prior art date
Application number
KR1020167035021A
Other languages
English (en)
Other versions
KR102061391B1 (ko
Inventor
마이클 알렌 하그
Original Assignee
엠에스엠에이치, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠에스엠에이치, 엘엘씨 filed Critical 엠에스엠에이치, 엘엘씨
Publication of KR20170018332A publication Critical patent/KR20170018332A/ko
Application granted granted Critical
Publication of KR102061391B1 publication Critical patent/KR102061391B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/178Opening; Filling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/10Filled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/12
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/744Carbon nanotubes, CNTs having atoms interior to the carbon cage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/846Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes internal modifications, e.g. filling, endohedral modifications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

황 충전된 탄소 나노튜브, 상기 황 충전된 탄소 나노튜브의 구조, 및 상기 황 충전된 탄소 나노튜브를 포함하는 캐소드를 제조하기 위한 방법이 본원에 기재되어 있다. 상기 방법은, 용액을 형성하기 위한 용매에 승화된 황을 용해하는 것을 포함한다. 상기 방법은, 상기 용액에 탄소 나노튜브를 첨가하는 것을 더 포함한다. 상기 방법은, 상기 용액에 극성 양자성 용매를 첨가하는 것을 더 포함한다. 상기 방법은, 상기 용액으로부터 상기 용매를 제거하는 것을 더 포함한다.

Description

황 충전된 탄소 나노튜브를 생산하기 위한 방법 및 리튬 이온 배터리를 위한 캐소드{METHOD FOR PRODUCING SULFUR CHARGED CARBON NANOTUBES AND CATHODES FOR LITHIUM ION BATTERIES}
관련된 출원에 관한 상호참조
본 출원은, 이들 각각이, PCT 규칙 4.18 및 20.6의 목적을 포함하는, 이의 전체로 참고문헌에 의해 본원에 의해 각각 포함되는, "Method for producing high energy capacity nanocrystal based anodes for lithium ion batteries"라는 제목의 2014년 5월 15일자로 출원된 US 가출원 제61/993,840호, "Method for producing sulfur charged carbon nano tube cathodes for lithium ion batteries"라는 제목의 2014년 5월 15일자로 출원된 US 가출원 제61/993,870호의 35 U.S.C.§ 119(e)에 따른 우선권의 이익을 청구한다.
기술 분야
본 내용은, 일반적으로 리튬-이온 배터리, 및 보다 명확하게, 리튬-황 전지에서 사용하기 위한 캐소드 및 황 충전된 탄소 나노튜브(sulfur charged carbon nanotubes)에 관한 것이다.
배경
리튬 이온 배터리는, 보다 높은 에너지 및 동력 밀도(power density), 광범위한 범위의 작동하는 온도, 및 다른 배터리 화학과 비교된 경우에, 뛰어난 주기(excellent cycle) 및 일정 수명(calendar life)을 제공하도록 입증되고 있다. 전기 드릴 및 동력 도구와 같은, 다양한 휴대 가전, 뿐만 아니라 전기 기초된 수송의 높은 동력 적용에 대한 지속적인 수요는, 리튬 이온 배터리의 수명 및 신뢰도의 타협 없이 낮은 비용 물질에 초점을 맞추기 위해 직접적인 연구를 유지하고 있다.
본원에 인용된 어떠한 참고문헌 및 이의 어떠한 기재 또는 논의를 포함하는, 본 명세서의 이러한 배경 부분에 포함된 정보는, 기술적인 참조 목적만을 포함하고, 청구범위에 정의된 바와 같은 본 발명의 범위가 결합되는 내용으로 평가하지 않고, 오직 기술적인 참고의 목적으로 포함된다.
요약
하나의 실시형태에 따라, 황 충전된 탄소 나노튜브를 제조하기 위한 방법이 기재되어 있다. 상기 방법은, 용액을 형성하기 위해 용매에 승화된 황(sublimed sulfur)을 용해하는 것을 포함한다. 상기 방법은, 상기 용액에 탄소 나노튜브를 첨가하는 것을 더 포함한다. 상기 방법은, 상기 용액에 극성 양자성 용매(polar protic solvent)를 첨가하는 것을 더 포함한다. 상기 방법은 상기 용액으로부터 상기 용매를 제거하는 것을 더 포함한다.
다른 실시형태에 따라, 황 충전된 탄소 나노튜브(sulfur charged carbon nanotube)가 기재되어 있다. 상기 황 충전된 탄소 나노튜브는, 외벽을 가지는 탄소 나노튜브, 상기 탄소 나노튜브 내에 함유된 제1 다수의 황 입자들, 및 상기 탄소 나노튜브의 외부 벽에 결합된 제2 다수의 황 입자들을 포함한다.
다른 실시형태에 따라, 리튬-황 배터리에 사용하기 위한 캐소드가 기재되어 있다. 상기 캐소드는, 전극 및 결합제에 의해 상기 전극에 결합된 황 충전된 탄소 나노튜브의 필름을 포함할 수도 있다. 상기 황 충전된 탄소 나노튜브는, 외벽을 가지는 다수의 탄소 나노튜브, 상기 다수의 탄소 나노튜브 내에 함유된 제1 다수의 황 입자들, 및 상기 탄소 나노튜브의 외벽에 결합된 제2 다수의 황 입자들을 포함한다.
이러한 요약은, 상세한 설명에서 하기에 추가적으로 기재된 단순화된 형태에서의 개념의 선택을 도입하기 위해 제공된 것이다. 이러한 요약은, 상기 청구된 주제의 중요한 특징 또는 필수적인 특징을 확인하기 위한 의도가 아닐 뿐만 아니라, 상기 청구된 주제의 범위를 제한하는데 사용하기 위한 의도는 아니다. 청구항에 정의된 바와 같은 본 발명의 특징, 세부사항, 유의성 및 장점의 보다 광범위한 제공은, 다양한 실시형태 및 이행의 하기의 기재된 설명에 제공되어 있고, 수반하는 도면에 설명되어 있다.
도 1은, 황 충전된 탄소 나노튜브(sulfur charged carbon nanotubes)를 생산하기 위한 작동상의 단계(operational steps)를 서술하는 흐름도이다.
도 2는, 리튬 이온 배터리에서의 사용을 위한 황-충전된 탄소 나노튜브 캐소드를 생산하기 위한 작동상의 단계를 서술하는 흐름도이다.
도 3은, 도 2의 실시형태에 따라 캐소드 상에 황-충전된 탄소 나노튜브의 확대도이다.
도 4는, 도 3의 실시형태에 따른 황-충전된 탄소 나노튜브의 확대도이다.
도 5는, 황 충전된 탄소 나노튜브 캐소드를 포함하는 반-전지(half-cell)의 개략도이다.
도 6은, 황-충전된 탄소 나노튜브 캐소드를 포함하는 반-전지를 제조하기 위한 공정의 흐름도이다.
도 7a는 자연 그대로의 게르마늄 나노결정의 수집의 확대된 이미지이다.
도 7b는, 확대를 나타내는 리튬 원자로 끼워진 후의 게르마늄 나노결정의 수집 및 나노포어 형태의 확대된 이미지이다.
도 7c는, 게르마늄 나노결정의 그룹의 확대된 현미경 이미지이다.
도 8은, 두 가지의 상이한 직경의 나노결정의 바이모달 분포(bimodal distribution)를 가지는 게르마늄 나노결정 증착의 확대된 현미경 이미지이다.
도 9는, 규소, 게르마늄, 및/또는 규소-게르마늄 합금 나노입자 내로 리튬의 전기화학적 과포화를 통해 리튬 이온 배터리에 대한 높은 에너지 용량 애노드를 제조하기 위한 공정의 흐름도이다.
도 10은, 규소, 게르마늄, 및/또는 규소-게르마늄 합금 나노입자 내로 리튬의 전해질의 과포화를 통해 리튬 이온 배터리에 대한 높은 에너지 용량 애노드를 제조하기 위한 공정의 흐름도이다.
도 11은, 전압 대 시간의 단위에서 미리-리튬화된 게르마늄 나노결정 애노드(prelithiated germanium nanocrystal anode)를 가지는 배터리의 순차적인 충전/방전 주기의 그래프의 도표이다.
도 12는, 높은 에너지 용량 리튬-끼워진 게르마늄 나노결정 애노드(lithium-intercalated germanium nanocrystal anode)를 포함하는 반-전지의 분해도에서의 계통도이다.
도 13은, 높은 에너지 용량 리튬-끼워진 게르마늄 나노결정 애노드를 포함하는 반-전지를 제조하기 위한 공정의 흐름도이다.
도 14는, 미리-리튬화된 게르마늄 나노결정 애노드 반-전지의 순차적인 충전/방전의 그래프의 도표이다.
도 15는, 황 충전된 탄소 나노튜브 캐소드 및 높은 에너지 용량 리튬-끼워진 게르마늄 나노결정 애노드를 포함하는 배터리 전지의 계통도이다.
도 16은, 황 충전된 탄소 나노튜브 캐소드 및 높은 에너지 용량 리튬-끼워진 게르마늄 나노결정 애노드를 포함하는 배터리 전지를 제조하기 위한 공정의 흐름도이다.
상세한 설명
높은-동력 및 에너지-밀도 리튬-이온 배터리는, 휴대 가전, 전기 자동차(electric vehicle) 및 증가된 수명, 범위 및 용량에 대한 피크 동력 저장(peak power storage)을 위해 바람직하다. 리튬-이온 캐소드 및 애노드에 대한 향상은, 구조적인 고장(structural breakdown) 전에 재충전 주기의 수 및 저장 용량을 증가시키기 위한 것이다.
황-충전된 탄소 나노튜브 캐소드
상기 리튬-황(Li-S) 전지는, Li2S에 대한 완전한 반응을 가정하면, 약 2600 Wh/kg (1672 mAh/g)의 높은 이론적인 특정한 에너지 밀도로 인하여, 캐소드 구성(cathode architecture)에 대한 매력적인 옵션이 되고 있다. 추가적으로, 리튬-황 에너지 (Li-S) 저장 용량을 증진시키는 것(즉, 다수의 배터리가 이의 초기 용량의 80 % 이하로 떨어지기 전에 재충전될 수 있다)은, 리튬-이온 전지에서 사용을 위해 Li-S 구성(Li-S architecture)의 높은 이론적인 에너지 밀도(1672 mA h g- 1)로 인하여, 배터리 기술을 실질적으롱 개선하기 위한 가능성을 가진다. 높은 용량에 더하여, 캐소드 물질로서 황을 사용하는 것은, 또한 친환경적이면서, 높은 자연 존재비 및 저 비용의 장점을 가진다. 통상적인 Li-S 구성에서, 낮은 주기성은, 상업적으로 실행가능한 생산물인 것으로부터 기술을 방해한다(In traditional Li-S architectures, low cyclability prevents the technology from being a commercially viable product). 전기 자동차에 대하여 물질 기술 및 적용에서 최근의 진전은, Li-S 시스템에서 새로운 관심을 일축하고 있다(Recent advances in material technologies and applications with respect to electric vehicles have spurned new interest in Li-S systems).
전통적인 Li-S 배터리 시스템은 몇몇의 결점을 가진다. 첫 번째로, 원소 황은 좋지 못한 전기 전도도(5.0 e-14 S*cm-1)를 가진다. 두 번째로, 폴리황화물(Li2Sn)은, 사이클링 동안에 애노드 및 캐소드 사이의 전해질 용액 내로 갈라질 수도 있다[polysulfides (Li2Sn) may branch into the electrolyte solution between the anode and the cathode during cycling]. 만약 상기 폴리황화물은 애노드 및 캐소드 사이의 세퍼레이터(separator)를 가로지르고, 리튬 음극(lithium negative electrode)과 반응한다면, 상기 캐소드에서 활성 황의 양은 감소되고, 그 뒤에 사이클링 효율은 각각의 주기와 함께 감소된다. 궁극적으로, 황에서의 환원(reduction)은 상기 배터리에서의 단축을 초래할 수 있다. Li 애노드에 의한 Li2Sn 폴리황화물의 지속적인 환원은, 충전(charging) 동안에 상기 캐소드 면에서 원소의 황으로 다시 돌아가는 산화환원반응을 방지한다. 이러한 주기 공정은, Li-S 황 시스템의 "셔틀(shuttle)" 현상으로서 알려져 있고, 황 전극의 이론적인 수치보다 더 낮은 제한된 용량을 유도한다. 세 번째로, Li-S 캐소드의 생산은, 폐기물을 증가시키는 사용할 수 없는 부산물을 결과적으로 생산할 수 있다.
본원에 기재된 실시형태는, Li-S 배터리 캐소드에 사용될 수도 있는, 황 충전된 탄소 나노튜브(sulfur charged carbon nanotubes)를 형성하기 위한 방법을 제공한다. 하기에 추가적으로 기재된 바와 같이, 탄소 나노튜브에서 승화된 황을 캡슐화하는 것은, 탄소 캐소드의 증가된 용량을 희생없이, 황의 좋지 못한 전기 전도율을 위한 보상할 수도 있다. 추가적으로, 상기 탄소 나노튜브는, 폴리황화물이 리튬 이온에 대한 확산 경로를 제공하면서, 상기 애노드 쪽으로 상기 전해질 용액으로 갈라지고, 상기 배터리를 단락시키도록 폴리황화물의 능력을 감소시키는 것을, 형성하는 것을 가능하게 한다(Additionally, the carbon nanotubes allow for polysulfides to form, providing a diffusion path for lithium ions, while reducing the ability of the polysulfides to branch into the electrolyte solution toward the anode and short the battery). 본원에 기재된 실시형태는, 다른 것들 중에서, 저 비용, 높은 수득율, 및 Li-S 배터리에서의 사용을 위한 황 충전된 탄소 나노튜브 캐소드를 생산하는 측정할 수 있는 방법(scalable methods)을 가능하게 한다.
도면, 도 1에서 나타낸 것은, 일반적으로 100으로, 황 충전된 탄소 나노튜브를 생산하기 위한 작동상의 단계들(operational steps)을 나타내는 방법이다. 작동(102)에서, 황은 용매에 용해된다. 다양한 실시형태에서, 상기 황은 승화된 원소의 황일 수도 있다. 상기 용매는 어떠한 적절한 용매일 수도 있다. 하나의 실시형태에서, 상기 용매는 이황화탄소(CS2)이다. 다양한 실시형태에서, 황의 양은, 원하는 용매의 양 및 황 충전된 탄소 나노튜브의 양을 기초로 결정될 수도 있다. 예를 들어, 상기 황은 상기 결합된 황-나노튜브 혼합물의 대략 50 %wt 내지 98 %wt일 수도 있다. 특정 실시형태에서, 승화된 황의 1 그램은, CS2의 5 ml 당 첨가될 수도 있다. 본원의 통상의 기술자는, 상기 황이 상기 용매에 완전히 용해되는 한 상이한 조합이 가능함을 인식할 것이다. 상기 황 및 용매는, 상기 용매에서 상기 황의 용해도를 증가시키고 및/또는 상기 용액에서 황의 분산도 보장하도록 교반되고, 초음파 분쇄되고 및/또는 가열될 수도 있다. 특정 실시형태에서, 상기 용액은 교반시키면서 32 °내지 33 ℃로 가열될 수도 있다.
작동(104)에서, 탄소 나노튜브는 상기 황 용액에 첨가된다. 탄소 나노튜브의 양은, 상기 황 충전된 탄소 나노튜브의 원하는 최종의 조성물에 따라 달라질 수도 있다. 다양한 실시형태에서, 탄소나노튜브의 양은, 상기 결합된-황 나노튜브 혼합물의 대략 2 %wt 내지 50 %wt일 수도 있다. 다양한 실시형태에서, 상기 탄소 나노튜브는, 단일 벽(single wall), 용해성 벽(soluble wall), 및/또는 다중벽 나노튜브(multiwall nanotubes) 중의 어떠한 것일 수도 있다. 몇몇 실시형태에서, 상기 나노튜브는 직경이 10 nm 미만이다. 몇몇 실시형태에서, 상기 나노튜브는 길이가 5 μm 미만이다. 다른 실시형태에서, 상기 나노튜브는 길이가 3 μm 미만이다. 다양한 실시형태에서, 상기 나노튜브의 길이를 감소시키는 것은, 상기 나노튜브의 결속(bundling)을 감소시키고, 전극 물질에 적용된 경우에 보다 더 나은 코팅을 제공할 수 있다. 탄소 나노튜브의 타입은, 결과적으로 생성된 캐소드의 원하는 전기적인 특성을 기초로 선택될 수도 있다. 황, 용매, 및 나노튜브를 함유하는 혼합물은, 상기 혼합물에서 상기 탄소 나노튜브를 고르게 확산되도록 초음파 분쇄되고 및/또는 교반될 수도 있다. 상기 용매에서 상기 황을 첫 번째로 용해시킴으로써, 상기 탄소 나노튜브는 나노모세관 작용(nanocapillary action)에 의해 황으로 채워진다. 모세관 작용은, 액체에서 작용하는 외력(예를 들어, 중력) 없이 (또는 이에 위반하여), 좁은 공간을 채우기 위한 액체의 능력이다. 탄소 나노튜브와 같은 작은 직경 튜브에서, 모세관 작용은, 상기 액체와 나노튜브 사이의 부착력 및 액체(예를 들어, 표면 장력) 내의 분자 간의 힘으로부터 발생하는 것이다.
작동(106)에서, 극성 양자성 용매는 상기 황-나노튜브 혼합물을 가열하면서 첨가된다. 다양한 실시형태에서, 상기 극성 양자성 용매는 메탄올, 이소프로필 알코올, 에탄올 및 증류수일 수도 있다. 특정 실시형태에서, 상기 극성 양자성 용매는, 조절된 속도[예를 들어, 1 ml/min의 속도에서의 드롭(drops)]에 첨가될 수도 있다. 상기 황-나노튜브 혼합물은 상기 극성 양자성 용매를 첨가하면서 교반되고 및/또는 가열될 수도 있다. 예를 들어, 상기 혼합물은 33°- 35 ℃의 온도로 가열될 수도 있다. 상기 극성 양자성 용매가 상기 용액에 첨가되는 속도를 다양하게 함으로써, 황 입자의 크기가 조절될 수도 있다. 게다가, 상기 극성 양자성 용매는, 황이, 상기 기재된 나노모세관 작용을 통해 나노튜브를 채우는 것에 더하여 상기 나노튜브의 바깥쪽(outside)에 결합하는 것을 가능하게 하는, 상기 황 입자 및 상기 탄소 나노튜브 사이의 pi 결합을 가능하게 할 수도 있다. 상기 탄소 나노튜브의 바깥 쪽에 황을 부착함으로써, 결과적으로 생성된 Li-S 배터리의 주기성(cyclability) 및 용량이 증가될 수도 있다.
작동(108)에서, 상기 용매(즉, 작동(102)에 대하여 상기에 기재된 용매)는, 상기 황-탄소 나노튜브 생산물을 분리하기 위해 제거된다. 상기 용매는 상기 황-탄소 나노튜브 생산물을 손상하지 않는 어떠한 수단에 의해 제거될 수도 있다. 특정한 실시형태에서, 상기 황-탄소 나노튜브 혼합물은, 습기있는 혼합물이 남아있을 때까지, 상기 용매의 일부를 증발시키기 위해, 가열될 수도 있다(예를 들어, 35 ℃로). 남아있는 습기있는 혼합물은, 공기 건조를 위해 트레이(tray) 상에 분사될 수도 있고, 어떠한 남아있는 용매를 증발하는 것을 가능하게 한다. 본원에 기재된 바와 같은, 이단 건조 공정(two-stage drying process)은, 결과적으로 생성된 황-탄소 나노튜브 생산물이 나중의 공정처리하는 단계를 가능하게 할 수 있는, 미립자 형태를 유지하는 것을 도와줄 수도 있다. 특정한 실시형태에서, 상기 결과적으로 생성된 황-탄소 나노튜브 생산물은, 나중의 공정처리하는 단계를 가능하게 하도록 미립자(fine particles)로 분쇄될 수도 있다. 다양한 실시형태에서, 상기 증발된 용매는 포획될 수도 있고, 향후의 공정에서 재사용될 수도 있고, 이렇게 함으로써 황 충전된 나노튜브를 제작하는데 있어서 생산된 사용할 수 없는 부산물을 감소시킨다. 도 1의 실시형태는, 상기 탄소 나노튜브를 채우는 황을 가지는 미립자 황-충전된 나노튜브를 생산하고, 상기 나노튜브의 외부에 부착된다. 상기 결과적으로 생성된 황 충전된 탄소 나노튜브의 구조는 도 3 및 4에 대하여 하기에 추가적으로 상세하게 기재되어 있다.
도 2는, 일반적으로 200으로 나타낸, 리튬 이온 배터리에서 사용을 위한 황 충전된 탄소 나노튜브 캐소드를 생산하기 위한 작동상의 단계를 나타낸 방법이다. 도 2의 실시형태는, Li-S 캐소드가 도 1에 대하여 상기에 기재된 것들과 같은, 황 충전된 탄소 나노튜브를 사용하여 생산될 수도 있다.
작동(202)에서, 슬러리는 황 충전된 탄소 나노튜브와 준비된다. 상기 슬러리는, 예를 들어, 폴리(아크릴로니트릴-메틸 메타크릴레이트)와 같은 결합제, 전도성 탄소 첨가제, 및 N-메틸피롤리디논과 같은, 용매를 포함할 수도 있다. 상기 결합제는, 서로 상기 황 충전된 탄소 나노튜브를 부착할 수도 있다(The binding agent may adhere the sulfur charged carbon nanotubes to one another). 상기 전도성 탄소 첨가제는, 상기 결과적으로 생성된 캐소드의 전도성을 증가시킬 수도 있다. 상기 용매는, 상기 제조하는 생산물을 용이하게 하고, 상기 캐소드에서 상기 황 충전된 탄소 나노튜브의 코팅을 보장하도록, 상기 슬러리의 바람직한 점도를 달성하기 위해 사용될 수도 있다.
작동(204)에서, 알루미늄 전극은 슬러리로 코팅된다. 다양한 실시형태에서, 상기 알루미늄 전극은 알루미늄 포일의 시트일 수도 있다. 상기 슬러리 코팅은 대략 20 내지 50 μm의 두께를 가질 수도 있다. 작동(202)에 대하여 상기에 기재된 상기 결합제는 또한, 상기 알루미늄 전극에 상기 슬러리를 결합하도록 작용할 수도 있다. 상기 코팅된 전극은, 상기 슬러리 코팅의 원하는 두께를 달성하도록 롤 프레스(roll press)를 사용하여 임의적으로 압출될 수도 있다. 본 분야의 통상의 기술자는 상기 슬러리의 두께를 다양하게 하는 것을 인식할 것이고, 따라서, 황 충전된 탄소 나노튜브의 층, 상기 결과적으로 생성된 캐소드의 특성이 조절될 수도 있다. 예를 들어, 상기 황 충전된 탄소 나노튜브의 두께를 증가시키는 것은, 캐소드를 침투할 수도 있는 리튬의 양을 증가시킬 수도 있다. 작동(206)에서, 상기 용매(즉, 상기 작동(202)에 첨가된 용매)는 상기 캐소드로부터 증발된다. 상기 용매는 어떠한 적절한 매커니즘을 사용하여 증발될 수도 있다. 하나의 실시형태에서, 슬러리 코팅을 가지는 상기 알루미늄 전극은 오븐에 배치되고, 상기 슬러리로부터 상기 용매의 모두를 실질적으로 증발하도록 충분한 양의 시간 동안 대략 60 ℃의 온도로 가열된다. 작동(208)에서, 캐소드는, 상기 황 충전된 탄소 나노튜브 코팅된 알루미늄 전극으로부터의 형태로 절단될 수도 있다. 예를 들어, 캐소드는 버튼(코인) 전지[button (coin) cells], 파우치 전지(pouch cells) 등에 사용하기 위한 형태로 절단될 수도 있다.
도 2의 방법에 따라 생산된 상기 캐소드는, 리튬 셔틀링(shuttling)을 용이하게 하도록 전해질 및 실리콘 및/또는 게르마늄 애노드를 가지는 Li-S 배터리에 사용될 수도 있다. 상기 전해질은, 질산리튬(LiNO3, N-디에틸-N-메틸-N-(2-메톡시에틸)암모늄 비스(트리플루오로메탄술포닐)이미드(DEMMOX), 디메틸 에테르(DME) 및 1,3-디옥솔란(DOL)을 포함할 수도 있다. 예를 들어, 상기 전해질은, LiNO3의 0.25E-3 mol g-1(LiNO3 = 68.95 g mol-1), DEMMOX의 0.25E- 3 mol g-1(DEMMOX = 466.4 g mol-1), 및 DME 및 DOL의 1:1 (wt.) 혼합물을 포함할 수도 있다.
도 3은, 도 2의 실시형태에 따라, 일반적으로 300으로 나타낸, 황 충전된 탄소 나노튜브 캐소드이다. 상기 캐소드(300)은, 다수의 황 충전된 탄소 나노튜브(302)를 포함할 수도 있다. 다양한 실시형태에서, 상기 황 충전된 탄소 나노튜브는, 대략 20-50 μm 사이의 실질적으로 균등한 층에서 알루미늄과 같은, 전극 물질을 코팅할 수도 있다. 상기 황 충전된 탄소 나노튜브는, 황 입자를 함유하고, 전지를 단축시키는, 폴리황화물이 상기 캐소드 및 애노드 사이의 갭을 가교하는 것을 예방하면서, Li-S 배터리의 에너지 밀도로 캐소드를 제공한다(The sulfur charged carbon nanotubes provide a cathode with the energy density of a Li-S battery, while containing the sulfur particles and preventing polysulfides from bridging the gap between the cathode and anode to short the battery).
도 4는, 황 충전된 탄소 나노튜브(302)를 나타낸 것이다. 상기 황 충전된 탄소 나노튜브(302)는, 상기 탄소 나노튜브(402)의 바깥쪽에 부착된 다수의 황 입자(404) 및 탄소 나노튜브(402)를 함유한다. 다양한 실시형태에서, 상기 탄소 나노튜브(402)는 또한, 황 입자(404)로 채워질 수도 있다. 도 1에 관하여 상기에 나타낸 바와 같이, 상기 황 입자의 크기는, 상기 극성 양자성 용매가 상기 황-탄소 나노튜브 혼합물에 첨가하는 속도를 기초로 조절될 수도 있다. 상기 나타낸 실시형태에서, 상기 황 입자는 직경이 대략 30 내지 35 nm이고, 내부의 황 입자로 충전된 상기 탄소 나노튜브(402)(the carbon nanotube 402 charged with internal sulfur particles)는 직경이 대략 45 내지 50 nm이다. 본원의 통상의 기술자는, 황 입자(404) 및 탄소 나노튜브(402)의 다른 크기가 가능한 것을 인식할 것이다. 다양한 실시형태에서, 상기 탄소 나노튜브(402)는, 충전/방전 주기 동안에 Li-이온 확산을 가능하게 하는, 다공성일 수도 있다[예를 들어, 상기 탄소 나노튜브에서의 상기 황은, 상기 탄소 나노튜브에서의 "홀"을 형성하는 탄소 결합을 늘어지게 한다(stretches)].
도 5 및 6에 대하여, 도 5는, 코인 전지에서 사용을 위해, 일반적으로 500으로 나타낸, 반-전지 캐소드의 도식도이다. 도 6은, 도 5의 실시형태에 따라 반-전지 캐소드를 조립하기 위한, 일반적으로 600으로 나타낸 방법이다. 상기 반-전지 캐소드는, 전지 베이스(cell base)(502), 황 충전된 탄소 나노튜브 캐소드(504), 하나 또는 그 이상의 세퍼레이트(506a/b), 리튬 포일(508), 하나 또는 그 이상의 스페이서(spacers)(510a/b), 바이어스 디바이스(512), 및 전지 커버(514)를 포함할 수도 있다.
단계(602)에서, 전해질(516a)이 전지 베이스(502)에 제공된다. 상기 전해질은, 예를 들어, LiNO3의 0.25E- 3 mol g-1(LiNO3 = 68.95 g mol-1), DEMMOX의 0.25E- 3 mol g-1(DEMMOX = 466.4 g mol-1), 및 DME 및 DOL의 1:1 (wt.) 혼합물일 수도 있다. 하나의 실시형태에서, 25 L의 전해질(516a)은 상기 전지 베이스(502)의 중심에 제공된다. 단계(604)에서, 상기 황 충전된 탄소 나노튜브 캐소드(504)는 전해질(516a) 내로 배치된다. 다양한 실시형태에서, 상기 캐소드는, 상기 전지 베이스(502)를 향하는 캐소드(504)의 알루미늄 접촉 및 상기 전지 베이스(502)에서 떠나서 황 충전된 탄소 나노튜브 코팅된 면과 함께 배치된다(the cathode is placed with the aluminum contact of the cathode 504 toward the cell base 502 and the sulfur charged carbon nanotube coated side away from the cell base 502). 단계(606)에서, 추가적인 전해질(516b)은, 캐소드(504)의 상기 황 충전된 탄소 나노튜브 면의 윗면(top) 상에 제공된다. 하나의 실시형태에서, 25 μL의 전해질(516b)은 상기 캐소드(504)의 윗면 상에 제공된다.
단계(608)에서, 제1 세퍼레이터(506a)는 상기 전해질 용액 및 상기 캐소드(504)의 윗면에 배치된다. 다양한 실시형태에서, 상기 제1 세퍼레이터(506a)는 상기 캐소드(504)의 직경과 상응하는 직경을 가질 수도 있다. 특정한 실시형태에서, 상기 제1 세퍼레이터(506a)는 19 mm 폴리프로필렌 세퍼레이터일 수도 있다. 단계(610)에서, 추가적인 전해질(516c)은 상기 제1 세퍼레이터(506a)의 윗면 상에 제공된다. 하나의 실시형태에서, 25 μL의 전해질(516c)는 상기 제1 세퍼레이터(506a)의 윗면 상에 제공된다. 단계(612)에서, 제2 세퍼레이터(506b)는, 상기 제1 세퍼레이터(506a) 및 전해질 용액(516c)의 윗면 상에 배치된다. 다양한 실시형태에서, 상기 제2 세퍼레이터(506b)는 상기 제1 세퍼레이터(506a)의 직경과 상응하는 직경을 가질 수도 있다. 특정한 실시형태에서, 상기 제2 세퍼레이터(506b)는 19 mm 폴리프로필렌 세퍼레이터일 수도 있다. 단계(614)에서, 추가적인 전해질(516d)는 상기 제2 세퍼레이터(506b)의 윗면 상에 제공된다. 하나의 실시형태에서, 25 μL의 전해질(516d)는 상기 제2 세퍼레이터(506b)의 윗면 상에 제공된다.
단계(616)에서, 적어도 상기 캐소드 직경과 같은 리튬 포일(508)의 디스크는, 상기 제2 세퍼레이터(506b) 상에 전해질(516d) 상에 중심이 있고, 배치된다. 다양한 실시형태에서, 리튬 포일(508)의 디스크는, 상기 캐소드(504)를 완전히 덮을 수도 있다. 단계(618)에서, 하나 또는 그 이상의 스페이서(510a/b)는 상기 리튬 포일(508)의 윗면 상에 배치된다. 다양한 실시형태에서, 상기 스페이서(510a/b)는 스테인리스강 스페이서(stainless steel spacers)일 수도 있다. 다양한 실시형태에서, 두 개의 스페이서(510a/b)는 상기 리튬 포일(508) 상에 배치된다. 단계(620)에서, 상기 바이어스 디바이스(512)는 상기 스페이서(510a/b)의 윗면 상에 배치된다. 다양한 실시형태에서, 상기 바이어스 디바이스(512)는 스프링 와셔(spring washer)일 수도 있다. 다른 실시형태에서, 상기 바이어스 디바이스(512)는 상기 반-전지 캐소드(500)의 전기적인 특성을 방해하지 않는 바이어스 디바이스의 어떠한 다른 타입일 수도 있다. 단계(622)에서, 상기 전지 커버(514)는, 상기 반-전지 캐소드(500)의 내용을 둘러싸기 위해 상기 전지 베이스(502) 위에 배치된다. 다양한 실시형태에서, 상기 반-전지 캐소드(500)를 둘러싸는 것은, 전해질이 상기 반-전지 캐소드(500)으로부터의 누출되는 것을 초래할 수도 있다. 어떠한 전해질은, 상기 반-전지 캐소드(500)의 외부로부터 제거될 수도 있다. 단계(624)에서, 상기 전지 커버(514) 및 상기 전지 베이스(502)는 완전한 반-전지 캐소드(500)를 형성하기 위해 함께 밀봉된다. 상기 반-전지 캐소드(500)는, 도 15 및 16에 대하여 하기의 추가적으로 상세하게 기재된 것과 같이 완전한 코인 전지를 제조하기 위해 사용될 수도 있다.
리튬 이온 -끼워진 나노결정 애노드 (Lithium Ion-Intercalated Nanocrystal Anodes)
규소 및 게르마늄 결정은, 상당수의 리튬 이온을 이론적으로 제공할 수 있다. Si 또는 Ge 원자에 의해 이용될 수 있는 Li 원자의 원자비는 4.4 : 1이다. (또는 22 Li : 5 Si 또는 Ge). 리튬 이온은, 규소 또는 게르마늄 결정 격자를 형성하는 원자의 공간 사이에 끼우기에 충분히 작다. 추가적으로, 게르마늄은 선천적으로, 테스트 데이터로 실증적으로 확인하는 다른 제안된 애노드 물질보다 더 빠른 속도로 리튬 이온에 수용될 수 있다(germanium is inherently able to accept lithium ions at a faster rate than other proposed anode materials this has been empirically verified with test data). Ge 내로 리튬-이온 확산도는, 실리콘보다 400 배 더 빠르고, 표준 Li-이온 기술보다 거의 1000 배 더 빠르다.
도 7a는, 순수한 상태에서 게르마늄 나노결정(702)의 그룹의 현미경 사진이다. 순수한 게르마늄 나노결정의 추가적으로 확대된 이미지는 도 7b에 나타낸 것이다. 일반적인 형태는, 리튬 이온의 확산성 포장(diffusive packing)을 최대화하는 것에 도움이 되는 높은 품질, 균일한 결정 형태를 나타내는, 고도로 구체이다. 추가적으로, 상기 표면 형태는, 각각의 나노결정(704) 상의 다수의 확대된 돌출부(706)을 나타낸다. 이러한 형태는, 규소 또는 다른 유사한 나노규모 결정 구조와 비교된 바와 같은, 게르마늄 나노결정을 위한 현저하게 더 큰 표면적으로 바뀌었다(translates). 더 큰 표면적은, 재충전 주기 동안에 결정 격자 내로 리튬 이온의 보다 빠른 확산을 촉진하는데 유리하다. 사실, Ge의 전도성은 Si보다 10,000 배 더 높고, Ge에서의 Li 이온의 확산도는 실온에서 Si보다 400 배 더 빠르고, 즉, Ge에 대한 재충전 속도는 Si에 대한 재충전 속도보다 400 배 더 빠르다.
도 7c는, 도 7a의 순수한 나노결정(702)에 대한 범위에서 유사한 리튬화된 게르마늄 나노결정(708)의 그룹의 현미경 사진을 나타낸 것이다. 순수한 나노결정(702)와 상기 리튬화된 나노결정(708)의 형태의 비교는, 높은 비의 리튬 이온을 수용하기 위해 상기 결정 격자의 확대를 나타낸다. 특히, 상기 리튬화된 게르마늄 나노결정(708)은, 상기 리튬 이온 끼워짐(lithium ion intercalation)을 제공하기 위해 나노결정 격자의 확대에 의해 기인한 나노다공성 구조를 나타낸 것이다. 높은 품질(구형으로 균일한) Ge 나노결정에 대해, 상기 확대는, 결정 격자 구조에서 변형을 최소화하고, 매우 높은 주기 속도를 가능하게 하고, 역전할 수 없는 용량 손실(irreversible capacity loss)을 최소화하는, 등방성이다. 정반대로, 규소의 큰 나노결정은 전형적으로 이방성으로(anisotropically) 확대하고, 따라서 오직 몇몇의 주기 후에 빠른 용량 손실을 받는다. 그러나, 만약 Si 나노결정이 작고 충분히 형성된다면(즉, < 100 nm 및 바람직하게 < 50 nm), 상기 결정 구조는 보다 균일하고, 확대는, 나노결정 구조에서 보다 적은 응력을 일으키고, 따라서 상기 사이클링 용량을 증가시키는, 보다 등방성으로 행동한다(the crystal structure is more uniform and expansion behaves more isotropically, causing less stress on the nanocrystal structure and thus increasing the cycling capacity).
리튬 이온 배터리에서, 상기 리튬 소스(lithium source)는 애노드 또는 캐소드에 있는 것을 필요로 한다; 이는 둘 다에서 될 수 없다(it cannot be in both). 상기 충전된 배터리는 애노드에서 리튬의 모두를 함유한다. 상업적으로 이용가능한 배터리는 전형적으로, 리튬 금속 산화물의 형태, 즉, 리튬 코발트 산화물 또는 리튬 망간 산화물 또는 유사한 것으로 상기 캐소드에 저장된 상기 리튬의 모두를 가진다. Li-이온 배터리에 대해 제조하는 공정의 말단에서, 모든 배터리는, 상기 배터리가 소비자가 상점에서 이를 구매하는 경우에 거의 충전되도록 애노드 내로 삽입되도록 상기 리튬에 대해 적어도 한번 순환되어야 한다. 리튬-금속-산화물 캐소드는, 잘해야 대략 200-300 mAh/g으로, 매우 제한된 용량을 가진다.
게르마늄과 같은, 애노드가 1000mAh/g의 에너지 용량을 가진다면, 이는 상업적으로 이용가능한 캐소드와 효율적으로 짝을 이룰 수 없다. 리튬의 확산 제한 때문에, 하나는 애노드 물질의 동일한 부피를 보충하기 위해, 많은 캐소드 물질로서 단지 4-5배 첨가될 수 없다. 이러한 딜레마를 고려하여, 본 내용은, 애노드에 저장된 리튬을 쉽게 수용할 것인, 현실적인 및 저 비용 캐소드 물질(예를 들어, 황)과 쌍을 이루기 위해, 창조 미리-리튬화된, 높은 에너지 밀도 애노드 물질에 대한 비용 효율적인 공정을 기재하고 있다. 따라서, 완전한 배터리 전지의 애노드는, 첫 번째 사용을 위한 배터리를 충전하기 위한 초기 주기 및 리튬 화합물 캐소드에 대한 필요성을 완화하는, 규소 또는 게르마늄 나노결정 내로 이미 조합된/포함된 리튬을 가진다.
대표적인 실시형태에서, 본원에 기재된 애노드는, 리튬 이온(Li+)과 끼워진 본원에 기재된 규소(Si), 게르마늄(Ge), 또는 규소-게르마늄(SiGe), 및 이의 어떠한 조합의 나노결정("NC") 구조(때때로 본원에 축약된 각각 "Li-SiNC," "Li-GeNC," 및 "Li-SiGeNC")를 포함할 수도 있다. 본원에 사용된 바와 같이, 본원에 기재된 SiNC, GeNC, 및/또는 SiGeNC 내로 리튬 끼워짐을 나타내는 경우에, 용어 "끼워짐" 또는 "확산(diffusion)" 또는 "합금(alloy)"은, 별개의 나노결정의 결정 격자 내로의 끼워짐 및 나노결정 사이의 끼워짐 둘 다를 나타낸다. 이러한 리튬화된 나노결정은 그리고 난 다음에, 구조적으로 실행가능한 애노드를 형성하기 위해 전도성 기판에 결합된 것이다. 본원에 기재된 대표적인 애노드 구조 및 제조 공정에서, 상기 나노결정은, 본원에 나타낸 충분한 애노드 리튬화를 달성하기 위해 "높은 품질"의 것을 필요로 한다. 리튬-이온 배터리 애노드에서의 사용을 위한 Si 및 Ge 나노결정의 경우에서의 높은 품질은, Si 나노결정이 150 nm 미만의 직경을 가지고, 형태에서 실질적으로 구형이고, Ge 나노결정은 500 nm 미만의 직경을 가지고, 형태에서 실질적으로 구형인 것을 의미한다. 나노결정의 직경이 더 작을수록, 필름에서의 패킹 인자(packing factor)는 더 크고, 따라서 결과적으로 더 큰 에너지 밀도를 야기한다. 더 높은 패킹 인자는, 바이모달 및 트리모달 분포, 예를 들어, 50 nm, 17 nm, 6.5 nm 나노결정 크기 분포로 달성될 수 있다.
몇몇 실시형태에서, 본원에 기재된 전지, 배터리 및 유사한 디바이스는, 변형되지 않은(unstrained) SiGeNC 및/또는 GeNC를 포함할 수도 있다. 몇몇 실시형태에서, 본원에 기재된 배터리 및 유사한 디바이스는 변형된 SiGeNC 및/또는 변형된 GeNC를 포함할 수도 있다. 본원에 사용된 바와 같이, 용어 "변형된 SiGeNC" 및 "변형된 GeNC"은, x-선 회절에 의해 분석된 경우에 결정면에서의 쉬프트(shift)에 의해 표시된, 변형된 결정 구조를 가지는 SiGeNC 및/또는 GeNC를 나타낸다. 본원에 참조된 변형된 SiGeNC 및 GeNC는, 몇몇의 실시형태에서, 약 1°, 2°, 또는 3°, 또는 4°의 하한에서 약 8°, 7°, 6°, 5°, 또는 4°의 상한까지의 벌크 규소의 (111) 결정면에 상대적으로 쉬프트된 (111) 결정면에 대한 2θ 수치를 가질 수도 있다(Strained SiGeNC and GeNC referenced herein may, in some embodiments, have a 2θ value for the (111) crystal plane shifted relative the (111) crystal plane of bulk silicon from a lower limit of about 1°, 2°, or 3°, or 4° to an upper limit of about 8°, 7°, 6°, 5°, or 4°). 상기 쉬프트는 어떠한 하한 내지 어떠한 상한에서의 범위일 수도 있고, 이들 사이의 어떠한 부분집합을 포함할 수도 있다.
다른 방식으로 명시적으로 나타내지 않는 한, 용어 "SiGeNC" 및 "GeNC"는, 이의 변형되지 않는 및 변형된 구조 둘 다를 포함한다. 추가적으로, 본원에 기재된 바와 같이, 본원에 기재된 다양한 특성 및/또는 특징(예를 들어, 2θ 수치 쉬프트(2θ value shift), 평균 직경 등)을 가지는 SiGeNC 및 GeNC는, 각각 Li-SiGeNC 및 Li-GeNC을 생산하기 위해 사용될 수도 있다. 보통, 이는 본원에 기재된 SiGeNC 및 GeNC의 특성이 본원에 기재된 Li-SiGeNC 및 Li-GeNC으로 확장될 수도 있음을 이해하여야 한다.
몇몇 실시형태에서, 본원에 기재된 SiGeNC는, 약 1:10, 1:5, 또는 1:1의 하한에서 약 10:1, 5:1, 또는 1:1의 상한까지의 범위에 있는 규소 대 게르마늄의 몰 비를 포함할 수도 있고, 상기 몰비는 어떠한 하한에서 어떠한 상한까지의 범위에 있고, 이들 사이의 어떠한 부분집합을 포함할 수도 있다.
몇몇 실시형태에서, 본원에 기재된 SiNC, SiGeNC, 및/또는 GeNC는, p-도핑될 또는 n-도핑될 수도 있다. 몇몇 실시형태에서, 상기 SiGeNC는, 규소 격자 셸(silicon lattice shell)에 의해 둘러 싸여진 게르마늄 격자 코어(germanium lattice core)를 가지는 "코어-셸" 배열("core-shell" configuration )에 있을 수도 있다. 몇몇 실시형태에서, 상기 SiGeNC는 단지, 분리된 SiNCs 및 GeNCs의 조합 또는 혼합물일 수도 있다.
몇몇 실시형태에서, 본원에 기재된 SiNC, SiGeNC, 및/또는 GeNC는, 약 3 nm, 5 nm, 10 nm, 25 nm, 또는 100 nm의 하한에서 약 1000 nm, 500 nm, 250 nm, 150 nm, 100 nm, 또는 50 nm의 상한까지의 범위에 있는 적어도 하나의 크기(dimension)에서 평균 직경을 가질 수도 있다. 적어도 하나의 크기에서의 평균 직경은 어떠한 하한에서 어떠한 상한까지의 범위일 수도 있고, 이들 사이의 어떠한 부분집합일 수도 있다. 특히, SiNC는 150 nm 이하의 직경 및 바람직하게 50 nm 이하일 수도 있다(SiNC may be under 150nm diameter and preferably under 50 nm). 게르마늄 나노결정은 직경에서 1000 nm 이하일 수도 있고, 바람직하게 100 nm 이하일 수도 있다. 이러한 직경 이상으로, 상기 나노결정은, 몇몇의 리튬화-탈리튬화 주기 후에 장거리 질서를 유지할 수도 없고, 물질은 무정형이 된다(Above these diameters the, nanocrystals may not maintain long range order after several lithiation-delithiation cycles and the materials become amorphous).
몇몇 실시형태에서, 본원에 기재된 SiNC, SiGeNC, 및/또는 GeNC는, 상기 평균 직경 범위로부터 표준 편차가 ± 약 0.5 nm, 1 nm, 또는 2 nm의 하한에서 ± 약 10 nm, 7 nm, 또는 5 nm의 상한까지의 범위에 있도록, 좁은 직경 분포를 가질 수도 있다. 상기 표준 편차는 어떠한 하한에서 어떠한 상한까지의 범위에 있을 수도 있고, 이들 사이의 어떠한 부분집합을 포함한다.
몇몇 실시형태에서, 본원에 기재된 SiNC, SiGeNC, 및/또는 GeNC는 다중모달 직경 분포(예를 들어, 바이모달, 트리모달 등)을 가질 수도 있다. 전도하는 애노드 기판(conducting anode substrate) 상에 상기 나노결정의 패킹 밀도를 증가시키고, 따라서, 나노결정들 사이의 및 나노결정들 내의 리튬 이온의 확산 밀도를 최대화하기 위해, 가능한 적은 것에서 상기에 나타낸 SiNC 및 GeNC의 상한까지의 크기의 범위를 가지는 것이 바람직하다. 두 가지의 상이한 크기의 게르마늄 나노결정의 자기-조직화 바이모달 분포(800)의 예는, 도 8의 현미경사진을 나타낸 것이다. 나타낸 바와 같이, 상기 보다 큰-크기 나노결정(larger-sized nanocrystals)(802)(예를 들어, 50 nm 직경)은 기판 상에 베이스 층을 형성하기 위해 배열하고, 상기 보다 더 작은-크기 나노결정들(smaller-sized nanocrystals)(804)(예를 들어, 12 nm 직경)은 상기 보다 큰-크기 나노결정들(802) 사이에 간격에 배열한다. 이러한 방식으로, 상기 나노결정들의 밀도가 증가된다.
대표적인 실시형태에서, 다중모달 직경 분포를 가지는 본원에 기재된 SiGeNC 및/또는 GeNC는, 약 4 nm, 7 nm, 12 nm, 또는 25 nm의 하한에서 약 250 nm, 150 nm, 100 nm, 또는 50 nm의 상한까지의 범위에서 적어도 하나의 크기에서 평균 직경을 가지는 적어도 하나의 방식을 가질 수도 있다. 적어도 하나의 크기에서 평균 직경은, 어떠한 하한에서 어떠한 상한까지의 범위에 있을 수도 있고, 이들 사이에 어떠한 부분집합을 포함할 수도 있다. 몇몇의 실시형태에서, 본원에 기재된 SiNC, SiGeNC, 및/또는 GeNC의 다중모달 직경 분포의 방식은, 각각의 방식에 대한 표준 편차가 ± 약 0.5 nm, 1 nm, 또는 2 nm의 하한에서 ± 약 10 nm, 7 nm, 또는 5 nm의 상한까지의 범위에 있도록, 좁은 직경 분포를 독립적으로 가질 수도 있다. 표준 편차는 어떠한 하한에서 어떠한 상한까지의 범위에 있을 수도 있고, 이들 사이의 어떠한 부분집합을 포함할 수도 있다.
몇몇 실시형태에서, 본원에 기재된 Li-SiGeNC 및 Li-GeNC는, 0 초과, 약 0.2, 0.5, 1, 1.5, 또는 2의 하한에서 약 3.6, 3.5, 3.25, 3, 2.5, 2, 또는 1.5의 상한까지의 범위에서, 각각, Li 대 SiGe(즉, Si 및 Ge의 조합된 몰) 또는 Li 대 Ge의 몰비를 가질 수도 있다. Li 대 SiGe 또는 Li 대 Ge의 몰비는, 어떠한 하한에서 어떠한 상한까지의 범위일 수도 있고, 이들 사이의 어떠한 부분집합을 포함할 수도 있다. 이러한 몰비가 완전하게 충전된 배터리 또는 다른 유사한 디바이스의 면에서 기재됨을 주의하여야 한다. Li 대 SiGe 또는 Li 대 Ge의 몰비는 그 중에서도, Li-SiGeNC 및/또는 Li-GeNC의 합성에서 리튬 소스 대 SiGeNC 및/또는 GeNC의 비율에 따라 달라질 수도 있다.
몇몇 실시형태에서, 리튬 끼워짐(lithium intercalation)은, SiGeNC 및/또는 GeNC와 리튬 금속을 혼합하는 것[예를 들어, 두 가지를 함께 접는 것 및 리튬이 끼워지는 것을 가능하게 함(folding the two together and allowing the lithium to intercalate)], 이온 액체의 존재에서 리튬 금속과 SiGeNC 및/또는 GeNC를 혼합하는 것, 리튬 금속 전극 상에 SiGeNC 및/또는 GeNC를 전기증착하는 것(electrodepositing) 등 중의 적어도 하나에 영향을 미칠 수도 있다. 몇몇의 실시형태에서, 상기 이온성 액체 및 전기증착은 조합으로(in combination) 사용될 수도 있다.
몇몇의 대표적인 실행에서, 리튬 금속 전극으로부터 원소 리튬은, 리튬화된 나노결정 및 이온성 액체의 페이스트가 리튬 금속 전극 상에 형성되도록, 이의 표면에 끌어당겨진 SiNC, SiGeNC, 및/또는 GeNC 내로 끼워진다(elemental lithium from a lithium metal electrode intercalates into the SiNC, SiGeNC, and/or GeNC attracted to the surface thereof such that a paste of lithiated nanocrystals and ionic liquid forms on the lithium metal electrode). 상기 페이스트는, 존재하는 리튬의 양에 따라 다크-브라운에서 퍼플-블랙 색(purple-black color)을 가진다. Li-SiGeNC 및/또는 Li-GeNC의 페이스트가 시간의 연장된 기간 동안 공기에서 안정적이고, 리튬 금속과 달리 반응 없이 물에 노출될 수도 있음이 확인되고 있다. 나노결정 구조 내의 리튬 이온의 끼워짐은, 공기 및 수분과 함께 끼워짐을 방지한다(The intercalation of the lithium ions within the nanocrystal structures protects the lithium from interaction with air and moisture). 추가적으로, GeNCs의 경우에, 게르마늄은, 리튬 이온의 확산 속도를 추가적으로 개선하는, 규소와 같은 공기에서 표면 산화물을 형성할 수 없다.
형성된 때에, 상기 리튬화된 나노결정 페이스트는, 공정의 어려움 및 비용을 현저하게 감소할 수 있는, 보호하는 환경[예를 들어, 아르곤-충진된 인클로저(argon-filled enclosure)]에 대한 필요성 없이 추가적인 애노드 제조하는 공정에서 사용될 수도 있다. 추가적으로, 상기 비휘발성 페이스트는 유리하게, 배터리 및 유사한 디바이스가, 애노드가 공기 또는 물에 노출되는 배터리 손상의 사건에서 화재의 위험이 없도록 최소한으로 할 수 있게 할 수도 있다. 이러한 장점 및 위험 완화는, 상기 배터리 케이싱(battery casings)이, 많은 배터리 중량이 충돌에서 펑크로부터의 보호에 기여할 수 있는 전기 자동차에서 유용할 수도 있는, 상기한 물질로 제조될 수도 있기 때문에, 보다 가벼운-중량 배터리의 생산에 활용될 수도 있다.
몇몇 실시형태에서, 상기 애노드는, 이들 상에 배치된 필름을 가지는 전도성 지지체를 포함할 수도 있고, 상기 필름은 본원에 기재된 나노결정을 포함한다. 전도성 지지체의 예는, 규소, 게르마늄, 흑연, 니켈, 철, 스테인리스 강, 알루미늄, 구리 등 및 이의 조합을 포함하지만, 이로 제한되지 않는다. 몇몇 실시형태에서, 상기 전도성 지지체는 하기의 것들 중 적어도 하나에 있는 형태일 수도 있다: 그 중에서도, 애노드가 사용될 배터리 또는 그 밖의 디바이스의 배열에 따라 달라질 수도 있는, 시트, 포일, 격자판(grid), 막대 등, 및 이의 어떠한 혼합물.
몇몇 실시형태에서, 상기 필름은, 본원에 기재된 나노결정으로 필수적으로 이루어져 있을 수도 있다. 다른 실시형태에서, 상기 필름은 본원에 기재된 나노결정을 포함할 수도 있고, 임의적으로 결합제 및/또는 존재하는 애노드 물질을 더 포함할 수도 있다. 이러한 임의적인 구성요소는, 상기 필름 및/또는 이의 전구체의 원하는 물리적인 특징을 달성하기 위해 사용될 수도 있다. 물리적인 특징의 예는, 필름 전구체의 유동성, 상기 필름 전구체의 건조 특성, 필름 가소성, 필름 전도성, 상기 전도성 지지체에 대한 필름의 부착 강도 등 및 이의 어떠한 조합을 포함할 수도 있지만, 이로 제한되지 않는다.
몇몇 실시형태에서, 결합제는, 전도성 지지체에 또는 상기 나노결정과 함께 부착함으로써 애노드 필름 또는 이의 전구체의 원하는 물리적 특성을 달성하는데 사용될 수도 있다. 상기 결합제는, 만약 상기 애노드가 사용되는 결과적으로 생성된 배터리 또는 유사한 디바이스의 전기 화학에 영향을 미칠 수도 있다. 결합제는, 전도성 또는 절연성일 수도 있다. 결합제의 예는, 폴리비닐리덴 플루오르화물(polyvinylidene fluoride), N-메틸-2-피롤리돈, 카르복시메틸 셀룰로오스, 한천(agar), 스티렌-부타디엔 고무(styrene-butadiene rubber), 폴리테트라플루오로에틸렌, 전도성 아세틸렌 블랙(conductive acetylene black), 전도성 흑연 분말 등, 및 이의 조합을 포함할 수도 있지만, 이로 제한되지 않는다. 몇몇 실시형태에서, 상기 결합제는, 히드로겔 또는 오르가노겔 필름(예를 들어, 교차결합된 한천 또는 카르복시메틸 셀룰로오스)을 가능하게 하는 것으로 선택될 수도 있다. 몇몇 실시형태에서, 상기 결합제는, 잉크(예를 들어, 전도성 흑연 분말)와 같은 것을 건조하는 인쇄가능한 필름 전구체를 가능하게 선택될 수도 있다. 몇몇 실시형태에서, 상기 결합제는, 유연한, 건조 필름(예를 들어, 스티렌-부타디엔 고무 또는 폴리테트라플루오로에틸렌)을 가능하게 선택될 수도 있다.
존재하는 애노드 물질은, 상기 필름 또는 이의 전구체의 원하는 물리적 특성을 달성하기 위해 사용될 수도 있고, 상기 애노드가 사용된 결과적으로 생성된 배터리 또는 유사한 디바이스의 전기화학에 참가할 수도 있다. 몇몇의 실시형태에서, 존재하는 애노드 물질의 사용은, 이들이 상기 애노드 특성에 대한 어떠한 상승에 거의 필요하지 않게 제공되고, 본원에 기재된 나노결정에 의해 그 외에 충진될 수 있는, 공간을 차지하기 때문에, 최소화하거나 또는 제거될 수도 있다(the use of existing anode materials may be minimized or eliminated because they provide little to no enhancement to the anode properties and occupy volume that could otherwise be filled by nanocrystals described herein). 존재하는 애노드 물질의 예는, 흑연 분말, 탄소 마이크로 비드, Li4Ti5O12, LiVPO4F 등, 및 이의 어떠한 조합을 포함할 수도 있지만, 이로 제한되지 않는다.
상기 필름 전구체에서 다양한 구성 요소의 농도는, 상기 각각의 구성 요소의 농도가 상기 필름 전구체의 중량에 대해 약 0 % 내지 약 99 % 사이로 다양하게 하는 것을 가능하게 할 수도 있는, 상기 필름 및/또는 전구체의 원하는 물리적 특성 및 상기 애노드의 원하는 전기화학적 특성을 달성하기 위해 필요로 하는 레벨에 있을 수도 있다.
몇몇 실시형태에서, 상기 필름 전구체는 페이스트일 수도 있다. 예를 들어, 필름 전구체는, Li-SiNC, Li-SiGeNC, 및/또는 Li-GeNC의 합성의 적어도 몇몇의 실시형태에서 동안에 생산되는, 상기에 기재된 상기 페이스트일 수도 있다. 다른 예에서, 페이스트 필름 전구체는, SiGeNC, 흑연, 및 N-메틸-2-피롤리돈에서 폴리비닐리덴 플루오르화물의 페이스트일 수도 있다. 몇몇 실시형태에서, 상기 애노드는, 상기 전도성 지지체 및 상기 필름 사이의 빠른 이온 전도성 층(예를 들어, 질화리튬 등)을 포함할 수도 있다.
몇몇 실시형태에서, 상기 필름 전구체는, 독립적으로 희석된 페이스트일 수도 있거나 형성될 수도 있는, 보다 적은 점성이 있는 액체일 수도 있다. 몇몇 실시형태에서, 더 낮은 점도는, 유기성 용매(예를 들어, 벤젠, 메탄올 등)의 사용과 함께 달성될 수도 있다. 몇몇 실시형태에서, 상기 필름 전구체는, 전기증착, 분사(spraying), 프린팅(painting), 딥 코팅(dip coating), 캘린더링(calendaring) 등과 같은 방법에 의해 상기 전도성 기판 상으로 증착을 가능하게 하는 점도에 있을 수도 있다. 이러한 방법은 유리하게, 상기 반도체 산업에 사용되는 것과 유사한 코팅 방법을 사용하여 또는 유연한 배터리 또는 유사한 디바이스를 생산하는데 있어서 프린팅 방법을 사용하여, 본원에 기재된 애노드의 생산의 크기를 산업의 생산 레벨로 조정될 수도 있다.
몇몇 실시형태에서, 전도성 기판으로의 증착 후에, 상기 필름 전구체는, 본원에 기재된 미리-리튬화된 나노결정을 포함하는 필름을 수득하기 위해 건조될 수도 있다(예를 들어, 상기 필름 전구체의 조성에 따라 약 30 ℃ 내지 약 220 ℃ 사이). 몇몇 실시형태에서, 상기 전도성 기판으로 증착 후에, 상기 필름 전구체는, 본원에 기재된 미리-리튬화된 나노결정을 포함하는 히드로겔 또는 오르가노겔 필름(organogel film)을 수득하기 위해 설정되는 것을 가능하게 할 수도 있다.
SiNC, SiGeNC, 또는 GeNC 증착 코팅 내로 리튬의 확산 제한(diffusion limit)은 전형적으로, 30 내지 40 미크론 사이이다. 따라서, 몇몇의 실시형태에서, 본원에 기재된 나노입자를 포함하는 필름의 두께는, 약 10 미크론, 25 미크론, 또는 100 미크론의 하한에서 약 500 미크론, 250 미크론, 또는 100 미크론의 상한까지의 범위에 있는 두께를 가질 수도 있다. 상기 두께는 어떠한 하한에서 어떠한 상한까지의 범위일 수도 있고, 이들 사이의 어떠한 부분집합을 포함할 수도 있다.
도 9는, 애노드 구성에 사용을 위한 미리-리튬화된 나노결정 페이스트를 제조하기 위한 일반적인 전기증착 공정(900)을 나타내는 흐름도이다. 단계(902)에서, SiNCs, SiGeNCs, 및/또는 GeNCs는, 상기 나노결정의 콜로이드성 현탁액을 형성하기 위해, 이온성 유체(들)(ionic fluid(s)), 비수성 용매(들), 또는 이들 둘 다의 조합의 용액 내로 혼합된다. 리튬 금속 리본은, 단계(904)에 나타낸 바와 같이 애노드 전극으로서 콜로이드성 혼합물에 배치된다. 유사하게, 탄소 전극은, 단계(906)에 제공된 바와 같이 캐소드로서 상기 콜로이드성 혼합물 내로 배치된다. 전압은, 단계(908)에 나타낸 바와 같이, 리튬 금속 리본 애노드 상에 합쳐지기 위해 상기 혼합물로부터 상기 나노결정을 조정하기 위해 애노드 및 캐소드를 가로질러 적용된다(A voltage is then applied across the anode and cathode to drive the nanocrystals from the mixture to coalesce on the lithium metal ribbon anode as indicated in step 908). 상기 리튬 금속으로부터 리튬 이온은, 리튬 금속 리본의 표면 상이 페이스트로부터 상기 이온성 유체 및/또는 용매의 존재에서, 상기 리튬화된 나노결정 및 리튬 금속 상에 증착된 상기 나노결정 내로 끼워진다. 상기 리튬-확산된 나노결정 페이스트는, 그리고 난 다음에 단계(910)에 나타낸 바와 같은 상기 리튬 금속 애노드로부터 제거된다. 최종적으로, 미리-리튬화된 애노드는, 단계(912)에서 나타낸 바와 같이, 빠른 이온 도체(fast ion conductor) 또는 고체 전해질과 같은, 전극 상의 상기 페이스트를 확산하거나(spreading) 다른 방식으로 분배함으로써(distributing) 형성된다.
도 10은, 애노드 구성에서 사용을 위한 미리-리튬화된 나노결정 페이스트를 제조하기 위한 일반적인 전해질 공정(1000)을 나타내는 흐름도이다. 단계(1002)에서, SiNCs, SiGeNCs, 및/또는 GeNCs는, 상기 나노결정의 콜로이드성 현탁액을 형성하기 위해, 이온성 유체(들), 비수성 용매(들), 또는 이들 둘 다의 조합의 용액, 플러스 리튬 전해질 내로 혼합된다. 리튬 금속 리본의 제1 조각은 단계(1004)에 제공된 바와 같은 양극(positive electrode)에 연결되고, 리튬 금속 리본의 제2 조각은 단계(1006)에 제공된 바와 같은 음극(negative electrode)에 연결된다. 리튬 금속의 제1 및 제2 조각 각각은, 단계(1010)에 나타낸 바와 같이 리튬 금속 전극의 물리적인 분리를 보장하기 위해 신중히 취해진 것과 함께, 단계(1008)에 나타낸 바와 같이 상기 콜로이드성 혼합물에 배치된다. 전압은 그리고 난 다음에, 단계(1012)에 나타낸 바와 같이 상기 리튬 금속 리본 애노드 상에 합쳐지도록, 상기 혼합물로부터 상기 나노결정을 조절하기 위해 세 가지 전극을 가로질러 적용된다(A voltage is then applied across thee electrodes to drive the nanocrystals from the mixture to coalesce on the lithium metal ribbon anode as indicated in step 1012). 상기 전압은, 단계(1014)에 제공된 바와 같이, 용매 및 리튬화된 나노결정의 페이스트는 상기 리튬 금속 리본의 표면 상에 형성하고, 상기 리튬 금속 리본으로부터 리튬 이온이 증착된 나노결정 내로 끼워질 때까지, 유지된다. 상기 전압 소스는 그리고 난 다음에, 단계(1016)에 나타낸 바와 같이, 전극으로부터 분리된 다음에, 상기 리튬-확산된 나노결정 페이스트는 리튬 금속 리본으로부터 제거된다. 상기 페이스트는 그리고 난 다음에, 단계(1018)에 나타낸 바와 같이, 주위 조건 하에서, 즉, 비활성 가스 또는 저 수분 환경과 같은 추가적인 보호장치 없이 대기압에서의 공기에서, 결합제 및/또는 전도성 탄소와 혼합된다. 상기 페이스트 및 결합제 혼합물은 그리고 난 다음에, 단계(1020)에 제공된 바와 같은 전도성 애노드 기판 상에 확산되거나 다른 방식을 분배된다. 최종적으로, 상기 결합제는, 단계(1022)에 나타낸 바와 같이, 미리-리튬화된 애노드의 형성을 완성하기 위해, 상기 애노드 기판으로 상기 리튬화된 나노결정 페이스트를 부착하기 위해 경화된다.
실시예 1: 전기증착을 통한 애노드 구성 - 상기에 기재된 및 도 9에 나타낸 일반적으로 방법에 따라, 리튬 이온 배터리를 위한 높은-에너지 용량 애노드는, 규소, 게르마늄, 및 규소-게르마늄 합금 나노입자 내로 리튬의 전기화학적 과포화(electrochemical super saturation)를 통해 형성될 수도 있다. 규소, 게르마늄, 및/또는 규소-게르마늄 합금 나노입자(Universal Nanotech Corporation)는, 이온성 유체 1-부틸-3-메틸이미다졸리움 티오시아네이트(ionic fluid 1-butyl-3-methylimidazolium thiocyanate)(bmimSCN) 및 비-수성 용매 디메틸아세트아미드의 혼합물에서 콜로이드로서 현탁되었다. Li 금속 리본의 2/3" 스트립(strip)은 애노드로서 사용되었고, 양극은 캐소드로서 사용되었다. 각각은 전압원(voltage source)의 각각의 말단과 연결되었고, 상기 콜로이드성 혼합물에 배치되었다. 250mV-5 V, 전형적으로 2-4V의 범위에서의 전압은, 상기 나노결정 내로 Li 끼워짐을 시작하기 위해, 상기 용액을 통해 전류를 공급하기 위해 적용되었다.
상기 나노결정은, Li 금속 애노드에 작용된다(The nanocrystals are driven to the Li metal anode). 시각적으로, 상기 리튬 리본은 "부풀어지는 것(swell)"처럼 보이고, 불그스름한-오렌지-고동색을 취한다. 이러한 "붓기(swelling)"는 상기 분해된 리튬 리본 상에서 상기 리튬화된 나노결정의 코팅이다. 상기 결과적으로 생성된 생성물의 최종의 농도(consistency)는, 이온성 유체/용매 혼합물에 의해 제공된 매끄러움(lubricity)을 가지는 페이스 또는 겔-유사 농도이다. 애노드는, 빠른 이온 도체로 구성된 시트 위에 주걱을 가지는 겔을 확산함으로써 형성된다 (예를 들어, 질화 리튬과 같은, 고체의 전해질). 상기 빠른 이온 도체 구조 상의 상기 나노결정 애노드 페이스트는, 캐소드 물질(LiMn2O4)의 윗면 상에 끼워 넣어졌다(sandwiched). 알루미늄 전극은 상기 캐소드(즉, LiMn204)에 부착되었고, 구리 전극은, 배터리를 형성하기 위해, 애노드에 부착되었다. 상기 전체적인 구성은, 상기 배터리를 위한 단자(terminal)로서 작용하도록, 라미네이션 시트 외부에 돌출된 알루미늄 및 구리 전극의 일부와 보호하는 비전도성 라미네이션 시트에 밀봉되었다.
실시예 2: 이온성 유체 bmimSCN를 사용하여 SiGeNC 리튬화 - 아르곤 충진된 환경(즉, 글러브 박스)에서, 두 개의 분리된 조각의 리튬 금속 포일(각각 2cm L X 1cm W X 0.038cm t)은, 동력 공급의 음극 및 양극에 각각 연결되었다. Si0.22Ge0.78NCs는, 삼각플라스크(Erlenmeyer flask)에 일정하게 교반하면서, 1-부틸-3-메틸이미다졸리움 티오시아네이트(bmimSCN) 내로 분산되었고, 아르곤 하에서 40 ℃로 가열하였다. 이온성 유체에서 Si0.22Ge0.78NCs의 농도는, 거의 모든 리튬이 상기 플라스크에 함유된 GeNCsd의 양에 의해 흡수되도록, 리튬(1cm L X 1cm W X 0.038 cm t)과 일치되었다. 이러한 실험에 대해, Si0.22Ge0.78NCs의 0.00288 mol Li (1cm2) 및 0.0160 mol가 사용되었다. 상기 전극은, Si0.22Ge0.78NCs-이온성 유체 분산 내로 잠겨진 1cm2의 Li 금속과 서로 1 cm 떨어지도록 반대에 직접적으로 배치되었다(The electrodes were placed directly opposed to each other 1cm apart with 1cm2 of the Li metal submerged into the Si0.22Ge0.78NCs-ionic fluid dispersion). 정전압 3V(constant voltage 3V)는, 상기 리튬이 그 뒤에 Si0.22Ge0.78NCs로 확산되는 양극 상에 상기 리튬 금속에 대해 Si0.22Ge0.78NCs를 작동하기 위해 사용되었다. 상기 반응은 25 분 후에 정지되었다. 상기 결과적으로 생성된 생성물은, 이온성 유체 및 리튬화된 Si0.22Ge0.78NCs로 구성된 깊은 레드 페이스트(deep red paste)이었다.
실시예 3: 전해질 LiTFSI를 사용한 애노드 구성. - 실시예 2의 공정은, bmimSCN에서 LiTFSI의 1M 용액을 제조하기 위해, 전해질, 리튬 비스(트리플루오로메탄술포닐)이미드(LiTFSI)를 도입하도록 변경되었다. 상기 전반적인 방법은 따라서, 도 10에 나타내고 상기에 기재된 공정에 뒤따르기 위해 변화되었다. 게다가, 상기 공정은 실온에서 실행되었다. 모든 다른 측면에서, 상기 조건은 동일한 것이었다. 리튬 염(LiTFSI)의 추가는, 25 분에서 15 분까지 상기 페이스트를 형성하기 위해 반응 시간이 감소된다.
실시예 4: 전해질 LiPF 6 사용한 애노드 구성. - 도 10에 나타내고 상기에 기재된 일반적인 방법에 따라. 실온 및 대기압에서 아르곤 충진된 환경(예를 들어, 글로브 박스)에서, 리튬 금속 포일(각각 2cm L X 1cm W X 0.038cm t)의 두 개의 분리된 조각은, 동력 공급의 음극 및 양극에 각각 연결되었다. 높은 품질[구체 대칭적인(spherically symmetric)] 게르마늄 나노결정(<150 nm 직경)은, 삼각 플라스크에서 에틸렌 카르보네이트 대 디에틸 카르보네이트의 1:1 비로, 리튬 염의 전해질, 즉 리튬 헥사플루오로포스페이트(LiPF6) 내로 확산되었다(dispersed). 상기 전극은, GeNC-전해질 분산액 내로 담겨진 1cm2의 Li 금속과 서로 1 cm 떨어지도록 반대에 직접적으로 배치되었다. 이러한 실험에 대해, 0.00288 mol LiPF6 및 0.0127 mol의 GeNCs가 사용되었다. 전해질에서 게르마늄 나노결정의 농도는, 거의 모든 리튬이 상기 플라스크에 함유된 게르마늄의 양에 의해 흡수되도록, 리튬과 일치하였다(1cm L X 1cm W X 0.038 cm t). 일정 전압 4V는, 상기 리튬은 리튬 포일 상으로 증착된 GeNCs 내로 확산된 양극 상에 리튬 금속에 대해 게르마늄 나노결정을 작용하기 위해 사용되었다. 상기 반응은 15 분 후에 정지되었다. 결과적으로 생성된 생산물은 리튬화된 GeNCs 및 전해질로 구성된 점성이 있는 다크 퍼플-블랙 페이스트이었다. 상기 페이스트는 그 다음에, 결합제 또는 전도성 탄소 첨가제와 혼합될 수 있고, 리튬-이온 배터리 애노드로서 사용하기 위한 전도성 기판 상으로 증착될 수도 있다.
실시예 5: 전해질 LiPF 6 bmimSCN를 사용한 애노드 구성. - 실시예 4의 공정은, 리튬 헥사플루오로포스페이트(LiPF6)와 함께, 이온성 유체로서 1-부틸-3-메틸이미다졸리움 티오소시아네이트(bmimSCN)을 사용하는 것으로 대체되었다. 다른 측면에서, 실시예 4의 장치, 조건, 및 기술은, 전기화학적 반응이 일어나면서, 2V 내지 4V 사이의 더 낮은 전압이 일정하게 유지하는 점을 제외하고 동일하게 사용되었다. 다크 브라운에서 퍼플 블랙 페이스트는 전해질로 구성되어 있고, 리튬 로딩된 GeNCs는 리튬 전극 상에 형성되었다(A dark brown to purple black paste comprised of electrolyte and lithium loaded GeNCs formed on the lithium electrode). 애노드는 상기 페이스트로 형성되었고, 이는 전지를 형성하기 위해 실시예 1과 유사한 방식으로 캐소드 전극과 결합되었다. 도 11은, 이의 대표적인 전지에 대한 일련의 방전/재충전 주기(discharge/recharge cycles)(1100)을 나타낸 것이다. 상기 전지는, 표준 Li-이온 배터리 테스팅 프로토콜에 따른 에너지 용량 및 체적 측정의 에너지 밀도(energy capacity and volumetric energy density)에 대해 테스트되었다. 각각의 충전 주기(1102)는 C/10의 충전 속도 및 1C의 방전 속도를 가진다. 상기 전지는 98 % 쿨롬 효율(Coulomb efficiency)을 가지고, 즉, 각각의 방전 주기(1104)는 상기 충전을 위해 넣어진 지속적인 98 %의 에너지이다.
실시예 6: 리튬화된 나노결정 물질로부터 구성된 반-전지 애노드.
게르마늄 나노결정은, 폴리 아크릴산 결합제 (PAA)-450, 슈퍼-P Li 전도성 첨가제(Super-P Li conductive additive)(Timcal), 및 N-메틸-피롤리돈과 슬러리 내로 혼합되었다. Li-GeNC 대 전도성 탄소 대 결합제의 비는 40:40:20이었다. 상기 혼합물은 15 분 동안 수조 초음파분쇄되었고, 그리고 난 다음에 구리 포일 집전 장치로 닥터 블레이드로 확산되었다(The mixture was bath sonicated for 15 minutes and then spread with a doctor blade onto a copper foil current collector). 상기 슬러리 코팅된 구리 전극은, 그리고 난 다음에, 용매 (N-메틸-2-피롤리돈)을 증발시키기 위해 60 ℃에서 오븐에 두었다. 건조시킨 후에, 상기 코팅된 구리 전극은, 10 μm의 필름 두께를 달성하기 위해 캘린더되었다(calendered)[롤 프레스되었다(roll pressed)]. 11 mm의 직경을 가지는 디스크는, 반-전지 조립체에 대한 상기 페이스트 코팅된 구리 전극의 밖으로 펀치 아웃되었다(Discs with a diameter of 11mm were punched out of the paste coated copper electrode for half-cell assembly). 결과적으로 생성된 질량 로딩(resulting mass loading)은 2.98 mg/cm2의 Li-GeNC로 측정되었다.
상기 반-전지는, 네거티브 베이스(negative base) 및 포지티브 캡(positive cap)을 가지는 2032 스테인리스 강 코인 전지를 사용하여 아르곤 충진된 글로브 박스에서 조립되었다. 분해도(exploded view)에서 상기 반-전지 애노드(1200)의 구성요소의 계통도는 도 12에 나타내었고, 상기 반-전지를 조립하기 위한 방법(1300)은 도 13에 나타내었다. 처음에, 25 μL의 전해질(1204)는 단계(1302)에 나타낸 바와 같이 전지 케이스 베이스(1202)의 중심에 배치되었다. 이러한 예에서, 상기 전해질은 플루오로에틸렌 카르보네이트(FEC)에서 1M LiPF6이다(both from Aldrich)(<0.1 ppm O2). 그 다음에, Cu / Li-GeNC 애노드(1206)는, 단계(1304)에 나타낸 바와 같은, 애노드 Li-GeNC 페이스트-코팅된 사이드 업 및 Cu 사이드 다운(anode Li-GeNC paste-coated side up and Cu side down)을 가지는 베이스(1202)의 중심에서 전해질 방울(electrolyte droplet)(1204) 위로 두었다. 그 다음에, 다른 25 μL의 전해질(1208)은 단계(1306)에 나타낸 바와 같이 애노드(1206)의 중심에 첨가되었다. 상기 전체적인 전지 베이스(1202)를 뒤덮기 위해 크기 조정된, 19 mm 직경 폴리프로필렌 세퍼레이터(1210)(예를 들어, 25 μm 두께에서 Celgard 2500 막 세퍼레이터)는, 단계(1308)에 나타낸 바와 같은, 애노드(1206) 위로 배치되었다. 또 다른 25 μL의 전해질(1212)는, 단계(1310)에 나타낸 바와 같이 상기 세퍼레이터(1210)의 중심 상에 놓여졌다. 제2 폴리프로필렌 세퍼레이터(1214)(상기 전지 베이스(1202)와 크기에서 적합함)는, 단계(1312)에 나타낸 바와 같이, 상기 전해질(1212) 위로 상기 제1 세퍼레이터(1210) 위로 배치되었다. 추가적인 25 μL 의 전해질(1216)은 그리고 난 다음에, 상기 제2 세퍼레이터(1314)의 중심에 첨가되었다.
상기 애노드(1206)과 적어도 동일한 직경의 리튬 포일 디스크(1218)은, 단계(1316)에 나타낸 바와 같이 상대/기준 전극(counter/reference electrode)로서 작용하도록, 상기 제2 세퍼레이터(1214)의 중심 위로 배치되었다. 상기 전지 베이스(1202)의 중심에 있는 두 개의 스테인리스 강 스페이서(1220, 1222)의 스택(stack)은, 단계(1318)에 나타낸 바와 같이 상기 리튬 포일 디스크(1218) 위로 배치되었다. 스프링 와셔(spring washer)(1224)와 같은 바이어스 디바이스는, 단계(1320)에 나타낸 바와 같은 상기 스페이서 스택(1220, 1222) 위로 배치되었다. 상기 전지 캡(1226)은 그리고 난 다음에, 단계(1322)에 나타낸 바와 같이 상기 스프링 와셔(1224) 위에 배치되었고, 상기 전지 캡(1226) 및 전지 베이스(1202)는 단계(1324)에 나타낸 바와 같이 상기 전지 스택의 다른 구성요소를 둘러싸기 위해 함께 압축된다. (전지가 압축된 경우에 밀려나간 어떠한 과량의 전해질은 닦아질 수도 있다.) 상기 전지 캡(1226) 및 전지 베이스(1202)는 그리고 난 다음에, 예를 들어, 아래쪽으로 내려가는 상기 전지 베이스(1202)와 크림핑 도구(crimping tool)에서 상기 반-전지(1200)을 설치하고, 크림핑하고(crimping), 크림핑 후에 과랑의 어떠한 유체를 제거함으로써, 단계(1326)에 나타낸 바와 같이 함께 밀봉될 수도 있다. 상기 반-전지 애노드(1200)은, 도 15 및 16에 대하여 추가적으로 상세하게 기재된 바와 같은 완전한 코인 전지를 제조하기 위해 사용될 수도 있다.
상기 반-전지(1200)이 완성된 때에, 1 C = 1180 mAh/g을 사용한 C/20의 초기 조정하는 주기 및 충전-방전을 위한 정전류(constant current)는 0.01V 및 1V vs. Li/Li+ 사이에서 작동되었다. 차후의 주기는 1C의 속도에서 실행되었다. 도 14는, 실시예 6의 GeNC 애노드 반-전지(1200)에 대한 두 가지의 순차적인 충전 주기(1402a/b) 및 관련된 방전 주기(1404a/b)의 그래프를 나타낸 것이다. 따라서, 각각의 충전 주기(1402a/b)는, 나노결정이 리튬화 및 탈리튬화(delithiation)와 함께 확장하고 수축하는 것과 같이 애노드의 충전 용량에서의 어떠한 실패 없음을 나타내는, 다수의 재충전 주기 후에 1100 mAh/g의 원래의 용량으로부터 약 1080 mAh/g의 특정한 에너지 용량에 이른다.
실시예 7: 애노드 주기 테스팅 (Anode Cycle Testing) - 다수의 샘플은 인듐 주석 산화물로 코팅된 유리 위에 GeNC를 전기증착함으로써 제조되었다. 샘플과 접촉하는 두 개의 Alessi 바늘 프로브 및 Agilent Technologies 4155C Semiconductor Parameter Analyzer를 사용하여, I-Ⅴ 커브가 수득되었고, 약 7 내지 약 14의 VOC 수치가 측정되었다. 추가적으로, 관찰된 상기 충전-방전 속도는, 벌크 규소 또는 게르마늄과 같은 다른 기술과 비교될 수도 있었다.
상기 나타낸 캐소드 애노드를 비교한 배터리 및 유사한 디바이스
몇몇 실시형태에서, 본원에 기재된 배터리 및 유사한 디바이스는, 본원에 기재된 나노결정을 포함하는 본원에 기재된 애노드; 캐소드; 상기 캐소드 및 애노스 사이에 배치된 세퍼레이터; 및 전해질을 포함할 수도 있다. 본 내용의 이익과 함께 본 분야의 통상의 기술자는, 원하는 배터리 및 유사한 디바이스를 달성하기 위해 이러한 구성요소에 대한 다수의 배열을 이해해야 한다. 유사한 디바이스의 예는, 슈퍼-커패시터, 울트라-커패시터, 커패시터, 듀얼 인-라인 패캐지 전지(dual in-line package batteries), 플렉스 배터리, 큰-포맷 배터리(large-format batteries) 등을 포함할 수도 있지만, 이로 제한되지 않는다.
캐소드 물질의 예는, 몇몇의 실시형태에서, 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 철 인산염, 리튬 코발트 니켈 망간 산화물, 폴리피롤, 폴리아닐린 등, 및 이의 어떠한 조합을 포함할 수도 있지만, 이로 제한되지 않는다.
세퍼레이터의 예는, 몇몇 실시형태에서, 폴리올레핀-기초된 세퍼레이터, 플루오르화된 폴리올레핀-기초된 세퍼레이터, 플루오린 레진 기초된 세퍼레이터(예를 들어, 폴리에틸렌 세퍼레이터), 폴리프로필렌 세퍼레이터, 폴리비닐리덴 플루오린화물 세퍼레이터(polyvinylidene fluoride separators), VDF-HFP 공중합체 세퍼레이터, 폴리에틸렌/폴리프로필렌 이중층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 삼중층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 삼중층 세퍼레이터 등, 및 이의 어떠한 조합을 포함하지만, 이로 제한되지 않는다.
몇몇 실시형태에서, 본원에 기재된 상기 반-전지, 배터리, 및 유사한 디바이스의 전해질은, 중합체 또는 고체 전해질과 임의적으로 비-수성 용매에 전통적인 전해질, 예를 들어, 리튬 염일 수도 있다. 리튬 염의 예는, 플루오르-함유하는 무기 리튬 염(예를 들어, 리튬 비스(트리플로오로메탄술포닐)이미드 (LiTFSI), LiPF6, and LiBF4), 염소-함유하는 무기 리튬 염(예를 들어, LiClO4), 플루오르-함유하는 유기 리튬 염(예를 들어, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiCF3SO3, LiC(CF3SO2)3, LiPF4(CF3)2, LiPF4(C2F5)2, LiPF4(CF4SO2)2, LiPF4(C2F5SO2)2, LiBF2(CF3)2, LiBF2(C2F5)2, LiBF2(CF3SO2)2, 및 LiBF2(C2F5SO2)2) 등, 및 이의 어떠한 조합을 포함할 수도 있지만, 이로 제한되지 않는다. 비-수성 용매의 예는, 몇몇의 실시형태에서, 1-부틸-3-메틸이미다졸리움 티오시아네이트(bmimSCN), N-부틸-N-메틸피롤리디늄 비스(트리플루오로메탄술포닐)이미드 (Pyr14TFSI), 고리형 탄산염류(cyclic carbonates)(예를 들어, 에틸렌 카르보네이트 및 프로필렌 카르보네이트), 선형 탄산염(예를 들어, 디메틸 카르보네이트 및 에틸메틸 카르보네이트), 주기적인 카르복실산 에스테르(예를 들어, γ-부티롤락톤 및 γ-발레로락톤) 등, 및 이의 어떠한 조합을 포함할 수도 있지만, 이로 제한되지 않는다. 고체 전해질의 예는, 폴리에틸렌 산화물(PEO), 폴리아크릴니트릴(PAN), 또는 폴리메틸메타크릴레이트(PMMA) 등, 및 이의 조합을 포함할 수도 있지만, 이로 제한되지 않는다. 고체 전해질의 예(빠른 이온 도체로서 또한 알려짐)은, 몇몇의 실시형태에서, 질화 리튬, 리튬 요오드화(lithium iodide), 리튬 인산염 등, 및 이의 어떠한 조합을 포함할 수도 있지만, 이로 제한되지 않는다.
몇몇 실시형태에서, 본원에 기재된 나노결정의 용도는, 최소한의 동력 밀도 손실과 함께, 여러 번(예를 들어, 약 500 배 이상) 순환될 수 있는(즉, 충전 및 방전) 배터리 및 유사한 디바이스의 생산을 가능하게 할 수도 있다.
몇몇 실시형태에서, 본원에 기재된 나노결정의 사용은, 이들 사이의 어떠한 부분집합을 포함하는, 약 0.1 V 내지 약 18 V에서의 범위일 수도 있는, 조절될 수 있는 개회로 전압(open circuit voltage)(VOC)를 가지는, 배터리 및 유사한 디바이스의 생산을 가능하게 할 수도 있다. 상기 디바이스의 Voc는, 그 중에서도, 나노결정의 형태 및 조성에 따라 달라질 수도 있다. 유리하게, 벌크 규소 및 게르마늄으로서 보다 더 높은 전압 디바이스를 생산하는데 있어서 유리하게 달성될 수 있는 VOC 수치는, 약 0.4 V 내지 약 1.1 V 사이의 VOC 레벨을 가진다.
실시예 9: Li - GeNC 애노드를 가지는 배터리 전지 - 배터리 프로토타입(battery prototype)은 Li-GeNCs을 포함하는 애노드를 사용하여 생산되었다. 상기 애노드는, 약 38,350 Wh/L의 애노드 에너지 밀도, 13,456 Wh/kg의 애노드 특정한 에너지, 및 약 3,684 Ah/kg의 애노드 특정한 용량(specific capacity)을 얻도록 사용된, 약 2.32 mAh/cm2의 영역 당 용량 및 약 7.67 mWh/cm2의 영역 당 에너지 밀도로 측정된다. 추가적으로, 몇몇의 충전-방전 주기(20 번 초과)에서, 상기 배터리는, 실행에서 어떠한 측정가능한 저하를 나타내지 않았다. 이러한 배터리는 충전되었고, 충전의 어떠한 측정가능한 손실도 없는 2 주 내지 3 주 동안 충전을 유지하였다.
실시예 9: Li - SiGeNC 애노드를 가지는 배터리 전지 - 다른 배터리 프로토타입은, SiGeNCs에 저장된 리튬을 포함하는 애노드를 사용하여 생산되었다. 상기 애노드는, 약 3mAh/cm2의 영역 당 에너지 밀도를 측정하였다. 추가적으로, 몇몇의 충전-방전 주기(20 번 초과)에서, 상기 배터리는 실행에서 어떠한 측정가능한 저하를 나타내지 않았다. 이러한 배터리는 충전되고, 충전의 측정가능한 손실 없이 2 내지 3 주 동안 충전을 유지하였다.
실시예 10: Li - SiGeNC 애노드 및 S-C 나노튜브 캐소드를 가지는 완전한 코인 전지 배터리 - 도 15는, 일반적으로 1500으로 나타낸, 완전한 코인 전지의 도식도이다. 도 16은, 도 15의 실시형태에 따라, 완전한 코인 전지를 조립하기 위한, 일반적으로 나타낸 1600, 방법이다. 상기 완전한 코인 전지는, 전지 베이스(1502), 반-전지 캐소드(1504), 하나 또는 그 이상의 세퍼레이터(1506a/b), 반-전지 애노드(1508), 하나 또는 그 이상의 스페이서(1510a/b), 바이어스 디바이스(1512), 및 전지 커버(1514)를 포함할 수도 있다.
단계(1602)에서, 전해질(1516a)은 상기 전지 베이스(1502)에 제공된 것이다. 상기 전해질(1516a)은, 예를 들어, LiNO3의 0.25E- 3 mol g-1(LiNO3 = 68.95 g mo\-1), DEMMOX의 0.25E- 3 mol g-1(DEMMOX = 466.4 g mol-1), 및 DME 및 DOL의 1:1 (wt.) 혼합물일 수도 있다. 하나의 실시형태에서, 25 μL의 상기 전해질(1516a)은 상기 전지 베이스(1502)의 중심에 제공되는 것이다. 단계(1604)에서, 상기 반-전지 캐소드(1504)는 상기 전해질(1516a) 내로 설치된다. 다양한 실시형태에서, 상기 반-전지 캐소드(1504)는, 도 1 내지 6에 대하여 상기에 기재된 바와 같은, 황 충전된 탄소 나노튜브를 포함한다. 다양한 실시형태에서, 상기 캐소드(1504)는, 상기 전지 베이스(1502)에서 떠나서 코팅된 상기 황 충전된 탄소 나노튜브 및 상기 전지 베이스(1502)를 향하여 캐소드(1504)의 알루미늄 접촉과 배치된다(the cathode 1504 is placed with the aluminum contact of the cathode 1504 toward the cell base 1502 and the sulfur charged carbon nanotube coated side away from the cell base 1502). 단계(1606)에서, 추가적인 전해질(1516b)은 반-전지 캐소드(1504)의 윗면 상에 제공된다. 하나의 실시형태에서, 25 μL의 전해질(1516b)은, 상기 반-전지 캐소드(1504)의 윗면 상에 제공된다.
단계(1608)에서, 제1 세퍼레이터(1506a)는 캐소드(1504) 및 상기 전해질 용액의 윗면 상에 위치된다. 다양한 실시형태에서, 상기 제1 세퍼레이터(1506a)는 상기 캐소드(1504)의 직경과 상응하는 직경을 가질 수도 있다. 특정 실시형태에서, 상기 제1 세퍼레이터(1506a)는 19 mm 폴리프로필렌 세퍼레이터일 수도 있다. 단계(1610)에서, 추가적인 전해질(1516c)은 제1 세퍼레이터(1506a)의 윗면 상에 제공된다. 하나의 실시형태에서, 25 μL의 전해질(1516c)은 상기 제1 세퍼레이터(1506a)의 윗면 상에 제공된다. 단계(1612)에서, 제2 세퍼레이터(1506b)는 상기 전해질 용액(1516c) 및 제1 세퍼레이터(1506a)의 윗면 상에 위치된다. 다양한 실시형태에서, 상기 제2 세퍼레이터(1506b)는 상기 제1 세퍼레이터(1506a)의 직경과 상응하는 직경을 가질 수도 있다. 특정 실시형태에서, 상기 제2 세퍼레이터(1506b)는 19 mm 폴리프로필렌 세퍼레이터일 수도 있다. 단계(1614)에서, 추가적인 전해질(1516d)은, 상기 제2 세퍼레이터(1506b)의 윗면 상에 제공된다. 하나의 실시형태에서, 25 μL의 전해질(1516d)은 상기 제2 세퍼레이터(1506b)의 윗면 상에 제공된다.
단계(1616)에서, 적어도 상기 캐소드 직경과 같은, 반-전지 애노드(1508)는 중심에 있고, 상기 제2 세퍼레이터(1506b)에서 상기 전해질(1516d) 상에 배치된다. 다양한 실시형태에서, 상기 반-전지 애노드(1508)은 상기 캐소드(1504)를 완전히 덮을 수도 있다. 특정한 실시형태에서, 상기 반-전지 애노드(1508)은 도 12 및 13에 대하여 상기에 기재된 바와 같이 생산될 수도 있다. 단계(1618)에서, 하나 또는 그 이상의 스페이스(1510a/b)는, 상기 반-전지 애노드(1508)의 윗면 상에 배치된다. 다양한 실시형태에서, 상기 스페이서(1510a/b)는 스테인리스 강 스페이서일 수도 있다. 다양한 실시형태에서, 두 개의 스페이서(1510a/b)는, 반-전지 애노드(1508) 위에 배치된다. 단계(1620)에서, 바이어스 디바이스(1512)는 상기 스페이서(1510a/b)의 윗면 상에 배치된다. 다양한 실시형태에서, 상기 바이어스 디바이스(1512)는 스프링 와셔일 수도 있다. 다른 실시형태에서, 상기 바이어스 디바이스(1512)는, 상기 완전한 코인 전지(1500)의 전기적인 특성을 방해하지 않는 어떠한 다른 타입의 바이어스 디바이스일 수도 있다. 단계(1622)에서, 상기 전지 커버(1514)는, 상기 가득찬 코인 전지(full coin cell)(1500)의 내용을 둘러싸기 위해 상기 전지 베이스(1502) 위에 배치된다. 다양한 실시형태에서, 상기 가득찬 코인 전지(1500)을 둘러싸는 것은, 전해질이 상기 가득찬 코인 전지(1500)으로부터의 누출되는 것을 야기할 수도 있다. 어떠한 전해질은 가득찬 코인 전지(1500)의 외부로부터 제거될 수도 있다. 단계(1624)에서, 상기 전지 커버(1514) 및 전지 베이스(1502)는 완전한 가득찬 코인 전지(1500)을 형성하기 위해 함께 밀봉된다.
상기에 기재된 특정한 실시형태는 오직 설명적인 것이다. 본원에 기재된 다양한 방법은, 본원의 가르침의 이익을 가지는 통상의 기술자에게 명백한 다른 방식을 예측하고 변형할 수도 있다. 게다가, 본원에 나타낸 구성 또는 디자인의 상세한 사항은, 하기의 청구항에 기재된 외에, 세부사항으로 제한하는 것을 의도하지 않는다. 따라서, 상기에 나타낸 특정한 설명적인 실시형태가 변하거나, 조합되거나, 변형될 수도 있고, 모든 이러한 변화는 본 내용의 범위 및 본질 내로 고려됨이 분명하다. 본원에 설명적으로 나타낸 본 발명은, 본원에 기재된 것으로 명시적으로 나타내지 않는 어떠한 요소 및/또는 본원에 나타낸 어떠한 임의적인 요소의 존재에서 실행될 수도 있다. 상기에 기재된 모든 숫자 및 범위는 몇몇의 양에 의해 다양할 수도 있다. 하한 및 상한을 가지는 숫자 범위를 나타낼 때마다, 어떠한 숫자 및 상기 범위 내에 포함되는 어떠한 포함된 범위가 명확하게 나타낸 것이다. 특히, 본원에 나타낸 수치의 모든 범위["약 a에서 b까지(from about a to about b)", 또는 동등하게, "대략 a에서 b까지", 또는 동등하게, "대략 a-b(from approximately a-b)"]는, 수치의 보다 넓은 범위 내로 포함된 모든 숫자 및 범위를 제시하는 것을 이해되는 것이다.
상기 명세서, 실시예 및 데이터는, 청구범위에 정의된 바와 같은 본 발명의 대표적인 실시형태의 구조, 방법, 및 용도의 완전한 설명을 제공한다. 청구된 발명의 다양한 실시형태가, 하나 또는 그 이상의 개별적인 실시형태에 관하여, 또는 특정한 정도의 상세한 사항과 함께 상기에 기재되었을지라도, 본 분야의 통상의 기술자는, 청구된 발명의 본질 또는 범위를 벗어남이 없이 상기 나타낸 실시형태로 많은 변화를 제조할 수 있다. 다른 실시형태는 따라서 고려된다. 상기 설명에 포함되고 첨부된 도면에 나타낸 모든 물질은, 오직 특정한 실시형태를 설명하는 것을 의도하는 것이고, 이로 제한되지 않음을 의도한다. 따라서 다른 실시형태가 고려된다. 상기 설명에 포함되고 첨부된 도면에 나타낸 모든 물질이, 특정한 실시형태만을 실례를 보여주는 것으로 해석하여야 하고 이로 제한되지 않음을 의도한다. 상세한 내용 또는 구조에서의 변화는, 하기의 청구범위에 정의된 바와 같은 본 발명의 기본적인 요소로부터 벗어남이 없이 제조될 수도 있다.

Claims (20)

  1. 하기를 포함하는, 황 충전된 탄소 나노튜브(sulfur charged carbon nanotubes)를 제조하기 위한 방법:
    용액을 형성하도록 용매에 승화된 황(sublimed sulfur)을 용해하는 단계;
    상기 용액에 탄소 나노튜브를 첨가하는 단계;
    상기 용액에 극성 양자성 용매를 첨가하는 단계; 및
    상기 용액으로부터 상기 용매를 제거하는 단계.
  2. 제1항에 있어서,
    상기 용매는 이황화탄소를 포함하는 것인, 방법.
  3. 제1항에 있어서,
    상기 용매에 상기 승화된 황을 용해하는 단계는, 상기 용액을 초음파 분쇄하는 것, 상기 용액을 교반시키는 것, 및 상기 용액을 가열하는 것 중의 적어도 하나를 포함하는 것인, 방법.
  4. 제1항에 있어서,
    상기 용매를 제거하는 단계는,
    상기 용액을 가열함으로써 상기 용매의 제1 부분(a first portion of the solvent)을 증발시키는 단계; 및
    상기 용액을 건조시키는 공기에 의해 상기 용매의 제2 부분(a second portion of the solvent)을 제거하는 단계;
    를 포함하는 것인, 방법.
  5. 제1항에 있어서,
    상기 탄소 나노튜브를 첨가하는 단계는, 상기 용액을 초음파 분쇄하는 것, 상기 용액을 교반시키는 것, 및 상기 용액을 가열하는 것 중의 적어도 하나를 포함하는 것인, 방법.
  6. 제1항에 있어서,
    상기 극성 양자성 용매를 첨가하는 단계는, 미리-결정된 속도로 상기 극성 양성자 용매를 드롭-와이즈(drop-wise) 첨가하는 것을 포함하는 것인, 방법.
  7. 제1항에 있어서,
    상기 승화된 황의 적어도 일부는, 나노모세관 작용(nanocapillary action)에 의해 다수의 탄소 나노튜브를 채우는 것인, 방법.
  8. 제1항에 있어서,
    상기 승화된 황의 적어도 일부는, 상기 탄소 나노튜브의 외벽에 부착하는 것인, 방법.
  9. 외벽을 가지는 탄소 나노튜브;
    상기 탄소 나노튜브 내에 함유된 제1 다수의 황 입자들; 및
    상기 탄소 나노튜브의 외부 벽에 결합된 제2 다수의 황 입자들;
    을 포함하는, 황 충전된 탄소 나노튜브(sulfur charged carbon nanotube).
  10. 제9항에 있어서,
    상기 제2 다수의 황 입자들은 상기 탄소 나노튜브에 pi-결합된 것인, 황 충전된 탄소 나노튜브.
  11. 제9항에 있어서,
    상기 탄소 나노튜브는, 단일 벽(single walled), 이중 벽(double walled), 및 다중 벽 탄소 나노튜브(multiwalled carbon nanotube) 중의 하나인 것인, 황 충전된 탄소 나노튜브.
  12. 제9항에 있어서,
    상기 탄소 나노튜브는 10 nm 미만의 직경을 가지는 것인, 황 충전된 탄소 나노튜브.
  13. 제9항에 있어서,
    상기 탄소 나노튜브는 3 ㎛ 내지 5 ㎛ 사이의 길이를 가지는 것인, 황 충전된 탄소 나노튜브.
  14. 전극; 및
    결합제에 의해 상기 전극에 결합된 황 충전된(sulfur charged) 탄소 나노튜브의 필름;
    를 포함하는, 리튬-황 배터리에서 사용을 위한 캐소드로서,
    여기서, 상기 황 충전된 탄소 나노튜브는
    외벽을 가지는 다수의 탄소 나노튜브;
    상기 다수의 탄소 나노튜브 내에 함유된 제1 다수의 황 입자들; 및
    상기 탄소 나노튜브의 외벽에 결합된 제2 다수의 황 입자들;
    을 포함하는 것인, 리튬-황 배터리에서 사용을 위한 캐소드.
  15. 제14항에 있어서,
    황 충전된 탄소 나노튜브의 필름에서 배치된 전도성 탄소 첨가제를 더 포함하는, 캐소드.
  16. 제14항에 있어서,
    상기 전극은 알루미늄인 것인, 캐소드.
  17. 제14항에 있어서,
    상기 필름은 20 ㎛ 내지 50 ㎛의 두께인 것인, 캐소드.
  18. 제14항에 있어서,
    상기 다수의 탄소 나노튜브는, 단일 벽, 이중 벽, 또는 다중 벽 탄소 나토튜브 중의 하나인 것인, 캐소드.
  19. 제14항에 있어서,
    상기 결합제는, 폴리(아크릴로니트릴-메틸 메타아크릴레이트)인 것인, 캐소드.
  20. 제14항에 있어서,
    상기 황 충전된 탄소 나노튜브는 다공성인 것인, 캐소드.
KR1020167035021A 2014-05-15 2015-05-15 황 충전된 탄소 나노튜브를 생산하기 위한 방법 및 리튬 이온 배터리를 위한 캐소드 KR102061391B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461993870P 2014-05-15 2014-05-15
US201461993840P 2014-05-15 2014-05-15
US61/993,870 2014-05-15
US61/993,840 2014-05-15
PCT/US2015/031234 WO2015176028A1 (en) 2014-05-15 2015-05-15 Method for producing sulfur charged carbon nanotubes and cathodes for lithium ion batteries

Publications (2)

Publication Number Publication Date
KR20170018332A true KR20170018332A (ko) 2017-02-17
KR102061391B1 KR102061391B1 (ko) 2019-12-31

Family

ID=54480832

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167035021A KR102061391B1 (ko) 2014-05-15 2015-05-15 황 충전된 탄소 나노튜브를 생산하기 위한 방법 및 리튬 이온 배터리를 위한 캐소드

Country Status (7)

Country Link
US (1) US10629320B2 (ko)
EP (1) EP3143659B1 (ko)
JP (1) JP6525446B2 (ko)
KR (1) KR102061391B1 (ko)
CA (1) CA2949100C (ko)
ES (1) ES2885999T3 (ko)
WO (1) WO2015176028A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190047907A (ko) * 2017-10-30 2019-05-09 주식회사 엘지화학 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267913B (zh) * 2017-02-10 2023-04-11 北德克萨斯大学 通过用于可再充电电池的二维材料的锂金属的钝化
US11605817B2 (en) * 2019-09-24 2023-03-14 William Marsh Rice University Sulfurized carbon cathodes
WO2022016194A1 (en) * 2020-07-16 2022-01-20 Battelle Energy Alliance, Llc Methods for operating energy storage devices with sulfur‑based cathodes, and related systems and methods
CN113140787B (zh) * 2021-03-23 2022-08-19 上海电气集团股份有限公司 一种宽温度范围固态电解质及其应用

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647037A1 (de) 1996-11-14 1998-05-28 Degussa Kugelförmige Farbpigmente, Verfahren zu ihrer Herstellung und deren Verwendung
US20030148024A1 (en) 2001-10-05 2003-08-07 Kodas Toivo T. Low viscosity precursor compositons and methods for the depositon of conductive electronic features
JP3868231B2 (ja) 2000-07-31 2007-01-17 Jfeケミカル株式会社 炭素材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
US7662265B2 (en) 2000-10-20 2010-02-16 Massachusetts Institute Of Technology Electrophoretic assembly of electrochemical devices
US7276314B2 (en) 2000-12-22 2007-10-02 Fmc Corporation Lithium metal dispersion in secondary battery anodes
FR2863265B1 (fr) 2003-12-04 2006-12-08 Centre Nat Rech Scient Procede de synthese de nanoparticules de chalcogenures ayant une structure lamellaire
WO2005120823A2 (en) * 2004-02-18 2005-12-22 University Of Florida Non-covalent bonding agent for carbon nanotube reinforced polymer composites
US20080274036A1 (en) * 2005-06-28 2008-11-06 Resasco Daniel E Microstructured catalysts and methods of use for producing carbon nanotubes
WO2007004014A2 (en) 2005-06-30 2007-01-11 University Of Cape Town Semiconducting nanoparticles with surface modification
AU2006274548A1 (en) 2005-08-04 2007-02-08 3Gsolar Ltd Method for production of nanoporous electrodes for photoelectrochemical applications
WO2007146769A2 (en) 2006-06-13 2007-12-21 Georgia Tech Research Corporation Nano-piezoelectronics
TW200810167A (en) 2006-08-09 2008-02-16 Ind Tech Res Inst Dye-sensitized solar cell and the method of fabricating thereof
EA015999B1 (ru) 2006-10-24 2012-01-30 Бенек Ой Устройство для получения наночастиц
AT504618B1 (de) 2006-12-05 2012-10-15 Joanneum Res Forschungsgmbh Verfahren zur herstellung von nanopartikeln und vorrichtung dazu
US7811543B2 (en) 2007-04-11 2010-10-12 Irilliant, Inc. Controlled synthesis of nanoparticles using continuous liquid-flow aerosol method
US9076570B2 (en) 2007-04-13 2015-07-07 Rochester Institute Of Technology Nano-composite structures, methods of making, and use thereof
KR100877522B1 (ko) 2007-05-15 2009-01-09 삼성전기주식회사 금속 나노입자의 제조장치 및 제조방법
WO2009014590A2 (en) 2007-06-25 2009-01-29 Qd Vision, Inc. Compositions and methods including depositing nanomaterial
JP5639738B2 (ja) 2008-02-14 2014-12-10 日本碍子株式会社 圧電/電歪素子の製造方法
WO2010014979A1 (en) 2008-08-01 2010-02-04 The Regents Of The University Of Colorado Methods for the preparation of germanium and silicon nanocrystals
WO2010045565A1 (en) * 2008-10-16 2010-04-22 Teva Pharmaceutical Industries Ltd. Process for the synthesis of ramelteon and its intermediates
US8158282B2 (en) 2008-11-13 2012-04-17 Nanotek Instruments, Inc. Method of producing prelithiated anodes for secondary lithium ion batteries
US8241793B2 (en) 2009-01-02 2012-08-14 Nanotek Instruments, Inc. Secondary lithium ion battery containing a prelithiated anode
CN201382691Y (zh) 2009-02-16 2010-01-13 刘智泉 方箱管式加热炉锥形管程空间排列高效辐射室
US8400047B2 (en) 2009-03-12 2013-03-19 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric device, and method of producing the piezoelectric device
KR100936281B1 (ko) 2009-08-25 2010-01-13 한국지질자원연구원 ZnO 나노입자의 제조방법 및 이를 이용한 ZnO 나노유체의 제조방법
US8344597B2 (en) 2009-10-22 2013-01-01 Lawrence Livermore National Security, Llc Matrix-assisted energy conversion in nanostructured piezoelectric arrays
DE102010030887A1 (de) * 2010-07-02 2012-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kathodeneinheit für Alkalimetall-Schwefel-Batterie
US9601748B2 (en) 2010-11-30 2017-03-21 Msmh, Llc High energy density energy storage and discharge device
EP2691338A4 (en) * 2011-03-31 2014-10-15 Basf Se PARTICULAR POROUS CARBON MATERIAL AND ITS USE IN LITHIUM CELLS
US8663840B2 (en) 2011-04-12 2014-03-04 GM Global Technology Operations LLC Encapsulated sulfur cathode for lithium ion battery
US9385397B2 (en) 2011-08-19 2016-07-05 Nanotek Instruments, Inc. Prelithiated current collector and secondary lithium cells containing same
HUE061647T2 (hu) 2011-10-05 2023-08-28 Oned Mat Inc Szilicium nanoszerkezetû aktív anyagok lítium-ion akkumulátorokhoz, és a hozzájuk kapcsolódó eljárások, összetevõk, alkatrészek és eszközök
KR101361329B1 (ko) 2011-11-22 2014-02-10 현대자동차주식회사 리튬황 배터리용 금속황 전극과 그 제조방법
US8974960B2 (en) 2011-12-22 2015-03-10 Board Of Regents, The University Of Texas System Binder-free sulfur—carbon nanotube composite cathodes for rechargeable lithium—sulfur batteries and methods of making the same
CN102522530B (zh) 2011-12-27 2014-08-20 雷天电池技术有限公司 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法
CN103187570B (zh) * 2011-12-28 2015-09-30 清华大学 硫-石墨烯复合材料的制备方法
CN103187558B (zh) * 2011-12-28 2015-07-01 清华大学 硫-石墨烯复合材料的制备方法
US9673447B2 (en) 2012-04-12 2017-06-06 Nanotek Instruments, Inc. Method of operating a lithium-ion cell having a high-capacity cathode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190047907A (ko) * 2017-10-30 2019-05-09 주식회사 엘지화학 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
US10629320B2 (en) 2020-04-21
ES2885999T3 (es) 2021-12-16
EP3143659B1 (en) 2021-06-23
EP3143659A1 (en) 2017-03-22
CA2949100A1 (en) 2015-11-19
WO2015176028A1 (en) 2015-11-19
US20170084960A1 (en) 2017-03-23
JP6525446B2 (ja) 2019-06-05
KR102061391B1 (ko) 2019-12-31
EP3143659A4 (en) 2018-02-21
CA2949100C (en) 2020-01-21
JP2017523116A (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
US11152611B2 (en) Lithium intercalated nanocrystal anodes
EP1427039A2 (en) Positive active material of a lithium-sulfur battery and method of fabricating same
JP4834030B2 (ja) リチウム二次電池用正極及びこれを用いたリチウム二次電池
US10270102B2 (en) Electrode for electrochemical device with low resistance, method for manufacturing the same, and electrochemical device comprising the electrode
US10403885B2 (en) Active material for batteries
KR102061391B1 (ko) 황 충전된 탄소 나노튜브를 생산하기 위한 방법 및 리튬 이온 배터리를 위한 캐소드
JP2016103503A (ja) リチウム系蓄電デバイス用ドーピング型電極の製造方法およびリチウム系蓄電デバイス
CN116325272A (zh) 锂硫电池用电解质和包含该电解质的锂硫电池
KR20220075740A (ko) 리튬이온 이차전지용 금속계-카본 복합 음극재, 이의 제조방법 및 이를 포함하는 이차전지
KR20220130199A (ko) 황 이차 전지용 염 첨가제
WO2020172483A1 (en) Coated sulfur particles with no gap
KR20200060063A (ko) 리튬 이차전지용 전해액 첨가제, 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20200100962A (ko) 황-몬모릴로나이트 복합체를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
US20240038991A1 (en) Metal-carbon composite anode material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
EP4287303A1 (en) Negative electrode with single-walled carbon nanotubes and secondary battery comprising same
KR102639667B1 (ko) 이황화몰리브덴을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2023200941A1 (en) Carbon-free cathodes for lithium sulfur batteries
WO2023201021A1 (en) Cathode compositions with blends of intercalation materials for use in a lithium sulfur battery
EP4364229A1 (en) Battery cathodes
KR20230065391A (ko) 단일벽 탄소나노튜브가 적용된 음극 및 이를 포함하는 이차전지
KR20200063501A (ko) 알루미늄이 도핑된 아연 산화물을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
KR20210057272A (ko) 카본 나노 튜브를 포함하는 유기 화합물 기반의 리튬 이차 전지 및 그 제조 방법
JP2016062948A (ja) リチウム系蓄電デバイス用ドーピング型電極の製造方法およびリチウム系蓄電デバイス

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant