KR20150036386A - 질소 및 인을 포함하는 발광 층을 갖는 발광 다이오드 - Google Patents

질소 및 인을 포함하는 발광 층을 갖는 발광 다이오드 Download PDF

Info

Publication number
KR20150036386A
KR20150036386A KR20157003035A KR20157003035A KR20150036386A KR 20150036386 A KR20150036386 A KR 20150036386A KR 20157003035 A KR20157003035 A KR 20157003035A KR 20157003035 A KR20157003035 A KR 20157003035A KR 20150036386 A KR20150036386 A KR 20150036386A
Authority
KR
South Korea
Prior art keywords
region
light emitting
differential
emitting layer
composition
Prior art date
Application number
KR20157003035A
Other languages
English (en)
Other versions
KR102068379B1 (ko
Inventor
스테판 터코테
Original Assignee
코닌클리케 필립스 엔.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닌클리케 필립스 엔.브이. filed Critical 코닌클리케 필립스 엔.브이.
Publication of KR20150036386A publication Critical patent/KR20150036386A/ko
Application granted granted Critical
Publication of KR102068379B1 publication Critical patent/KR102068379B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 발명의 실시형태들은 n-형 영역, p-형 영역, 및 n-형 영역과 p-형 영역 사이에 배치된 발광 층을 포함한다. 발광 층은 질소 및 인을 포함하는 III-V 재료이다. 디바이스는 또한 발광 층과, p-형 영역 및 n-형 영역 중 하나 사이에 배치된 차등 영역을 포함한다. 차등 영역에서의 재료들의 조성은 차등화된다.

Description

질소 및 인을 포함하는 발광 층을 갖는 발광 다이오드{LIGHT EMITTING DIODE WITH LIGHT EMITTING LAYER CONTAINING NITROGEN AND PHOSPHOROUS}
본 발명은 질소 및 인 모두를 포함하는 III-V 발광 층을 포함하는 발광 디바이스에 관한 것이다.
발광 다이오드(LED)는 낮은 전력소비, 소형 및 고 신뢰성을 요구하는 다수의 응용에서 광원으로서 광범위하게 채택된다. 가시 스펙트럼의 황록색 내지 적색 영역의 광을 방출하는 다이오드는, 종종 GaAs 기판상에 성장된, AlGaInP 합금으로 형성된 활성 층들을 포함한다. GaAs는 흡수성이므로, 통상적으로 제거되어 투명 기판으로 교체된다.
미국 특허공개 제2009/0108276호에는 "현재 사용되는 황적색 AlInGaP-기반 발광 디바이스와 관련된 다수의 공지된 어려움이 존재한다. 예를 들어, 이들은 황적색 범위에서 낮은 내부 양자 효율 및 불량한 온도 안정성을 겪으며, 이는 통상적으로 불량한 전자 구속 때문이다. 또한, 광 흡수 GaAs 기판을 제거하고, 형성된 층에 투명 기판 또는 반사 층을 웨이퍼 접합시키는 종래의 공정은 수율이 낮고 몇 개의 비교적 고가의 가공 단계들을 추가하여 고 비용을 초래한다."고 서술된다.
도 1은 미국 특허공개 제2009/0108276호의 단락 21에 설명된 LED 구조체를 예시한다. 도 1에서, "LED 구조체는 GaP 기판(10), 그 위에 형성된 GaP 버퍼 층(12), 그 위에 형성된, GaP 배리어 층의 교호 층들(interleaved layers) 및 InmGa1-mNcP1-c 층(여기에서, 0.001<c<0.05 및 0≤m≤0.4) 활성층을 포함하는 활성 영역(14), 그 위에 형성된 GaP 캡/콘택 층(16)을 포함할 수 있다. 이러한 특정 구조체의 일부 실시형태들에서, GaP 기판(10) 및 GaP 버퍼 층(12)은 n-형일 수 있고 캡/콘택 층(16)은 p-형일 수 있다."
본 발명의 목적은 녹색과 적색 사이의 피크 파장을 갖는 광을 방출하는 효율적인 발광 디바이스를 제공하는 것이다.
본 발명의 실시형태들은 n-형 영역, p-형 영역, 및 n-형 영역과 p-형 영역 사이에 배치된 발광 층을 포함한다. 발광 층은 질소 및 인을 포함하는 III-V 재료이다. 디바이스는 또한 발광 층과, p-형 영역 및 n-형 영역 중 하나 사이에 배치된 차등 영역(graded region)을 포함한다. 차등 영역에서의 조성은 차등화된다.
본 발명의 실시형태들에 따른 방법은 n-형 영역과 p-형 영역 사이에 배치된 발광 층을 성장시키는 단계, 및 발광 층과, p-형 영역 및 n-형 영역 중 하나 사이에 배치된 차등 영역을 성장시키는 단계를 포함한다. 발광 층은 질소 및 인을 포함하는 III-V 재료이다. 차등 영역에서의 조성은 차등화되거나 변화한다. 본 발명에 사용된 바와 같이, 조성은 층의 화학적 조성, 예를 들어 반도체 층을 이루는 구성 원자들의 상대량을 지칭한다.
도 1은 GaP 기판상에 형성된 LED 구조체를 예시한다.
도 2는 적어도 하나의 희석 질화물 발광 층을 포함하는 GaP 기판상에 성장시킨 LED 구조체를 예시한다.
도 3 및 4는 적어도 하나의 희석 질화물 발광 층을 갖는 LED 구조체 상의 금속 콘택들 배열의 2가지 예를 예시한다.
도 5는 플립 칩 LED 구조체를 예시한다.
도 6은 성장 기판이 제거된 LED 구조체를 예시한다.
도 7은 희석 질화물 발광 층들에 대한 질소 조성의 함수로서 파장의 그래프이다.
도 8은 얇은 발광 층들을 갖는 LED 구조체에 대한 위치 함수로서의 에너지 밴드 다이어그램이다.
도 9는 두꺼운 발광 층들을 갖는 LED 구조체에 대한 위치 함수로서의 에너지 밴드 다이어그램이다.
III-인화물 및 III-질화물 재료는 종종, 적색 또는 청색 광을 방출하는 LED를 제조하기 위해 사용된다. 상기 재료들은, 예를 들어 불량한 재료 품질로 인해 500과 600 nm 사이 범위의 피크 파장을 갖는 광을 효율적으로 방출할 수 없다. 500과 600 nm 사이의 피크 파장을 갖는 광을 방출하는 InGaN 및 AlInGaP 발광 층들은 종종, 상당히 높은 수준의 변형을 갖고 성장하여, 비방사 재결합(non-radiative recombination)의 원인이 되는 결함들을 초래하고, 이는 LED의 효율을 감소시킬 수 있다.
본 발명의 실시형태들에서, GaP 기판들 위에 성장된 희석 질화물 InGaPN 발광 층들은 거의 격자 부합되게(즉, 변형이 거의 없거나 없도록) 성장될 수 있으며, 원하는 파장들에서 광을 방출할 수 있다. "희석 질화물" 반도체는 질소 및 적어도 하나의 다른 V족 원자를 갖는 III-V 층들을 지칭한다. 예들은 InGaAsN 및 InGaPN을 포함한다. V족 총 함량에 대한 질소 함량은 일반적으로 수% 이하이다. 희석 질화물 층들에서, 반도체들의 타겟 파장 방출을 조율하기에 바람직한 특성인 질소 함량의 적은 변화와 함께 밴드 갭이 급격하게 변화할 수 있다. GaPN 합금에서, 밴드(band) 구조에서 서브 밴드들(subbands)의 형성은 간접 재료(indirect material)인 GaP를 LED와 같은 발광 디바이스에 적합한 직접 재료(direct material)로 변형시킨다. GaP 상에 성장될 경우 GaPN은 장력이 작용하며, GaP 상에 성장될 경우 InGaP는 압축이 작용한다. 따라서, InGaPN 합금은 GaP 기판에 격자-부합되거나 거의 격자-부합되어 성장될 수 있다.
도 2는 일부 실시형태들에 따른, 희석 질화물 발광 층을 포함하는 디바이스를 예시한다. 하기 설명된 발광 또는 활성 영역(24)은 p-형 영역(200)과 n-형 영역(32) 사이에 배치된다. P-형 영역(200)은 종종 GaP이며 Zn과 같은 임의의 적절한 p-형 도펀트로 도핑될 수 있다. N-형 영역(32)은 종종 GaP이며 Si과 같은 임의의 적절한 n-형 도펀트로 도핑될 수 있다. N-형 영역(32) 및 p-형 영역(200)은 종종 GaP이며, 이는, 적색, 적주황색(red-orange), 호박색, 황색 또는 녹색인 피크 파장을 가질 수 있는, 활성 영역(24)에 의해 방출된 광에 GaP가 통상적으로 투명하기 때문이다. N-형 영역(32) 및 p-형 영역(200)은, 이에 제한되지는 않지만 InGaP 및 GaPN을 포함하는 3원 재료들, 및 4원 재료들과 같은 임의의 다른 적절한 재료일 수 있다. N-형 영역(32) 및 p-형 영역(200)은, 비록 동일한 조성을 가질 수 있지만, 동일한 조성을 가질 필요는 없다. 일부 실시형태들에서, 하기 설명된 기판(20)은 p-형 GaP이며, p-형 GaP 영역(200)은 생략될 수 있다.
기판(20)은 종종 GaP이며, 이는 ~2.26 eV 또는 ~549 nm의 밴드 갭을 갖고, 따라서 가능하게는 활성 영역(24)에 의해 방출된 피크 파장들에서의 광, 즉 적색, 적주황색, 호박색, 황색 또는 녹색 광에 투명하다. GaP 기판은 Zn 또는 임의의 다른 적절한 도펀트로 p-형 도핑될 수 있거나, Si 또는 임의의 다른 적절한 도펀트로 n-형 도핑될 수 있다. GaP의 a-격자 상수에 근접한 a-격자 상수를 갖거나, InGaPN 발광 층들 또는 디바이스의 다른 층들의 a-격자 상수에 근접한 a-격자 상수를 갖는 다른 기판을 사용할 수 있다. 적절한 기판들의 예들은 Si, AlInP, ZnS, Ge, GaAs 및 InP를 포함한다. 저렴하지만 가능하게는 활성 영역(24)에 의해 방출된 피크 파장들에서의 광을 흡수하는 실리콘이 사용될 수 있지만 종종 제거된다. 성장 기판은 상술한 반도체 구조체의 성장 이후에 제거될 수 있거나, 상술한 반도체 구조체의 성장 이후에 박층화될 수 있거나, 완성된 디바이스의 일부로 잔류할 수 있다. Si과 같은 흡수 기판들은 종종 제거된다. 일부 실시형태들에서, 반도체 디바이스 구조체(21)는 금속-유기 화학 기상 증착, 기상 에피택시 또는 분자 빔 에피택시와 같은 임의의 적절한 에피택셜 기술에 의해 기판(20)상에 성장된다. 본 발명에 사용된 "반도체 디바이스 구조체"는 n-형 층들, p-형 층들 또는 활성 영역의 층들과 같은, 기판상에 성장된 반도체 층들을 지칭할 수 있다.
도 2에 예시된 디바이스에서, 기판(20)은 p-형일 수 있으며, 따라서 먼저 임의의 p-형 층들을 성장시킨 다음, 활성 영역(24)을 성장시키고, 이어서 n-형 영역(32)과 같은 임의의 n-형 층들을 성장시킨다. 일부 실시형태들에서, 기판은 n-GaP와 같은 n-형이다. N-형 기판상에, n-형 영역(32)을 포함하는 n-형 층들을 먼저 성장시킨 다음 활성 영역(24)을 성장시키고 이어서 p-형 영역(200)을 포함하는 p-형 층들을 성장시키도록, 도 2에 예시된 반도체 구조체(21)를 반대로 성장시킬 수 있다. 어느 한 구조체, 즉 p-형 층들을 먼저 성장시킨 구조체 또는 n-형 층들을 먼저 성장시킨 구조체를 Si과 같은 비도핑 기판상에 성장시킬 수 있다.
일부 실시형태들에서, 도 2에 예시된 바와 같이, p-형 영역(200)과 활성 영역(24) 사이에 차등 영역(22)을 성장시킨다. 일부 실시형태들에서, 차등 영역(22)의 조성은 차등화된다. 일부 실시형태들에서, 조성에 추가하여 또는 조성 대신 차등 영역(22)의 도펀트 농도가 차등화된다. 차등 영역(22)은 p-형일 수 있거나 도핑되지 않을수 있다. P-형 차등 영역(22)은 일부 실시형태들에서 500 nm 이하의 두께일 수 있다. 비도핑 차등 영역(22)은 일부 실시형태들에서 100 nm 이하의 두께일 수 있다.
본 발명에 사용된 바와 같이, 디바이스의 층 또는 층들에서의 조성을 설명할 경우 용어 "차등화된(graded)"은 조성에 있어서 단일 계단(step) 이외의 임의의 방식으로 조성의 변화를 달성하는 임의의 구조체를 망라하는 것을 의미한다. 각 차등 층은 서브 층들의 스택일 수 있으며, 각 서브 층은 그에 인접한 어느 한 서브 층과는 상이한 조성을 갖는다. 서브 층들이 분해가능한(resolvable) 두께일 경우, 차등 층은 계단식-차등(step-graded) 층이다. 일부 실시형태들에서, 계단식-차등 층의 서브 층들은 수십 Å 내지 수천 Å 범위의 두께를 가질 수 있다. 개별 서브 층들의 두께가 0에 접근하는 한계점에서, 차등 층은 연속-차등 영역이다. 각 차등 층을 이루는 서브 층들은, 이에 제한되지는 않지만 선형 차등, 포물선 차등 및 멱법칙(power-law) 차등을 포함하는, 조성 대 두께에 있어서 다양한 프로파일을 형성하도록 배열될 수 있다. 또한, 차등 층들 또는 차등 영역들은 단일 차등 프로파일로 제한되지 않고, 상이한 차등 프로파일들을 갖는 부분들 및 실질적으로 일정한 조성을 갖는 하나 이상의 부분들을 포함할 수 있다.
반도체 층에서의 조성은 성장 온도, 성장 동안의 전구체 재료의 유속, 및 성장 동안 상이한 전구체 재료의 상대 유속 중 하나 이상을 변화시킴으로써 차등화될 수 있다.
차등 영역(22)의 조성은 p-형 영역(200)에 인접한 영역(22)의 부분의 AlGaP 또는 GaP에서부터, 활성 영역(24)에 인접한 영역(22)의 부분의 AlGaP 또는 AlP까지 차등화될 수 있다. 예를 들어, p-형 영역(200)에 가장 근접한 부분의 AlxGa1 -xP 차등 영역(22)에서 알루미늄의 조성은, 일부 실시형태들에서 x=0일 수 있고, 일부 실시형태들에서 x≤0.05일 수 있으며, 일부 실시형태들에서 x≤0.1일 수 있다. 활성 영역(24)에 가장 근접한 AlxGa1 -xP 차등 영역(22) 부분에서의 알루미늄의 조성은 일부 실시형태들에서 x=1이고, 일부 실시형태들에서 x≥0.95이고, 및 일부 실시형태들에서 x≥0.9이 되도록 조성이 차등화될 수 있다.
일부 실시형태들에서, 차등 영역(22)은 생략되며 활성 영역(24)은 p-형 영역(200)과 직접 접촉하여 배치된다.
발광 또는 활성 영역(24)을 차등 영역(22) 상에 또는 p-형 영역(200) 상에 성장시킨다. 일부 실시형태들에서, 활성 영역(24)은 단일의 두껍거나 얇은 발광 층을 포함한다. 일부 실시형태들에서, 활성 영역(24)은, 도 2에 예시된 바와 같이, 하나 이상의 배리어 층(28)에 의해 분리된 복수의 발광 층(26)을 포함한다. 발광 층들(26)은 일부 실시형태들에서 양자 우물들일 수 있다. 비록 3개의 발광 층(26) 및 2개의 배리어 층(28)이 도 2에 예시되지만, 활성 영역(24)은 더 많거나 더 적은 발광 층들 및 배리어 층들을 포함할 수 있다. 배리어 층들(28)은 발광 층들(26)을 분리한다. 예를 들어, 배리어 층들(28)은 GaP, AlGaP, AlInGaP, InGaPN, 또는 발광 층들(26)보다 밴드 갭이 더 큰 임의의 다른 적절한 재료일 수 있다.
발광 층들(26)의 조성은, 발광 층들이 녹색 내지 황색 내지 적색 범위의 피크 파장을 갖는 광을 방출하도록 선택될 수 있다. 일부 실시형태들에서, 발광 층들(26)은 InxGa1 - xP1 - yNy이다. 아래첨자 x는 In 함량을 지칭하고 아래첨자 y는 N 함량을 지칭한다. 조성 x는 일부 실시형태들에서 적어도 0.01일 수 있고 일부 실시형태들에서 0.07 이하일 수 있다. 조성 y는 일부 실시형태들에서 적어도 0.005일 수 있고 일부 실시형태들에서 0.035 이하일 수 있다. InGaPN 발광 층이 GaP상에서 성장될 경우 격자 부합되도록 하기 위해, x=(2 내지 2.4)y이다. 일부 실시형태들에서, x는 적어도 y의 2배이다. 일부 실시형태들에서, x는 2.5×y 이하이다. 일부 실시형태들에서, x는 2.4×y 이다. AlGaP 배리어들 및 10 nm보다 더 두꺼운 발광 층들을 갖는 디바이스에서, 발광 층들은 y=0.005(0.5%) 및 x=0.01일 경우 녹색 피크 파장, y=0.015(1.5%) 및 x=0.03일 경우 황색 피크 파장, 및 y=0.035(3.5%) 및 x=0.07일 경우 적색 피크 파장을 갖는 광을 방출할 수 있다. 도 7은 AlGaP 배리어들 및 10 nm보다 더 두꺼운 InxGa1 - xP1 - yNy(x=2y) 발광 층들을 갖는 디바이스에서 N의 몇 가지 조성에 대한 N 함량(y)의 함수로서 추정 파장을 예시한다. 배리어들이 GaP일 경우, 도 7에 예시된 조성들은 도 7에 예시된 것과 대략 동일한 피크 파장들을 초래할 것이다. 배리어들이 AlP일 경우, 도 7에 예시된 곡선은 청색 쪽으로 최대한 50 nm 만큼 이동할 것이며, 이는 청색(즉, 약 510 nm)인 피크 파장을 방출하는 발광 층들이 제조될 수 있음을 의미한다.
일부 실시형태들에서, InGaPN 발광 층들(26)은, 발광 층들(26)이 변형되지 않도록 GaP 기판(20)에 격자 부합된다. 일부 실시형태들에서, InGaPN 발광 층들(26)은 기판(20)상에 성장될 경우 변형된 조성이다. 발광 층들의 조성은, 발광 층과 동일한 조성을 갖는 이론 완화 재료(theoretical relaxed material)의 격자 상수가 기판의 격자 상수보다 일부 실시형태들에서는 1% 미만만큼 및 일부 실시형태들에서는 0.5% 미만만큼 상이하도록 선택될 수 있다.
발광 층들(26)은 일부 실시형태들에서 적어도 2 nm 두께, 일부 실시형태들에서 10 nm 이하 두께, 일부 실시형태들에서 적어도 10 nm 두께, 및 일부 실시형태들에서 100 nm 이하 두께일 수 있다. 배리어 층들(28)은 일부 실시형태들에서 200 nm 이하 두께, 일부 실시형태들에서 100 nm 이하 두께, 및 일부 실시형태들에서 적어도 20 nm 두께일 수 있다. 예를 들어, 두꺼운 발광 층들(즉, 10 nm와 100 nm 두께 사이)을 갖는 활성 영역에서, 배리어 층들은 100 nm 두께 미만일 수 있다. 얇은 발광 층들(즉, 3 nm와 10 nm 두께 사이)을 갖는 활성 영역에서, 배리어 층들은 20 nm와 100 nm 두께 사이일 수 있다.
일부 실시형태들에서, 제2 차등 영역(30)은 n-형 영역(32)과 직접 접촉하여, 활성 영역(24) 위에 성장된다. 차등 영역(30)의 조성은 활성 영역(24)에 인접한 영역(30)의 부분의 AlGaP에서부터, n-형 영역(32)에 인접한 영역(30)의 부분의 GaP까지 차등화될 수 있다. 예를 들어, 활성 영역(24)에 가장 근접한 AlxGa1 -xP 차등 영역(30)의 부분의 조성은 일부 실시형태들에서 x=1일 수 있고, 일부 실시형태들에서 x≥0.8일 수 있고, 일부 실시형태들에서 x≥0.9일 수 있다. N-형 영역(32)에 가장 근접한 부분의 AlxGa1 -xP 차등 영역(30)의 부분에서의 조성은 일부 실시형태들에서 x=0일 수 있고, 일부 실시형태들에서 x≤0.05일 수 있고, 일부 실시형태들에서 x≤0.1일 수 있다. 차등 영역(30)은 도핑되지 않을 수 있거나, Si과 같은 n-형 도펀트로 도핑될 수 있다. N-형 차등 영역(30)은 일부 실시형태들에서 500 nm 이하의 두께일 수 있다. 비도핑 차등 영역(30)은 일부 실시형태들에서 100 nm 이하의 두께일 수 있다.
일부 실시형태들에서, 차등 영역(30)이 생략되고, n-형 영역(32)은 활성 영역(24)과 직접 접촉하여 배치된다.
P-형 차등 영역(22) 및 n-형 차등 영역(30) 중 하나 또는 둘 모두를 사용함으로써 디바이스의 밴드 불연속성을 최소화할 수 있고, 이는 디바이스의 직렬 저항 및 순방향 전압을 감소시킬 수 있다. 또한, 차등 영역들(22 및/또는 30)은 상이한 굴절율을 갖는 2개의 재료의 교차점에서 도파(waveguiding)를 감소시키거나 제거할 수 있으며, 이는 디바이스로부터 추출된 광의 양을 증가시킬 수 있다.
도 8은 도 2에 예시된 구조체의 첫 번째 예에 대한 위치의 함수로서의 밴드 에너지를 예시한다. P-형 영역(200) 및 n-형 영역(32)은 구조체에서 최대 밴드 갭들을 갖는다. 발광 층들(26)은 구조체에서 최소 밴드 갭들을 갖는다. 활성 영역(24)에서, 발광 층들(26)은 발광 층들(26)보다 더 큰 밴드 갭을 갖는 배리어 층(28)에 의해 분리된다. 원자가 전자대(valence band)(50) 및 전도대(conduction band)(52)는 p-형 영역(200), 발광 층들(26), 배리어 층들(28) 및 n-형 영역(32)에 상응하는 영역들에서 편평(즉, 수평)하며, 이는 영역들이 일정한 조성으로부터 초래된 일정한 밴드 갭을 가짐을 나타낸다. 비록 도 8은 n-형 영역(32), 배리어 층들(28) 및 p-형 영역(200)이 동일한 밴드 갭을 갖는 것으로 예시하지만, 일부 실시형태들에서는 동일한 밴드 갭을 가질 필요가 없다. 원자가 전자대(50) 및 전도대(52)의 수직 부분들은 조성에서 계단식 변화들을 나타낸다. 차등 영역(22)은 AlP일 수 있는, 일정한 조성의 영역(104)을 포함한다. 일정한 조성 영역(104)과 p-형 영역(200) 사이에 차등 영역(108)이 존재한다. 차등 영역(30)은 AlP일 수 있는, 일정한 조성의 영역(102)을 포함한다. 일정한 조성 영역(102)과 n-형 영역(32) 사이에 차등 영역(106)이 존재한다. 차등 영역들(106 및 108)에서, 원자가 전자대(50)가 경사지며, 이는 밴드 갭 및 따라서 조성이 단조롭게 선형으로 차등화됨을 나타낸다. AlGaP 층들에서는 원자가 전자대만 Al 함량에 의해 영향을 받을 수 있으므로 전도 대(52)는 경사지지 않는다. 도 8에 예시된 디바이스에서, p-형 영역(200) 및 n-형 영역(32)은 GaP이다. 차등 영역들(106 및 108)은 AlxGa1 - xP이며, 여기에서 x는 GaP 층(32 또는 200)에 가장 근접한 차등 영역의 부분의 0에서부터 일정한 조성 영역들(102 및 104)에 가장 가까운 차등 영역의 부분의 1까지 차등화된다. 일정한 조성의 영역들(102 및 104)은, 예를 들어 디바이스의 배리어 층들 중 하나의 두께의 적어도 2배일 수 있다. 발광 층들(26)은 InGaPN이고, 도 7과 관련하여 상기 설명된 바와 같은 하나 이상의 조성을 가지며, 배리어 층들은 AlP이다. 발광 층들은 일부 실시형태들에서 2 nm 두께와 10 nm 두께 사이이다.
도 9는 도 2에 예시된 구조체의 두 번째 예에 대한 위치의 함수로서의 밴드 에너지를 예시한다. P-형 영역(200) 및 n-형 영역(32)은 구조체에서 최대 밴드 갭들을 갖는다. 발광 층들(26)은 구조체에서 최소 밴드 갭들을 갖는다. 활성 영역(24)에서, 발광 층들(26)은 발광 층들(26)보다 더 큰 밴드 갭을 갖는 배리어 층(28)에 의해 분리된다. 원자가 전자대(50) 및 전도대(52)는 p-형 영역(200), 발광 층들(26), 배리어 층들(28) 및 n-형 영역(32)에 상응하는 영역들에서 편평(즉, 수평)하며, 이는 이러한 영역들이 일정한 조성으로부터 초래된 일정한 밴드 갭을 가짐을 나타낸다. 원자가 전자대(50) 및 전도대(52)의 수직 부분들은 조성에서 계단식 변화들을 나타낸다. 차등 영역(30)은 생략된다. 차등 영역(22)은 일정한 조성(즉, 편평한 원자가 전자대 및 전도대)의 제1 부분(70), 및 밴드 갭 및 따라서 부분(72)에서의 조성이 단조롭게 선형으로 차등화됨을 나타내는, 조성이 차등화된(즉, 경사진 원자가 전자대(50)) 제2 부분(72)을 포함한다. 차등 부분(72)에서, 재료는 AlxGa1 - xP일 수 있으며, 여기에서 x는 GaP 부분(70)에 인접해서는 0.5와 1 사이에서부터 p-형 영역(200)에 가장 근접한 차등 영역의 부분에서는 0.2와 0 사이까지 차등화된다. 계단식 변화(74)는 부분(70)의 GaP와 차등 부분(72)의 맨 좌측 가장자리의 AlP 간의 전이를 나타낸다. 도 9에 예시된 디바이스에서, p-형 영역(200) 및 n-형 영역(32)은 GaP이다. 일정한 조성 부분(70)은, 예를 들어, 적어도 디바이스의 배리어 층들 중 하나만큼 두꺼울 수 있다. 발광 층들(26)은 InGaPN이며, 하나 이상의 조성은 도 7과 관련하여 상술한 바와 같고, 배리어 층들은 GaP이다. 발광 층들은 일부 실시형태들에서 10 nm 두께와 100 nm 두께 사이이다.
디바이스의 임의의 차등 영역들은 복수의 일정한 조성 부분 및/또는 차등 조성 부분을 포함할 수 있다. 복수의 차등 조성 부분을 갖는 차등 영역은 차등 조성 부분들에서 동일하거나 상이한 차등화 프로파일들을 가질 수 있다. 예를 들어, 차등 영역은, 발광 영역에 인접한 일정한 조성의 GaP 부분, 이어서 0% Al에서부터 100% Al까지 차등화된 AlGaP 부분, 이어서 두께가 110 nm 미만인 일정한 조성의 AlP 부분, 이어서 디바이스에서 차등 영역의 위치에 따라 n-형 또는 p-형 GaP 층(32 또는 200)에 인접한 100% Al에서부터 0% Al까지 차등화된 AlGaP 부분을 포함할 수 있다. 다른 예에서, 차등 영역은 발광 영역에 인접한 일정한 조성의 GaP 부분, 이어서 0% Al(GaP)에서부터 50%와 100% 사이의 Al까지 차등화된 AlGaP 차등 부분, 이어서 50%와 100% 사이의 Al인 일정한 조성의 AlGaP 부분, 이어서 디바이스에서 차등 영역의 위치에 따라 n-형 또는 p-형 GaP 층(32 또는 200)에 인접한, 일정한 조성 부분의 Al 조성에서부터 0%(GaP)까지 차등화된 AlGaP의 차등 부분을 포함한다.
도 3, 4, 5 및 6은 상술한 임의의 반도체 구조체들, 및 n-형 영역(32) 및 p-형 기판(20) 또는 p-형 영역(200) 상에 형성된 금속 콘택들을 포함하는, 완성된 LED를 예시한다. 금속 콘택들은 디바이스를 순방향 바이어스 인가하기 위해 사용된다. 도 3 및 4에 예시된 디바이스들에서, 성장 기판(20)은 디바이스의 일부로 잔류한다. 도 5 및 6에 예시된 디바이스들에서, 성장 기판은 반도체 구조체에서 제거된다.
도 3 및 4에 예시된 구조체들에서, n-콘택(34)은 n-형 영역(32)의 일부 상에 형성된다. N-콘택(34)은, 예를 들어 Ge, Au 및 Ni을 포함하는 임의의 적절한 금속일 수 있다. 일부 실시형태들에서, n-콘택(34)은 다중 층 콘택이다. 예를 들어, n-콘택(34)은 n-형 영역(32)과 직접 접촉하는 Ge 층에 이어 Au, Ni 및 Au 층들을 포함할 수 있다.
도 3에 예시된 구조체에서, 도전성 도트들(dots)(36)은 p-형 GaP 기판(20)에 전기적 접촉을 한다. 도트들(36)은, 예를 들어 AuZn일 수 있다. 도트들(36)은 미러(38)에 내장될 수 있다. 미러(38)는, 예를 들어 기판(20)과 직접 접촉하는 SiO2 층, 및 SiO2 위에 형성된 Ag 층을 포함하는 임의의 적절한 반사성 재료일 수 있다. 제2 미러(40)는 도전성 도트들(36)이 미러(40)와 기판(20) 사이에 배치되도록 형성된다. 미러(40)는 금속, Ag, Al 또는 임의의 다른 적절한 재료와 같은 도전성 재료일 수 있다. 도 3에 예시된 구조체에서, p-형 기판(20)은 활성 영역(24)의 p-측 상의 상당한 거리에 걸쳐 전류를 횡 방향으로 효율적으로 확산시킬 정도로 충분히 두껍다. P-도핑 GaP 기판들(Zn으로 도핑됨)은 약 200 내지 400 ㎛의 두께로 이용가능하다. 전류는 p-GaP 기판 300 ㎛ 두께에서 약 0.2 mm 확산될 수 있다. 일부 실시형태들에서, 도전성 도트들(36)은 기판(20)의 전류 확산 거리보다 더 이격되지 않도록 배치된다. 도전성 도트들(36)은 일부 실시형태들에서 적어도 10 ㎛ 폭일 수 있고 일부 실시형태들에서 100 ㎛ 이하의 폭일 수 있다. 도전성 도트들(36)은 일부 실시형태들에서 적어도 100 ㎛ 이격될 수 있고, 일부 실시형태들에서 적어도 200 ㎛ 이격될 수 있으며, 일부 실시형태들에서 500 ㎛ 이하로 이격될 수 있다.
도 4에 예시된 구조체에서, 반사성인 풀 시트(full sheet) 콘택(42)이 p-형 GaP 기판(20)과 직접 접촉하여 형성된다. 시트 콘택(42)은, 예를 들어 AuZn일 수 있거나, GaP와 오믹 콘택을 형성하는 임의의 다른 고 반사성 층일 수 있다.
도 5 및 6은 성장 기판(20)이 제거된 디바이스들을 예시한다.
도 5는 플립 칩 디바이스이다. N-콘택(34)을 n-형 영역(32) 상에 형성한 다음, n-콘택(34), n-형 영역(32), 차등 영역(30) 및 활성 영역(24)의 일부를 식각해 내어, p-형일 수 있는 차등 영역(22)의 일부, 또는 p-형 콘택(42)이 위에 형성될 수 있는 p-형 영역(200)의 일부를 노출하는 메사(mesa)를 형성한다. 유전체와 같은 고형 재료로 채워질 수 있는 갭(43)이 n- 및 p-콘택(34 및 42)을 전기적으로 분리한다. 디바이스는 반도체 구조체(21)를 지지하기 위해 마운트(미도시)에 부착될 수 있거나, 반도체 구조체(21)를 지지하기 위해 n- 또는 p-콘택들을 형성할 수 있다. 이어서, 성장 기판을 제거하여 p-형 영역(200)의 표면을 드러낸다. 성장 기판은 습식 또는 건식 식각을 포함하는 임의의 적절한 기술, 그라인딩과 같은 기계적 기술들 또는 레이저 용융에 의해 제거될 수 있다. N- 및 p-콘택들(34 및 42)은 반사성일 수 있으며, 디바이스는 대다수의 광이 p-형 영역(200)의 상부 표면을 통해 추출되도록, 도 5에 예시된 방향으로 탑재된다.
도 6에서, 반도체 구조체는 반도체 구조체(21)의 n-형 영역(32)의 상부 표면을 통해 호스트 기판(60)에 접합된다. 도 6에 도시되지 않은 하나 이상의 선택적인 접합 층들이 호스트 기판(60)과 반도체 구조체(21) 사이에 배치될 수 있다. 도 6에 도시되지 않은 성장 기판(20)의 제거 동안 호스트 기판(60)이 반도체 구조체(21)를 기계적으로 지지한다. 성장 기판을 제거함으로써 p-형 영역(200)의 하부 표면이 노출되고, 그 위에 p-콘택(62)이 형성된다. P-콘택(62)은 도 3 및 4와 관련하여 상술한 콘택들을 포함하는, 임의의 적절한 콘택일 수 있다. N-콘택(34)은 호스트 기판(60)상에 형성된다. 도 6에 예시된 디바이스에서, 호스트 기판(60)은 도전성이어야 한다. 적절한 호스트 기판 재료들의 예들은 n-형 GaP를 포함한다. 호스트 기판(60)은 투명할 수 있고 n-콘택(34)은 크기가 제한되어 대다수의 광은 호스트 기판(60)의 상부 표면을 통해 추출된다. 이와 달리, 호스트 기판(60)은 반사성일 수 있고, p-콘택(62)이 투명할 수 있거나 크기가 제한되어 대다수의 광은 p-콘택(62) 및/또는 p-형 영역(200)을 통해 추출된다.
일부 실시형태들에서, 호스트 기판(60)은 도전성이 아니며, 도 5에 예시된 바와 같이 n- 및 p-콘택들은 플립 칩 형성으로 형성된다. 적절한 호스트 기판 재료들의 예들은 사파이어 및 유리를 포함한다.
본 발명을 상세히 설명한바, 통상의 기술자들은, 본 발명에 있어서, 본 발명에 설명된 신규 개념의 사상으로부터 벗어나지 않고 본 발명에 대한 변형이 이루어질 수 있음을 인지할 것이다. 따라서, 본 발명의 범위가, 예시 및 설명된 특정 실시형태들로 제한되는 것을 의도하지 않는다.

Claims (20)

  1. n-형 영역;
    p-형 영역;
    발광 층 - 상기 발광 층은 상기 n-형 영역과 p-형 영역 사이에 배치되고, 상기 발광 층은 질소 및 인을 포함하는 III-V 재료임 -; 및
    상기 발광 층과, 상기 p-형 영역 및 상기 n-형 영역 중 하나 사이에 배치된 차등 영역(graded region) - 상기 차등 영역에서의 조성은 차등화됨(graded) -
    을 포함하는 디바이스.
  2. 제1항에 있어서, 상기 발광 층은 InGaNxP1 -x이고, 0<x≤0.03인 디바이스.
  3. 제1항에 있어서, 상기 발광 층은, 순방향 바이어스가 인가될 경우 녹색 내지 적색 범위의 피크 파장을 갖는 광을 방출하는 조성을 갖는 디바이스.
  4. 제1항에 있어서, 상기 차등 영역은 상기 발광 층과 상기 p-형 영역 사이에 배치되는 디바이스.
  5. 제4항에 있어서, 상기 발광 층에서의 조성은, 상기 p-형 영역에 가장 근접한 상기 차등 영역의 부분의 GaP에서부터 상기 발광 층에 가장 근접한 상기 차등 영역의 부분의 AlGaP까지 차등화되는 디바이스.
  6. 제1항에 있어서, 상기 차등 영역은 상기 발광 층과 상기 n-형 영역 사이에 배치되는 디바이스.
  7. 제4항에 있어서, 상기 발광 층에서의 조성은, 상기 n-형 영역에 가장 근접한 상기 차등 영역의 부분의 GaP의 조성에서부터 상기 발광 층에 가장 근접한 상기 차등 영역의 부분의 AlGaP의 조성까지 차등화되는 디바이스.
  8. 제1항에 있어서, 상기 차등 영역은 제1 차등 영역이고, 상기 발광 층과 상기 p-형 영역 사이에 배치되며, 상기 디바이스는 상기 발광 층과 상기 n-형 영역 사이에 배치된 제2 차등 영역을 더 포함하고, 상기 제2 차등 영역에서의 조성은 차등화되는 디바이스.
  9. 제1항에 있어서, 상기 n-형 영역 및 상기 p-형 영역은 GaP인 디바이스.
  10. 제1항에 있어서, 상기 n-형 영역, 상기 발광 층 및 상기 차등 영역은 p-형 GaP 기판 위에 성장되는 디바이스.
  11. 제1항에 있어서, 상기 차등 영역은 차등화된 조성의 두 부분들 사이에 배치된 일정한 조성의 부분을 포함하는 디바이스.
  12. 제1항에 있어서,
    상기 차등 영역은 상기 p-형 영역과 상기 발광 층 사이에 배치되고;
    상기 차등 영역은:
    상기 발광 층과 직접 접촉하여 배치된 일정한 조성의 제1 부분; 및
    상기 p-형 영역과 직접 접촉하여 배치된 차등화된 조성의 제2 부분
    을 포함하고,
    상기 제2 부분은 AlGaP이고 알루미늄의 조성은 차등화되는 디바이스.
  13. 제12항에 있어서, 상기 발광 층은 2 nm와 10 nm 사이의 두께인 디바이스.
  14. 제1항에 있어서,
    상기 차등 영역은 상기 n-형 영역과 상기 발광 층 사이에 배치된 제1 차등 영역이고;
    상기 디바이스는 상기 p-형 영역과 상기 발광 층 사이에 배치된 제2 차등 영역을 더 포함하고;
    상기 제1 차등 영역은 AlxGa1 - xP이고, x는 0에서 1까지 차등화되며;
    상기 제2 차등 영역은 AlxGa1 - xP이고, x는 1에서 0까지 차등화되는 디바이스.
  15. 제14항에 있어서, 상기 발광 층은 10 nm와 100 nm 사이의 두께인 디바이스.
  16. 제1항에 있어서,
    상기 차등 영역은 AlxGa1 -xP이고;
    0≤x≤1이고;
    상기 Al의 조성은 차등화되는 디바이스.
  17. n-형 영역과 p-형 영역 사이에 배치된 발광 층을 성장시키는 단계 - 상기 발광 층은 질소 및 인을 포함하는 III-V 재료임 -; 및
    상기 발광 층과, 상기 p-형 영역 및 n-형 영역 중 하나 사이에 배치된 차등 영역을 성장시키는 단계 - 상기 차등 영역에서의 조성은 차등화됨 -
    를 포함하는 방법.
  18. 제17항에 있어서, 상기 차등 영역을 성장시키는 단계는 상기 차등 영역에서의 조성을 변화시키기 위해 성장 온도를 변화시키는 단계를 포함하는 방법.
  19. 제17항에 있어서, 상기 차등 영역을 성장시키는 단계는 전구체 재료들의 유속들(flow rates)을 변화시키는 단계를 포함하는 방법.
  20. 제17항에 있어서, 상기 차등 영역을 성장시키는 단계는 상이한 전구체 재료들의 상대 유속들(relative flow rates)을 변화시키는 단계를 포함하는 방법.
KR1020157003035A 2012-07-05 2013-06-24 질소 및 인을 포함하는 발광 층을 갖는 발광 다이오드 KR102068379B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261668053P 2012-07-05 2012-07-05
US61/668,053 2012-07-05
PCT/IB2013/055161 WO2014006531A1 (en) 2012-07-05 2013-06-24 Light emitting diode with light emitting layer containing nitrogen and phosphorus

Publications (2)

Publication Number Publication Date
KR20150036386A true KR20150036386A (ko) 2015-04-07
KR102068379B1 KR102068379B1 (ko) 2020-01-20

Family

ID=49117909

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157003035A KR102068379B1 (ko) 2012-07-05 2013-06-24 질소 및 인을 포함하는 발광 층을 갖는 발광 다이오드

Country Status (7)

Country Link
US (2) US9406835B2 (ko)
EP (1) EP2870640B1 (ko)
JP (2) JP2015525965A (ko)
KR (1) KR102068379B1 (ko)
CN (1) CN104412396B (ko)
TW (2) TWI659548B (ko)
WO (1) WO2014006531A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916708A (en) * 1989-06-26 1990-04-10 Eastman Kodak Company Semiconductor light-emitting devices
US5075743A (en) * 1989-06-06 1991-12-24 Cornell Research Foundation, Inc. Quantum well optical device on silicon
US20090108276A1 (en) * 2004-10-08 2009-04-30 Charles Tu High Efficiency Dilute Nitride Light Emitting Diodes
KR20110030595A (ko) * 2008-06-16 2011-03-23 필립스 루미리즈 라이팅 캄파니 엘엘씨 그레이드 영역을 포함하는 반도체 발광 장치

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760903B2 (ja) * 1989-11-22 1995-06-28 三菱化学株式会社 エピタキシャルウェハ及びその製造方法
US5445897A (en) 1989-11-22 1995-08-29 Mitsubishi Kasei Polytec Company Epitaxial wafer and process for producing the same
JPH0661525A (ja) * 1992-08-07 1994-03-04 Hitachi Ltd 発光ダイオード
JP2773597B2 (ja) * 1993-03-25 1998-07-09 信越半導体株式会社 半導体発光装置及びその製造方法
US6784463B2 (en) * 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
JP3938976B2 (ja) * 1997-06-26 2007-06-27 シャープ株式会社 半導体レーザ素子およびその製造方法
JP3420028B2 (ja) * 1997-07-29 2003-06-23 株式会社東芝 GaN系化合物半導体素子の製造方法
JPH11307880A (ja) * 1998-04-17 1999-11-05 Ricoh Co Ltd 半導体発光装置
US7384479B2 (en) 1998-04-13 2008-06-10 Ricoh Company, Ltd. Laser diode having an active layer containing N and operable in a 0.6 μm wavelength
JP2000049114A (ja) * 1998-07-30 2000-02-18 Sony Corp 電極およびその形成方法ならびに半導体装置およびその製造方法
JP3156778B2 (ja) * 1998-11-16 2001-04-16 日本電気株式会社 半導体素子の不純物濃度の測定方法
JP2000183397A (ja) * 1998-12-16 2000-06-30 Shiro Sakai 半導体発光素子材料および構造
JP2001144378A (ja) * 1999-08-31 2001-05-25 Sharp Corp 化合物半導体発光素子及びその製造方法
JP4346218B2 (ja) * 2000-07-05 2009-10-21 シャープ株式会社 窒化物半導体発光素子とそれを含む光学装置
AU2001279163A1 (en) * 2000-08-04 2002-02-18 The Regents Of The University Of California Method of controlling stress in gallium nitride films deposited on substrates
JP4416297B2 (ja) * 2000-09-08 2010-02-17 シャープ株式会社 窒化物半導体発光素子、ならびにそれを使用した発光装置および光ピックアップ装置
DE60230602D1 (de) * 2001-03-28 2009-02-12 Nichia Corp Nitrid-halbleiterelement
JP4161603B2 (ja) * 2001-03-28 2008-10-08 日亜化学工業株式会社 窒化物半導体素子
JP3645233B2 (ja) * 2001-06-07 2005-05-11 日本電信電話株式会社 半導体素子
WO2004017433A1 (en) * 2002-08-02 2004-02-26 Massachusetts Institute Of Technology Yellow-green light emitting diodes and laser based on strained-ingap quantum well grown on a transparent indirect bandgap substrate
JP2009016467A (ja) * 2007-07-03 2009-01-22 Sony Corp 窒化ガリウム系半導体素子及びこれを用いた光学装置並びにこれを用いた画像表示装置
JP2009177008A (ja) * 2008-01-25 2009-08-06 Toshiba Discrete Technology Kk 発光素子及びその製造方法、発光装置
JP5315070B2 (ja) 2008-02-07 2013-10-16 昭和電工株式会社 化合物半導体発光ダイオード
JP2009200254A (ja) * 2008-02-21 2009-09-03 Toshiba Discrete Technology Kk 半導体発光素子
CA2639902A1 (en) 2008-09-29 2010-03-29 Quanlight, Inc. Improved dilute nitride devices
US9263637B2 (en) 2009-01-30 2016-02-16 Hewlett Packard Enterprise Development Lp Plasmonic light emitting diode
US8106403B2 (en) * 2009-03-04 2012-01-31 Koninklijke Philips Electronics N.V. III-nitride light emitting device incorporation boron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075743A (en) * 1989-06-06 1991-12-24 Cornell Research Foundation, Inc. Quantum well optical device on silicon
US4916708A (en) * 1989-06-26 1990-04-10 Eastman Kodak Company Semiconductor light-emitting devices
US20090108276A1 (en) * 2004-10-08 2009-04-30 Charles Tu High Efficiency Dilute Nitride Light Emitting Diodes
KR20110030595A (ko) * 2008-06-16 2011-03-23 필립스 루미리즈 라이팅 캄파니 엘엘씨 그레이드 영역을 포함하는 반도체 발광 장치

Also Published As

Publication number Publication date
EP2870640B1 (en) 2020-08-05
CN104412396A (zh) 2015-03-11
JP2018093241A (ja) 2018-06-14
US20150214421A1 (en) 2015-07-30
US9406835B2 (en) 2016-08-02
TW201737514A (zh) 2017-10-16
JP2015525965A (ja) 2015-09-07
EP2870640A1 (en) 2015-05-13
TW201407822A (zh) 2014-02-16
JP6697020B2 (ja) 2020-05-20
KR102068379B1 (ko) 2020-01-20
TWI659548B (zh) 2019-05-11
CN104412396B (zh) 2021-11-09
WO2014006531A1 (en) 2014-01-09
US20160308088A1 (en) 2016-10-20
US10147840B2 (en) 2018-12-04
TWI600181B (zh) 2017-09-21

Similar Documents

Publication Publication Date Title
US8674375B2 (en) Roughened high refractive index layer/LED for high light extraction
US7863631B2 (en) A1InGaP LED having reduced temperature dependence
US9136430B2 (en) Semiconductor buffer structure, semiconductor device including the same, and method of manufacturing semiconductor device using semiconductor buffer structure
US7723731B2 (en) Semiconductor light emitting device
JP2008288248A (ja) 半導体発光素子
KR20110128545A (ko) 발광 소자, 발광 소자의 제조방법 및 발광 소자 패키지
WO2012091311A2 (en) High efficiency light emitting diode
KR20080003901A (ko) 질화물 반도체 발광 소자
KR20110124337A (ko) 붕소를 포함하는 ⅲ-질화물 발광 장치
KR20100080094A (ko) 방사형 이종접합 구조의 나노 막대를 이용한 발광 다이오드
US20130015465A1 (en) Nitride semiconductor light-emitting device
US8581276B2 (en) Light emitting device and method of manufacturing the same
US20100224897A1 (en) Semiconductor optoelectronic device and method for forming the same
KR20150036513A (ko) Iii-질화물 구조체들에서의 나노파이프 결함들의 감소 또는 제거
KR20090076163A (ko) 질화물 반도체 발광소자 제조방법 및 이에 의해 제조된질화물 반도체 발광소자
TWI803785B (zh) 發光元件及其製造方法
US10147840B2 (en) Light emitting diode with light emitting layer containing nitrogen and phosphorus
KR20160086603A (ko) 발광 소자
KR101335045B1 (ko) 발광 다이오드
KR101285527B1 (ko) 발광 다이오드
CN115548187A (zh) 发光二极管和发光装置
KR20200088021A (ko) 마이크로 발광 소자
KR20160084033A (ko) 발광 소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant