KR20160148560A - 태양 전지 응용을 위한 페로브스카이트 필름을 제조하기 위한 시스템 및 방법 - Google Patents

태양 전지 응용을 위한 페로브스카이트 필름을 제조하기 위한 시스템 및 방법 Download PDF

Info

Publication number
KR20160148560A
KR20160148560A KR1020167030700A KR20167030700A KR20160148560A KR 20160148560 A KR20160148560 A KR 20160148560A KR 1020167030700 A KR1020167030700 A KR 1020167030700A KR 20167030700 A KR20167030700 A KR 20167030700A KR 20160148560 A KR20160148560 A KR 20160148560A
Authority
KR
South Korea
Prior art keywords
housing
substrate
vapor
evaporator unit
gate valve
Prior art date
Application number
KR1020167030700A
Other languages
English (en)
Other versions
KR101864522B1 (ko
Inventor
야빙 치
루이스 가쯔야 오노
성하오 왕
Original Assignee
각코호진 오키나와가가쿠기쥬츠다이가쿠인 다이가쿠가쿠엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 각코호진 오키나와가가쿠기쥬츠다이가쿠인 다이가쿠가쿠엔 filed Critical 각코호진 오키나와가가쿠기쥬츠다이가쿠인 다이가쿠가쿠엔
Publication of KR20160148560A publication Critical patent/KR20160148560A/ko
Application granted granted Critical
Publication of KR101864522B1 publication Critical patent/KR101864522B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/52Means for observation of the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • C23C14/566Means for minimising impurities in the coating chamber such as dust, moisture, residual gases using a load-lock chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45589Movable means, e.g. fans
    • H01L51/001
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

태양 전지 응용을 위한 페로브스카이트 필름을 제조하기 위한 시스템 및 방법이 제공되며, 상기 시스템은, 진공 챔버로서 사용되는 하우징; 하우징의 상단 구획에 결합된 기판 스테이지; 하우징의 하단 구획에 결합되고, BX2 (금속 할라이드 재료) 증기를 생성하도록 구성된 제1 증발기 유닛; 하우징에 결합되고, AX (유기 재료) 증기를 생성하도록 구성된 제2 증발기 유닛; 및 AX 증기의 순환을 제어하기 위해 하우징에 결합된 유동 제어 유닛을 포함한다. 제1 증발기 유닛의 수평 단면 형상의 치수, 기판 스테이지의 수평 단면 형상의 치수, 및 상기 두 수평 단면 형상들 간의 수평 방향에서의 상대 위치는 상기 두 수평 단면 형상들 간의 중첩을 최대화하도록 구성된다.

Description

태양 전지 응용을 위한 페로브스카이트 필름을 제조하기 위한 시스템 및 방법 {SYSTEM AND METHOD FOR FABRICATING PEROVSKITE FILM FOR SOLAR CELL APPLICATIONS}
본 발명은 태양 전지 응용을 위한 페로브스카이트 필름을 제조하기 위한 시스템 및 방법에 관한 것이다.
태양 전지 (광기전력 전지라고도 불리움)은 광기전 효과를 나타내는 반도체를 사용하여 태양광 에너지를 전기로 직접 전환시키는 전기 장치이다. 태양광기전은 현재 전반적으로 설비 용량의 측면에서 수력 및 풍력 다음으로 세 번째로 가장 중요한 재생가능한 에너지 공급원이다. 이들 태양 전지의 구성은 대략 p-n 접합의 개념에 기반하며, 여기서 태양 복사선으로부터의 광자는 전자-정공 쌍으로 전환된다. 시판 태양 전지에 사용되는 반도체의 예는 단결정 규소, 다결정 규소, 비결정성 규소, 카드뮴 텔루라이드, 및 구리 인듐 갈륨 디셀레나이드를 포함한다. 상업적으로 입수가능한 전지에 있어서 태양 전지 에너지 전환 효율은 현재 약 14 내지 22%인 것으로 보고되었다.
높은 전환 효율, 장기간 안정성 및 저비용 제조는 태양 전지의 상업화에 필수적이다. 이와 같은 이유로, 통상의 태양 전지 반도체의 대체를 위해서 광범위하게 다양한 재료가 연구되어 왔다. 예를 들어, 유기 반도체를 사용하는 태양 전지 기술은 비교적 새로운 것이며, 여기서 이들 전지는 액체 용액으로부터 가공되어 잠재적으로 비용이 들지 않는 대규모 생산으로 이어질 수 있다. 유기 재료 외에도, 유기금속 할라이드 페로브스카이트 CH3NH3PbX3 (여기서, X = Cl, Br, I 또는 이들의 조합임)이 최근에 차세대의 고효율 저비용 태양광 기술을 위한 유망한 재료로서 떠오르고 있다. 또한, 그것들은 혁신적 장치 구조, 예컨대 탠덤(Tandem) 전지 (예를 들어, PbX2, CH3NH3PbX3 및 Pb-무함유 페로브스카이트의 조합), 구배 농도 전지, 및 기타 고효율(high throughput) 구조를 가능케 하는 가요성을 나타낸다. 이와 같은 합성 페로브스카이트는 광-생성 전자 및 홀이 그 에너지를 전지 내에서 열로서 손실하는 대신에 전류로서 추출될 만큼 멀리 이동할 수 있게 하는 높은 전하 캐리어 이동도 및 수명을 나타내는 것으로 보고된 바 있다. 이와 같은 합성 페로브스카이트는 유기 태양 전지에 사용되는 것들과 동일한 박막 제조 기술, 예컨대 용액 가공 및 진공 증발 기술을 사용하여 제조될 수 있다.
그러나 현재까지, 기존 제조 기술에 기반하여 대면적의 고도로 균일한 페로브스카이트 필름을 얻는 것이 어려웠고, 실용적인 페로브스카이트-기반 태양광 장치는 본질적으로 존재하지 않는다. 매우 효과적이고 안정한 저가의 태양 전지에 대한 요구의 지속적인 증가에 비추어, 태양 전지 응용에 적합한 대규모의 고도로 균일한 페로브스카이트 필름의 제조를 위한 새로운 제조 시스템 및 방법이 요망된다.
비특허 문헌
비특허 문헌 1: Julian Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, vol. 499, 316-320 (2013).
비특허 문헌 2: Mingzhen Liu et al., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, vol. 000, 1-8 (2013).
비특허 문헌 3: Dianyi Liu et al., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, vol. 8 133-138 (2014).
비특허 문헌 4: Olga Malinkiewicz et al., Perovskite solar cells employing organic charge-transport layers. Nature Photonics, vol. 8 128-132 (2014).
비특허 문헌 5: Nam-Gyu Park, Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. J. Phys. Chem. Lett. 2423-2429 (2013).
본 발명의 측면에 따라, 공급원 재료 AX 및 BX2 (여기서, AX는 메틸암모늄 (MA), 포름아미디늄 (FA) 및 5-아미노발레르산 (5-AVA)으로 이루어진 군으로부터 선택된 유기 요소 A, 및 Cl, I 및 Br로 이루어진 군으로부터 선택된 할로겐 원소 X를 갖는 유기 재료, 또는 상기 유기 재료 둘 이상의 조합이고; BX2는 Pb 및 Sn으로 이루어진 군으로부터 선택된 금속 원소 B, 및 Cl, I 및 Br로 이루어진 군으로부터 선택된 할로겐 원소 X를 갖는 금속 할라이드 재료, 또는 상기 금속 할라이드 재료 둘 이상의 조합임)를 사용하여 태양 전지 응용을 위한 페로브스카이트 필름을 제조하기 위한 시스템이 제공되며, 상기 시스템은, 수직 방향을 따라 측면 구획 및 수평 방향을 따라 상단 및 하단 구획을 가지며 진공 챔버로서 사용되는 하우징(housing); 하우징의 상단 구획에 결합되고, 기판을 배치하기 위한 수직 하방을 향하는 스테이지 표면을 갖도록 구성된 기판 스테이지(stage); 하우징의 하단 구획에 결합되고, BX2 증기를 생성하도록 구성된 제1 증발기 유닛(unit); 하우징에 결합되고, AX 증기를 생성하도록 구성된 제2 증발기 유닛; 및 하우징 내에서 AX 증기의 순환을 제어하기 위해 하우징에 결합된 유동 제어 유닛을 포함하고, 여기서 제1 증발기 유닛의 수평 단면 형상의 치수, 기판 스테이지의 수평 단면 형상의 치수, 및 상기 두 수평 단면 형상들 간의 수평 방향에서의 상대 위치는 상기 두 수평 단면 형상들 간의 중첩을 최대화하도록 구성된다.
[도 1] 도 1은 실시양태에 따른 페로브스카이트 필름을 제조하기 위한 시스템 구성의 예를 예시한다.
[도 2] 도 2는 도 1에서 X-X'로 나타낸 단면에 대해 아래쪽에서의 종면도(vertical view)를 예시한다.
[도 3] 도 3은 도 1에서 Y-Y'로 나타낸 단면에 대해 위쪽에서의 종면도를 예시한다.
[도 4] 도 4의 (A) 및 도 4의 (B)는 도 1의 시스템의 제2 증발기 유닛(124)의 예를 예시한다.
[도 5] 도 5의 (A) 내지 도 5의 (C)는 도 1의 시스템의 제1 증발기 유닛(120)의 예를 예시한다.
[도 6] 도 6의 (A) 및 도 6의 (B)는 도 1의 시스템의 유동 제어 유닛(128)의 예를 예시한다.
[도 7] 도 7은 실시양태에 따른 페로브스카이트 필름을 제조하기 위한 시스템 구성의 또 다른 예를 예시한다.
[도 8] 도 8은 도 7의 시스템의 제2 증발기 유닛의 제3 예의 측면도를 예시한다.
[도 9] 도 9는 도 1 또는 도 7에 예시된 본원 시스템을 사용하는 페로브스카이트 필름의 제조 방법을 예시하는 흐름도이다.
[도 10] 도 10은 본원 시스템 및 방법에 따른 증착 메카니즘을 개략적으로 예시한다.
[도 11] 도 11의 (A) 내지 도 11의 (D)는 로드-락(load-lock) 챔버를 포함하는 시스템 구성의 순서를 예시한다.
[도 12] 도 12는 로드-락 챔버를 포함한 본원 시스템을 사용하는 페로브스카이트 필름의 제조 방법을 예시하는 흐름도이다.
[도 13] 도 13은 본원 제조 시스템 및 방법에 의해 성장된 클로라이드 아이오다이드 페로브스카이트 필름 CH3NH3PbI3 - XClX를 포함하는 태양 전지의 광기전 장치 특성 분석을 나타내는 J-V 곡선의 플롯(plot)이다.
[도 14] 도 14는 약 50 nm의 두께를 갖는 CH3NH3PbI3 - XClX 필름의 X-선 회절 (XRD) 스펙트럼을 나타내는 플롯이다.
[도 15] 도 15는 5 cm × 5 cm 표면적을 갖는 주석-도핑된 인듐 산화물 (ITO)/유리 기판 상에 성장된 약 135 nm 두께의 CH3NH3PbI3 - XClX 필름의 12개의 상이한 위치에서 측정된 X-선 회절 (XRD) 스펙트럼을 나타내는 플롯이다.
[도 16] 도 16은 ITO/유리 기판 상에 성장된 약 50 nm 두께의 CH3NH3PbI3 - XClX 필름의 원자간력 현미경 (AFM) 이미지를 나타내는 사진이다.
[도 17] 도 17은 약 135 nm 두께의 CH3NH3PbI3 - XClX 필름의 광 흡수성을 나타내는 플롯이다.
[도 18] 도 18은 각각 약 50 nm 두께 및 약 135 nm 두께의 CH3NH3PbI3 - XClX 필름을 포함하는 실제 장치의 사진을 나타낸다.
매우 효과적이고 안정한 저가의 태양 전지에 대한 요구의 지속적인 증가에 비추어, 본 문헌에는 태양 전지 응용에 적합한 고도로 결정질인 대규모의 실질적으로 균일한 페로브스카이트 필름의 제조를 위한 새로운 제조 시스템 및 방법이 기재되어 있다. 본원 제조 방법은 화학적 증착 및 물리적 증착 기술의 하이브리드로 특징지워질 수 있으며, 여기서 증기 공급원 및 진공 챔버 내 관련 부품은 각 공급원 재료의 재료 특성을 이용하여 증착 품질을 최적화하도록 구성된다. 여기서, 제1 범주의 공급원 재료는 금속 할라이드 재료, 예컨대 PbCl2, PbBr2, PbI2, SnCl2, SnBr2, SnI2 등을 포함하고, 제2 범주의 공급원 재료는 메틸암모늄 (MA=CH3NH3 +) 화합물, 예컨대 MACl, MABr, MAI 등, 포름아미디늄 (FA=HC(NH2)2 +) 화합물, 예컨대 FACl, FABr, FAI 등, 및 5-아미노발레르산 (5-AVA)을 포함한다 (예를 들어, 문헌[Science 345, 295-298 (2014)]; [Nature 517, 476-480 (2015)] 참조). 유기금속 할라이드 페로브스카이트 구조는 단위 전지로서 일반 ABX3 구조를 갖는 사방정계(orthorhombic) 구조이며, 여기서 유기 요소 MA, FA 또는 5-AVA는 자리 A를 차지하고; 금속 원소 Pb2 + 또는 Sn2 +는 자리 B를 차지하고; 할로겐 원소 Cl-, I- 또는 Br-는 자리 X를 차지한다. 본 문헌에서, AX는 MA, FA 및 5-AVA로 이루어진 군으로부터 선택된 유기 요소 A, 및 Cl, I 및 Br로 이루어진 군으로부터 선택된 할로겐 원소 X를 갖는 유기 재료, 또는 상기 유기 재료 둘 이상의 조합을 나타낸다. 여기서, 조합이란 둘 이상의 상기 유기 재료의 혼합물, 예를 들어 혼합 분말 형태의 MAI 및 MACl을 지칭하며, 이는 각 증발 온도가 미리 결정된 온도 범위 내에 속하는 경우 증착을 위해 사용될 수 있다. 조합이란 또한 둘 이상의 상기 유기 재료의 혼합 화합물, 예컨대 MAI(1-X)ClX를 지칭한다. 또한, 본 문헌에서, BX2는 Pb 및 Sn으로 이루어진 군으로부터 선택된 금속 원소 B, 및 Cl, I 및 Br로 이루어진 군으로부터 선택된 할로겐 원소 X를 갖는 금속 할라이드 재료, 또는 상기 금속 할라이드 재료 둘 이상의 조합을 나타낸다. 여기서 다시, 조합이란 둘 이상의 상기 금속 할라이드 재료의 혼합 분말 형태의 혼합물을 지칭하며, 이는 각 증발 온도가 미리 결정된 온도 범위 내에 속하는 경우 증착을 위해 사용될 수 있다. 조합이란 또한 둘 이상의 상기 금속 할라이드 재료의 혼합 화합물, 예컨대 Pb(1-X)SnXI2를 지칭한다. 본원 시스템 및 방법에 따른 구현 예는 첨부된 도면을 들어 하기에 기재한다.
도 1은 실시양태에 따른 페로브스카이트 필름을 제조하기 위한 시스템 구성의 예를 예시한다. 시스템은 필요한 부품에 결합된 하우징(100)을 포함한다. 하우징(100)은 수직 방향에 따라 측면 구획 및 수평 방향을 따라 상단 및 하단 구획을 갖는, 실질적으로 중공 실린더 형상을 가질 수 있다. 하우징(100)의 형상은 수직 방향을 따라 측면 구획으로서의 4개의 직사각형 면, 수평 방향을 따라 상단 구획으로서의 1개의 직사각형 면, 및 수평 방향을 따라 하단 구획으로서의 또 다른 직사각형 면을 갖는 실질적으로 중공 박스일 수 있다. 하우징(100)의 형상은 필요한 부품이 하우징(100)에 적절히 결합될 수 있는 한 임의의 형상을 갖도록 개작될 수 있다. 각 구획은 내부 표면 및 외부 표면을 갖는다. 도 1에는, 단지 하우징(100)의 내부 표면만이 예시되어 있다. 하우징(100)은 하우징(100) 내에서 거의 진공을 생성하기 위해 펌프 유닛(104)에 결합되고, 이는 증착 공정을 위한 진공 챔버로서 사용된다. 펌프 유닛(104)의 예는 터보 분자 펌프를 포함한다. 게이트 밸브(108)는 하우징(100) 내부의 압력을 제어하기 위해 본 예에서 펌프 유닛(104)과 하우징(100) 사이에 결합되며, 여기서 게이트 밸브(108)의 개방/폐쇄는 수동으로, 컴퓨터 또는 임의의 다른 적합한 수단을 사용하여 제어될 수 있다. 게이트 밸브(108)는 하우징(100) 내부의 압력을 공급원 재료들 간의 화학적 반응을 위해 그리고 공급원 재료의 효율적인 사용을 위해 최적의 값으로 조절하도록 위치할 수 있다. 펌프 유닛(104) 및 게이트 밸브(108)는 도 1에 예시된 바와 같이 하우징(100)의 하단 구획, 측면 구획 또는 임의의 다른 적합한 구획에 결합될 수 있다. 챔버 내부의 압력은 전체 범위, 즉, 1 × 105 내지 1 × 10-7 Pa에 걸쳐 압력 게이지에 의해 모니터링될 수 있다. 기판 스테이지(112)는 하우징(100)의 상단 구획에 결합되며, 기판(116)을 하향 배치하기 위한 큰 하향 스테이지 표면을 갖도록 구성된다. 본 문헌에서 용어 "기판"은 본 문헌에서 일체형 기판 또는 다수의 기판의 집합체로 지칭된다. 본원 시스템에서 스테이지 표면의 면적은, 예를 들어 5 cm × 5 cm 또는 그 이상의 큰 기판, 또는 5 cm × 5 cm 또는 그 이상의 총 면적을 갖는 다수의 기판을 수용하도록 구성될 수 있다. 스테이지 표면(112)의 형상은 상기와 같은 큰 기판 또는 다수의 기판이 수용될 수 있는 한, 원형, 정사각형, 직사각형 또는 임의의 다른 형상일 수 있다. 기판 스테이지(112)의 온도는 기판(116)에 균일한 냉각 또는 가열을 제공하도록 제어된다. 구체적인 예로, 기판 스테이지(112)의 온도는 -190℃에서 200℃까지의 범위로 제어된다. 제1 증발기 유닛(120)은 하우징(100)의 하단 구획에 결합되고, 금속 할라이드 재료 BX2의 증기를 생성하도록 구성된다. 제1 증발 온도는 제1 증발기 유닛(120)과 관련된 것이고, BX2 증기를 생성하기 위한 제1 증발률을 조절하도록 제어된다. 제1 증발기 유닛(120)의 수평 단면 형상의 치수, 기판 스테이지(112)의 수평 단면 형상의 치수, 및 상기 두 수평 단면 형상들 간의 수평 방향에서의 상대 위치는 상기 두 수평 단면 형상들 간의 중첩을 최대화하도록 구성된다. 예를 들어, 기판 스테이지(112)는 6 cm × 6 cm 정사각형의 수평 단면 형상을 갖고; 제1 증발기 유닛(120)은 6 cm 직경을 갖는 원형의 수평 단면 형상을 갖고; 정사각형의 중심 및 원형의 중심은 수직으로 정렬된다. 또 다른 예에서, 각각의 기판 스테이지(112) 및 제1 증발기 유닛(120)은 10 cm 직경을 갖는 원형의 수평 단면 형상을 갖고; 이들 두 원형의 중심은 수직으로 정렬된다.
제2 증발기 유닛(124)은 본 예에서 하우징(100)의 측면 구획에 결합되고, 유기 재료 AX의 증기를 생성하도록 구성된다. 이후의 예에서 기재된 바와 같이, 제2 증발기 유닛(124)은 미리 결정된 거리만큼 제1 증발기 유닛(120)으로부터 분리된, 하우징(100)의 하단 구획에 결합될 수 있다. 제2 증발 온도는 제2 증발기 유닛(124)과 관련된 것이고, AX 증기를 생성하기 위한 제2 증발률을 조절하도록 제어된다. 챔버 몸체, 즉, 하우징(100)의 몸체는 약 70℃로 유지될 수 있으며, 이는 챔버 벽 상으로의 AX 증기의 흡착이 감소하도록 돕는다.
유동 제어 유닛(128)은 AX 증기 유동을 제어하여 하우징(100) 내에서 그것을 효과적으로 순환시키기 위해 본 예에서 하우징(100)의 측면 구획에 제공된다. 유동 제어 유닛(128)은 본 예에서 제2 증발기 유닛(124)의 실질적으로 반대쪽 측면 구획에 제공된다. 그러나, 유동 제어 유닛(128)은 그것이 기판(116)에 걸쳐 실질적으로 균일한 AX 증기의 유동을 조장하는 한, 제2 증발기 유닛(124)의 위치에 대해 임의의 위치에서 하우징(100)에 결합될 수 있다. 유동 제어 유닛(128)은 하우징(100) 내에서 AX 증기의 순환을 촉진시키는 하나 이상의 기계적 시스템을 포함할 수 있다. 유동 제어 유닛(128)의 예는 팬 시스템, 펌프 시스템 및 이들의 조합을 포함한다. 펌프 시스템의 예는 포어라인(foreline) 펌프를 포함한다. 조합 예에서, 팬 시스템은 제2 증발기 유닛(124)과 동일한 측면 상에 및 그 위쪽에 제공될 수 있고, 펌프 시스템은 제2 증발기 유닛(124)의 반대쪽에 제공될 수 있다. 또 다른 예에서, 유동 제어 유닛(128)은 단지 펌프 시스템만을 갖도록 구성될 수 있으며, 이는 제2 증발기 유닛(124)의 실질적으로 반대쪽 측면 구획에 결합되고, 기판(116)에 걸쳐 AX 증기의 균일성을 촉진하기 위해 기판 스테이지(112)의 스테이지 표면과 실질적으로 수평화된다.
제1 모니터(132)는 동일 계에서 페로브스카이트 필름 두께를 모니터링하기 위해 기판 스테이지(112)의 스테이지 표면에 근접하여 하우징(100)의 상단 구획에 결합될 수 있다. 제1 모니터(132)는 제1 증발기 유닛(120)으로부터의 금속 할라이드 재료 BX2의 증기 유동뿐만 아니라 필름 두께를 모니터링하기 위해 사용될 수 있다. BX2 증기 유동의 모니터링은 금속 할라이드 재료 BX2의 증착률의 평가를 돕는다. 제1 모니터(132)의 센서 구획은 예를 들어 도 1에 나타낸 바와 같이 하향하도록 구성될 수 있다. 제2 모니터(134)는 제2 증발기 유닛(124)으로부터의 유기 공급원 AX의 증기 유동을 모니터링하기 위해 도 1에 나타낸 바와 같이 하우징(100)의 상단 구획에 또는 하우징(100)의 측면 구획에 결합될 수 있다. AX 증기 유동의 모니터링은 AX 증기의 증착률 및 유동 속도의 평가를 돕는다. 조건에 따라, 제2 모니터(134)의 센서 구획은 도 1에 예시된 예에 나타낸 바와 같이 상향 또는 측향하도록 구성될 수 있다. 제1 및 제2 모니터(132) 및 (134)의 예는 석영 결정 두께의 모니터를 포함하고, 그 온도는 증착 공정을 열적 교란하지 않도록 기판 스테이지(112)와 실질적으로 동일한 온도로 유지되도록 제어될 수 있다. 동일 계에서 증착률 및 필름 두께는 툴링(tooling) 인자 계산을 사용하여 모니터링된 증발률에 기반하여 산정될 수 있다. 예를 들어, 이와 같은 계산으로, 측정된 필름 두께와 나타낸 필름 두께 (모니터링된 증발률로 나타냄) 간의 비율을 시험 가동 동안 수득하고; 그 후에, 모니터에 의해 관찰된 증착 동안의 증발률을 감안하여 필름 두께를 동일 계에서 얻기 위해 상기 비율을 사용할 수 있다.
제1 셔터(136)는 기판 스테이지(112) 바로 아래쪽에 제공되고, 기판 스테이지(112)를 노출시키거나 또는 커버하여 기판(116) 상으로의 BX2 분자의 증착을 제어하기 위해 이동하도록 구성된다. 제2 셔터(140)는 제1 증발기 유닛(120) 바로 위쪽에 제공되고, 제1 증발기 유닛(120)을 노출시키거나 또는 커버하여 BX2 증기의 유동을 제어하기 위해 이동하도록 구성된다.
도 2는 도 1에서 X-X'로 나타낸 단면에 대해 아래쪽에서의 종면도를 예시한다. 하우징(100)의 내측 표면, 유동 제어 유닛(128)의 단면도, 기판 스테이지(112)에 근접하여 제공된 제1 모니터(132)의 하단 표면, 제2 모니터(134)의 하단 표면, 및 제1 셔터(136)의 하단 표면이 단면 X-X' 상으로 투영되는 도 2에 예시되어 있다. 제1 셔터(136)는 제1 막대(138)와 부착되며, 이는 제1 셔터(136)를 이동시켜 기판 스테이지(112)를 노출시키거나 또는 커버하기 위해 사용된다. 제1 막대(138)의 축을 따라 제1 셔터(136)의 종방향 운동을 제공하는 제1 막대(138)에 예를 들어 푸시(push)-풀(pull) 선형 운동 장치가 결합될 수 있다. 대안적으로, 제1 셔터(136), 제1 막대(138) 및 그의 주변 부품은, 수직 축 주위로 수평 방향을 따라 그의 회전 또는 임의의 다른 적합한 운동에 기반하여 제1 셔터(136)에 의해 기판 스테이지(112)의 노출 및 커버를 제어하도록 구성될 수 있다. 기판 스테이지(112)의 하단 표면은 제1 셔터(136)에 의해 완전히 커버될 때에는 육안으로 확인되지 않으나, 제1 셔터(136)가 스테이지(112)의 기판 하단 표면을 노출시키기 위해 멀리 이동할 경우에는 도 2에서 두꺼운 실선으로 나타낸 바와 같이 육안으로 확인된다.
도 3은 도 1에서 Y-Y'로 나타낸 단면에 대해 위쪽에서의 종면도를 예시한다. 하우징(100)의 내측 표면, 제2 증발기 유닛(124)의 단면도, 및 제2 셔터(140)의 상단 표면이 단면 Y-Y' 상으로 투영되는 도 3에 예시되어 있다. 제2 셔터(140)는 제2 막대(142)와 부착되고, 이는 제2 셔터(140)를 이동시켜 제1 증발기 유닛(120)을 노출시키거나 또는 커버하기 위해 사용된다. 제2 막대(142)의 축을 따라 제2 셔터(140)의 종방향 운동을 제공하는 제2 막대(142)에 예를 들어 푸시-풀 선형 운동 장치가 결합될 수 있다. 대안적으로, 제2 셔터(140), 제2 막대(142) 및 그의 주변 부품은, 수직 축 주위로 수평 방향을 따라 그의 회전 또는 임의의 다른 적합한 운동에 기반하여 제2 셔터(140)에 의해 제1 증발기 유닛(120)의 노출 및 커버를 제어하도록 구성될 수 있다. 제1 증발기 유닛(120)의 상단 표면은 제2 셔터(140)에 의해 완전히 커버될 때에는 육안으로 확인되지 않으나, 제2 셔터(140)가 제1 증발기 유닛(120)의 상단 표면을 노출시키기 위해 멀리 이동할 경우에는 도 3에서 두꺼운 실선으로 나타낸 바와 같이 육안으로 확인된다.
도 4의 (A) 및 도 4의 (B)는 도 1의 시스템의 제2 증발기 유닛(124)의 예를 예시한다. 각 예는 하우징(100)의 내측 표면에 대한 구성으로서 예시된다. 도 4의 (A)는, AX 분말(412)을 함유할 수 있는 용기인 도가니(408)를 수용하는 전지(404)를 갖는 전지 증발기, 예컨대 통상의 크누센(Knudsen) 전지 증발기를 예시한다. 가열 부재(416)는 도가니(408), 즉, AX 분말(412)을 가열하여 그의 증기를 생성하기 위해 제공된다. 제2 증발 온도는 제2 증발기 유닛(124)과 관련된 것이고, AX 증기를 생성하기 위한 제2 증발률을 조절하도록 제어된다. 구체적으로, 가열 부재(416)의 온도는 본 예에서 AX 증발률을 조절하도록 제어된다. 전지 증발기는 또한 AX 증기 플럭스를 제어하는 증발기 셔터(420)를 포함한다. 도 4의 (A)의 전지 증발기는 하우징(100)의 내측 표면에 대해 소정 각도로 제공되고, 여기서 각도는 AX 증기를 효율적으로 방출하도록 조절될 수 있다. 증발기 셔터(420)는 고플럭스의 AX 증기가 기판(116)을 직접 타격하지 않도록, 제2 증발기 유닛(124)에서부터 하우징(100) 내로 나오는 AX 플럭스를 제어하기 위해 제공된다. 도 4의 (B)는 제2 증발 유닛(124)의 또 다른 예를 예시하며, 이는 AX 분말(428)을 함유하는 용기인 앰플(424), 및 앰플(424), 즉, AX 분말(428)을 가열하여 그의 증기를 생성하기 위해 제공되는 가열 부재(432)를 포함한다. 제2 증발 온도는 제2 증발기 유닛(124)과 관련되고, AX 증기를 생성하기 위한 제2 증발률을 조절하도록 제어된다. 구체적으로, 가열 부재(432)의 온도는 본 예에서 AX 증발률을 조절하도록 제어된다. 도 4의 (B)의 예에서 예시된 제2 증발기 유닛(124)은 AX 증기 플럭스를 하우징(100) 내로 가이드하는 덕트(436)를 추가로 포함한다. 덕트(436)는, 제2 증발기 유닛(128) 위쪽에 제공된 유동 제어 유닛(128)이 하우징(100) 내에서 그의 유동을 효과적으로 순환시킬 수 있도록 AX 증기를 수직으로 방출하는, 본 예에서는 수직 연장된 구획(438)을 갖도록 구성된다. 덕트(436)는 간단하지만 시기적절한 방식으로 AX 증기 유동을 제어하기 위해 증발기 밸브(440)에 결합될 수 있다.
도 5의 (A) 내지 도 5의 (C)는 도 1의 시스템의 제1 증발기 유닛(120)의 예를 예시한다. 도 5의 (A)는 제1 증발기 유닛(120)이 BX2 분말(508)을 함유하는 용기인 도가니(504), 및 도가니(504), 즉, BX2 분말(508)을 가열하여 그의 증기를 생성하는 가열 부재(512)를 포함하는 것인 단면 측면도를 예시한다. 가열 부재(512)의 2개의 말단 단자는 각각 하우징(100)의 외부와 소통하기 위해 2개의 전기 피드스루(feedthrough)(516)로 고정되며, 이에 의해 가열 부재(512)는 외부적으로 제어될 수 있다. 제1 증발 온도는 제1 증발기 유닛(120)과 관련된 것이고, BX2 증기를 생성하기 위한 제1 증발률을 조절하도록 제어된다. 구체적으로, 가열 부재(512)의 온도는 본 예에서 BX2 증발률을 조절하도록 제어된다. 도 5의 (B)는 기판 스테이지(112)의 치수에 가까운 직경을 갖고 본 예에서 접시 형상을 갖는 도가니(504)의 사시도를 예시한다. 도가니(504)의 수평 단면 형상은 면적이 기판 스테이지(112)의 면적에 가깝도록 구성되는 한, 정사각형, 직사각형, 타원형, 육각형 또는 임의의 다른 형상일 수 있다. 서두에 언급된 바와 같이, 제1 증발기 유닛(120)의 수평 단면 형상의 치수, 기판 스테이지(112)의 수평 단면 형상의 치수, 및 상기 두 수평 단면 형상들 간의 수평 방향에서의 상대 위치는 상기 두 수평 단면 형상들 간의 중첩을 최대화하도록 구성된다. 도 5의 (C)는 가열 부재(512)의 사시도를 예시하며, 이는 나선-형상의 텅스텐 필라멘트이고 본 예에서 접시-형상의 도가니(504)를 치밀하게 에워싼다. 가열 부재(512)는 도가니(504)를 균일하게 가열하여 BX2 공급원의 증발률을 제어하도록 구성되는 한, 메쉬 형상, 사행(meander) 형상, 지그-재그 형상 또는 임의의 다른 형상으로 형성될 수 있다. 본원 예에서, 나선형의 직경은 도 5의 (B)의 접시-형상의 도가니(504)의 직경(D)과 대략 동일하도록 구성된다.
도 6의 (A) 및 도 6의 (B)는 유동 제어 유닛(128)의 예를 예시하며, 이는 하우징(100)의 측면 구획에 결합될 수 있다. 도 6의 (A)에 예시된 예는, 깔때기(604), 덕트(608), 밸브(612) 및 펌핑 스테이션(616)을 포함하고 제2 증발기 유닛(124)의 실질적으로 반대쪽 챔버(100)의 측면 구획에 결합되는 펌프 시스템, 예를 들어 포어라인 펌프이다. 그러나, 유동 속도가 기판(116)에 걸쳐 실질적으로 균일한 AX 유동을 생성하도록 효과적으로 제어되는 한, 그것은 제2 증발기 유닛(124)의 위치에 대해 임의의 위치에서 하우징(100)에 결합될 수 있다. 밸브(612)는 유동을 제어하는 덕트(608)에 결합될 수 있다. 도 6의 (B)에 예시된 또 다른 예는 팬(620)을 포함하는 팬 시스템이며, 이는 모터(628)에 결합된 회전 드라이브(624)에 결합된다. 본 예에서, 팬(620)은 기판(116)에 걸쳐 AX 증기가 균일하게 순환하도록, 제2 증발기 유닛(124)과 동일한 측면 상에, 챔버(100)의 측면 구획 상의 바로 위쪽에 제공된다. 서두에 언급된 바와 같이, 유동 제어 유닛(128)은 기판(116)에 걸쳐 AX 증기 유동의 균일성을 촉진하는 하나 이상의 기계적 시스템을 포함할 수 있다. 유동 제어 유닛(128)에 예는 팬 시스템, 펌프 시스템 및 이들의 조합을 포함한다. 조합 예에서, 팬 시스템은 제2 증발기 유닛(124)과 동일한 측면 상에 및 그 위쪽에 제공될 수 있고, 펌프 시스템은 제2 증발기 유닛(124)의 실질적으로 반대쪽에 제공될 수 있다. 또 다른 예에서, 유동 제어 유닛(128)은 단지 펌프 시스템만을 갖도록 구성될 수 있고, 이는 기판(116)에 걸쳐 AX 증기의 균일성을 촉진하기 위해 기판 스테이지(112)의 스테이지 표면과 실질적으로 수평화되고 제2 증발기 유닛(124)의 실질적으로 반대쪽 측면 구획에 결합된다.
도 7은 실시양태에 따른 페로브스카이트 필름을 제조하기 위한 시스템 구성의 또 다른 예를 예시한다. 시스템은 필요한 부품에 결합된 하우징(700)을 포함한다. 하우징(700)은 증착을 위한 진공 챔버로서의 기능을 한다. 펌프 유닛(704), 게이트 밸브(708), 기판(716)을 배치하기 위한 기판 스테이지(712), 금속 할라이드 재료 BX2의 증기를 생성하기 위한 제1 증발기 유닛(720), 유동 제어 유닛(728), 제1 모니터(732), 제1 셔터(736) 및 제2 셔터(740)는 도 1을 들어 서두에 설명된 부품과 유사하거나, 또는 관련 기술분야의 통상의 기술자에 의해 핵심 기능은 유지하면서 본원 구성에 따라 개작된다. 예를 들어, 펌프 유닛(704) 및 게이트 밸브(708)는 도 1에 예시된 시스템에 기반하여 관련 기술분야의 통상의 기술자에 의해 변경 또는 고안되는 바와 같이, 하우징의 하단 구획(700)에서 추가 부품을 수용하기 위해 위치를 이동하고/하거나 크기를 조절할 수 있다. 도 7의 본원 시스템 구성에서, 제2 증발기 유닛(724)은 제1 증발기 유닛(720)에서부터 미리 결정된 거리만큼 분리된 하우징(700)의 하단 구획에 결합되고, 유기 재료 AX의 증기를 생성하도록 구성된다. 차폐물(725)은 제1 증발기 유닛(720)과 제2 증발기 유닛(724) 간의 열적 간섭을 감소시키기 위해 그것들 사이에 제공된다. 제2 모니터(734)는 AX 증기 유동을 모니터링하여 그의 증착률을 평가하기 위해 제2 증발기 유닛(724) 바로 위쪽에 제공된다.
도 1의 제2 증발기 유닛(124)과 유사하게, 제2 증발기 유닛(724)의 예는 전지 증발기, 예컨대 도 4의 (A)를 들어 설명된 크누센 전지 증발기 및 도 4의 (B)를 들어 설명된 앰플-유형 증발기를 포함한다. 도 8은 제2 증발기 유닛(724)의 제3 예의 측면도를 예시하며, 이는 하우징(700)의 하단 구획에 결합될 수 있다. 도 5의 (A) 내지 도 5의 (C)를 들어 설명된 제1 증발기 유닛(120)에 사용되는 도가니-유형 증발기와 유사하게, 제2 증발기 유닛(724)의 제3 예는 AX 분말(808)을 함유하는 도가니(804), 및 도가니(804), 즉, AX 분말(808)을 가열하여 그의 증기를 생성하는 가열 부재(812)를 포함한다. 가열 부재(812)의 2개의 말단 단자는 각각 하우징(700)의 외부와 소통하기 위해 2개의 전기 피드스루(816)로 고정되고, 이에 의해 가열 부재(812)는 외부적으로 제어될 수 있다. 제2 증발 온도는 제2 증발기 유닛(724)과 관련된 것이고, AX 증기를 생성하기 위한 제2 증발률을 조절하도록 제어된다. 구체적으로, 가열 부재(812)의 온도는 본 예에서 AX 증발률을 조절하도록 제어된다. 도가니(804)의 수평 단면 형상은 원형, 정사각형, 직사각형, 타원형, 육각형 또는 임의의 다른 형상일 수 있다. 가열 부재(812)는 도가니(804)를 치밀하게 에워싸는 나선-형상의 텅스텐 필라멘트일 수 있다. 가열 부재(812)는 도가니(804)를 균일하게 가열하여 AX 공급원 재료의 증발률을 제어하도록 구성되는 한, 메쉬 형상, 사행 형상, 지그-재그 형상 또는 임의의 다른 형상으로 형성될 수 있다. 증발기 셔터(820)는 본 예에서 도가니(804) 위쪽에 제공된다. 증발기 셔터(820)의 수평 치수는 도가니(804)의 것보다 더 크도록 구성된다. 증발기 셔터(820)는 제2 증발기 유닛(724)에서 나오는 고플럭스의 AX 증기가 기판(716)을 직접 타격하지 못하도록 도가니(804)의 개구부를 커버하도록 조절될 수 있다.
도 9는 도 1 또는 도 7에 예시된 본원 시스템을 사용하는 페로브스카이트 필름의 제조 방법을 예시하는 흐름도이다. 도 1의 참조 번호는 도 9에 예시된 공정을 설명하기 위해 하기에서 사용되고; 도 7에 예시된 시스템을 사용하여 동일한 공정을 수행할 수도 있음을 참고하여야 한다. 기판(116)은 먼저 하향 기판 스테이지(112) 상에 제공될 수 있다. 대안적으로, 기판(116)은, 이후에 도 11의 (A) 내지 도 11의 (D)를 들어 설명되는 바와 같이, 공정에서 나중에 기판 스테이지(112) 상에 제공될 수 있다. 서두에 언급된 바와 같이, 본원 시스템 내 기판 스테이지(112)의 표면적은 예를 들어 5 cm × 5 cm 또는 그 이상의 큰 기판, 또는 5 cm × 5 cm 또는 그 이상의 총 면적을 갖는 다수의 기판을 수용하도록 구성될 수 있다. 하우징(100)의 내부는 펌프 유닛(104)을 사용하여 미리 결정된 진공 수준으로 펌핑되고, 하우징(100)은 진공 챔버로서의 기능을 한다. 챔버 내부의 압력은 전체 범위, 즉, 1 × 105 내지 1 × 10-7 Pa에 걸쳐 압력 게이지에 의해 모니터링될 수 있다. 제2 증발기 유닛(124) 또는 (724)에서, 도 4의 (A)에 예시된 전지 증발기의 증발기 셔터(420), 도 4의 (B)에 예시된 앰플-유형 증발기의 증발기 밸브(440), 또는 도 8에 예시된 도가니-유형 증발기의 증발기 셔터(820)는 제2 증발기 유닛(124) 또는 (724)에서 나오는 고플럭스의 AX 증기가 기판 표면을 직접 타격하지 못하도록 제2 증발기 유닛(124) 또는 (724)의 개구부를 실질적으로 커버하도록 위치한다.
도 9에 예시된 공정의 단계(904)에서, 기판 스테이지(112)의 온도는 미리 결정된 기판 온도를 제공하도록 제어된다. 기판 스테이지(112)의 온도는 본원 시스템에서 기판(116)에 -190℃에서 200℃까지의 범위의 균일한 냉각 또는 가열을 제공하도록 제어될 수 있다. 이후 설명되는 바와 같이, 다양한 온도의 기판을 사용한 실험으로부터, 실온의 기판으로 성장된 페로브스카이트 필름을 갖는 태양광 장치가 최상의 성능을 나타냄이 제기되었다. 여기서, 실온이란 15℃ 내지 25℃ 범위의 온도를 지칭한다. 단계(908)에서, 기판 스테이지(112) 바로 아래쪽에 제공되는 제1 셔터(136)는 기판(116)을 커버하도록 이동되고, 제1 증발기 유닛(120) 바로 위쪽에 제공되는 제2 셔터(140)는 제1 증발기 유닛(120)을 노출시키도록 이동된다. 하우징(100)과 펌프 유닛(104) 사이에 결합된 게이트 밸브(108)는 하우징(100) 내부의 압력을 공급원 재료들 간의 화학적 반응을 위해 그리고 공급원 재료의 효율적인 사용을 위해 최적의 값으로 조절하도록 위치한다. 특히, 챔버 내부의 AX 증기압은 주로 게이트 밸브 위치선정에 의해 결정된다. 즉, 단계(912)에서와 같이, 게이트 밸브(108)를 미리 결정될 수 있는 제1 위치로 설정하면 챔버 내 AX 증기 순환이 안정화되도록 도울 수 있다. 예를 들어, 약 0.3 Pa의 비교적 높은 압력이 적용될 수 있고, 이는 페로브스카이트 형성 동안 게이트 밸브 위치선정을 통해 실질적으로 일정하게 유지될 수 있다. 단계(916)에서, BX2 증기를 생성하도록 구성된 제1 증발기 유닛(120)과 관련된 제1 온도는 BX2 증기를 생성하기 위한 제1 증발률을 조절하도록 제어된다. 예를 들어, 도 5의 (A) 내지 도 5의 (C)에 예시된 도가니-유형 증발기에서, 도가니(504)는 가열 부재(512)에 의해 미리 결정된 제1 증발률에서 BX2 증기를 생성하는 온도로 가열될 수 있다. BX2 비율은 제1 모니터(132)에 의해 모니터링될 수 있다. BX2 재료의 제1 증발률이 특정 비율에 도달할 때, 단계(920)에서, AX 증기를 생성하도록 구성된 제2 증발기 유닛(124)과 관련된 제2 온도는 AX 증기를 생성하기 위한 제2 증발률을 조절하도록 제어된다. 예를 들어, 도 4의 (A)에 예시된 크누센-유형 전지 증발기에서, 도가니(408)는 가열 부재(416)에 의해 미리 결정된 제2 증발률에서 AX 증기를 생성하는 온도로 가열될 수 있다. AX 비율은 제2 모니터(134)에 의해 모니터링된다. 제2 모니터(134)는 AX 증기 유동을 모니터링하여 증발률을 평가하고 유동이 하우징(100) 내부에서 실질적으로 일정하게 유지되는지를 체크하기 위해 사용된다.
본원 증착 공정은 판연히 상이한 증발 온도를 갖는 두 재료의 증발을 포함한다. 예를 들어, PbI2는 전형적으로 약 250℃에서 증발하는 반면, MAI는 약 70℃에서 증발한다. 유기 재료 AX는 전형적으로 고도로 휘발성이다. 단계(924)에서, 유동 제어 유닛(128)은 AX 증기의 유동 속도를 조절하여 그것을 하우징(100) 내에서 순환시키고 기판 표면(116)에 걸쳐 AX 증기 유동의 균일성을 촉진하도록 제어된다. 챔버 내부의 AX 증기압은 주로 게이트 밸브 위치선정에 의해 결정된다. 즉, 게이트 밸브(108)를 제1 위치로 설정하면 챔버 내 AX 증기 순환이 안정화되도록 도울 수 있다. 따라서, 챔버 내 AX 증기의 순환은 포괄적으로 (i) AX 재료의 증발률을 제어하기 위한 제2 증발기 유닛(124)과 관련된 제2 증발 온도; (ii) AX 증기압을 제어하기 위한 게이트 밸브(108)의 위치선정에 의해 조절되는 챔버 내부의 압력; 및 (iii) 유동 제어 유닛(128)에 의한 AX 증기의 유동 제어에 기반하여 본원 시스템 내에서 최적화된다.
단계(928)에서, 기판 스테이지(112) 바로 아래쪽에 제공되는 제1 셔터(136)는 기판(116)을 노출시켜 기판(116) 상으로의 BX2 분자의 증착을 시작하도록 이동된다. 단계(932)에서, 기판(116) 상에 성장하는 페로브스카이트 필름의 두께는 제1 모니터(132)에 의해 동일 계에서 모니터링되며, 이는 기판 스테이지(112)의 스테이지 표면에 근접하여 제공된다. 제1 및 제2 모니터(132) 및 (134)의 온도는 증착 공정을 열적 교란하지 않도록 기판 스테이지(112)와 실질적으로 동일한 온도로 유지되도록 제어될 수 있다. 단계(936)에서, 필름 두께가 미리 결정된 두께에 도달할 때, 제1 셔터(136)는 기판(116)을 커버하여 기판(116) 상으로의 BX2 분자의 증착을 차단하도록 이동된다. 단계(940)에서, 제1 증발기 유닛(120) 및 제2 증발기 유닛(124)의 가열이 중지된다. 단계(944)에서, 게이트 밸브(108)는 챔버로부터 잔류 증기를 펌핑 제거하기 위해 최대 개방 위치일 수 있는 제2 위치로 개방된다. 실험으로부터, 생성된 페로브스카이트 필름의 후어닐링(post annealing)이 필요하지 않음이 제기되었다.
물리적 증착은 반도체, 마이크로전자장치 및 광 산업에 사용되는 제조 기술의 예이다. 공급원 재료는 전형적으로 그 증기압이 플럭스를 생성할 만큼 높을 때까지 가열 및 기화된다. 기판 상으로의 증착은 순수하게 물리적 공정, 예컨대 고온 진공 증발에 이은 응축 또는 플라즈마 스퍼터 봄바드먼트(bombardment)를 포함한다. 따라서, 조준선 전달은 대부분의 물리적 증착 기술에 있어서 전형적이고, 여기서 공급원 재료의 증기 플럭스의 방향은 기판을 향한다. 입자들은 직선형 경로를 따르는 경향이 있기 때문에, 물리적 증착에 의해 증착된 필름은 일반적으로 등방성(conformal)이기 보다는 방향성이다. 반면, 화학적 증착에서는, 기판 표면 상에서 화학적 반응이 이행되어 등방성의 균일한 모폴로지(morphology)를 생성한다.
통상의 화학적 및 물리적 증착 기술에 비추어, 본원 시스템 및 방법에 기반한 제조 기술은 두 기술의 하이브리드로서 간주될 수 있다. 도 10은 본원 시스템 및 방법에 따른 증착 메카니즘을 개략적으로 예시한다. 도 1의 시스템 부품의 일부에 대한 참조 번호는 도 10에 개략적으로 예시된 증착 메카니즘을 설명하기 위해 하기에 사용되나; 본원에서 설명은 도 7에 예시된 시스템에도 또한 적용가능함을 참고하여야 한다. 도 10에서, 안정화된 증발은 도 9의 공정 단계(928) 후에 묘사되며, 여기서 제1 셔터(136) (파선으로 도시함)는 기판(116)을 노출시키도록 이동되었다. 여기서 AX 증기(1054)는 실질적으로 균일하게 순환하여 챔버를 충전시키는 것으로 예시된다. 이는 제2 증발기 유닛(124) (간단하게 도면에서 생략됨)의 온도 제어를 통한 AX 증기의 생성을 위한 제1 증발률의 조절, AX 증기압의 제어를 위한 게이트 밸브(108)의 위치선정을 통한 챔버 내부의 압력의 조절, 및 유동 제어 유닛(128)의 유동-속도 제어를 통한 AX 증기의 유동 속도의 조절에 의해 가능하다. BX2 재료는 큰 수평 단면적을 갖는 제1 증발기 유닛(120)에서 균일하게 가열되고, 생성된 BX2 증기(1058)는 제1 증발기 유닛(120)의 수평 단면적에 가까운 표면적을 갖는 기판(116)에 대해 실질적으로 수직으로 이동한다. 서두에 언급된 바와 같이, 제1 증발기 유닛(120)의 수평 단면 형상의 치수, 기판 스테이지(112)의 수평 단면 형상의 치수, 및 상기 두 수평 단면 형상들 간의 수평 방향에서의 상대 위치는 상기 두 수평 단면 형상들 간의 중첩을 최대화하도록 구성된다. 예를 들어, 기판 스테이지(112)는 6 cm × 6 cm 정사각형의 수평 단면 형상을 갖고; 제1 증발기 유닛(120)은 6 cm 직경을 갖는 원형의 수평 단면 형상을 갖고; 상기 정사각형의 중심 및 원형의 중심은 수직으로 정렬된다. 또 다른 예에서, 기판 스테이지(112) 및 제1 증발기 유닛(120) 각각은 10 cm 직경을 갖는 원형의 수평 단면 형상을 갖고; 이들 두 원형의 중심은 수직으로 정렬된다. 따라서, BX2 증기의 증착은 조준선 전달 후 실질적으로 방향성이지만, 큰 수평 단면적을 커버한다. 한편, AX 증기의 증착은 실질적으로 덜 방향성인데, 이는 AX 증기가 챔버를 순환 및 충전하는 채로 있도록 제어되기 때문이다. BX2 증기는 기판 표면(116)을 타격하고, BX2 재료의 습윤성 및 우수한 점착 계수에 부분적으로 기반하여 그 위에 효과적으로 증착된다. 그 후에, 기판 표면(116)에 근접하여 존재하는 AX 증기와 증착된 BX2 간에 화학적 반응이 이행된다. 즉, 본원 시스템 및 방법에 따라, 기체 상의 AX 분자와 기판(116) 상에 증착된 BX2 분자 간의 화학적 반응에 의해 페로브스카이트 필름이 형성된다. 따라서, 본원 시스템 및 방법은 대면적의 기판 표면(116) 상에서 균일한 화학적 반응을 가능케 하여, 어닐링 없이도 높은 결정도를 갖는 대규모의 실질적으로 균일한 페로브스카이트 필름을 생성한다. 여기서, 대규모 제조란 센티미터-스케일의 균일성을 갖거나 또는 심지어 더 큰 페로브스카이트 필름의 형성을 지칭한다. 제조의 스케일 확장(Scaling-up)은 챔버 내 AX 증기 순환 및 BX2 증착의 조준선 전달을 유지함으로써, 그리고 기판 스테이지(112) 및 제1 증발기 유닛(120)의 수평 단면적을 모두 동시에 확대함으로써 가능하다. 기판 표면(116) 상의 효율적인 화학적 반응이 촉진될 수 있어, 필름 성장 속도는, 다양한 파라미터 중에서도, 각 온도 제어를 통한 양쪽 공급원 재료의 증발률, 유동 제어를 통한 AX 증기 유동의 순환, 즉, 증착된 BX2에 대한 AX 혼입률, 및 게이트 밸브 위치선정을 통한 내부 압력을 최적화함으로써 유의하게 빨라질 수 있다. 따라서, 본원 시스템 및 방법은 BX2 재료의 우수한 점착 계수 및 습윤성과 AX 재료의 휘발성을 이용하도록 구성된다. 생성된 필름 두께는 주로 기판(116)을 커버하거나 또는 노출시키기 위한 제1 셔터(136)의 이동에 의해 제어된다.
따라서, 본원 제조 공정은 전형적인 물리적 공동 증착 공정과 본질적으로 상이하다. 전형적인 물리적 공동 증착 공정에서는, 양쪽 증기 유동이 양쪽 공급원 재료의 조준선 전달을 갖도록 기판 표면을 향하게 하는 정도의 각도로 2개의 증발기가 나란히 위치하여야 한다. 따라서, 각각의 증기 유동은 소정 각도로 기판 표면에 도달하여, 두 증기 유동의 중첩 영역을 제한한다. 즉, 통상의 물리적 공동 증착 공정에서는, 중심 영역 내 생성된 페로브스카이트 필름의 화학량비가 필름의 에지(edge) 영역 내의 것과 상이하다. 따라서, 기판 크기가 제한되고, 생성된 페로브스카이트 필름의 결정도는 두 공급원 재료 (즉, BX2 및 AX)의 비-균일한 조성 때문에 어닐링 후에도 저품질이 되는 경향이 있다. 또한, 하이브리드 증착 공정을 위한 본원 시스템은 BX2 공급원을 증발시키기 위한 큰 수평 단면적을 갖는 제1 증발기 유닛(120)을 포함하는 반면, 통상의 물리적 공동 증착 시스템에서는, 두 증발기의 소정 각도의 나란한 위치선정으로 인해 증발기들이 기계적으로 서로 간섭할 것이기 때문에 증발기 중 어느 하나를 다른 하나보다 폭이 더 넓은 개구부를 갖도록 구성하는 것이 불가능하다. 예를 들어, AX 증기를 위한 모니터는 BX2 증발에 의해 영향을 받을 것이고, 이는 전형적인 물리적 공동 증착 공정의 작동 원리에 위반된다. 또한 추가로, 본원 시스템은 기판 표면(116)에 걸쳐 실질적으로 균일한 AX 증기의 유동을 생성하는 유동 제어 유닛(128)을 포함하여, 증착된 BX2에 대한 AX 혼입률을 최적화하는 반면, 유동 제어 유닛은 분자 체제에서 순수하게 물리적 공정에 기반한 작동 원리와는 무관하기 때문에 물리적 공동 증착에 있어서는 유익을 초래하지 않는다. 추가적으로, 상업적으로 입수가능한 물리적 증착 시스템에서, 기판 스테이지의 온도 범위는 -10℃ 내지 80℃로 제한되는 반면, 본원 시스템은 -190℃에서 200℃까지의 보다 폭넓은 온도 범위를 갖도록 구성될 수 있다.
본원 시스템 및 방법에 기반하여 성장된 페로브스카이트 필름의 화학량비를 추가로 개선시키기 위해 제조 공정에 추가 단계가 포함될 수 있다. 예를 들어, 필름 내 AX-풍부 영역의 생성을 억제하기 위한 단계를 포함하는 것이 유익할 수 있다. 구체적으로, 미리 결정된 증발률이 달성될 때까지 AX 증기를 생성시키기 위한 제2 증발기 유닛(124)/(724)의 워밍업 동안, 기판(116)/(716) 상의 AX 분자의 증착이 발생할 수 있다. 비록 제1 셔터(136)/(736)는 먼저 도 9의 흐름도에 예시된 바와 같이 명목적 증착이 시작될 때까지 기판(116)/(716)을 커버하기 위해 폐쇄되지만, AX 재료의 휘발성으로 인해 AX 증기가 제1 셔터(136)/(736) 주위로 신속히 이동하여 기판 표면(116)/(716)에 도달할 수 있다. 또한, AX 증기의 생성은 제2 증발기 유닛(124)/(724)의 가열이 도 9의 공정 내 단계(940)에서 중지될 때 바로 중단될 수는 없다. 이는 일반적으로 제2 증발기 유닛(124)/(724) 내 AX 분말을 함유하는 용기가 냉각되기 위해서는 상당한 기간이 소요되기 대문이다. 그 결과, 챔버 내 미지의 농도의 AX 증기가 AX-풍부 화학량비를 갖는 최상부 층을 갖는 페로브스카이트 필름을 생성하여 필름의 비-균일성을 야기할 수 있다.
특히 증발 온도의 램프-업(ramp-up) 및 램프-다운(ramp-down) 동안 AX 재료의 휘발성과 관련된 문제점을 피하는 한 방법은 제2 하우징 (통상적으로 로드-락 챔버로서 알려짐)을 사용하는 것이다. 도 11의 (A) 내지 도 11의 (D)는, 페로브스카이트 필름의 비-균일성을 야기할 수 있는 AX 재료의 휘발성으로부터 기인하는 효과를 감소시키기 위한 로드-락 챔버를 포함하는 시스템 구성의 순서를 예시한다. 도 11의 (A)는, 한 측면 상에서 로드-락 챔버로서의 기능을 하는 제2 하우징(1160) 및 다른 측면 상에서 샘플 전달 시스템(1180)과 결합된 주요 진공 챔버로서의 기능을 하는 제1 하우징(1100)을 포함하는 시스템 구성을 예시하며, 여기서 제2 하우징(1160) 및 샘플 전달 시스템(1180)은 서로 대향하도록 제공된다. 제1 하우징(1100)은 도 1의 하우징(100) 또는 도 7의 하우징(700)과 유사한 증착을 위한 주요 진공 챔버로서의 기능을 한다. 제1 하우징(1100)에 결합된 부품은 도 1 또는 7을 들어 서두에 설명된 부품들과 유사하거나, 또는 관련 기술분야의 통상의 기술자에 의해 변경 또는 고안되는 바와 같이 핵심 기능을 유지하면서 본원 목적에 따라 개작된다. 즉, 도 11의 (A)의 제1 펌프 유닛(1104), 제1 게이트 밸브(1108), 기판 스테이지(1112), 제1 증발기 유닛(1120), 제1 셔터(1136) 및 기타 부품 (간단하게 도면에서 생략됨)은 각각, 도 1/7의 펌프 유닛(104)/(704), 게이트 밸브(108)/(708), 기판 스테이지(112)/(712), 제1 증발기 유닛(120)/(720), 제1 셔터(136)/(736) 및 기타 부품과 유사하게 구성되거나 또는 그에 상응하게 개작된다. 로드-락 챔버로서의 기능을 하는 제2 하우징(1160)은 제2 하우징(1160) 내부의 압력을 제어하도록 구성된 제2 게이트 밸브(1168)를 통해 제2 펌프 유닛(1164)에 결합된다. 제2 하우징(1160)은 제2 하우징(1160)과 제1 하우징(1100) 간의 소통을 제어하도록 구성된 제3 게이트 밸브(1172)를 통해 제1 하우징(1100)에 추가로 결합된다. 샘플 전달 시스템(1180)은 물체의 고정 및 방출을 위한 기계적 장치(1184), 예컨대 힌지결합된 조(jaw)를 갖는 그랩(grab)을 포함한다. 기계적 장치(1184)의 또 다른 예는 금속 물체의 고정 및 방출을 위한 자기적 제어 유닛이다. 기계적 장치(1184)는 샘플 전달 시스템(1180) 내 막대(1185)의 한쪽 말단 부분에 부착되고, 제1 하우징(1100) 내부에 제공된다. 기계적 장치(1184)의 이동은 컴퓨터 또는 다른 적합한 수단에 의해, 수동으로 제어되는 막대(1185)의 이동에 의해 제어된다. 도 11의 (B) 내지 도 11의 (D)에서, 참조 번호는 생략되지만, 하우징, 결합 부품 및 각 기능은 도 11의 (A)를 들어 상기에 기재된 바와 동일하다.
먼저, 도 11의 (A)에 예시된 바와 같이, 기판(1116)은 제2 하우징(1160) 내에 저장되고, 제2 펌프 유닛(1164) 및 제2 게이트 밸브(1168)는 제3 게이트 밸브(1172)가 폐쇄되면서 제2 하우징(1160) 내 미리 결정된 압력에 달성하도록 제어된다. 그 후에, 예를 들어 도 9에 예시된 공정의 단계(904) 내지 (924)에 따라, 제1 하우징(1100) 내에서 증착이 시작될 수 있다. 단계(920)에서 증발 온도를 공급원 재료의 요망되는 증발률에 도달하도록 제어하고, 단계(924)에서 유동 제어 유닛을 제1 하우징(1100) 내 AX 증기가 순환하도록 제어한 후, 제3 게이트 밸브(1172)가 개방되고, 샘플 전달 시스템(1180) 내 기계적 장치(1184)는 도 11의 (B)에 예시된 바와 같이 제2 하우징(1160) 내 기판(1116)에 도달하고 그를 고정하도록 이동된다. 그 후에, 기판(1116)을 고정하는 기계적 장치(1184)는 도 11의 (C)에 예시된 바와 같이, 제1 하우징(1100)으로 재이동하고 하향 기판 스테이지(1112) 상에 기판(1116)을 방출 및 배치하도록 제어된다. 그 후에, 제3 게이트 밸브(1172)는 폐쇄되고, 기계적 장치(1185)는 도 11의 (D)에 예시된 바와 같이 원래의 위치로 재이동된다. 그 후에, 제1 셔터(1136)는 도 9의 공정 단계(928)에서와 같이 기판 스테이지(1112) 상의 기판(1116)을 노출시키도록 이동되고, 증착이 시작된다.
성장된 필름의 상단 상의 AX 분자의 과잉의 증착을 감소시키기 위해 증착 완료 후 시스템 구성의 역 순서 (즉, 차례로 도 11의 (D), 도 11의 (C), 도 11의 (B) 및 도 11의 (A))를 수행할 수 있다. 예를 들어, 성장된 필름을 갖는 기판(1116)을 제1 하우징(1100)으로부터 제2 하우징(1160)으로 전달하는 역 순서는 단계(940)에서 제1 증발기 유닛(1120) 및 제2 증발기 유닛 (간단하게 도면에서 생략됨)의 가열이 중지된 후 수행될 수 있고, 제1 게이트 밸브(1108)는 제1 하우징(1100)으로부터 잔류 증기를 펌핑 제거하기 위해 단계(944)에서 완전 개방 위치일 수 있는 제2 위치로 개방된다. 즉, 제3 게이트 밸브(1172)는 개방되고, 기계적 장치(1184)는 하우징(1100) 내에서 상부에 페로브스카이트 필름이 성장된 기판(1116)에 도달하고 그를 고정하도록 이동되고, 제2 하우징(1160) 내에서 상부에 페로브스카이트 필름이 성장된 기판(1116)을 방출 및 배치하도록 제2 하우징(1160)으로 이동되고, 하우징(1100)으로 재이동되며; 그 후에 제3 게이트 밸브(1172)가 폐쇄된다. 상기 순서는 로드-락 챔버를 휘발성 AX 재료로 오염시키지 않도록 단계(944)에서 잔류 증기를 펌핑 제거하기 위해 제1 게이트 밸브(1108)를 개방한 후 수행될 수 있다.
도 12는 로드-락 챔버를 포함한 본원 시스템을 사용하는 페로브스카이트 필름의 제조 방법을 예시하는 흐름도이다. 예를 들어 증발 온도의 램프-업 및 램프-다운 동안 AX 분자의 과잉의 증착에 의해 야기될 수 있는 필름 내 AX-풍부 영역을 감소시킴으로써 필름의 균일성을 개선시키기 위해, 도 9에 예시된 제조 공정에 로드-락 챔버의 사용에 기반한 하위-공정이 부가된다. 기판(1116)을 제2 하우징(1160), 즉, 로드-락 챔버로부터 제1 하우징(1100), 즉, 주요 챔버로 전달하기 위한 제1 하위-공정(1200)은 차례로 도 11의 (A), 도 11의 (B), 도 11의 (C) 및 도 11의 (D)에 예시된 시스템 구성의 순서를 들어 상기에 기재되어 있다. 상기 제1 하위-공정은 도 9에 예시된 공정에서 단계(924) 이후 및 단계(928) 이전에 수행될 수 있다. 성장된 필름을 갖는 기판(1116)을 제1 하우징(1100), 즉, 주요 챔버로부터 제2 하우징(1160), 즉, 로드-락 챔버로 전달하기 위한 제2 하위-공정(1204)은 차례로 도 11의 (D), 도 11의 (C), 도 11의 (B) 및 도 11의 (A)에 예시된 시스템 구성의 역 순서를 들어 상기에 기재되어 있다. 상기 제2 하위-공정은 도 9에 예시된 공정에서 단계(944) 이후에 수행될 수 있다.
하기에는 페로브스카이트 필름을 성장시키기 위한 본원 시스템 및 방법을 사용하여 수득된 실험 결과의 일부가 기재되어 있다. 도 1에 예시된 시스템에 기반하여 클로라이드 아이오다이드 페로브스카이트 필름 CH3NH3PbI3 - XClX를 성장시키기 위해 AX 공급원 재료로 MAI 및 BX2 공급원 재료로 PbCl2를 사용하는 예가 이하에서 주어지며, 여기서 도 5의 (A) 내지 도 5의 (C)에 예시된 바와 같은 가열 부재를 갖는 접시-형상의 도가니가 제1 증발기 유닛(120)을 위해 사용되고, 도 4의 (A)에 예시된 바와 같은 하우징(100)의 측면 구획에 결합된 전지 증발기가 제2 증발기 유닛(124)을 위해 사용된다. 도 12에서 단계(1200) 및 (1204)로서 로드-락 챔버를 사용하는 제1 및 제2 하위-공정이 본 예를 위한 제조 공정에 포함된다. 기판 스테이지(112)는 5 cm × 5 cm의 치수를 갖는 큰 기판(116)을 수용하도록 구성된다. 하기 결과는 약 50 nm 및 약 135 nm의 두께로 성장된 페로브스카이트 필름과 관계가 있다.
도 13은 본원 제조 시스템 및 방법에 의해 성장된 클로라이드 아이오다이드 페로브스카이트 필름 CH3NH3PbI3 - XClX를 포함한 태양 전지의 광기전 장치 특성 분석을 나타내는 J-V 곡선의 플롯이다. 약 50 nm의 두께를 갖는 필름 및 약 135 nm의 두께를 갖는 필름에 대한 결과를 각각 정사각형 및 원형을 포함한 선으로 플롯팅한다. J-V 곡선을 얻기 위한 측정은 100 mW/cm2의 모의 AM1.5G 태양광 조사 하에 수행하였다. 약 50 nm 필름에 대한 J-V 곡선으로부터, 단락 전류 밀도 (Jsc)는 10.5 mA/cm2이고, 개방 회로 전압 (Voc)은 1.06 V이고, 충전 계수 (FF)는 0.566임을 알 수 있다. 이 샘플은 약 6.3%의 전력 변환 효율 (PCE)을 갖는다. 약 135 nm 필름에 대한 J-V 곡선으로부터, 단락 전류 밀도 (Jsc)는 17 mA/cm2이고, 개방 회로 전압 (Voc)은 1.09 V이고, 충전 계수 (FF)는 0.535임을 알 수 있다. 이 샘플은 약 9.9%의 전력 변환 효율 (PCE)을 갖는다. 각 필름의 동일한 배치(batch)로부터의 모든 6개의 태양 전지는 유사한 J-V 성능을 나타냈고, 이로써 100%의 장치 수율을 나타낸다.
도 14는 약 50 nm의 두께를 갖는 CH3NH3PbI3 - XClX 필름의 X-선 회절 (XRD) 스펙트럼을 나타내는 플롯이다. 상기 XRD 스펙트럼은 사방정계 구조의 (110), (220) 및 (330)면에 상응하는 14.0°, 28.4° 및 43.1°의 피크를 갖는 유기금속 할라이드 페로브스카이트 특성을 나타낸다. 피크(110)는 본원 제조 공정에서 어닐링 없이도 (220) 피크보다 더 강함을 참고하여야 한다. 일반적으로, CH3NH3PbI3 상 형성은 XRD 스펙트럼에서 15.7°의 피크로 나타나지만; 이 피크는 도 14의 본원 스펙트럼에서는 존재하지 않는다. 15.7°의 피크의 부재 및 (330) 피크의 검출은 함께 본원 시스템 및 방법에 의해 성장된 CH3NH3PbI3 - XClX 필름의 높은 상-순도 및 결정도를 나타낸다. XRD 측정에 기반한 추가의 연구로부터, 상 순도는 실온 (15℃ 내지 25℃의 범위)의 기판 온도로 제조된 페로브스카이트 필름에서 최적인 것으로 나타났다. 기판 온도에 따른 결정 모폴로지의 변화는 기판에 대한 MAI의 점착 계수의 온도 의존성의 원인이 될 수 있다. 점착 계수는 일반적으로 기판에 실제로 접착하는 공급원으로부터의 입사 분자의 분율로서 규정된다. MAI는 그의 점착 계수가 저온에서는 높아지고 고온에서는 낮아지도록 하는 화학적 성질을 갖는다. 따라서, 예를 들어 -20℃ 미만의 저온에서는 MAI 점착 계수가 높지만, 기판 상의 페로브스카이트의 부분 커버리지(coverage)가 발생할 우려가 있다. 예를 들어 80℃ 초과의 고온에서는, MAI의 작은 점착 계수 및 과량의 PbCl2 때문에 적합한 화학량비를 갖는 페로브스카이트 필름을 형성하는 것이 어렵다.
도 15는 5 cm × 5 cm 표면적을 갖는 주석-도핑된 인듐 산화물 (ITO)/유리 기판 상에 성장된 약 135 nm 두께의 CH3NH3PbI3 - XClX 필름의 X-선 회절 (XRD) 스펙트럼을 나타내는 플롯이다. 삽도는 XRD 측정을 위해 선택된 샘플 상의 12개의 상이한 위치를 예시한다. 이 플롯으로부터, 12개의 상이한 위치에서의 XRD 스펙트럼은 사방정계 구조의 (110), (220) 및 (330)면에 상응하는 14.0°, 28.4° 및 43.1°에서의 유기금속 할라이드 페로브스카이트 특성을 나타내는, 유사한 강도의 회절 피크들을 가짐을 알 수 있다. 상기 결과로부터, 본원 시스템 및 방법을 사용함으로써 큰 기판에 걸쳐 페로브스카이트 필름의 균일성 및 높은 결정도가 달성됨이 입증된다.
도 16은 ITO/유리 기판 상에 성장된 약 50 nm 두께의 CH3NH3PbI3 - XClX 필름의 원자간력 현미경 (AFM) 이미지를 나타내는 사진이다. AFM 이미지로부터, 약 50 nm 두께의 필름의 전형적인 제곱평균제곱근 (root-mean square, RMS) 조도는 약 4.6 nm임을 알 수 있다. 유사하게, 약 135 nm의 필름의 전형적인 RMS 조도는 약 9 nm인 것으로 측정되었다.
도 17은 약 135 nm 두께의 CH3NH3PbI3 - XClX 필름의 광 흡수성을 나타내는 플롯이다. 약 780 nm에서의 뚜렷한 상승은 1.59 eV의 밴드갭(bandgap)에 상응한다.
도 18은 각각 약 50 nm 두께 및 약 135 nm 두께의 CH3NH3PbI3 - XClX 필름을 포함하는 실제 장치의 사진을 나타낸다. 색상은 양쪽 경우 모두 반투명한 밝은 오렌지색이다.
본 문헌은 많은 세부사항을 함유하고 있지만, 이것들은 청구될 수 있는 것 또는 본 발명의 범위에 대한 제한으로서 간주되어서는 안되며, 오히려 본 발명의 특정 실시양태에 대한 구체적 특징의 설명으로서 간주되어야 한다. 별도의 실시양태에서 본 문헌에 기재된 특정 특징은 또한 단일 실시양태에서 조합으로 구현될 수 있다. 역으로, 단일 실시양태에서 기재된 다양한 특징은 또한 임의의 적합한 하위조합으로 또는 별도로 다수의 실시양태에서 구현될 수 있다. 또한, 비록 특징들은 특정 조합으로 작용하는 것으로서 상기 기재되고 심지어 먼저 그와 같이 청구될 수 있으나, 청구된 조합으로부터의 하나 이상의 특징은 일부의 경우 조합으로부터 실행될 수 있고, 청구된 조합은 하위조합 또는 하위조합의 변형에 관한 것일 수 있다.

Claims (34)

  1. 공급원 재료 AX 및 BX2를 사용하여, 태양 전지 응용을 위한 페로브스카이트 필름을 제조하기 위한 시스템으로서,
    AX는 메틸암모늄 (MA), 포름아미디늄 (FA) 및 5-아미노발레르산 (5-AVA)으로 이루어진 군으로부터 선택된 유기 요소 A, 및 Cl, I 및 Br로 이루어진 군으로부터 선택된 할로겐 원소 X를 갖는 유기 재료, 또는 상기 유기 재료 둘 이상의 조합이고; BX2는 Pb 및 Sn으로 이루어진 군으로부터 선택된 금속 원소 B, 및 Cl, I 및 Br로 이루어진 군으로부터 선택된 할로겐 원소 X를 갖는 금속 할라이드 재료, 또는 상기 금속 할라이드 재료 둘 이상의 조합이며, 상기 시스템은
    수직 방향을 따라 측면 구획 및 수평 방향을 따라 상단 및 하단 구획을 가지며 진공 챔버로서 사용되는 하우징;
    하우징의 상단 구획에 결합되고, 기판을 배치하기 위한 수직 하향 스테이지 표면을 갖도록 구성된 기판 스테이지;
    하우징의 하단 구획에 결합되고, BX2 증기를 생성하도록 구성된 제1 증발기 유닛;
    하우징에 결합되고, AX 증기를 생성하도록 구성된 제2 증발기 유닛; 및
    하우징 내에서 AX 증기의 순환을 제어하기 위해 하우징에 결합된 유동 제어 유닛
    을 포함하고, 여기서
    제1 증발기 유닛의 수평 단면 형상의 치수, 기판 스테이지의 수평 단면 형상의 치수, 및 상기 두 수평 단면 형상들 간의 수평 방향에서의 상대 위치는 상기 두 수평 단면 형상들 간의 중첩을 최대화하도록 구성된 것인 시스템.
  2. 제1항에 있어서, 기판 스테이지의 스테이지 표면이 5 cm × 5 cm 이상의 크기를 갖는 기판을 수용하기 위한 면적을 갖도록 구성되고, 기판은 일체형 기판 또는 복수의 기판의 집합체인 시스템.
  3. 제1항에 있어서, 기판 스테이지, 제1 증발기 유닛, 제2 증발기 유닛 및 유동 제어 유닛이, AX의 증착은 하우징 내 순환하는 AX 증기에 기반하여 실질적으로 덜 방향성이게 할 수 있으면서, BX2 증기의 증착은 제1 증발기 유닛에서부터 기판으로의 조준선(line-of-sight) 전달에 따라 실질적으로 방향성이게 할 수 있도록 구성된 것인 시스템.
  4. 제1항에 있어서, 유동 제어 유닛이 AX 증기의 순환을 제어하여 기판에 걸쳐 실질적으로 균일한 AX 증기의 유동을 생성하도록 구성된 것인 시스템.
  5. 제1항에 있어서, 유동 제어 유닛이 팬(fan) 시스템, 펌프 시스템 또는 이들의 조합을 포함하는 것인 시스템.
  6. 제1항에 있어서,
    기판 스테이지 아래쪽에 제공되고, 기판 스테이지를 노출시키거나 또는 커버하여 기판 상으로의 BX2 증기의 증착을 제어하기 위해 이동되도록 구성된 제1 셔터; 및
    제1 증발기 유닛 위쪽에 제공되고, 제1 증발기 유닛을 노출시키거나 또는 커버하여 BX2 증기의 유동을 제어하기 위해 이동되도록 구성된 제2 셔터
    를 추가로 포함하는 시스템.
  7. 제1항에 있어서, 기판 스테이지의 온도가 기판에 -190℃ 내지 200℃ 범위의 균일한 냉각 또는 가열을 제공하도록 제어되는 것인 시스템.
  8. 제7항에 있어서, 기판 스테이지의 온도가 기판이 15℃ 내지 25℃의 범위의 실온을 갖도록 제어되는 것인 시스템.
  9. 제1항에 있어서, 제1 증발기 유닛과 관련된 제1 증발 온도가 BX2 증기를 생성하기 위한 제1 증발률을 조절하도록 제어되는 것인 시스템.
  10. 제9항에 있어서, 제1 증발기 유닛이 분말 형태의 BX2를 함유하기 위한 용기, 및 용기를 균일하게 가열하도록 구성된 가열 부재를 포함하고, 상기 가열 부재는 제1 증발 온도를 제공하여 BX2 증기를 생성하기 위한 제1 증발률을 조절하도록 제어되는 것인 시스템.
  11. 제1항에 있어서, 제2 증발기 유닛과 관련된 제2 증발 온도가 AX 증기를 생성하기 위한 제2 증발률을 조절하도록 제어되는 것인 시스템.
  12. 제11항에 있어서, 제2 증발기 유닛이 분말 형태의 AX를 함유하기 위한 용기, 및 용기를 균일하게 가열하도록 구성된 가열 부재를 포함하고, 상기 가열 부재는 제2 증발 온도를 제공하여 AX 증기를 생성하기 위한 제2 증발률을 조절하도록 제어되는 것인 시스템.
  13. 제1항에 있어서, 제2 증발기 유닛이 하우징의 측면 구획에 결합된 것인 시스템.
  14. 제1항에 있어서, 제2 증발기 유닛이 하우징의 하단 구획에 결합된 것인 시스템.
  15. 제14항에 있어서, 제1 증발기 유닛과 제2 증발 유닛 간의 열적 간섭을 감소시키기 위해 제1 증발기 유닛과 제2 증발 유닛 사이에 차폐물을 추가로 포함하는 시스템.
  16. 제1항에 있어서, 제2 증발기 유닛이 제2 증발기 유닛에서 나오는 AX 증기의 플럭스(flux)를 제어하기 위한 밸브 또는 증발기 셔터를 포함하는 것인 시스템.
  17. 제1항에 있어서, 하우징 내부의 압력을 공급원 재료들 간의 화학적 반응 및 공급원 재료의 효율적인 사용에 최적인 값으로 제어하기 위해 하우징과 펌프 유닛 사이에 결합된 게이트 밸브를 추가로 포함하는 시스템.
  18. 제17항에 있어서, 게이트 밸브가 적어도 제1 및 제2 위치를 채택하도록 구성되고, 상기 제1 위치는 AX 증기압을 제어하여 AX 증기의 순환을 안정화시키기 위해 사용되고, 제2 위치는 증착이 완료된 후 하우징으로부터 잔류 증기를 펌핑 제거하기 위해 사용되는 것인 시스템.
  19. 제1항에 있어서, BX2 증기 및 기판 상에 성장하는 페로브스카이트 필름의 두께를 모니터링하기 위한 제1 모니터를 추가로 포함하는 시스템.
  20. 제1항에 있어서, AX 증기를 모니터링하기 위한 제2 모니터를 추가로 포함하는 시스템.
  21. 제1항에 있어서, 하우징의 온도가 약 70℃로 유지되는 것인 시스템.
  22. 제1항에 있어서,
    로드-락(load-lock) 챔버로서 사용되는 제2 하우징;
    제2 펌프 유닛과 제2 하우징 사이에 결합된 제2 게이트 밸브로서, 제2 게이트 밸브 및 제2 펌프는 제2 하우징 내부의 압력을 제어하도록 구성된 것인 제2 게이트 밸브;
    하우징과 제2 하우징 간의 소통을 제어하기 위해 하우징과 제2 하우징 사이에 결합된 제3 게이트 밸브; 및
    하우징과 제2 하우징 사이의 기판을 전달하기 위해 하우징에 결합된 샘플 전달 시스템
    을 추가로 포함하는 시스템.
  23. 제22항에 있어서, 샘플 전달 시스템이
    물체를 고정 및 방출하기 위한 기계적 장치; 및
    기계적 장치의 이동을 제어하기 위해 기계적 장치에 결합된 막대
    를 포함하는 것인 시스템.
  24. 제23항에 있어서,
    제2 하우징이 기판을 저장하도록 구성되고, 제2 펌프 유닛 및 제2 게이트 밸브는 제3 게이트 밸브가 폐쇄되면서 제2 하우징 내에서 미리 결정된 압력 수준을 갖도록 제어되며;
    하우징 내에서 AX 증기를 순환시키기 위해 공급원 재료의 증발 온도가 제어되고 유동 제어 유닛이 제어된 후, 제3 게이트 밸브가 개방되며, 기계적 장치는 제2 하우징 내에서 기판에 도달하고 그를 고정하도록 이동되고, 기판 스테이지 상에 기판을 방출 및 배치하도록 하우징으로 재이동되며; 그 후에
    제3 게이트 밸브가 폐쇄되는 것인 시스템.
  25. 제24항에 있어서,
    페로브스카이트 필름의 미리 결정된 두께가 달성된 후, 제3 게이트 밸브가 개방되며, 기계적 장치는 하우징 내에서 상부에 페로브스카이트 필름이 성장된 기판에 도달하고 그를 고정하도록 이동되고, 제2 하우징 내에서 상부에 페로브스카이트 필름이 성장된 기판을 방출 및 배치하도록 제2 하우징으로 이동되고, 하우징으로 재이동되며; 그 후에
    제3 게이트 밸브가 폐쇄되는 것인 시스템.
  26. 시스템을 사용하고, 공급원 재료 AX 및 BX2를 사용하여, 태양 전지 응용을 위한 페로브스카이트 필름을 제조하는 방법으로서,
    AX는 메틸암모늄 (MA), 포름아미디늄 (FA) 및 5-아미노발레르산 (5-AVA)으로 이루어진 군으로부터 선택된 유기 요소 A, 및 Cl, I 및 Br로 이루어진 군으로부터 선택된 할로겐 원소 X를 갖는 유기 재료, 또는 상기 유기 재료 둘 이상의 조합이고; BX2는 Pb 및 Sn으로 이루어진 군으로부터 선택된 금속 원소 B, 및 Cl, I 및 Br로 이루어진 군으로부터 선택된 할로겐 원소 X를 갖는 금속 할라이드 재료, 또는 상기 금속 할라이드 재료 둘 이상의 조합이며,
    상기 시스템은, 수직 방향을 따라 측면 구획 및 수평 방향을 따라 상단 및 하단 구획을 가지며 진공 챔버로서 사용되는 하우징; 하우징의 상단 구획에 결합되고, 기판을 배치하기 위한 수직 하향 스테이지 표면을 갖도록 구성된 기판 스테이지; 하우징의 하단 구획에 결합되고, BX2 증기를 생성하도록 구성된 제1 증발기 유닛; 하우징에 결합되고, AX 증기를 생성하도록 구성된 제2 증발기 유닛; 하우징 내에서 AX 증기의 순환을 제어하기 위해 하우징에 결합된 유동 제어 유닛; 하우징 내부의 압력을 제어하기 위해 하우징과 펌프 유닛 사이에 결합된 게이트 밸브; 기판 스테이지 아래쪽에 제공되고, 기판 스테이지를 노출시키거나 또는 커버하기 위해 이동되도록 구성된 제1 셔터; 및 제1 증발기 유닛 위쪽에 제공되고, 제1 증발기 유닛을 노출시키거나 또는 커버하기 위해 이동되도록 구성된 제2 셔터를 포함하며, 상기 방법은
    기판에 균일한 냉각 또는 가열을 제공하기 위해 기판 스테이지의 온도를 제어하는 단계;
    기판을 커버하기 위해 제1 셔터를 이동시키는 단계;
    제1 증발기 유닛을 노출시키기 위해 제2 셔터를 이동시키는 단계;
    게이트 밸브를 제1 위치로 개방하는 단계;
    BX2 증기를 생성하기 위한 제1 증발률을 조절하기 위해 제1 증발기 유닛과 관련된 제1 증발 온도를 제어하는 단계;
    AX 증기를 생성하기 위한 제2 증발률을 조절하기 위해 제2 증발기 유닛과 관련된 제2 증발 온도를 제어하는 단계;
    AX 증기의 순환을 제어하기 위해 유동 제어 유닛을 제어하는 단계;
    기판을 노출시키기 위해 제1 셔터를 이동시키는 단계;
    기판 상에 성장하는 페로브스카이트 필름의 두께를 모니터링하는 단계;
    페로브스카이트 필름의 두께가 미리 결정된 두께에 도달할 때 기판을 커버하기 위해 제1 셔터를 이동시키는 단계;
    제1 및 제2 증발기 유닛의 가열을 종결하는 단계; 및
    하우징 내부의 잔류 증기를 펌핑 제거하기 위해 게이트 밸브를 제2 위치로 개방하는 단계
    를 포함하며, 여기서
    제1 증발기 유닛의 수평 단면 형상의 치수, 기판 스테이지의 수평 단면 형상의 치수, 및 상기 두 수평 단면 형상들 간의 수평 방향에서의 상대 위치는 상기 두 수평 단면 형상들 간의 중첩을 최대화하도록 구성된 것인 방법.
  27. 제26항에 있어서, 기판 스테이지, 제1 증발기 유닛, 제2 증발기 유닛 및 유동 제어 유닛이, AX의 증착은 하우징 내 순환하는 AX 증기에 기반하여 실질적으로 덜 방향성이게 할 수 있으면서, BX2 증기의 증착은 제1 증발기 유닛에서부터 기판으로의 조준선 전달에 따라 실질적으로 방향성이게 할 수 있도록 구성된 것인 방법.
  28. 제26항에 있어서, 기판 스테이지의 스테이지 표면이 5 cm x 5 cm 이상의 크기를 갖는 기판을 수용하기 위한 면적을 갖도록 구성되고, 기판은 일체형 기판 또는 복수의 기판의 집합체인 방법.
  29. 제26항에 있어서, 기판 스테이지의 온도를 제어하는 단계가, 기판이 15℃ 내지 25℃ 범위의 실온을 갖도록 기판 스테이지의 온도를 제어하는 단계를 포함하는 것인 방법.
  30. 제26항에 있어서, 기판 스테이지의 온도를 제어하는 단계 전에 기판 스테이지 상에 기판을 배치하는 단계를 추가로 포함하는 방법.
  31. 제26항에 있어서, 시스템이
    로드-락 챔버로서 사용되는 제2 하우징; 제2 펌프 유닛과 제2 하우징 사이에 결합된 제2 게이트 밸브로서, 제2 게이트 밸브 및 제2 펌프는 제2 하우징 내부의 압력을 제어하도록 구성된 것인 제2 게이트 밸브; 하우징과 제2 하우징 간의 소통을 제어하기 위해 하우징과 제2 하우징 사이에 결합된 제3 게이트 밸브; 및 하우징과 제2 하우징 사이의 기판을 전달하기 위해 하우징에 결합된 샘플 전달 시스템을 추가로 포함하며, 방법은
    기판을 제2 하우징 내에 저장하는 단계;
    제3 게이트 밸브가 폐쇄되면서 제2 하우징 내 미리 결정된 압력 수준을 갖도록 제2 펌프 유닛 및 제2 게이트 밸브를 제어하는 단계;
    제3 게이트 밸브를 개방하는 단계;
    제2 하우징 내에서 기판에 도달하고 그를 고정시키고, 기판을 제2 하우징으로부터 하우징으로 전달하고, 기판 스테이지 상에 기판을 방출 및 배치하도록 샘플 전달 시스템을 제어하는 단계;
    제3 게이트 밸브를 폐쇄하는 단계
    를 추가로 포함하고, 여기서 제3 게이트 밸브를 개방하는 단계부터 제3 게이트 밸브를 페쇄하는 단계는, AX 증기의 순환을 제어하기 위해 유동 제어 유닛을 제어하는 단계 이후, 및 기판을 노출시키기 위해 제1 셔터를 이동시키는 단계 이전에 수행되는 것인 방법.
  32. 제31항에 있어서,
    제3 게이트 밸브를 개방하는 단계;
    하우징 내에서 상부에 페로브스카이트 필름이 성장된 기판에 도달하고 그를 고정시키고, 상부에 페로브스카이트 필름이 성장된 기판을 하우징으로부터 제2 하우징으로 전달하고, 제2 하우징 내에서 상부에 페로브스카이트 필름이 성장된 기판을 방출 및 배치하도록 샘플 전달 시스템을 제어하는 단계; 및
    제3 게이트 밸브를 폐쇄하는 단계
    를 추가로 포함하며, 여기서 제3 게이트 밸브를 개방하는 단계부터 제3 게이트 밸브를 폐쇄하는 단계는, 하우징 내부의 잔류 증기를 펌핑 제거하기 위해 게이트 밸브를 제2 위치로 개방하는 단계 이후에 수행되는 것인 방법.
  33. 단위 전지로서 ABX3 구조(여기서, A는 MA, FA 또는 5-AVA이고, B는 Pb 또는 Sn이고, X는 Cl, I 또는 Br임)를 갖는 페로브스카이트 구조를 갖는 페로브스카이트 필름으로서,
    페로브스카이트 필름의 X-선 회절 스펙트럼은 5 cm × 5 cm 이상의 표면적 내에서 (110)면 피크, (220)면 피크 및 (330)면 피크를 갖는 것인 페로브스카이트 필름.
  34. 제33항에 있어서, 상기 페로브스카이트 필름은 CH3NH3PbI3 - xClx 필름이며, 페로브스카이트 필름의 X-선 회절 스펙트럼이 5 cm × 5 cm 이상의 표면적 내에서 15.7°의 피크를 갖지 않는 것인 페로브스카이트 필름.
KR1020167030700A 2014-05-05 2015-04-10 태양 전지 응용을 위한 페로브스카이트 필름을 제조하기 위한 시스템 및 방법 KR101864522B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461988547P 2014-05-05 2014-05-05
US61/988,547 2014-05-05
PCT/JP2015/002041 WO2015170445A1 (en) 2014-05-05 2015-04-10 System and method for fabricating perovskite film for solar cell applications

Publications (2)

Publication Number Publication Date
KR20160148560A true KR20160148560A (ko) 2016-12-26
KR101864522B1 KR101864522B1 (ko) 2018-06-04

Family

ID=54392305

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167030700A KR101864522B1 (ko) 2014-05-05 2015-04-10 태양 전지 응용을 위한 페로브스카이트 필름을 제조하기 위한 시스템 및 방법

Country Status (6)

Country Link
US (2) US20170229647A1 (ko)
EP (1) EP3140873B1 (ko)
JP (1) JP6388458B2 (ko)
KR (1) KR101864522B1 (ko)
CN (1) CN106463625B (ko)
WO (1) WO2015170445A1 (ko)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021112A1 (en) * 2014-08-07 2016-02-11 Okinawa Institute Of Science And Technology School Corporation System and method based on multi-source deposition for fabricating perovskite film
KR101869212B1 (ko) * 2014-08-21 2018-06-19 각코호진 오키나와가가쿠기쥬츠다이가쿠인 다이가쿠가쿠엔 페로브스카이트 필름 제작을 위한 저압 화학 증착에 기초한 시스템 및 방법
EP3216066B1 (en) 2014-11-05 2021-05-26 Okinawa Institute of Science and Technology School Corporation Doping engineered hole transport layer for perovskite-based device
US10790096B2 (en) 2015-09-11 2020-09-29 Okinawa Institute Of Science And Technology School Corporation Formation of lead-free perovskite film
CN105470391B (zh) * 2015-11-23 2019-01-08 中国科学院上海硅酸盐研究所 有机无机杂化钙钛矿薄膜以及钙钛矿太阳能电池的制备方法
CN106229415A (zh) * 2016-08-11 2016-12-14 佛山千里目科技有限公司 一种制备金属卤化物钙钛矿的方法及其装置
CN107785488A (zh) * 2016-08-25 2018-03-09 杭州纤纳光电科技有限公司 钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用
US20180151301A1 (en) * 2016-11-25 2018-05-31 The Boeing Company Epitaxial perovskite materials for optoelectronics
US10861992B2 (en) 2016-11-25 2020-12-08 The Boeing Company Perovskite solar cells for space
PL3563435T3 (pl) * 2016-12-29 2022-07-18 Joint Stock Company Krasnoyarsk Hydropower Plant (Jsc Krasnoyarsk Hpp) Sposoby wytwarzania materiałów pochłaniających światło o strukturze perowskitu i ciekłych polihalogenków o zmiennym składzie do ich realizacji
CN107058976A (zh) * 2017-03-28 2017-08-18 常州大学 用于制备大面积钙钛矿薄膜的脉冲cvd设备
CN107119256B (zh) * 2017-04-27 2019-05-21 南京大学 一种锡基钙钛矿薄膜的制备方法
WO2018231909A1 (en) * 2017-06-13 2018-12-20 Board Of Trustees Of Michigan State University Method for fabricating epitaxial halide perovskite films and devices
CN109536893A (zh) * 2017-09-22 2019-03-29 杭州纤纳光电科技有限公司 一种太阳能电池薄膜的制备设备及其制备方法
CN108232038A (zh) * 2018-01-08 2018-06-29 电子科技大学 一种基于钙铁矿薄膜的发光二极管及其制备方法
CN110047774B (zh) * 2018-01-17 2021-08-27 杭州纤纳光电科技有限公司 一种沉浸式制备钙钛矿薄膜的设备及使用方法和应用
DE202019101706U1 (de) 2018-04-12 2019-06-07 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Vorrichtung zur Abscheidung eines Deposits als Precursor für eine Perowskitschicht
CN108417739B (zh) * 2018-05-09 2019-11-26 电子科技大学 一种基于喷涂工艺的钙钛矿发光二极管及其制备方法
WO2020018626A1 (en) * 2018-07-18 2020-01-23 Massachusetts Institute Of Technology Alternating multi-source vapor transport deposition
CN109449300A (zh) * 2018-12-28 2019-03-08 杭州纤纳光电科技有限公司 一种钙钛矿太阳能电池生产的在线监测设备及其监测方法
CN110212092B (zh) * 2019-04-11 2020-12-08 浙江大学 梯度结构特征的二维Ruddlesden-Popper杂化钙钛矿薄膜及其制备方法
US20200332408A1 (en) * 2019-04-19 2020-10-22 Hunt Perovskite Technologies, L.L.C. Method for Solvent-Free Perovskite Deposition
JP7374662B2 (ja) * 2019-08-28 2023-11-07 キヤノン株式会社 蒸着装置
US11765964B2 (en) 2020-07-31 2023-09-19 Alliance For Sustainable Energy, Llc Compositions and methods for stabilizing perovskite interfaces
CN112490371B (zh) * 2020-10-30 2022-12-09 西安交通大学 一种太阳电池基体绒面熏蒸预涂与干燥一体化方法及设备
US20220325398A1 (en) * 2021-04-13 2022-10-13 Applied Materials, Inc. Method Of Forming A Halide-Containing Perovskite Film
CN113471367B (zh) * 2021-06-30 2023-11-28 无锡极电光能科技有限公司 制备钙钛矿膜层的系统和方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010071118A (ko) * 1999-01-13 2001-07-28 히가시 데츠로 액체 선구 물질을 사용하는 금속층의 화학 증착용 처리시스템 및 방법
US6364956B1 (en) * 1999-01-26 2002-04-02 Symyx Technologies, Inc. Programmable flux gradient apparatus for co-deposition of materials onto a substrate
US20080138517A1 (en) * 2006-12-07 2008-06-12 Seong Deok Ahn Organic/inorganic thin film deposition device and deposition method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT238350B (de) * 1962-08-14 1965-02-10 Temescal Metallurgical Corp Verfahren zum Überziehen von Oberflächen mit Kunststoffen
US4855013A (en) 1984-08-13 1989-08-08 Agency Of Industrial Science And Technology Method for controlling the thickness of a thin crystal film
DE3530106A1 (de) 1985-08-23 1987-02-26 Kempten Elektroschmelz Gmbh Aufdampfgut zum aufdampfen anorganischer verbindungen mittels einer photonen-erzeugenden strahlungsheizquelle in kontinuierlich betriebenen vakuumbedampfungsanlagen
US5648114A (en) 1991-12-13 1997-07-15 Symetrix Corporation Chemical vapor deposition process for fabricating layered superlattice materials
JPH069297A (ja) * 1991-12-09 1994-01-18 Sumitomo Electric Ind Ltd 成膜装置
JPH06223970A (ja) * 1993-01-25 1994-08-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JP3401558B2 (ja) * 1999-12-14 2003-04-28 独立行政法人産業技術総合研究所 エピタキシャル複合構造体およびこのものを利用した素子
EP1167566B1 (en) 2000-06-22 2011-01-26 Panasonic Electric Works Co., Ltd. Apparatus for and method of vacuum vapor deposition
US6770562B2 (en) 2000-10-26 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
JP4704605B2 (ja) 2001-05-23 2011-06-15 淳二 城戸 連続蒸着装置、蒸着装置及び蒸着方法
JP2003133299A (ja) 2001-10-24 2003-05-09 Oki Electric Ind Co Ltd 半導体製造装置および半導体製造方法
US20040000379A1 (en) 2002-06-27 2004-01-01 Ulvac, Inc. Evaporation container and evaporation source
AU2003210381A1 (en) * 2003-02-28 2004-09-17 Pirelli And C. S.P.A Method for depositing a film of superconducting material
JP2005126821A (ja) * 2003-09-30 2005-05-19 Fuji Photo Film Co Ltd 真空蒸着装置および真空蒸着の前処理方法
WO2006034540A1 (en) 2004-09-27 2006-04-06 Gallium Enterprises Pty Ltd Method and apparatus for growing a group (iii) metal nitride film and a group (iii) metal nitride film
US7776733B2 (en) * 2007-05-02 2010-08-17 Tokyo Electron Limited Method for depositing titanium nitride films for semiconductor manufacturing
EP2113584A1 (en) * 2008-04-28 2009-11-04 LightLab Sweden AB Evaporation system
CN101280418B (zh) * 2008-04-29 2010-09-01 南京邮电大学 具有多层辐射式蒸发源分布结构的多源真空蒸镀装置
US20100159132A1 (en) 2008-12-18 2010-06-24 Veeco Instruments, Inc. Linear Deposition Source
CN101962750B (zh) * 2009-07-24 2013-07-03 株式会社日立高新技术 真空蒸镀方法及其装置
HUE059781T2 (hu) * 2012-09-18 2022-12-28 Univ Oxford Innovation Ltd Optoelektronikai eszköz
US10181538B2 (en) 2015-01-05 2019-01-15 The Governing Council Of The University Of Toronto Quantum-dot-in-perovskite solids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010071118A (ko) * 1999-01-13 2001-07-28 히가시 데츠로 액체 선구 물질을 사용하는 금속층의 화학 증착용 처리시스템 및 방법
US6364956B1 (en) * 1999-01-26 2002-04-02 Symyx Technologies, Inc. Programmable flux gradient apparatus for co-deposition of materials onto a substrate
US20080138517A1 (en) * 2006-12-07 2008-06-12 Seong Deok Ahn Organic/inorganic thin film deposition device and deposition method
JP2008144276A (ja) * 2006-12-07 2008-06-26 Korea Electronics Telecommun 有機物/無機物複合薄膜の蒸着方法及び蒸着装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
비특허 문헌
비특허 문헌 1: Julian Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, vol. 499, 316-320 (2013).
비특허 문헌 2: Mingzhen Liu et al., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, vol. 000, 1-8 (2013).
비특허 문헌 3: Dianyi Liu et al., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, vol. 8 133-138 (2014).
비특허 문헌 4: Olga Malinkiewicz et al., Perovskite solar cells employing organic charge-transport layers. Nature Photonics, vol. 8 128-132 (2014)
비특허 문헌 5: Nam-Gyu Park, Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. J. Phys. Chem. Lett. 2423-2429 (2013)

Also Published As

Publication number Publication date
US20190218657A1 (en) 2019-07-18
EP3140873A1 (en) 2017-03-15
US20170229647A1 (en) 2017-08-10
EP3140873A4 (en) 2018-01-10
CN106463625A (zh) 2017-02-22
KR101864522B1 (ko) 2018-06-04
EP3140873B1 (en) 2021-08-25
CN106463625B (zh) 2019-04-26
US11447858B2 (en) 2022-09-20
JP2017515313A (ja) 2017-06-08
WO2015170445A1 (en) 2015-11-12
JP6388458B2 (ja) 2018-09-12

Similar Documents

Publication Publication Date Title
KR101864522B1 (ko) 태양 전지 응용을 위한 페로브스카이트 필름을 제조하기 위한 시스템 및 방법
US11293101B2 (en) Method based on multi-source deposition for fabricating perovskite film
EP3304611B1 (en) Gas-induced perovskite formation
CN111471961A (zh) 形成无铅钙钛矿膜的方法和包含该无铅钙钛矿膜的太阳能电池装置
US9929304B2 (en) Method and system for forming absorber layer on metal coated glass for photovoltaic devices
US9905723B2 (en) Methods for plasma activation of evaporated precursors in a process chamber
KR101779508B1 (ko) 박막 태양전지 제조 장치 및 이를 이용한 열처리 공정 방법
US20130217211A1 (en) Controlled-Pressure Process for Production of CZTS Thin-Films
US8785235B2 (en) Apparatus and method for producing solar cells
US20150017756A1 (en) Apparatus and method for producing cigs absorber layer in solar cells
KR101398808B1 (ko) 태양 전지 제조장치
Hsu et al. Vapor transport deposition of metal-halide perovskites solar cells
KR101444188B1 (ko) 태양전지 광흡수층 제조장치
Unold et al. Coevaporation of CZTS Films and Solar Cells
Hsu et al. Efficient Metal‐Halide Perovskite Photovoltaic Cells Deposited via Vapor Transport Deposition
US9437761B2 (en) Method of forming chalcopyrite light-absorbing layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant