KR20150001582A - 회전 전기 기기 및 회전 전기 기기의 제어 장치 - Google Patents
회전 전기 기기 및 회전 전기 기기의 제어 장치 Download PDFInfo
- Publication number
- KR20150001582A KR20150001582A KR20130158238A KR20130158238A KR20150001582A KR 20150001582 A KR20150001582 A KR 20150001582A KR 20130158238 A KR20130158238 A KR 20130158238A KR 20130158238 A KR20130158238 A KR 20130158238A KR 20150001582 A KR20150001582 A KR 20150001582A
- Authority
- KR
- South Korea
- Prior art keywords
- axis
- electric machine
- magnetic pole
- stator
- rotor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
- H02K21/16—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
- H02K1/2773—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/18—Estimation of position or speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/24—Vector control not involving the use of rotor position or rotor speed sensors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/18—Circuit arrangements for detecting position without separate position detecting elements
- H02P6/183—Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/18—Circuit arrangements for detecting position without separate position detecting elements
- H02P6/185—Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Control Of Ac Motors In General (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
회전 전기 기기는 고정자와 회전자를 포함한다. 회전 전기 기기는 원주 방향으로 복수의 자극부를 구비한 회전자 철심과, 회전자 철심에 설치된 복수의 영구 자석과, 각각에 코일선이 권회되는 복수의 티스를 구비한 고정자 철심을 포함한다. 고정자 철심은 코일선의 무통전 상태에 있어서 자극부와 반경 방향으로 대향하는 티스가 영구 자석에 의해 실질적으로 자기 포화하도록 구성된다.
Description
개시된 실시 형태는, 회전 전기 기기 및 회전 전기 기기의 제어 장치에 관한 것이다.
위치 센서 및 속도 센서를 이용하지 않고 교류 모터의 토크 제어, 속도 제어, 위치 제어를 행하는 교류 모터의 제어 장치가 알려져 있다.
본 발명의 일 측면에 따르면, 고정자와 회전자를 구비한 회전 전기 기기가 제공된다. 상기 회전 전기 기기는 원주 방향으로 복수의 자극부를 구비한 회전자 철심과, 상기 회전자 철심에 설치된 복수의 영구 자석과, 각각에 고정자 권선이 권회되는 복수의 티스(a plurality of tooth)를 구비한 고정자 철심을 포함한다. 상기 고정자 철심은 상기 고정자 권선의 무통전 상태에 있어서 상기 자극부와 반경 방향으로 대향하는 상기 티스가 상기 영구 자석에 의해 실질적으로 자기 포화하도록 구성된다.
본 발명의 다른 측면에 따르면, 위치 센서 및 속도 센서를 이용하지 않고 회전 전기 기기의 토크 제어, 속도 제어, 위치 제어 중 적어도 어느 하나를 행하는 상기 회전 전기 기기의 제어 장치가 제공된다. 상기 회전 전기 기기는 고정자 및 회전자를 포함한다. 회전자 철심은 원주 방향으로 복수의 자극부를 포함하며, 복수의 영구 자석은 상기 회전자 철심에 설치되고, 고정자 철심은 각각에 고정자 권선이 권회되는 복수의 티스를 포함한다. 회전축으로부터 상기 자극부의 중심 방향으로 연장하는 축을 d축, 전기각에 있어서 상기 중심 방향으로부터 90도 어긋난 방향으로 연장하는 축을 q축으로 했을 경우에, 상기 d축 및 상기 q축 중 적어도 한쪽에 고주파 전압 신호를 공급하고, 상기 자극부와 반경 방향으로 대향하는 상기 티스가 실질적으로 자기 포화하도록 상기 d축에 양의 전류를 공급하고, 상기 q축에 부하 전류를 공급하도록 구성되는 회전 전기 기기의 제어 장치가 제공된다.
본 발명의 또 다른 측면에 따르면, 위치 센서 및 속도 센서를 이용하지 않고 상술한 회전 전기 기기의 토크 제어, 속도 제어, 위치 제어 중 적어도 어느 하나를 행하는 회전 전기 기기의 제어 방법이 제공된다. 회전축으로부터 상기 자극부의 중심 방향으로 연장하는 축을 d축, 전기각에 있어서 상기 중심 방향으로부터 90도 어긋난 방향으로 연장하는 축을 q축으로 했을 경우에, 상기 d축 및 상기 q축 중 적어도 한쪽에 고주파 전압 신호를 공급하는 단계와, 상기 q축에 부하 전류를 공급하는 단계를 포함한다.
본 발명의 또 다른 측면에 따르면, 위치 센서 및 속도 센서를 이용하지 않고 회전 전기 기기의 토크 제어, 속도 제어, 위치 제어 중 적어도 어느 하나를 행하는 상기 회전 전기 기기의 제어 방법이 제공된다. 상기 회전 전기 기기는, 고정자 및 회전자와, 원주 방향으로 복수의 자극부를 구비한 회전자 철심과, 상기 회전자 철심에 설치된 복수의 영구 자석과, 각각에 고정자 권선이 권회되는 복수의 티스를 구비한 고정자 철심을 포함한다. 상기 제어 방법은 회전축으로부터 상기 자극부의 중심 방향으로 연장하는 축을 d축, 전기각에 있어서 상기 중심 방향으로부터 90도 어긋난 방향으로 연장하는 축을 q축으로 했을 경우에, 상기 d축 및 상기 q축 중 적어도 한쪽에 고주파 전압 신호를 공급하는 단계와, 상기 자극부와 반경 방향으로 대향하는 상기 티스가 실질적으로 자기 포화하도록 상기 d축에 양의 전류를 공급하고, 상기 q축에 부하 전류를 공급하는 단계를 포함한다.
본 발명에 의하면, 체격을 대형화하는 일 없이, 고부하시에도 돌극비를 확보할 수 있다.
도 1은 실시 형태의 회전 전기 기기의 전체 개략 구성을 나타내는 축방향 단면도이다.
도 2는 본 실시 형태의 회전 전기 기기의 횡단면도이다.
도 3은 센서리스(sensorless) 제어를 행하는 회전 전기 기기 제어 장치의 구성을 나타내는 제어 블럭도이다
도 4는 축방향 직교 단면에 있어서의 고정자 및 회전자 각각의 자극 위치에 대해 설명하는 도면이다.
도 5는 축방향 직교 단면에 있어서의 고정자 및 회전자 각각의 자속의 발생 분포를 나타내는 도면이다.
도 6은 일반적인 전자기 강판의 B∼H 곡선을 나타내는 도면이다.
도 7(a)는 무부하 상태에 있는 실시 형태의 자속 분포를 나타내는 도면이다.
도 7(b)는 무부하 상태에 있는 비교예의 자속 분포를 나타내는 도면이다.
도 8(a)는 부하 전류 50% 상태에 있는 실시 형태의 자속 분포를 나타내는 도면이다.
도 8(b)는 부하 전류 50% 상태에 있는 비교예의 자속 분포를 나타내는 도면이다.
도 9(a)는 부하 전류 100% 상태에 있는 실시 형태의 자속 분포를 나타내는 도면이다.
도 9(b)는 부하 전류 100% 상태에 있는 비교예의 자속 분포를 나타내는 도면이다.
도 10(a)는 부하 전류 150% 상태에 있는 실시 형태의 자속 분포를 나타내는 도면이다.
도 10(b)는 부하 전류 150% 상태에 있는 비교예의 자속 분포를 나타내는 도면이다.
도 11(a)는 부하 전류 200% 상태에 있는 실시 형태의 자속 분포를 나타내는 도면이다.
도 11(b)는 부하 전류 200% 상태에 있는 비교예의 자속 분포를 나타내는 도면이다.
도 12는 실시 형태에 있어서 탐색 신호를 중첩하여 입력했을 경우의 고주파 인덕턴스의 실측 결과를 나타내는 도면이다.
도 13는 비교예에 있어서 탐색 신호를 중첩하여 입력했을 경우의 고주파 인덕턴스의 실측 결과를 나타내는 도면이다.
도 14는 고정자 철심이 내측으로 접속된 분할 코어로 구성된 변형예의 횡단면도이다.
도 2는 본 실시 형태의 회전 전기 기기의 횡단면도이다.
도 3은 센서리스(sensorless) 제어를 행하는 회전 전기 기기 제어 장치의 구성을 나타내는 제어 블럭도이다
도 4는 축방향 직교 단면에 있어서의 고정자 및 회전자 각각의 자극 위치에 대해 설명하는 도면이다.
도 5는 축방향 직교 단면에 있어서의 고정자 및 회전자 각각의 자속의 발생 분포를 나타내는 도면이다.
도 6은 일반적인 전자기 강판의 B∼H 곡선을 나타내는 도면이다.
도 7(a)는 무부하 상태에 있는 실시 형태의 자속 분포를 나타내는 도면이다.
도 7(b)는 무부하 상태에 있는 비교예의 자속 분포를 나타내는 도면이다.
도 8(a)는 부하 전류 50% 상태에 있는 실시 형태의 자속 분포를 나타내는 도면이다.
도 8(b)는 부하 전류 50% 상태에 있는 비교예의 자속 분포를 나타내는 도면이다.
도 9(a)는 부하 전류 100% 상태에 있는 실시 형태의 자속 분포를 나타내는 도면이다.
도 9(b)는 부하 전류 100% 상태에 있는 비교예의 자속 분포를 나타내는 도면이다.
도 10(a)는 부하 전류 150% 상태에 있는 실시 형태의 자속 분포를 나타내는 도면이다.
도 10(b)는 부하 전류 150% 상태에 있는 비교예의 자속 분포를 나타내는 도면이다.
도 11(a)는 부하 전류 200% 상태에 있는 실시 형태의 자속 분포를 나타내는 도면이다.
도 11(b)는 부하 전류 200% 상태에 있는 비교예의 자속 분포를 나타내는 도면이다.
도 12는 실시 형태에 있어서 탐색 신호를 중첩하여 입력했을 경우의 고주파 인덕턴스의 실측 결과를 나타내는 도면이다.
도 13는 비교예에 있어서 탐색 신호를 중첩하여 입력했을 경우의 고주파 인덕턴스의 실측 결과를 나타내는 도면이다.
도 14는 고정자 철심이 내측으로 접속된 분할 코어로 구성된 변형예의 횡단면도이다.
이하, 일 실시 형태에 있어서 도면을 참조하면서 설명한다.
<회전 전기 기기의 구성>
우선, 도 1 및 도 2를 이용하여, 본 실시 형태에 따른 회전 전기 기기(1)의 구성에 대해 설명한다. 도 1에 나타낸 바와 같이, 회전 전기 기기(1)는, 고정자(2)와, 회전자(3)를 구비하며, 회전자(3)를 고정자(2)의 내측에 구비한 이너 로터(inner-rotor)형의 모터이다. 또한, 해당 회전 전기 기기(1)는, 인코더 등의 기계적인 센서를 이용하지 않고, 전기적인 처리에 의해 그 자극 위치를 검출하고, 제어하는 소위 센서리스 제어용의 3상 교류 모터이다(센서리스 제어에 대해서는, 이후의 도 3에서 상술함). 고정자(2)는, 회전자(3)와 직경 방향으로 대향하도록 프레임(4)의 내주면에 환 형상의 적층 철심 링(30)을 거쳐서 설치되어 있다. 이 고정자(2)는, 고정자 철심(5)과, 고정자 철심(5)에 장착된 보빈(bobbin)(6)과, 보빈(6)에 권회된 코일선(7)(고정자 권선에 상당)을 갖고 있다. 보빈(6)은, 고정자 철심(5)과 코일선(7)을 전기적으로 절연하기 위해서, 절연성 재료로 구성되어 있다. 보빈(6)의 축방향 한쪽측(도 1 중 좌측)에는 기판(8)이 설치되어 있고, 기판(8)에 설치된 회로와 보빈(6)에 권회된 코일선(7)이, 2개의 각철봉(square bar) 형상의 핀 단자(9)를 거쳐서 전기적으로 접속되어 있다. 코일선(7)의 권회 시작 및 권회 종단의 단부(7a)는, 대응하는 핀 단자(9)에 권회되고, 도시를 생략하는 납땜 등해 고정되어 있다.
회전자(3)는, 샤프트(10)의 외주면에 설치되어 있다. 샤프트(10)는, 프레임(4)의 부하측(도 1 중 우측)에 설치된 부하측 브래킷(11)에 외측 링이 감합된 부하측 베어링(12)과, 프레임(4)의 부하측의 반대측에 설치된 부하 반대측 브래킷(13)에 외측 링이 감합된 부하 반대측 베어링(14)에 의해 회전 자유롭게 지지되어 있다. 또한, 회전자(3)는, 회전자 철심(20)과, 회전자 철심(20)에 복수 설치되고, 샤프트(10)를 중심으로 하여, 방사상으로 배치된 영구 자석(21)을 구비하고 있다.
고정자 철심(5)은, 원통 형상의 요크(15)와, 이 요크(15)의 내주측에 등간격으로 배치된 복수(도시하는 예에서는 12개)의 티스(18)를 구비한다. 각 티스(18)에 코일선(7)이 집중 권선 방법으로 권회된 보빈(6)이 장착된다. 도 2에 나타낸 바와 같이, 각각의 티스(18)에 장착한 보빈(6)의 코일선(7)의 권회층은, 대립되는 측부끼리가 간극(19)을 두고 배치된다. 고정자(2)는, 코일선(7)이 권회된 보빈(6)을 고정자 철심(5)에 장착한 후, 해당 고정자 철심(5)을 환 형상의 적층 철심 링(30)의 내주에 고정함으로써 조립되어, 프레임(4)의 내주면에 장착된다. 그 후, 간극(19)내에 수지가 가입되고, 보빈(6)이나 코일선(7) 등이 수지로 몰드된다. 또한, 각 티스(18)는, 원통 형상의 요크(15)로부터 내주측으로 돌출하도록 설치된 본체부(18a)와, 그 본체부(18a)의 내주측 선단에 설치되고 원주 방향의 폭이 확대된 확대부(18b)를 갖는다. 인접하는 확대부(18b)끼리는, 원주 방향으로 선단끼리가 접촉하지 않고 서로 이간하고 있다. 또한, 고정자 철심(5) 전체는, 이 예에서는 소위 전자기 강판으로 이루어진다.
<전자 철심의 구성>
회전자 철심(20)은, 도 2에 나타낸 바와 같이, 샤프트(10)를 둘러싸는 원통 형상부(20A)와, 원통 형상부(20A)의 반경 방향 외측에 설치된 복수(도시하는 예에서는 10개)의 자극부(20B)와, 영구 자석 삽입용 구멍(20b)과, 누설 자속 방지용 구멍(20d)을 갖는다. 원통 형상부(20A)는, 그 내주측에 샤프트(10)가 관통하는 중심 구멍(20a)을 갖는다.
영구 자석 삽입용 구멍(20b)은, 원통 형상부(20A)의 반경 방향 외측에 있어서의 자극부(20B)의 상호 간에 축방향(도 1 중 좌우 방향)을 따라 관통하여 설치된다. 영구 자석(21)은 축방향으로 삽입되어 접착제에 의해 고정된다. 영구 자석 삽입용 구멍(20b)은, 중심 구멍(20a)의 중심을 기준으로 하여 방사상으로 연장하고 있다. 영구 자석 삽입용 구멍(20b)의 크기(축방향으로부터 본 면적)는, 영구 자석(21)의 크기(축방향 직교 단면적)와 거의 동일하다. 이와 같이 본 실시 형태의 예에 대해서는, 회전자(3)는 영구 자석(21)이 회전자 철심(20)에 매립된, 소위 IPM형(Internal Permanent Magnet)으로서 구성되어 있다. 또한, 각 영구 자석(21)은, 회전자 철심(20)의 자극부(20B)의 상호 간에 있어서, 원통 형상부(20A)의 외주 근방으로부터 회전자 철심(20)의 외주 근방까지 반경 방향을 따라 배치되는, 소위 I 자형 배치로 설치되어 있다.
누설 자속 방지용 구멍(20d)은, 자극부(20B) 중, 반경 방향 내측의 부위에 있어서 영구 자석 삽입용 구멍(20b)의 사이에 설치된, 누설 자속 방지용의 간극이다. 누설 자속 방지용 구멍(20d)은, 영구 자석(21)으로부터의 자속이 해당 누설 자속 방지용 구멍(20d)으로부터 반경 방향 내측으로 누설하는 것을 억제하여, 회전 토크의 발생에 기여하는 자속의 감소를 방지한다.
또한, 누설 자속 방지용 구멍(20d)은, 반경 방향 외측으로 날카로워진 횡단면 형상으로 하는 것이 바람직하다. 이러한 형상으로 함으로써, 그 누설 자속 방지용 구멍(20d)의 양측에 위치하는 영구 자석(21)으로부터의 자속을, 반경 방향 외측으로의 날카로워져 형상을 따라 각각 원활하게 회전자 철심(20)의 외주측으로 유도할 수 있다. 본 실시 형태에서는, 누설 자속 방지용 구멍(20d)을 대략 오각형으로 함으로써, 상기 효과를 얻음과 아울러, 영구 자석(21)의 자속 발생면인 측면과, 해당 측면과 대향하는 누설 자속 방지용 구멍(20d)의 면의 간격을 좁게 하여, 내주측으로의 누설 자속의 저감 효과를 높일 수 있다.
<센서리스 제어의 구체적인 예>
도 3은, 상기 회전 전기 기기(1)에 대해서 센서리스 제어에 의해 속도 제어를 행하는 회전 전기 기기 제어 장치(300)의 구성의 일례를 나타내고 있다. 또한, 도 3에 나타내는 제어 블럭도는 전달 함수 형식으로 표기되어 있다. 이 도 3에 있어서, 회전 전기 기기 제어 장치(300)는, 감산기(321)와, 벡터 제어기(322)와, 전압 제어기(32)와, 전류 검출기(324)와, 직사각형파 전압 발생기(325)와, 좌표 변환기(326)와, 자극 위치 연산기(327)와, 속도 연산기(328)를 구비하고 있다.
이 도 3에서는 도시하지 않은 상위 제어 장치로부터, 회전 전기 기기(1)의 구동을 제어하기 위한 자속 지령치와 속도 지령치 ωr*가 입력되어 있다. 속도 지령치 ωr*로부터, 감산기(321)에 의해 후술하는 속도 추정치 ωr^과의 편차가 취해진다. 이 편차와 자속 지령치가 벡터 제어기(322)에 입력된다. 벡터 제어기(322)는, 부하 상태에 관계없이 속도 추정치 ωr^가 속도 지령치 ωr*에 일치하도록 전동기 전류의 자속 성분(d축 성분)과 토크 성분(q축 성분)을 결정하고 회전 전기 기기(1)의 속도 및 전류를 제어하기 위한 전압 지령치를 회전 직교 좌표계(d-q축 좌표계)에 있어서의 2상 전압 지령치 ΔVsd*, ΔVsq*로서 출력한다. 전압 제어기(323)는, 입력된 2상 전압 지령치 ΔVsd*, ΔVsq*에 근거하여, 회전 전기 기기(1)에 3상 구동 전압을 출력한다. 이에 의해 회전 전기 기기 제어 장치(300)는, 임의의 속도와 그것에 대응하는 토크로 회전 전기 기기(1)를 구동 제어할 수 있다(위치 제어도 행하지만 도시를 생략).
한편, 도시하고 있지 않은 상위 제어 장치로부터, 자극 위치 검출 제어 신호가 직사각형파 전압 발생기(325)에 입력된다. 자극 위치 검출 제어 신호가 입력된 직사각형파 전압 발생기(325)는, 임의로 설정한 시간 주기의 직사각형파 전압(펄스파 전압)에서 전압 지령 ΔVh와 위상 지령 Δθh를 출력한다. 이들 전압 지령 ΔVh와 위상 지령 Δθh가, 전압 제어기(323)내에서 상기의 전압 지령치 ΔVsd*에 중첩되고, 회전 전기 기기(1)에 출력하는 전압의 진폭과 위상을 조작한다.
전류 검출기(324)는, 회전 전기 기기(1)에 입력되는 전류를 3상 iu, iv, iw 각각에서 검출한다. 좌표 변환기(326)는, 이들 3상 전류치 iu, iv, iw를, 2상 전류치 isα, isβ로 변환한다. 이들 2상 전류치 isα, isβ는, u상을 기준축의 α축으로 하고 그것에 직교하는 β축과의 직교 좌표계에 있어서의 각 축의 전류치이다. 여기서, 회전 전기 기기(1)의 d축과 q축의 각각의 인덕턴스에 편차가 있는 경우, 즉, 해당 회전 전기 기기(1)가 자기 돌극성(magnetic salient polarity)을 갖는 경우, 이들 2상 전류치 isα, isβ의 진폭은 자극 위치 θ의 정보를 포함하고 있다. 자극 위치 연산기(327)는, 상기 직사각형파 전압 발생기(325)로부터 출력된 전압 지령 ΔVh를 참조하면서, 2상 전류치 isα, isβ에 근거하여 회전 전기 기기(1)의 자극 위치 θ를 연산하여 출력한다. 이 자극 위치 θ의 연산 수법에 대해서는, 공지의 수법에 따라 실시하면 좋고(예를 들면, 특개 제2010∼172080호 공보 참조), 여기에서는 상세한 설명을 생략한다.
자극 위치 연산기(327)가 출력하는 자극 위치 신호 θ는, 전압 제어기(323)에 입력됨과 아울러, 속도 연산기(328)에도 입력된다. 속도 연산기(328)는, 자극 위치 θ를 미분 연산함으로써 회전 전기 기기(1)의 속도 추정치 ωr^를 연산한다. 이 속도 추정치 ωr^는, 상기 감산기(321)에 의해 속도 지령치 wr*로부터 감산하여 편차를 취함으로써, 속도 피드백 제어에 이용된다. 그리고, 특히 도시하지 않지만, 자극 위치 θ는 U상을 기준으로 한 회전 전기 기기(1)의 회전 위치로서 간주할 수 있어, 상위 제어 장치 내에서 이 자극 위치 신호 θ를 이용한 위치 피드백 제어도 행한다. 이상으로부터, 회전 전기 기기(1)의 자극 위치 θ를 높은 정밀도로 검출하기 위해서는, 회전 전기 기기(1)의 자기 돌극성이 높은 것이 요구된다.
또한, 상기에서는, 탐색 신호인 직사각형파 전압을 d축(전압 지령치 ΔVsd*)에 중첩하고, q축 성분에만 부하 교류 전류를 입력(d축 성분에는 자속 성분만 입력)했지만, 이에 한정되지 않는다. 부하 교류 전류에 대해서는, q축 성분에만 입력해야 하지만, 탐색 신호는 q축 혹은 d축과 q축의 양쪽에 중첩하여 입력해도 좋다. 그러나, q축에 고주파 전압 신호를 중첩하면 토크에 맥동을 일으키게 하는 원인이 되기 때문에, 가능한 한 d축에만 탐색 신호를 중첩하여 입력하는 것이 바람직하다. 또한, 상기 회전 전기 기기(1)의 d, q축 인덕턴스는, 기본파 전류에 대한 인덕턴스가 아니고, 고주파 중첩 전압 신호와 그것에 대응하는 전류로부터 정의되는 고주파 인덕턴스이며, 이후의 설명에서도 고주파 인덕턴스를 단지 인덕턴스라고 부른다.
<회전 전기 기기의 축방향 직교 단면에 있어서의 자극 배치>
다음에, 도 4를 이용하여 축방향 직교 단면에 있어서의 고정자(2) 및 회전자(3) 각각의 자극 배치에 대해 설명한다. 또한, 상기 도 2의 축방향 직교 단면에 있어서의 자극 배치는 샤프트(10)의 회전축에 관해서 180°에서 점대칭의 배치로 되기 때문에, 도 4에서는, 위쪽의 반원부만이 도시되고, 아래쪽의 반원부는 도시가 생략되어 있다(후술의 도 5, 도 7(a)∼도 11(b)에 있어서도 마찬가지임). 위에서 설명한 바와 같이 본 실시 형태의 회전 전기 기기(1)는, 고정자(2) 전체에 12개의 티스(18)를 구비하며, 회전자(3) 전체에 10개의 자극부(20B)를 구비한, 소위 10P12S(P : 폴 = 자극부 수, S : 슬롯 = 티스 수)의 슬롯 조합 구성으로 되어 있다. 따라서 이 도 4에서는, 고정자(2)측의 반원부에서 6개의 티스(18)가 도시되고, 회전자(3)측의 반원부에서 6개의 영구 자석(21) 사이에 개재된 5개의 자극부(20B)가 도시되어 있다.
우선, 고정자(2)측에서는, 인접하는 2개의 티스(18) 근처에 코일선(7)이 각각 역방향으로 권회되어 있다. 그리고, 인접하는 2개의 티스(18)가 하나의 세트로 되어 동일한 전류상에 대응한다. 또한, 각 세트의 단위로 시계 방향 순서로 U, Ⅴ, W의 전류상이 배치되어 있다. 즉, 샤프트(10)의 회전축을 원점으로 한 기계적인 정지 좌표에 있어서, 배치가 서로 60°어긋나 인접하는 2 세트의 티스(18)끼리는, 전기적으로 120° 어긋난 위상차로 교번 자계가 발생한다(단, 회전자(3)의 회전에 따라 후술하는 d축과 q축의 이동에 따라 각 상의 진폭이 변화함). 티스(18)를 12개(6 세트) 구비하는 본 실시 형태의 고정자(2)에 있어서는, 공급되는 3상 교류의 각 상 U, Ⅴ, W에 각각 2 세트의 티스(18)가 대응하고, 이들 2 세트는 정지 좌표에 있어서의 180°어긋난 위치에 배치되어 있다.
다음에 회전자(3)측에서는, 각 영구 자석(21)이, 대략 원주 방향을 따라, 인접하는 2개의 영구 자석(21)끼리가 서로 마주 보는 방향(도면 중의 화살표 블록의 방향)으로 자기화되어 있다. 이에 의해, N극끼리가 서로 마주 보는 위치의 자극부(20B)는, 반경 방향 외측에 N극의 자극을 향하게 하는 N형 자극부(20BN)가 된다. 또한, S극끼리가 서로 마주 보는 위치의 자극부(20B)는, 반경 방향 외측에 S극의 자극을 향하게 하는 S형 자극부(20BS)가 된다. 이들 N형 자극부(20BN)와 S형 자극부(20BS)는 5개씩 존재하고, 회전자 철심(20)의 원주 방향을 따라 교대로 배치된다. 이와 같이 인접하는 2개의 영구 자석(21)으로부터 발생하는 자속을 1개의 자극부(20B)에 집중시킴으로써 자력을 높이고, 자극부(20B)와 티스(18)가 대향하는 위치에 있어서, 티스(18)를 충분히 자기 포화시키는 것이 가능해진다.
이상의 자극 배치에 있어서, 인접하는 S형 자극부(20BS)로부터 N형 자극부(20BN)를 향하는 방향으로 각각의 원주 방향 중앙 위치를 건너도록 d축이 배치된다. 즉, 샤프트(10)의 회전축으로부탸 N형 자극부(20BN)의 중심 방향으로 연장하는 축이 d축이 되고, 전기각에 있어서 그 자극부의 중심 방향으로부터 90도 어긋난 방향으로 연장하는 축을 q축으로 한다. 따라서, 인접하는 3개의 영구 자석(21)의 사이의 기계적인 72°의 각도 범위가, 전기적으로 직교하는 dq축 좌표에 있어서의 360°의 전기각 범위에 상당한다. dq축 좌표는, 정지 좌표에 있어서 회전자(3)의 회전 중심에 대해 회전하는 회전 직교 좌표로서 기능한다.
여기서 상술한 바와 같이, 고정자(2)측에 있어서의 각 상 U, Ⅴ, W가 정지 좌표에 있어서 60°의 간격으로 배치되고, 회전자(3)측에 있어서의 각 dq축 좌표가 정지 좌표에 있어서 72°의 간격으로 배치되어 있다. 이와 같이 10P12S의 구성에서는, 고정자(2)측과 회전자(3)측의 사이에 정지 좌표에서 12°에 상당하는 설치 간격차가 마련되어 있다.
<회전 전기 기기의 축방향 직교 단면에 있어서의 자속 분포>
도 5는, 이상과 같은 자극 배치의 회전 전동기(1)에 있어서의, 자속의 발생 분포를 나타내고 있다. 도 5는, 회전자(3)가 회전 동작하고 있는 동안, 1개의 N형 자극부(20BN)의 중심(및 그것을 걸치는 q축)이 Ⅴ상과 W상의 사이의 중간에 위치함과 함께, 1개의 영구 자석(21)의 중심(및 그것을 걸치는 d축)이 U상의 중앙 위치에 일치하고 있는 상태를 나타내고 있다(후술의 도 7(a)∼도 11(b)에 있어서도 마찬가지임). 또한, 3상 교류 모터에서는, U, Ⅴ, W의 각 상에 서로 120°의 위상차를 갖고 교류 전류를 인가하지만, 도 5에서는, U상의 전류 순간치가 0이며, Ⅴ상으로부터 W상으로 순간 전류가 흐르고 있는 상태의 자속 분포를 나타내고 있다.
이하, 본 발명의 원리를 도 5의 상태의 자속 분포를 이용하여 설명한다. 또한, 도 5에 나타낸 바와 같이, 1, Ⅴ상 코일의 자속이 최대로 되는 고정자(2)와 회전자(3)의 배치 관계는 기계각에서 12°마다(전기각 60°마다) 나타나지만, 그 사이의 위치 관계에 대해서도 마찬가지로 본 발명의 원리를 적용할 수 있다. 여기에서는 설명을 간단하게 하기 위해, 도 5의 상태의 자속 분포를 이용한다.
우선, 고정자(2)측에 있어서, 각 상에 대응하는 동일 세트의 2개의 티스(18)에 권회되는 코일선(7)에 대응하는 상의 교류 전류를 흘렸을 경우, 그 세트의 2개의 티스(18)와 요크(15)를 통과하는 경로에서 교번 자계(도면 중의 가는 파선 화살표 참조)가 순환하도록 발생한다. 단, 본 실시 형태의 예에서는, 상술한 바와 같이 인접하는 확대부(18b)의 선단끼리가 원주 방향으로 서로 이간되어 있다. 이 때문에, 상기 교번 자계에 의한 생기는 교번 자속은, 반경 방향으로 근접하는 회전자(3)측의 자극부(20B)를 통과하여 순환한다.
한편, 회전자(3)측의 각 자극부(20BN, 20BS)의 외주측 선단으로부터 반경 방향으로 발생하는 일정 자속(도면 중의 굵은 실선 화살표 참조)이, 반경 방향으로 대향하는 각 티스(18)를 통과하여 순환한다. 이 각 자극부(20BN, 20BS)로부터의 일정 자속이 각 티스(18)를 통과하는 통과 경로로서는, 주로 2가지가 있다. 1번째의 통과 경로는, 인접하는 2개의 티스(18)의 본체부(18a)와 요크(15)를 순환하도록 통과하는 본체부 통과 경로이다. 2번째의 통과 경로는, 1개의 티스(18)의 확대부(18b)만을 통과하여 누설되도록 순환하는 확대부 통과 경로이다.
다음에 고정자(2)측의 각 티스(18)에는, 상술한 바와 같이 각 코일선(7)에 흐르는 교류 전류에 의해 발생하는 교번 자속과, 반경 방향으로 대향하는 각 자극부(20BN, 20BS)로부터 유입하는 일정 자속을 합성한 자속이 통과한다. 여기서, 교류 전류에 의한 교번 자속과 영구 자석(21)에 의한 일정 자속의 방향이 일치하는 경우에는, 티스(18)내의 자기 포화가 강해진다. 또한, 교번 자속과 일정 자속의 방향이 역방향인 경우에는, 티스(18)내의 자기 포화가 약해진다.
한편, 순간 전류치가 0으로 되어 있는 U상에 대응하는 1 세트의 티스(18)에 있어서 교번 자속이 발생하지 않고, 해당 U상의 중앙 위치에 일치하는 영구 자석(21) 양쪽의 인접하는 2개의 자극부(20BN, 20BS)로부터의 일정 자속만이 티스 본체부(18a)의 내부를 통과한다. 또한, 영구 자석(21)의 원주 방향 위치가, 인접하는 확대부(18b)의 선단의 사이에 위치하고 있기 때문에, 확대부 통과 경로를 통과하는 누설 자속은 거의 없고, 일정 자속이 통과하는 경로는 상기의 본체부 통과 경로로만 된다. 전술한 바와 같이, 해당 U상의 중앙 위치에 일치하는 영구 자석(21)을 걸치는 배치의 d축, 즉, 순간 전류치가 0으로 되어 있는 상에 일치하는 d축 방향의 티스 본체부(18a)가, 다른 티스(18)와 비교하여 가장 자기 포화하기 쉽다.
한편, Ⅴ상과 W상의 사이의 중간에 위치하는 N형 자극부(20BN)로부터의 일정 자속은, Ⅴ상측과 W상측으로 분기하고, 또한 각각이 본체부 통과 경로와 확대부 통과 경로로 분기한다. 여기서, 해당 N형 자극부(20BN) 양쪽의 인접하는 2개의 영구 자석(21)은, 각각의 원주 방향 위치가 확대부(18b)의 대략 중심 위치에 위치한다. 이 때문에, Ⅴ상측과 W상측으로 각각 분기하는 일정 자속 중, 본체부 통과 경로보다도 확대부 통과 경로 쪽에 자속이 집중될 수 있다(누설 자속이 되는 비율이 큼). 즉, Ⅴ상과 W상의 사이를 걸치는 배치의 q축 주변에서는, 티스(18) 전체 중 내주측의 확대부(18b)에서는 자속 밀도가 높아지고, 본체부(18a)에서는 자속 밀도가 낮아진다.
또한, Ⅴ상측의 본체부 통과 경로를 통과하는 일정 자속에 대해서는, Ⅴ상에서 발생하는 교번 자속과 통과 방향이 일치하기 때문에, 티스 본체부(18a)내의 자기 포화를 강하게 하는 경향이 있다. 그러나, Ⅴ상측의 확대부 통과 경로를 통과하는 일정 자속(즉 Ⅴ상측에의 누설 자속)에 대해서는, Ⅴ상에서 발생하는 교번 자속과 통과 방향이 역방향으로 되기 때문에, 티스(18)의 확대부(18b) 선단의 자기 포화를 약하게 하는 경향이 있다.
또한, W상측의 본체부 통과 경로를 통과하는 일정 자속에 대해서는, W상에서 발생하는 교번 자속과 통과 방향이 역방향이 되기 때문에, 티스 본체부(18a)내의 자기 포화를 약하게 하는 경향이 있다. 그러나, W상측의 확대부 통과 경로를 통과하는 일정 자속(즉, W상측에의 누설 자속)에 대해서는, W상에서 발생하는 교번 자속과 통과 방향이 일치하기 때문에, 티스(18)의 확대부(18b) 선단의 자기 포화를 강하게 하는 경향이 있다.
Ⅴ상, W상의 양쪽의 각 티스 확대부(18b)에 있어서도, 일정 자속과 교번 자속의 방향이 일치하는 자속을 강하게 하는 개소(18b1)와 자속을 약하게 하는 개소(18b2)가 존재한다. 자속을 약한게 하는 개소(18b2)는 부하 전류가 커질수록, 자기 포화가 완화되어, 자속이 흐르기 쉬운 영역이 된다.
이상을 종합하면, d축 방향의 티스는 본체부(18a)가 전체적으로 자기 포화하고, Ⅴ상과 W상의 사이를 걸치는 배치의 q축 근방, 즉, 순간 전류치가 흐르고 있는 2개의 상의 사이를 걸치는 q축 방향 근방의 티스(18)에서는, 확대부(18b)가 자기 포화한다. 또한, 부하 전류를 q축에 인가했을 때, 자속을 강하게 하는 개소(18b1)와 자속을 약하게 하는 개소(18b2)가 발생한다.
<본 실시 형태의 특징>
회전자(3)의 자기 돌극비(magnetic salient pole ratio)를 ρ, q축의 인덕턴스를 Lq, d축의 인덕턴스를 Ld로 하면,
의 관계로 된다. 상술한 바와 같이, 센서리스 제어에 있어서 회전 전기 기기(1)의 자극 위치 θ를 높은 정밀도로 검출하기 위해서는, 해당 회전자(3)에 있어서의 자기 돌극비 ρ가 높은 것이 요구된다.
여기서, 인덕턴스 L는, 자속 φ와 전류 i로부터, 식(2)으로 정의되고, 전류에 대한 발생 자속이 많을수록 인덕턴스가 커진다.
또한, 전압 v, 전류 i와 인덕턴스 L의 관계는 식(3)으로 나타내어지기 때문에, 교류 전압에 대한 교류 전류가 클수록 인덕턴스는 작아진다.
이상의 인덕턴스의 특성을 이용하여, 센서리스 제어에서는, 직사각형파 전압 발생기(325)로부터 출력되는 직사각형파 전압(고주파 전압 신호)을 2상 전압 지령치 ΔVsd*, ΔVsq*에 중첩하고, d축과 q축의 사이의 인덕턴스 편차에 의해 생기는 2상 전류치 isα, isβ의 진폭 편차에 근거하여 자극 위치 θ를 추정한다.
본 실시 형태의 예에서는, 회전자(3)에 d축과 q축이 각각 5개소 배치되어 있고, 티스(18)나 교번 자속과의 배치 관계에 따라 인덕턴스가 상이하다. 그 중, 순간 전류치가 0으로 되어 있는 상(U상)에 일치하는 d축 방향의 티스(18)가 가장 자기 포화하기 쉽고, 즉, 가장 인덕턴스가 작은 d축이 된다. 또한, 순간 전류치가 흐르고 있는 2개의 상(Ⅴ상, W상)의 사이를 걸치는 배치의 q축 방향의 티스(18)가 가장 자기 포화하기 어렵고, 즉, 가장 인덕턴스가 큰 q축이 된다. 회전자(3) 전체에 있어서의 d축 인덕턴스 Ld((1)식의 분모)와 q축 인덕턴스 Lq((1)식의 분자)는, 12 코일에 의한 d축 인덕턴스의 총량, 12 코일에 의한 q축 인덕턴스의 총량이 된다.
회전자(3)에 회전 토크를 인가하는 데에는, q축 성분의 부하 전류만을 인가시키면 좋다(d축 성분은 토크에는 영향을 주지 않음). 그러나, q축 성분의 부하 전류를 크게 증가하면, 로터 코어의 자기 포화가 커지고, 로터 코어 형상에 기인하는 자기 돌극비 ρ가 저하한다. 즉, 회전 전기 기기(1)의 자극 위치 θ의 검출 정밀도가 저하하여 버린다.
이에 대해, 회전 전동기(1)의 자기 돌극비 ρ를 높이기 위해, 티스(18)의 자기 포화를 이용함으로써, 자기 돌극비 ρ를 높일 수 있다. 즉, 순간 전류치가 0으로 되어 있는 상(U상)에 일치하는 d축의 인덕턴스를 더 작게 하고, 순간 전류치가 흐르고 있는 2개의 상(Ⅴ상, W상)의 사이를 걸치는 배치의 q축의 인덕턴스를 더 크게 하면 좋다.
이 때문에 본 실시 형태에서는, 고정자(2)의 각 코일선(7)의 무통전 상태(이하 적절히 「무부하 상태」라고도 말함)에 있어서, 자극부(20B)와 반경 방향으로 대향하는 티스(18)가 영구 자석(21)으로부터의 일정 자속에 의해서만 실질적으로 자기 포화하도록, 각 티스(18)가 구성된다. 그 구체적인 수단으로서, 자극부(20B)와 대향하는 티스(18)가 실질적으로 자기 포화하도록, 각 티스(18)의 원주 방향의 폭 치수가 설정된다.
여기서, 일반적으로 티스(18)를 구성하는 전자기 강판은, 도 6의 B∼H 곡선에 나타내는 바와 같은 자기 포화 특성을 갖고 있다. 즉, 전자기 강판에 인가된 자계 강도를 0으로부터 점차 증가시켰을 경우, 자계 강도가 낮은 동안에는 그것에 거의 비례하도록 자속 밀도가 상승한다. 그러나, 자계 강도를 어느 정도 이상으로 증가시키면, 자속 밀도의 상승률은 저하하고, 마지막에 거의 자속 밀도가 상승하지 않게 된다. 본 실시 형태에서는, 자속 밀도가 1.6T(테슬러) 이상으로 된 상태를,「실질적으로 자기 포화」한 상태로 한다. 또한, 실질적으로 자기 포화한 상태의 자속 밀도는 이 값으로 한정되는 것은 아니며, 티스(18)를 구성하는 재질 등에 따라 적절히 변경된다.
또한, 티스(18)와 자극부(20)가 「반경 방향으로 대향」한 상태는, 티스(18) 중 적어도 티스 본체부(18a)가 자극부(20B)와 반경 방향으로 대향하는 상태를 말한다. 구체적으로는, 본체부(18a)가 원주 방향에 있어서의 자극부(20)의 각도 범위 내에 있는 것을 말한다.
이에 의해, 순간 전류치가 0으로 되어 있는 상(U상)에 일치하는 d축에서는, 대향하는 티스 본체부(18a)가 영구 자석(21)으로부터의 일정 자속선만으로 거의 자기 포화하여(자속의 통과 여유를 없게 하여) 인덕턴스를 최소로 할 수 있다. 즉, 회전자(3) 전체의 d축의 인덕턴스의 총량 Ld를 작게 할 수 있다. 또한, 순간 전류치가 흐르고 있는 2개의 상(Ⅴ상, W상)의 사이를 걸치는 배치의 q축에서는, 대향하는 티스 본체부(18a)가 자기 포화를 약하게 하여 인덕턴스를 증가할 수 있다(이 점에 대해서는 이후의 도 7(a)∼도 11(b)에서 상술함). 즉, 회전자(3) 전체의 q축의 인덕턴스의 총량 Ld를 크게 할 수 있다. 이상에 의해, 상기 (1)식의 우변의 분모(Ld)를 작게 하고, 우변의 분자(Lq)를 크게 취할 수 있기 때문에, 회전자(3)의 자기 돌극비 ρ를 높일 수 있다.
<티스 폭의 변경에 의한 자기 돌극비에의 구체적인 영향>
도 7(a)∼도 11(b)는, 상술한 티스 폭의 변경에 의한 자기 돌극비 ρ에의 영향을 구체적으로 도시하고 있다. 도 7(a), 도 8(a), 도 9(a), 도 10(a) 및 도 11(a)는 본 실시 형태에 대응하고 있고, 각 티스 본체부(18a)의 원주 방향 폭이 Wl로 설정되어 있다. Wl은, 무부하 상태에 있어서 자극부(20B)와 대향하는 티스(18)가 영구 자석(21)으로부터의 일정 자속에 의해서만 실질적으로 자기 포화하도록 하는 값으로 설정되어 있다. 한편, 도 7(b), 도 8(b), 도 9(b), 도 10(b) 및 도 11(b)는 비교예에 대응하고 있다. 각 티스 본체부(18a)의 원주 방향 폭이 상기 Wl보다 넓은 W2로 설정되어 있다. 이 비교예에서는, 무부하 상태에 있어서 자극부(20B)와 대향하는 티스(18)는, 영구 자석(21)으로부터의 일정 자속에 의해서만 실질적으로 자기 포화하지 않는다. 또한, 도 7(a) 및 도 7(b)는 고정자(2)에 교류 전류를 전혀 공급하고 있지 않는 무부하 상태의 자속 분포를 나타내고, 도 8(a) 및 도 8(b)는 q축 성분(토크 성분)의 부하 교류 전류(부하 전류에 상당)를 정격의 50% 공급한 상태, 도 9(a) 및 도 9(b)는 부하 교류 전류를 정격의 100% 공급한 상태, 도 10(a) 및 도 10(b)는 부하 교류 전류를 150% 공급한 상태, 도 11(a) 및 도 11(b)는 부하 교류 전류를 200% 공급한 상태를 각각 도시하고 있다. 상기 각 도면에는, 도 5와 마찬가지로 인덕턴스가 최소로 되는 d축과, 인덕턴스가 최대로 되는 q축이 도시되어 있다.
상술한 바와 같이, 비교예에서는, 각 티스 본체부(18a)의 원주 방향의 폭 치수 W2가 비교적 크게 설정되어 있다(도 7(b)∼도 11(b) 참조). 그 때문에, 순간 전류치가 0으로 되어 있는 U상에 일치하는 d축에서는, 자극부(20BN, 20BS)에 대향하는 티스 본체부(18a)가 자기 포화에 이르지 않고, 자속을 더 통과할 수 있는 여유가 있다. 이 때문에, 부하 교류 전류를 증가했을 경우에는, 다른 Ⅴ상, W상의 교번 자속으로부터 영향을 받아 d축의 인덕턴스가 변동한다. 즉, 상기 (1)식 중에 있는 회전자(3) 전체의 d축 인덕턴스의 총량 Ld가 용이하게 변동될 수 있다.
한편, 상술한 바와 같이 본 실시 형태에서는, 각 티스 본체부(18a)의 원주 방향의 폭 치수가 Wl로 설정되어 있다(도 7(a)∼도 11(a) 참조). 그 때문에, 순간 전류치가 0으로 되어 있는 U상에 일치하는 d축에서는, 자극부(20BN, 20BS)에 대향하는 티스 본체부(18a)가 이미 영구 자석(21)으로부터의 일정 자속선에 의해서만 실질적으로 자기 포화하고 있다. 즉, 새로운 자속의 통과 여유가 없기 때문에, 부하 교류 전류를 크게 증가시켜도 다른 Ⅴ상, W상의 교번 자속으로부터 영향을 받지 않고, d축의 인덕턴스는 작은 채로 유지된다(자속 밀도가 큰 채로 유지됨). 즉, 부하 교류 전류를 증가시켜도, 상기 (1)식 중에 있는 회전자(3) 전체의 d축 인덕턴스의 총량 Ld가 작은 채로 유지된다.
한편, 비교예에서는, 부하 교류 전류를 0%로부터 200%로 순차적으로 크게 하면, Ⅴ상과 W상의 전체에 있어서도 자기 포화가 진행되어 버려, 그들 사이를 걸치는 배치의 q축의 인덕턴스가 종합적으로 저하한다.
이에 대해, 본 실시 형태에서는, 부하 교류 전류를 0%로부터 200%로 순차적으로 크게 하면, 순간 전류치가 흐르고 있는 Ⅴ상과 W상의 사이를 걸치는 배치의 q축의 인덕턴스는 점차 증가한다. 이것은, 부하 교류 전류를 크게 함에 따라, 도면 중의 Pl, P2, P3로 도시하는 티스 확대부(18b)의 선단에 있어서 자기 포화를 약하게 하는 효과가 커지기 때문이다. 전술의 도 5에 나타낸 바와 같이, Pl은, 해당 q축의 주위에서 확대부 통과 경로를 통과하는 일정 자속(누설 자속)이 교번 자속과 역방향이 됨으로써, 자기 포화가 약해지는 개소이다. 또한, P2는, 해당 q축의 주위에서 W상측의 본체부 통과 경로 및 확대부 통과 경로를 통과하는 일정 자속이 교번 자속과 역방향이 됨으로써, 자기 포화가 약해지는 개소이다. 또한, P3은, W상측의 본체부 통과 경로를 순환하여 자극부(20BS)에 돌아오는 일정 자속이 교번 자속과 역방향이 되어 자기 포화가 약해지는 개소이다. 이와 같이, 부하 교류 전류를 크게 함에 따라, Ⅴ상과 W상의 전체에 있어서 자기 포화가 진행되지만, 상기 Pl, P2, P3의 개소에서는 자기 포화가 크게 약해지므로, 그 결과 해당 q축에 있어서의 인덕턴스가 종합적으로는 증가한다(도 7(a)∼도 11(a) 참조). 이에 의해, 상기 (1)식 중에 있는 회전자(3) 전체의 q축 인덕턴스의 총량 Lq를, 부하 교류 전류의 증가에 따라 증대시킬 수 있다.
또한, 비교예에 있어서도, 부하 교류 전류를 크게 함에 따라 상기 Pl, P2, P3에 대응하는 개소에 있어서 자기 포화를 약하게 하는 현상이 보여진다. 그러나, 본 실시 형태의 경우에는, 각 티스 본체부(18a)의 원주 방향의 폭 치수 W1이 W2보다 작게 설정되어 있으므로, d축 방향의 티스 본체부(18a)에서 자기 포화가 진행되고 있어, d축 자속과 q축 자속에 의한 상호적인 간섭을 받기 어렵다. 이상으로부터, 비교예에서는 부하 교류 전류를 증가하면 자기 돌극비 ρ가 저하하기 쉽지만, 본 실시 형태에서는 부하 교류 전류(모터 부하)를 증가해도 자기 돌극비 ρ를 크게 취할 수 있다.
비교예에 있어서는, 티스(18)의 폭 치수가 크고, 영구 자석(21)에 의한 일정 자속에 의해서만 자극부(20BN, 20BS)에 대향하는 티스 본체부(18a)를 실질적으로 자기 포화시킬 수 없다. 이러한 경우에는, 고정자(2)의 각 코일선(7)에 토크에 기여하지 않는 양의 d축 전류를 흘림으로써, d축 방향의 티스(18)를 실질적으로 자기 포화시키는 것이 가능해져, 본 실시 형태와 마찬가지의 자기 돌극비를 얻을 수 있다.
<본 실시 형태의 효과>
이상 설명한 바와 같이, 본 실시 형태의 회전 전기 기기(1)는, 고정자 철심(5)이, 코일선(7)의 무통전 상태에 있어서 자극부(20B)와 반경 방향으로 대향하는 티스(18)가 영구 자석(21)에 의해 실질적으로 자기 포화하도록 구성된다. 이에 의해, d축 인덕턴스 Ld를 작게 억제할 수 있다.
한편, q축 방향의 티스(18)에 있어서 선단부만이 자기 포화하여, 영구 자석(21)에 의한 자속과 부하 교류 전류에 의한 자속의 방향이 일치하는 부위의 자기 포화가 강해지지만, 양쪽 자속의 방향이 반대인 부위(P1, P2, P3)는 자기 포화가 약해진다. 자기 포화가 약해진 부분에 있어서 자속이 용이하게 흐를 수 있으므로, 인덕턴스가 증가한다. 본 실시 형태에서는, 부하 교류 전류를 크게 하면 q축 방향에 있는 티스(18)의 선단부의 자기 포화를 완화할 수 있으므로, 고부하시에 q축 인덕턴스 Lq를 증가시킬 수 있다.
이상에 의해, 회전 전기 기기(1)의 체격을 대형화하는 일 없이, 고부하시에도 자기 돌극비 ρ를 확보하는 것이 가능해지다. 그 결과, 부하 토크를 크게 했을 경우에도 정밀도가 높은 위치 추정을 행할 수 있다.
도 12는, 본 실시 형태에 있어서, 부하 전류를 q축에 인가한 상태(Ⅴ상으로부터 W상에 전류를 인가한 상태)에서, 탐색 신호를 중첩하여 입력했을 경우의 고주파 인덕턴스의 시뮬레이션 결과를 나타내고 있다. 또한, 도면의 가로축은, dq축 좌표의 전기각 범위 180°를 넘는 중첩 전압 위상이며, O°가 d축, 90°가 q축에 상당한다. 또한, 도면의 세로축은, 고주파 인덕턴스이며, 고주파 전압 신호에 의해 발생하는 고주파 자속의 통과 용이성에 상당한다.
이 도 12에 있어서, 어떤 부하(교류 부하 전류의 크기)로 작동시켰을 경우에도, d축의 고주파 인덕턴스는 정현파 형상의 곡선으로 변화하여, 그들 위상이 거의 일치하고 있다. 이 정현파 중 최소치에 대한 최대치의 비(최대치/최소치)가 자기 돌극비 ρ에 상당한다. 즉, 정현파의 진폭이 클수록 자기 돌극비 ρ가 높다. 본 실시 형태의 경우에는, 도시하는 바와 같이, 무부하시에도 충분한 자기 돌극비 ρ를 확보할 수 있고 또한, 부하가 커질수록 자기 돌극비 ρ가 높아지는 것을 알 수 있다.
한편, 도 13은, 상술의 비교예에 있어서의 동등한 도면이다. 이 도 13에 있어서는, 무부하시의 자기 돌극비 ρ가 낮고, 부하를 크게 해도 본 실시 형태만큼 높게 되지 않는다. 또한 이 비교예에서는, 부하가 클수록 정현파의 위상이 어긋나 버린다. 이것은, d축 방향의 티스(18)가 충분히 자기 포화하고 있지 않고, q축 전류에 의한 자속이 d축의 자속에 영향을 주어 버리기 때문이다. 이와 같이, d축 인덕턴스의 정현파 곡선의 위상이 변동하면, 회전 전기 기기(1)의 자극 위치 θ의 검출 정밀도가 크게 손상된다. 이상으로부터, 본 실시 형태가, 비교예보다 자기 돌극비 ρ를 높게 확보할 수 있어, 회전 전기 기기(1)의 자극 위치 θ를 높은 정밀도로 검출할 수 있다.
또한, 본 실시 형태에서는 특히, 티스(18)가 본체부(18a)와 확대부(18b)를 갖는다. 티스(18)가 원주 방향의 폭을 확대한 확대부(18b)를 가지므로, 고정자(2)와 회전자(3)가 대향하는 면적이 증대되고, 고정자(2)와 회전자(3)의 사이의 자속 흐름을 원활히 할 수 있다.
또한, 본 실시 형태에서는 특히, 회전자(3)는 영구 자석(21)이 회전자 철심(20)에 매립되어 설치된 IPM형이다. 이에 의해, 영구 자석(21)이 회전자 철심(20)의 표면에 설치된 SPM(Surface Permanent Magnet)형에 비해, 자석 토크에 부가하여 자기 저항·토크를 회전력으로 하는 것이 가능해지므로, 소형이고 또한 고 토크의 회전 전기 기기를 실현할 수 있다.
또한, 본 실시 형태에서는 특히, 영구 자석(21)이, 회전자 철심(20)의 자극부 사이에서, 원통 형상부(20A)의 외주 근방으로부터 회전자 철심(20)의 외주 근방까지 반경 방향을 따라 배치된다(소위Ⅰ자형 배치). 이러한 배치 구성으로 함으로써, 영구 자석(21)의 투입량을 증대시켜, 자속을 자극부(20B)에 집중시킬 수 있다.
또한, 본 실시 형태에서는 특히, 코일선(7)이 티스(18)에 집중 권선에 의해 권회된다. 일반적으로, 자기 돌극비 ρ를 높게 하는 경우에는 분포 권선이 채용되지만, 이 경우에는 회전 전기 기기(1)의 체격이 커진다. 본 실시 형태에서는, d축 방향의 티스(18)를 자기 포화시킴으로써 자기 돌극비 ρ를 확보할 수 있으므로, 코일선(7)에 집중 권선을 채용하는 것이 가능해진다. 따라서, 회전 전기 기기(1)를 소형화할 수 있다.
또한, 본 실시 형태에서는 특히, 회전 전기 기기 제어 장치(300)가 d축에 고주파 전압 신호를 공급하고, q축에 부하 전류를 공급하도록 구성된다. 이에 의해, 고주파 전압 신호를 공급했을 때의 인덕턴스의 변화를 이용하여, 회전 전기 기기(1)의 자극 위치 θ를 추정할 수 있다. 이에 따라, 회전 전기 기기(1)는 고부하시에도 자기 돌극비 ρ를 확보할 수 있다. 따라서, 회전 전기 기기(1)의 부하 토크를 크게 했을 경우에도, 정밀도가 높은 센서리스 제어를 행하는 것이 가능한 회전 전기 기기 제어 장치(300)를 실현할 수 있다.
영구 자석(21)에 의한 일정 자속에 의해서만 자극부(20BN, 20BS)에 대향하는 티스 본체부(18a)를 실질적으로 자기 포화시킬 수 없는 경우, 고정자(2)의 각 코일선(7)에 토크에 기여하지 않는 양의 d축 전류를 흘림으로써, d축 방향의 티스(18)를 실질적으로 자기 포화시키는 것이 가능해진다. 따라서, 본 실시 형태와 마찬가지의 자기 돌극비 ρ가 얻어지고, 정밀도가 높은 센서리스 제어를 행하는 것이 가능한 회전 전기 기기 제어 장치(300)를 실현할 수 있다.
<변형예>
또한, 이상 설명한 실시 형태는, 그 취지 및 기술적 사상을 일탈하지 않는 범위내에서 여러 가지의 변형이 가능하다.
예를 들면, 상기 실시 형태에서는, 인접하는 2개의 티스(18)의 확대부(18b)끼리가 원주 방향으로 선단이 서로 이간하도록 구성되어 있었지만, 이에 한정되지 않는다. 예를 들면, 상기 도 2에 대응하는 도 14에 나타낸 바와 같이, 확대부(118b)는, 인접하는 티스(118)끼리 서로 연결되고, 고정자 철심(105)의 요크(115) 및 각 확대부(118b)가 티스(118)마다 분할 가능하게 구성되어도 좋다.
본 변형예와 같이, 티스(118)의 확대부(118b)가 인접하는 티스(118)끼리로 서로 연결된 구조인 경우, 만일 d축 방향의 티스(118)가 자기 포화하지 않는 구성이 채용되면, 인접하는 티스(118) 간에 누설 자속이 생기고, d축의 누설 인덕턴스의 증대에 의해 자기 돌극비 ρ가 작아지다. 이 때문에, 확대부(118b)의 연결을 분단할 필요가 생긴다.
한편, 상기 실시 형태와 같이, d축 방향의 티스(118)를 자기 포화시키는 경우, 티스 선단까지 자기 포화시킴으로써, 인접하는 티스(118) 사이에서의 누설 자속을 저감할 수 있다. 이에 의해, d축의 누설 인덕턴스가 증대하는 것을 방지할 수 있으므로, 자기 돌극비 ρ를 확보할 수 있다. 그 결과, 본 변형예와 같이, 요크(115) 및 확대부(118b)가 티스(118)마다 분할 가능하게 구성된 고정자 철심(105)을 이용하는 것이 가능해지므로, 코일선(7)을 집중 권선으로 권회하고 또한 고 점적률(space factor)로 하는 것이 가능해져, 소형이고 또한 고 토크의 회전 전기 기기(101)를 실현할 수 있다.
또한, 예를 들면, 상기 실시 형태에서는, 10P12S의 슬롯 조합 구성을 일례로서 설명했지만, 이외의 슬롯 조합 구성에서도 각 상 U, Ⅴ, W끼리의 배치 간격 각도나 각 dq축 좌표의 배치 간격 각도가 변경되는 것만으로도, 각 상 U, Ⅴ, W와 각 dq축 좌표의 사이의 배치 관계성은 변함없기 때문에, 마찬가지의 효과를 얻을 수 있다.
또한, 예를 들면, 상기 실시 형태에서는, 각 티스(18)의 원주 방향의 폭 치수를 적당하게 설정함으로써, 무부하시에 자극부(20B)와 대향하는 티스(18)가 영구 자석(21)으로부터의 자속에 의해서만 실질적으로 자기 포화하도록 했지만, 이것으로 한정되지 않는다. 예를 들면, 회전자(3)가 구비하는 영구 자석(21)의 자력을 높이거나, 혹은, 티스(18)의 폭 치수와 영구 자석(21)의 자력의 양쪽을 적당하게 설정하는 등의 수법을 취해도 좋다. 이러한 수법이, 각 청구항에 기재된 고정자 권선의 무통전 상태에 있어서 자극부와 반경 방향으로 대향하는 티스를 실질적으로 자기 포화시키는 수단에 상당한다.
또한, 예를 들면, 상기 실시 형태에서는, 회전 전기 기기(1)가 회동형 모터인 경우를 일례로서 설명했지만, 이것으로 한정되지 않는다. 예를 들면, 특히 도시하지 않지만, 고정자에 대해서 가동자가 직선적으로 이동하는 선형 모터에 본 실시 형태의 수법을 적용해도 좋다. 이 경우에는, 고정자와 가동자 중 어느 한쪽이 영구 자석에 의한 자극부를 구비하고, 다른 한쪽이 자계를 발생하는 코일선과 티스를 구비하지만, 어느 경우에도 무부하시에 자극부와 대향하는 티스가 영구 자석으로부터의 자속에 의해서만 실질적으로 자기 포화하도록 구성하면 좋다.
또한, 이상에서는, 회전 전기 기기(1)가 모터인 경우를 일례로서 설명했지만, 본 실시 형태는, 회전 전기 기기가 발전기인 경우에도 적용할 수 있다.
또한, 이상 이미 서술한 것 이외에도, 상기 실시 형태나 각 변형예에 의한 수법을 적당 조합하여 이용해도 좋다.
그 외에, 특히 예시하지는 않지만, 상기 실시 형태나 각 변형예는, 그 취지 를 일탈하지 않는 범위내에 있어서, 여러 가지의 변경이 가해져서 실시되는 것이다.
1, 100 : 회전 전기 기기
2 : 고정자
3 : 회전자
5, 105 : 고정자 철심
7 : 코일선(고정자 권선)
10 : 샤프트
15 : 요크
18, 118 : 티스
18a, 118a : 본체부
18b, 118b : 확대부
20 : 회전자 철심
20A : 원통 형상부
20B : 자극부
20BN : N형 자극부
20BS : S형 자극부
21 : 영구 자석
300 : 회전 전기 기기 제어 장치
2 : 고정자
3 : 회전자
5, 105 : 고정자 철심
7 : 코일선(고정자 권선)
10 : 샤프트
15 : 요크
18, 118 : 티스
18a, 118a : 본체부
18b, 118b : 확대부
20 : 회전자 철심
20A : 원통 형상부
20B : 자극부
20BN : N형 자극부
20BS : S형 자극부
21 : 영구 자석
300 : 회전 전기 기기 제어 장치
Claims (11)
- 고정자 및 회전자와,
원주 방향으로 복수의 자극부를 구비한 회전자 철심과,
상기 회전자 철심에 설치된 복수의 영구 자석과,
각각에 고정자 권선이 권회되는 복수의 티스(a plurality of tooth)를 구비하며, 상기 고정자 권선의 무통전 상태에 있어서 상기 자극부와 반경 방향으로 대향하는 상기 티스가 상기 영구 자석에 의해 실질적으로 자기 포화하도록 구성된 고정자 철심을 포함하는
것을 특징으로 하는 회전 전기 기기.
- 제 1 항에 있어서,
상기 고정자 철심의 상기 티스의 상기 원주 방향의 폭은, 상기 자극부와 대향하는 상기 티스가 실질적으로 자기 포화하도록 설정되는
것을 특징으로 하는 회전 전기 기기.
- 제 2 항에 있어서,
상기 티스는,
원통 형상의 요크로부터 내주측으로 돌출하도록 설치된 본체부와,
상기 본체부의 내주측 선단에 설치되고, 상기 원주 방향의 폭이 확대된 확대부를 포함하고,
상기 고정자 철심의 상기 본체부의 상기 원주 방향의 폭은, 상기 티스 중 적어도 상기 본체부가 상기 자극부와 반경 방향으로 대향했을 때에 상기 본체부가 상기 영구 자석에 의해 실질적으로 자기 포화하도록 설정되는
것을 특징으로 하는 회전 전기 기기.
- 제 3 항에 있어서,
상기 확대부는, 인접하는 상기 티스 사이에서 서로 연결되어 있고,
상기 고정자 철심은, 상기 요크 및 상기 확대부가 상기 티스마다 분할 가능하게 구성되는 것을 특징으로 하는 회전 전기 기기.
- 제 4 항에 있어서,
상기 영구 자석은, 상기 회전자 철심에 매립되어 있는 것을 특징으로 하는 회전 전기 기기.
- 제 5 항에 있어서,
상기 회전자 철심은, 샤프트에 고정되고, 상기 복수의 자극부가 외주측에 배치되는 원통 형상부를 구비하고 있고,
상기 영구 자석은, 상기 회전자 철심의 상기 자극부 사이에 있어서, 상기 원통 형상부의 외주 근방으로부터 상기 회전자 철심의 외주 근방까지 반경 방향을 따라 배치되는 것을 특징으로 하는 회전 전기 기기.
- 제 6 항에 있어서,
상기 고정자 권선은, 집중 권선 방법에 의해 상기 티스에 권회되는 것을 특징으로 하는 회전 전기 기기.
- 위치 센서 및 속도 센서를 이용하지 않고 청구항 1 내지 7 중 어느 한 항에 기재된 회전 전기 기기의 토크 제어, 속도 제어, 위치 제어 중 적어도 어느 하나를 행하는 상기 회전 전기 기기의 제어 장치로서,
회전축으로부터 상기 자극부의 중심 방향으로 연장하는 축을 d축, 전기각에 있어서 상기 중심 방향으로부터 90도 어긋난 방향으로 연장하는 축을 q축으로 했을 경우에, 상기 제어 장치는 상기 d축 및 상기 q축 중 적어도 한쪽에 고주파 전압 신호를 공급하고, 상기 q축에 부하 전류를 공급하는
것을 특징으로 하는 회전 전기 기기의 제어 장치.
- 위치 센서 및 속도 센서를 이용하지 않고 회전 전기 기기의 토크 제어, 속도 제어, 위치 제어 중 적어도 어느 하나를 행하는 상기 회전 전기 기기의 제어 장치로서, 상기 회전 전기 기기는 고정자 및 회전자와, 원주 방향으로 복수의 자극부를 구비한 회전자 철심과, 상기 회전자 철심에 설치된 복수의 영구 자석과, 각각에 고정자 권선이 권회되는 복수의 티스를 구비한 고정자 철심을 포함하며,
회전축으로부터 상기 자극부의 중심 방향으로 연장하는 축을 d축, 전기각에 있어서 상기 중심 방향으로부터 90도 어긋난 방향으로 연장하는 축을 q축으로 했을 경우에, 상기 제어 장치는 상기 d축 및 상기 q축 중 적어도 한쪽에 고주파 전압 신호를 공급하고, 상기 자극부와 반경 방향으로 대향하는 상기 티스가 실질적으로 자기 포화하도록 상기 d축에 양의 전류를 공급하고, 상기 q축에 부하 전류를 공급하는
것을 특징으로 하는 회전 전기 기기의 제어 장치.
- 위치 센서 및 속도 센서를 이용하지 않고 청구항 1 내지 7 중 어느 한 항에 기재된 회전 전기 기기의 토크 제어, 속도 제어, 위치 제어 중 적어도 어느 하나를 행하는 상기 회전 전기 기기의 제어 방법으로서,
회전축으로부터 상기 자극부의 중심 방향으로 연장하는 축을 d축, 전기각에 있어서 상기 중심 방향으로부터 90도 어긋난 방향으로 연장하는 축을 q축으로 했을 경우에,
상기 d축 및 상기 q축 중 적어도 한쪽에 고주파 전압 신호를 공급하는 단계와,
상기 q축에 부하 전류를 공급하는 단계를 포함하는
것을 특징으로 하는 회전 전기 기기의 제어 방법.
- 위치 센서 및 속도 센서를 이용하지 않고 회전 전기 기기의 토크 제어, 속도 제어, 위치 제어 중 적어도 어느 하나를 행하는 상기 회전 전기 기기의 제어 방법으로서, 상기 회전 전기 기기는 고정자 및 회전자와, 원주 방향으로 복수의 자극부를 구비한 회전자 철심과, 상기 회전자 철심에 설치된 복수의 영구 자석과, 각각에 고정자 권선이 권회되는 복수의 티스를 구비한 고정자 철심을 포함하며,
회전축으로부터 상기 자극부의 중심 방향으로 연장하는 축을 d축, 전기각에 있어서 상기 중심 방향으로부터 90도 어긋난 방향으로 연장하는 축을 q축으로 했을 경우에,
상기 d축 및 상기 q축 중 적어도 한쪽에 고주파 전압 신호를 공급하는 단계와,
상기 자극부와 반경 방향으로 대향하는 상기 티스가 실질적으로 자기 포화하도록 상기 d축에 양의 전류를 공급하는 단계와,
상기 q축에 부하 전류를 공급하는 단계를 포함하는
것을 특징으로 하는 회전 전기 기기의 제어 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013135159A JP6209372B2 (ja) | 2013-06-27 | 2013-06-27 | 回転電機及び回転電機の制御装置 |
JPJP-P-2013-135159 | 2013-06-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150001582A true KR20150001582A (ko) | 2015-01-06 |
KR101536451B1 KR101536451B1 (ko) | 2015-07-13 |
Family
ID=49639788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130158238A KR101536451B1 (ko) | 2013-06-27 | 2013-12-18 | 회전 전기 기기 및 회전 전기 기기의 제어 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150001975A1 (ko) |
EP (1) | EP2819281A2 (ko) |
JP (1) | JP6209372B2 (ko) |
KR (1) | KR101536451B1 (ko) |
CN (1) | CN104253498B (ko) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10411532B2 (en) * | 2013-10-27 | 2019-09-10 | Moovee Innovations Inc. | Software-defined electric motor |
WO2015189896A1 (ja) * | 2014-06-09 | 2015-12-17 | 株式会社安川電機 | 回転電機、回転電機の制御装置、回転電機の制御方法 |
JP6304560B2 (ja) * | 2015-03-12 | 2018-04-04 | 株式会社安川電機 | リニアモータ、リニアモータの制御システム |
JP6277152B2 (ja) * | 2015-03-31 | 2018-02-07 | アズビル株式会社 | タービン式流量制御装置 |
US10468921B2 (en) * | 2015-06-17 | 2019-11-05 | Mitsubishi Electric Corporation | Permanent magnet synchronous motor |
GB2546482B (en) * | 2016-01-14 | 2019-07-10 | Jaguar Land Rover Ltd | Electric machine apparatus |
EP3276794B1 (de) * | 2016-07-29 | 2018-09-19 | Etel S. A.. | Rotor für einen synchronmotor |
JP2018046593A (ja) * | 2016-09-12 | 2018-03-22 | コニカミノルタ株式会社 | 永久磁石同期電動機の制御装置、制御方法、および画像形成装置 |
JP7200585B2 (ja) * | 2018-10-09 | 2023-01-10 | 株式会社デンソー | 回転電機 |
CN109586429B (zh) * | 2018-11-28 | 2020-07-28 | 南京航空航天大学 | 基于隔齿绕组和不等定子齿距的永磁容错电机 |
JP7327019B2 (ja) * | 2019-09-10 | 2023-08-16 | 株式会社デンソー | 回転電機 |
JP7390898B2 (ja) * | 2020-01-10 | 2023-12-04 | 住友重機械工業株式会社 | 成形機 |
US10784805B1 (en) * | 2020-02-19 | 2020-09-22 | Wolong Electric Group Co. Ltd. | System and method for interior permanent magnet synchronous motor control from zero or low speed |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4568846A (en) * | 1983-10-28 | 1986-02-04 | Welco Industries | Permanent magnet laminated rotor with conductor bars |
JPH05292708A (ja) * | 1992-04-08 | 1993-11-05 | Ito Denki Kk | 分割型固定子の製造方法 |
US5530326A (en) * | 1993-07-19 | 1996-06-25 | Quantum Corporation | Brushless DC spindle motor startup control |
JP3161176B2 (ja) * | 1993-08-09 | 2001-04-25 | トヨタ自動車株式会社 | 同期機のロータ構造および同期モータ |
JPH08178938A (ja) * | 1994-12-27 | 1996-07-12 | Nippon Seiko Kk | 回転速度検出装置付転がり軸受ユニット |
JP3401155B2 (ja) * | 1997-02-14 | 2003-04-28 | 株式会社日立製作所 | 同期電動機制御装置および電気車 |
JP4108792B2 (ja) * | 1997-08-01 | 2008-06-25 | 東芝キヤリア株式会社 | 密閉形圧縮機 |
IT1320322B1 (it) * | 2000-04-28 | 2003-11-26 | Filippis Pietro De | Motore brushless a magneti permanenti. |
JP3979561B2 (ja) * | 2000-08-30 | 2007-09-19 | 株式会社日立製作所 | 交流電動機の駆動システム |
JP4076714B2 (ja) * | 2000-09-04 | 2008-04-16 | 三菱電機株式会社 | 電動機の固定子及び電動機及びdcブラシレスモータ及び空気調和装置 |
US6867526B2 (en) * | 2001-09-05 | 2005-03-15 | Koyo Seiko Co., Ltd. | Brushless DC motor |
JP4370754B2 (ja) * | 2002-04-02 | 2009-11-25 | 株式会社安川電機 | 交流電動機のセンサレス制御装置および制御方法 |
JP2004056871A (ja) * | 2002-07-17 | 2004-02-19 | Yaskawa Electric Corp | 薄型ダイレクトドライブモータ |
JP2005080365A (ja) * | 2003-08-29 | 2005-03-24 | Kokusan Denki Co Ltd | 回転電機用ステータ |
JP4410159B2 (ja) * | 2005-06-24 | 2010-02-03 | 三菱電機株式会社 | 交流回転電機 |
JP2007306735A (ja) * | 2006-05-12 | 2007-11-22 | Yaskawa Electric Corp | 永久磁石モータ |
WO2007141948A1 (ja) * | 2006-06-06 | 2007-12-13 | Honda Motor Co., Ltd. | モータおよびモータ制御装置 |
JP5161612B2 (ja) * | 2008-02-22 | 2013-03-13 | 株式会社東芝 | 永久磁石式回転電機、永久磁石式回転電機の組立方法及び永久磁石式回転電機の分解方法 |
JP5281339B2 (ja) * | 2008-09-01 | 2013-09-04 | 株式会社日立製作所 | 同期電動機の駆動システム、及びこれに用いる制御装置 |
JP5396876B2 (ja) * | 2009-01-21 | 2014-01-22 | 株式会社安川電機 | 交流電動機の制御装置 |
JP5424814B2 (ja) * | 2009-05-21 | 2014-02-26 | 三菱電機株式会社 | 永久磁石型回転電機 |
JP5479978B2 (ja) * | 2010-03-30 | 2014-04-23 | アイシン・エィ・ダブリュ株式会社 | 回転電機 |
JP5182320B2 (ja) * | 2010-05-11 | 2013-04-17 | 株式会社デンソー | モータ |
CN102377257B (zh) * | 2010-08-10 | 2016-03-30 | 德昌电机(深圳)有限公司 | 无刷电机 |
JP5329005B2 (ja) * | 2011-03-15 | 2013-10-30 | 三菱電機株式会社 | 永久磁石式回転電機 |
CN103493337B (zh) * | 2011-06-30 | 2016-12-28 | D·R·麦金托什 | 低成本低齿槽效应的永磁电机 |
US9564779B2 (en) * | 2011-10-14 | 2017-02-07 | Mitsubishi Electric Corporation | Permanent magnet motor |
JP6033424B2 (ja) * | 2012-06-26 | 2016-11-30 | 日産自動車株式会社 | 可変起磁力型回転電機、及び可変起磁力型回転電機の制御装置 |
-
2013
- 2013-06-27 JP JP2013135159A patent/JP6209372B2/ja active Active
- 2013-11-26 EP EP20130194411 patent/EP2819281A2/en not_active Withdrawn
- 2013-12-09 US US14/100,020 patent/US20150001975A1/en not_active Abandoned
- 2013-12-18 KR KR1020130158238A patent/KR101536451B1/ko not_active IP Right Cessation
- 2013-12-20 CN CN201310712184.XA patent/CN104253498B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
EP2819281A2 (en) | 2014-12-31 |
CN104253498B (zh) | 2018-02-13 |
KR101536451B1 (ko) | 2015-07-13 |
CN104253498A (zh) | 2014-12-31 |
JP6209372B2 (ja) | 2017-10-04 |
JP2015012661A (ja) | 2015-01-19 |
US20150001975A1 (en) | 2015-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101536451B1 (ko) | 회전 전기 기기 및 회전 전기 기기의 제어 장치 | |
US8217545B2 (en) | Rotor of permanent magnet rotary machine and manufacturing method of rotor | |
US8324768B2 (en) | Rotational angle detection device and method for permanent magnet dynamo-electric machine and electric power steering device | |
JP5948061B2 (ja) | 回転電機、およびその回転電機を備えた車両 | |
EP2980969B1 (en) | Synchronous reluctance motor and rotor for synchronous reluctance motor | |
US8487497B2 (en) | Motor system | |
US10044309B2 (en) | Rotating electric machine, rotating electric machine controller and method for controlling rotating electric machine | |
KR101506417B1 (ko) | 영구 자석식 회전 전기 기기 | |
US20140145547A1 (en) | Permanent magnet motor | |
US11018616B2 (en) | Electric driving apparatus and electric power steering apparatus | |
JP6227712B2 (ja) | 回転電機、およびその回転電機を備えた車両 | |
JP2013215021A (ja) | 電磁誘導装置 | |
JP2005065415A (ja) | 永久磁石同期モータの磁極位置検出装置 | |
KR20060064310A (ko) | 영구자석 전동기 | |
JP2010011611A (ja) | 永久磁石型回転電機およびパワーステアリング装置 | |
JP6415029B2 (ja) | 電磁誘導装置 | |
JP2023028866A (ja) | 回転機械 | |
JP5394834B2 (ja) | 永久磁石型回転電機の回転子 | |
JP5183218B2 (ja) | 永久磁石型回転電機 | |
KR20030081828A (ko) | 집중권 방식의 동기릴럭턴스 모터의 구조 | |
JP2017229121A (ja) | シンクロナスリラクタンスモータ | |
JP2011109734A (ja) | 回転機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |