KR20120099669A - 발광다이오드 장치 - Google Patents
발광다이오드 장치 Download PDFInfo
- Publication number
- KR20120099669A KR20120099669A KR1020127011705A KR20127011705A KR20120099669A KR 20120099669 A KR20120099669 A KR 20120099669A KR 1020127011705 A KR1020127011705 A KR 1020127011705A KR 20127011705 A KR20127011705 A KR 20127011705A KR 20120099669 A KR20120099669 A KR 20120099669A
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- metal electrode
- type semiconductor
- semiconductor layer
- conductive type
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 78
- 239000002184 metal Substances 0.000 claims abstract description 78
- 238000005240 physical vapour deposition Methods 0.000 claims abstract description 9
- 238000009713 electroplating Methods 0.000 claims abstract description 8
- 238000001704 evaporation Methods 0.000 claims abstract description 8
- 230000008020 evaporation Effects 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 claims description 158
- 239000004065 semiconductor Substances 0.000 claims description 74
- 229910052782 aluminium Inorganic materials 0.000 claims description 34
- 229910052737 gold Inorganic materials 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 17
- 229910002601 GaN Inorganic materials 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 238000007772 electroless plating Methods 0.000 claims description 7
- 238000007639 printing Methods 0.000 claims description 7
- 239000011241 protective layer Substances 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 7
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- -1 AlGaInP Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 2
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 claims description 2
- 229910017709 Ni Co Inorganic materials 0.000 claims description 2
- 229910003267 Ni-Co Inorganic materials 0.000 claims description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 claims description 2
- 229910004541 SiN Inorganic materials 0.000 claims description 2
- 229910004166 TaN Inorganic materials 0.000 claims description 2
- 229910008842 WTi Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910002704 AlGaN Inorganic materials 0.000 claims 1
- 238000012546 transfer Methods 0.000 abstract description 11
- 230000005855 radiation Effects 0.000 abstract description 9
- 230000031700 light absorption Effects 0.000 abstract description 4
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 3
- 150000004767 nitrides Chemical class 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 abstract 1
- 238000012858 packaging process Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000005286 illumination Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 4
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
- H01L33/60—Reflective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
- H01L33/46—Reflective coating, e.g. dielectric Bragg reflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/405—Reflective materials
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
외향으로 배치된 금속전극을 가지는 고휘도 수직 발광다이오드(LED) 장치.
상기 LED장치는, 물리기상증착(PVD; Physical Vapor Deposition), 화학기상증착(CVD; Chemical Vapor Deposition), 증발, 전기도금, 또는 이들의 조합과 같은 퇴적방법을 이용하여 LED 에피택시구조의 표면의 가장자리 상에 금속전극을 형성하고, 그 후 패키징과정을 수행함으로써 형성된다. LED의 구성요소는, 질화물, 인화물 또는 비소화물이어도 좋다.
본 발명의 LED는, 전류전달성능을 향상시키고, 금속전극의 광흡수를 감소시키고, 휘도를 증가시키고, 효율을 증가시키고, 이로써 에너지효율을 향상시킨다는 장점을 가진다.
상기 금속전극은, 상기 장치의 가장자리이면서 발광측면 상에 위치되어 있다. 상기 금속전극은 두 측벽을 가지는데, 이들 중 한 측벽은 다른 측벽에 비하여 상기 장치로부터 방사광을 더 많이 받아들인다.
상기 LED장치는, 물리기상증착(PVD; Physical Vapor Deposition), 화학기상증착(CVD; Chemical Vapor Deposition), 증발, 전기도금, 또는 이들의 조합과 같은 퇴적방법을 이용하여 LED 에피택시구조의 표면의 가장자리 상에 금속전극을 형성하고, 그 후 패키징과정을 수행함으로써 형성된다. LED의 구성요소는, 질화물, 인화물 또는 비소화물이어도 좋다.
본 발명의 LED는, 전류전달성능을 향상시키고, 금속전극의 광흡수를 감소시키고, 휘도를 증가시키고, 효율을 증가시키고, 이로써 에너지효율을 향상시킨다는 장점을 가진다.
상기 금속전극은, 상기 장치의 가장자리이면서 발광측면 상에 위치되어 있다. 상기 금속전극은 두 측벽을 가지는데, 이들 중 한 측벽은 다른 측벽에 비하여 상기 장치로부터 방사광을 더 많이 받아들인다.
Description
본 출원은, 2009년 11월 6일자 출원된 대만출원 제98137664호에 우선권을 주장한다. 이 대만출원의 모든 개시내용은 여기에 참조로서 포함되어 있다.
본 발명은, 수직 발광다이오드(LED) 장치에 관한 것으로서, 보다 상세히는, 외향으로 위치된 금속전극을 가지는 고휘도 LED장치에 관한 것이다.
현재, LED는, 낮은 생산비, 용이한 제조, 작은 사이즈, 낮은 전력소비 및 고효율이라는 그 특성으로 인하여 우리 일상생활에서, 예컨대 휴대전화, 전기보드, 손전등, 교통신호등 등의 분야에서 널리 응용되고 있다. 그럼에도 불구하고, LED의 조명효율과 밝기에 있어서의 개선은 지속적으로 추구되고 있다.
최근에, 질화물 및 인화물을 이용하는 고휘도 LED가 개발되고 있는데, 이는 적색, 녹색 및 청색만 발광할 수 있는 것이 아니라, 다양한 색채 및 백색의 광을 산출할 수도 있다. 현재로서, LED조명 응용분야가 산업계에 의하여 적극적으로 개척되고 있다. 제조개발의 초기단계에서는, 다수의 LED가 조합되어 어레이를 형성하여, 높은 출력파워를 달성하였다. 하지만, LED어레이를 포함하는 LED장치는, 높은 출력파워를 가지는 단일 LED장치에 비하여, 제조라는 면에서 훨씬 복잡하다. 따라서, LED어레이 장치를 제조하는 비용은 상대적으로 높고, 안정적인 신뢰성은 달성되기 쉽지 않다.
LED의 파워와 조명플럭스를 증가시키는 하나의 방법은, 그 사이즈와 조명면의 면적을 증가시키는 것이다. 하지만, 종래의 LED에 대개 사용되고 있는 반도체 재료층의 전도도는 열악하였기 때문에, 접점으로부터 액티브층에 대하여 전류가 효율적이고 균일하게 전달되지 못한다. 그래서, LED 내의 어떤 영역은, 높은 전류밀도 현상을 야기할 수 있고, 이는 전체 휘도에 영향을 주며, 액티브층의 근방에서 조기하락을 초래하기까지 한다. 결국, LED의 가용수명이 엄청나게 감소된다.
도 1a는, 종래의 소형 수직 LED장치(100)의 구성의 평면도이고, 도 1b는, 도 1a에 도시된 LED장치(100)의 구성의 단면도이다. 도 2는, 종래의 대형 수직 LED장치(200)의 구성의 평면도이다. 도 1b를 참조하면, 종래의 소형(小形) LED장치(100)의 구성은 대개, 제1 전극(109), 상기 제1 전극(109) 상에 형성된 도전성 기판층(108), 상기 도전성 기판층(108) 상에 형성된 반사미러층(106), 상기 반사미러층(106) 상에 형성된 제1 도전타입 반도체층(104), 상기 제1 도전타입 반도체층(104) 상에 형성된 액티브층(103)(또는 방사층이라고 함), 상기 액티브층(103) 상에 형성된 제2 도전타입 반도체층(102), 및 상기 제2 도전타입 반도체층(102) 상에 형성된 제2 금속전극(101)을 포함한다. 도 1a에 도시된 바와 같이, 상기 소형 수직 LED장치(100)에 있어서는, 상기 제2 금속전극(101)이 상기 제2 도전타입 반도체층(102)의 중앙에 위치되어 있다. 다만, 상기 LED장치(100)는, 작은 사이즈 및 좋은 전류전달성능으로 인하여, 추가적 금속와이어가 필요하지 않다.
종래의 대형(大形) 수직 LED장치에 대해서는, 상기 LED장치의 조명효율에 영향을 미치는 주요원인이 전류를 균일하게 전달시키지 못하는 것이기 때문에, 도전성을 증가시키기 위하여 반도체 재료층의 두께를 증가시키는 것이 고려된다. 도 1a 및 도 1b에 도시된 소형 LED(약 0.25㎟ 미만)에 대해서는, 그 휘도 및 전류전달성능이 이 방식으로 확실히 개선될 수 있다. 하지만, 상기 반도체 재료층의 증가된 두께는, 생산비용만 증가시키는 것이 아니라, 스트레스(응력) 문제도 초래한다. 따라서, 대형 LED장치의 전류전달능력 요구에 따르기 위하여 반도체 재료층의 두께를 무한정 증가시키는 것은 불가능하다. 결국, 도 2에 도시된 대형 장치에 대해서는, 반드체 재료층의 두께를 단순히 증가시키는 것으로는, 만족할만한 성능이 얻어지지 못하였다. 이는, LED장치의 크기가 증가될수록, n 타입 접점 또는 p 타입 접점으로부터 반도체 재료층에 대하여 균일하게 전기전류를 전파시키지 않게 되기 때문이다. LED의 크기는 실질적으로 반도체 재료층의 전류전달특성에 의하여 제한된다는 것을 알 수 있다.
도 2에 도시된 바와 같이, 종래의 대형 수직 LED장치(200)에 있어서는, 제2 금속전극 패드영역(210)이 제2 도전타입 반도체층(202)의 중앙에 위치되어 있고, 이는 일반적으로 방사형 금속전극(201)을 이용하여 전류전달성능을 증가시킨다. 하지만, 일반적인 LED장치의 외형은 대부분 정사각이나 직사각이고, 따라서 전류전달성능을 잘 달성할 수 있도록 각 방사상 금속와이어를 방사층 상에 위치시키기 어려울 뿐 아니라, 서로 이웃하는 방사상 금속와이어들이 그들간에 일정한 간격을 가지고 있도록 확보하기도 어렵다. 게다가, 상기 금속전극의 양측벽은 고조도측벽(high illumination side)이고, 이는 방사광을 흡수하는 경향이 있어서, 휘도를 감소시킨다. 도 3a 및 도 3b에 도시된 바와 같이, 다른 종래의 대형 수직 LED장치(200A 및 200B)에 대하여도, 이들의 금속전극의 양측벽이 고조도측벽이고, 이것도 방사광을 흡수하는 경향을 가지며, 따라서 휘도를 감소시킨다. 따라서, 종래의 LED장치는 일반적으로 아직, 불균일한 전류밀도, 낮은 광출사효율, 미흡한 휘도, 미흡한 효율, 짧은 가용수명, 등의 문제점을 가지며, 이들이 해결되어야 한다.
상기 문제점을 감안하여, 본 발명은, 개선된 수직 LED장치를 제공하는데, 이는 종래의 LED장치에 비하여 높은 출력휘도 및 효율을 가진다. 또한, 본 발명의 상기 LED장치는, 제조비용의 증가 없이 높은 에너지효율에 대한 최근의 요청을 완전히 충족할 수 있다. 또한, 본 LED장치의 제조방법은, 복잡한 기술을 포함하지 않으므로, 경제적 유익성을 가진다.
상기 문제를 해결하고, 상기 목적을 달성하기 위하여, 본 발명은 향상된 전류전달성능 및 저감된 금속전극의 흡광성을 가지는 LED장치를 제공한다.
본 발명의 일실시예는, 외향으로 배치된 금속전극을 가지는 수직 발광다이오드(LED)장치를 제공하는 것이고, 이 LED장치는 다음을 포함한다: 제1 전극, 상기 제1 전극 상에 형성된 도전성 기판층, 상기 도전성 기판층 상에 형성된 반사미러층, 상기 반사미러층 상에 형성된 제1 도전타입 반도체층, 상기 제1 도전타입 반도체층 상에 형성된 액티브층, 상기 액티브층 상에 형성된 제2 도전타입 반도체층, 상기 제2 도전타입 반도체층 상의 가장자리에 형성되는 제2 금속전극. 여기서, 상기 제2 금속전극의 두 측벽은 각각, 고(高)조도측벽 및 저(低)조도측벽이고, 상기 저조도측벽은 상기 반사미러층의 폭 범위를 벗어나서 위치됨.
본 발명의 외향 배치된 금속전극을 적용함으로써, 수직 LED장치의 전류전달성능이 최적화되고, 금속전극의 광흡수가 감소될 수 있고, 이로써 LED장치의 휘도, 효율 및 가용수명의 증가와 에너지비용의 감소를 이룰 수 있다.
본 발명의 첨부도면에 있어서, 동일요소는 동일부호로 표시된다.
도 1a는, 종래의 소형 수직 LED장치의 평면도를 나타낸다.
도 1b는, 종래의 소형 수직 LED장치의 단면도를 나타낸다.
도 2는, 종래의 대형 수직 LED장치의 평면도를 나타낸다.
도 3a는, 종래의 대형 수직 LED장치의 평면도 및 상세 단면도를 나타내고, 여기서 금속전극의 양측이 고조도측벽이다.
도 3b는, 종래의 다른 대형 수직 LED장치의 평면도 및 상세 단면도를 나타내고, 여기서 금속전극의 양측이 고조도측벽이다.
도 4는, 본 발명의 일실시예에 의한 대형 수직 LED장치의 평면도를 나타내고, 여기서 다이(die) 사이즈는 1㎟이다.
도 5는, 도 4에 도시된 대형 수직 LED장치의 평면도 및 단면도를 나타낸다.
도 6은, 도 4에 도시된 대형 수직 LED장치의 사시도를 나타낸다.
도 7은, 본 발명의 일실시예에 의한 대형 수직 LED장치의 평면도와 단면도를 나타내고, 여기서 다이(die) 사이즈는 1㎟이다.
도 8은, 본 발명의 다른 실시예에 의한 대형 수직 LED장치의 평면도와 단면도를 나타내고, 여기서 다이(die) 사이즈는 1㎟이다.
도 9는, 본 발명의 또 다른 실시예에 의한 대형 수직 LED장치의 평면도와 단면도를 나타내고, 여기서 다이(die) 사이즈는 1㎟이다.
도 10은, 본 발명의 다른 실시예에 의한 대형 수직 LED장치의 평면도와 단면도를 나타내고, 여기서 다이(die) 사이즈는 1㎟이다.
도 11은, 본 발명의 다른 실시예에 의한 대형 수직 LED장치의 평면도를 나타내고, 여기서 다이(die) 사이즈는 0.6㎟이다.
도 12는, 도 11에 도시된 대형 수직 LED장치의 평면도 및 단면도를 나타낸다.
도 13은, 본 발명의 일실시예에 의한 소형 수직 LED장치의 평면도 및 단면도를 나타내고, 여기서 다이(die) 사이즈는 0.1㎟이다.
도 14의 (a)~(f), 도 15의 (a)~(f), 도 16의 (a)~(f), 도 17의 (a)~(f), 도 18의 (a)~(f), 및 도 19의 (a)~(f)는 각각, 본 발명의 다른 실시예에 의한 대형 수직 LED장치의 평면도를 나타내고, 여기서 그 다이(die) 사이즈는 0.3㎟ 초과이다.
도 20의 (a)~(d)는 각각, 본 발명의 다른 실시예에 의한 수직 LED장치의 평면도를 나타내고, 여기서 그 다이(die) 사이즈는 0.3㎟ 미만이다.
도 21의 (a)~(i)는 각각, 본 발명의 다른 실시예에 의한 직사각 다이형상을 가지는 수직 LED장치의 평면도를 나타낸다.
도 22의 (a), (b)는, 본 발명의 대형 수직 LED장치의 측면도를 나타내고, 도 23의 (a), (b)는, 도 13에 도시된 소형 수직 LED장치의 측면도를 나타낸다. 그리고,
도 24의 (a), (b)는, 도 21의 (a)에 도시된 직사각 다이형상을 가지는 수직 LED장치의 측면도를 나타낸다.
도 1a는, 종래의 소형 수직 LED장치의 평면도를 나타낸다.
도 1b는, 종래의 소형 수직 LED장치의 단면도를 나타낸다.
도 2는, 종래의 대형 수직 LED장치의 평면도를 나타낸다.
도 3a는, 종래의 대형 수직 LED장치의 평면도 및 상세 단면도를 나타내고, 여기서 금속전극의 양측이 고조도측벽이다.
도 3b는, 종래의 다른 대형 수직 LED장치의 평면도 및 상세 단면도를 나타내고, 여기서 금속전극의 양측이 고조도측벽이다.
도 4는, 본 발명의 일실시예에 의한 대형 수직 LED장치의 평면도를 나타내고, 여기서 다이(die) 사이즈는 1㎟이다.
도 5는, 도 4에 도시된 대형 수직 LED장치의 평면도 및 단면도를 나타낸다.
도 6은, 도 4에 도시된 대형 수직 LED장치의 사시도를 나타낸다.
도 7은, 본 발명의 일실시예에 의한 대형 수직 LED장치의 평면도와 단면도를 나타내고, 여기서 다이(die) 사이즈는 1㎟이다.
도 8은, 본 발명의 다른 실시예에 의한 대형 수직 LED장치의 평면도와 단면도를 나타내고, 여기서 다이(die) 사이즈는 1㎟이다.
도 9는, 본 발명의 또 다른 실시예에 의한 대형 수직 LED장치의 평면도와 단면도를 나타내고, 여기서 다이(die) 사이즈는 1㎟이다.
도 10은, 본 발명의 다른 실시예에 의한 대형 수직 LED장치의 평면도와 단면도를 나타내고, 여기서 다이(die) 사이즈는 1㎟이다.
도 11은, 본 발명의 다른 실시예에 의한 대형 수직 LED장치의 평면도를 나타내고, 여기서 다이(die) 사이즈는 0.6㎟이다.
도 12는, 도 11에 도시된 대형 수직 LED장치의 평면도 및 단면도를 나타낸다.
도 13은, 본 발명의 일실시예에 의한 소형 수직 LED장치의 평면도 및 단면도를 나타내고, 여기서 다이(die) 사이즈는 0.1㎟이다.
도 14의 (a)~(f), 도 15의 (a)~(f), 도 16의 (a)~(f), 도 17의 (a)~(f), 도 18의 (a)~(f), 및 도 19의 (a)~(f)는 각각, 본 발명의 다른 실시예에 의한 대형 수직 LED장치의 평면도를 나타내고, 여기서 그 다이(die) 사이즈는 0.3㎟ 초과이다.
도 20의 (a)~(d)는 각각, 본 발명의 다른 실시예에 의한 수직 LED장치의 평면도를 나타내고, 여기서 그 다이(die) 사이즈는 0.3㎟ 미만이다.
도 21의 (a)~(i)는 각각, 본 발명의 다른 실시예에 의한 직사각 다이형상을 가지는 수직 LED장치의 평면도를 나타낸다.
도 22의 (a), (b)는, 본 발명의 대형 수직 LED장치의 측면도를 나타내고, 도 23의 (a), (b)는, 도 13에 도시된 소형 수직 LED장치의 측면도를 나타낸다. 그리고,
도 24의 (a), (b)는, 도 21의 (a)에 도시된 직사각 다이형상을 가지는 수직 LED장치의 측면도를 나타낸다.
이하, 본 발명의 바람직한 실시예가 설명되며, 이에 본 발명에 의한 수직 LED장치의 다양한 실시예가 포함되는데, 여기서 반도체층의 전류전달성능과 금속전극의 광흡수 특성이 개선되고, 이로써 종래의 LED장치에 비하여 더 좋은 휘도, 효율 및 가용수명이 달성된다.
도 4는, 본 발명의 일실시예에 의한 대형 수직 GaN-기반 (질화갈륨) LED장치(300)의 평면도를 나타낸다. 도 5는, 도 4에 도시된 LED장치(300)의 평면도 및 단면도를 나타낸다. 도 6은, 도 4에 도시된 LED장치(300)의 사시도를 나타낸다. 이 실시예에 있어서, n 타입 (제2 도전타입) 반도체층(302)의 사이즈는 1㎟이다. 본 발명의 상기 대형 수직 LED장치(300)는, 제1 전극(309), 상기 제1 전극(309) 상에 형성된 도전성 기판층(308), 상기 도전성 기판층(308) 상에 형성된 반사미러층(306), 상기 반사미러층(306) 상에 형성된 p 타입 (제1 도전타입) 반도체층(304), 상기 p 타입 (제1 도전타입) 반도체층(304) 상에 형성된 액티브층(303) ("방사층"이라고도 함), 상기 액티브층(303) 상에 형성된 n 타입 (제2 도전타입) 반도체층(302), 및 상기 n 타입 (제2 도전타입) 반도체층(302) 상에 형성된 제2 금속전극(301)을 포함하고, 여기서, 상기 제2 금속전극(301)은, 상기 n 타입 반도체층(302)의 가장자리 상에 구비되고, 상기 제2 금속전극(301)의 두 측벽은 각각, 고조도측벽(301') 및 저조도측벽(301'')이다. 상기 저조도측벽(301'')은 상기 반사미러층(306)의 폭 범위(W)를 벗어나서 위치되어 있다. 환언하면, 상기 저조도측벽(301'')은 상기 반사미러층(306)에 의하여 커버되지 않는다. 3개의 금속전극 와이어가 상기 제2 금속전극(301)과 연결되도록 내향 구비되어 있다. 상기 내향 구비된 금속전극 와이어의 수는, 전체 LED장치의 외형이나 사이즈에 맞추거나 요구조건에 맞추기 위하여 조정될 수 있음은 물론이다. 상기 제2 도전타입 반도체층의 표면의 일부영역은, 광출사효율을 향상시키기 위하여 패턴화될 수 있다. 또한, 상기 LED장치(300)는, 도 4 및 도 6에 도시된 바와 같이, 전기접점으로서 이용되는 금속패드 영역(310)을 더욱 포함한다. 전기접점으로서 이용되는 도시된 상기 금속패드 영역(310)은, 단지 예시를 위한 것일 뿐이고, 본 발명의 범위를 제한하려는 것이 아님은 당연하다. 상기 금속패드 영역(310)의 수는, 실제 요구조건에 따라서 조정될 수 있다. 또한, 상기 LED장치(300)는, 상기 제2 도전타입 반도체층(302)과 상기 제2 금속전극(301) 사이에 구비되는 도전성 투명층(미도시)을 포함하여도 좋다.
도 7은, 본 발명의 다른 실시예에 의한 대형 수직 GaN-기반 (질화갈륨) LED장치(400)의 평면도와 단면도를 나타낸다. 상기 LED장치(400)에 있어서는, 광출사효율을 증가시키기 위하여, 상기 고조도측벽 근방의 상기 제2 도전타입 반도체층(302)의 표면이 러프화(거칠게 처리)되어 있다. 도 8은, 본 발명의 또 다른 실시예에 의한 대형 수직 LED장치(400')의 평면도와 단면도를 나타낸다. 상기 LED장치(400')에 있어서는, 광출사효율을 더욱 증가시키기 위하여, 상기 제2 도전타입 반도체층(302)의 전체 표면이 러프화(거칠게 처리)되어 있다. 상기 제2 도전타입 반도체층(302)의 표면은, 돔/비드(domes/beads)의 사용 또는 습식/건식 에칭기술의 사용에 의하여 러프화될 수 있지만, 이에 한정되는 것은 아니다.
도 9는, 본 발명의 다른 실시예에 의한 대형 수직 LED장치(500)의 평면도와 단면도를 나타낸다. 상기 LED장치(500)는, 상기 반사미러층(306)을 보호하는데 이용되는 보호층(311)을 더욱 포함하고, 이로써 상기 반사미러층(306)이 산화되어 그 결과 휘도가 감소되는 것이 방지된다. 상기 보호층(311)의 재료는, Ni, W, Mo, Pt, Ta, Rh, Au, V, WTi, TaN, SiO2, SiNx, Al2O3, AlN, ITO 및 Ni-Co로 구성되는 그룹으로부터 선택되는 적어도 하나의 물질일 수 있다. 상기 보호층(311)은, PVD, CVD, 증발, 스퍼터링, 전기도금, 무전해도금, 코팅, 프린팅, 또는 이들의 조합의 방법 중 적어도 하나를 이용함으로써 형성될 수 있다. 도 9에 의하면, 상기 고조도측벽 근방의 상기 제2 도전타입 반도체층(302)의 표면만이 러프화되어 있지만, 필요에 따라서는 상기 제2 도전타입 반도체층(302)의 전체 표면이 러프화될 수도 있다.
도 10은, 본 발명의 다른 실시예에 의한 대형 수직 LED장치(600)의 평면도와 단면도를 나타낸다. 상기 LED장치(600)에 있어서, 반사미러층(314)과 상기 제1 도전타입 반도체층(304) 사이에 광학투명층(312)이 구비되어, 전방향(omni-directional) 반사기가 형성된다. 상기 반사미러층(314)은, 고반사율 금속층이거나, 또는 분산 브랙반사기(DBR; Distributed Bragg Reflector)일 수 있고, 이로써 외부 퀀텀효율을 증가시킨다. 상기 반사미러층(314)을 제조하는 방법은, PVD, CVD, 증발, 스퍼터링, 전기도금, 무전해도금, 코팅, 프린팅, 또는 이들의 조합과 같은, 종래의 방법일 수 있다. 본 발명의 일실시예에 있어서, 반사미러층은 단일층 또는 복층구조일 수 있다. 또한, 상기 반사미러층의 재질은, Ag/Ni, Ni/Ag/Ni/Au, Ag/Ni/Au, Ag/Ti/Ni/Au, Al, Ti/Al, Ni/Al, Au, 이들 적어도 2개의 조합, 또는 Ag, Au, Ni, Cr, Pt, Pd, Rh, Cu, W, In, Pd, Zn, Ge, Bi, AlSi, 또는 Al을 포함하는 이들의 합금으로부터 선택되는 하나의 금속이어도 좋다. 상기 분산 브랙반사기의 재질은, 예컨대, SiO2, TiO2, MgO, Al2O3, ITO, ZnO, SiNx, 또는 이들 적어도 2개의 조합이어도 좋다. 상기 전방향 반사기의 재질은, 예컨대, SiO2, TiO2, MgO, Al2O3, ITO, ZnO, SiNx, 또는 이들 적어도 2개의 조합이어도 좋다. 상기 도전성 기판층은, 금속 또는 실리콘, GaP, SiC, GaN, AlN, GaAs, InP, AlGaAs, 및 ZnSe, 또는 이들 적어도 2개의 조합과 같은 반도체 재료이어도 좋다. 마찬가지로, 상기 도전성 기판층은, PVD, CVD, 증발, 스퍼터링, 전기도금, 무전해도금, 코팅, 프린팅, 웨이퍼본딩, 또는 이들의 조합과 같은 종래 방법을 이용함으로써 형성될 수도 있고, 그 두께는, 다양한 요청에 따라서 10㎛ 내지 1000㎛이어도 좋다. 도 10에 의하면, 상기 고조도측벽 근방의 상기 제2 도전타입 반도체층(302)의 표면만이 러프화되어 있지만, 필요에 따라서는 상기 제2 도전타입 반도체층(302)의 전체 표면이 러프화될 수도 있다.
표 1은, 본 발명의 일실시예에 의한 대형(1㎟) 수직 질화물-기반 (질화갈륨) 블루 LED장치(300)와 종래기술 설계 A, B, C 및 D에 의한 4개의 LED장치들 사이의 휘도(광출력 파워)에 대한 비교결과를 나타낸다. 이들 5개의 여러 설계의 LED장치는, 동일 프레임을 이용하여 동일 에피택시 웨이퍼로 만들어지고, 최종적으로 실리카겔로 패키지되어 완전히 동일공정을 통하여 제품이 얻어진 것이다. 표 1에 있어서, 휘도(광출력 파워)는, 적분공(integrating sphere)에 의하여 측정되었는데, 이는 이 기술분야의 기술자에게 주지이므로, 그 상세한 설명은 여기서 생략한다. 표 1에 나타내어진 바와 같이, 본 발명의 LED장치는, 다른 종래기술 LED장치에 비하여 높은 출력파워를 가진다.
여기서, 다이(die) 사이즈 = 1.0㎟.
도 11은, 본 발명의 다른 실시예에 의한 대형(0.6㎟) 수직 GaN-기반 (질화갈륨) LED장치(700)의 평면도를 나타낸다. 도 12는, 도 11에 도시된 LED장치(700)의 평면도 및 단면도를 나타낸다. 상기 LED장치(700)는, 제2 금속전극(701), 제2 도전타입 반도체층(702), 액티브층(방사층)(703), 제1 도전타입 반도체층(704), 반사미러층(706), 도전성 기판층(708), 및 제1 전극(709)을 포함하고, 여기서, 제2 도전타입 반도체층(702)의 사이즈는 0.6㎟이고, 제2 금속전극(701)이 상기 제2 도전타입 반도체층(702)의 가장자리 상에 구비되어 있다. 상기 제2 금속전극(701)의 두 측벽이 각각, 고조도측벽(701') 및 저조도측벽(701'')이고, 여기서 상기 저조도측벽(701'')은 상기 반사미러층(706)의 폭 범위(W)를 벗어나서 위치되어 있다. 환언하면, 상기 저조도측벽(701'')은, 상기 반사미러층(706)에 의하여 커버되지 않는다. 또한, 이 실시예에 있어서, 전기접점으로서 이용되는 금속패드 영역(710)이 구비된다.
도 13은, 본 발명의 일실시예에 의한 소형 수직 GaN-기반 (질화갈륨) LED장치(800)의 평면도 및 단면도를 나타낸다. 상기 LED장치(800)는, 제2 금속전극(801), 제2 도전타입 반도체층(802), 액티브층(방사층)(803), 제1 도전타입 반도체층(804), 반사미러층(806), 도전성 기판층(808), 및 제1 전극(809)을 포함한다. 이 실시예에 있어서, 상기 제2 도전타입 반도체층(802)의 사이즈는 0.1㎟이다. 본 발명의 상기 소형 수직 LED장치(800)는, 제1 전극(809), 상기 제1 전극(809) 상에 형성된 도전성 기판층(808), 상기 도전성 기판층(808) 상에 형성된 반사미러층(806), 상기 반사미러층(806) 상에 형성된 제1 도전타입 반도체층(804), 상기 제1 도전타입 반도체층(804) 상에 형성된 액티브층(803)("방사층"이라고도 함), 상기 액티브층(803) 상에 형성된 제2 도전타입 반도체층(802), 및 상기 제2 도전타입 반도체층(802) 상에 형성된 제2 금속전극(801)을 포함하고, 여기서, 상기 제2 금속전극(801)은, 상기 제2 도전타입 반도체층(802)의 가장자리 상에 구비되어 있다. 상기 제2 금속전극(801)의 두 측벽이 각각, 고조도측벽(801') 및 저조도측벽(801'')이고, 여기서 상기 저조도측벽(801'')은 상기 반사미러층(806)의 폭 범위(W)를 벗어나서 위치되어 있다. 환언하면, 상기 저조도측벽(801'')은 상기 반사미러층(806)에 의하여 커버되지 않는다.
바람직하게는, 상기한 제1 도전타입 반도체층(304, 704, 및 804)은 p 타입이고, 상기 제2 도전타입 반도체층(302, 702, 및 802)은 n 타입이다. n 타입 반도체층이 상대적으로 도전성이 좋아서, 요구되는 금속전극의 수가 상대적으로 적으며, 이로써 음영현상을 감소시켜서 휘도를 증가시킨다. 또한, 바람직하게는, 도핑수준은 1×1015㎝-3에서 1×1022㎝-3이어도 좋고, 상기 반도체층의 두께는 0.3㎛ 내지 100㎛이어도 좋다. 일실시예에 있어서, 제1 도전타입 반도체층, 제2 도전타입 반도체층 및 액티브층이, 금속-유기 화학기상증착(MOCVD; Metal-Organic Chemical Vapor Deposition), 기상에피택시(VPE; Vapor Phase epitaxy), 및 분자빔에피택시(MBE; Molecular Beam Epitaxy)와 같은 종래의 방법을 이용하여 형성되어도 좋고, 이는 이 기술분야의 기술자에게 주지이므로 그 상세한 설명은 불필요하다. 상기 액티브층의 구조는, 알루미늄 갈륨 인듐 질화물((AlxGa1 -x)yIn1 - yN; 0≤x≤1; 0≤y≤1)을 포함하는 더블-헤테로 및 퀀텀-웰 구조로 구성되는 그룹으로부터 선택되거나, 알루미늄 갈륨 인듐 인화물((AlxGa1 -x)yIn1 - yP; 0≤x≤1; 0≤y≤1)을 포함하는 더블-헤테로 및 퀀텀-웰 구조로 구성되는 그룹으로부터, 또는 알루미늄 갈륨 비소화물(AlxGa1 - xAs; 0≤x≤1)을 포함하는 더블-헤테로 및 퀀텀-웰 구조로 구성되는 그룹으로부터 선택되어도 좋다. 상기 제2 금속전극(301, 701, 및 801) 및 상기 제1 전극(309, 709, 및 809)은, PVD, CVD, 증발, 스퍼터링, 전기도금, 무전해도금, 코팅, 프린팅, 또는 이들의 조합과 같은 종래 방법을 이용함으로써 형성되어도 좋다. 예컨대, 제2 금속전극은, Cr/Au, Cr/Al, Cr/Pt/Au, Cr/Ni/Au, Cr/Al/Pt/Au, Cr/Al/Ni/Au, Al, Ti/Al, Ti/Au, Ti/Al/Pt/Au, Ti/Al/Ni/Au, Ti/Al/Pt/Au, WTi, Al/Pt/Au, Al/Pt/Al, Al/Ni/Au, Al/Ni/Al, Al/W/Al, Al/W/Au, Al/TaN/Al, Al/TaN/Au, Al/Mo/Au, 또는 이들 적어도 2개를 포함하는 합금, 또는 기타 적절한 도전성 물질 중 하나를 포함하는 단일층 또는 복층구조를 가져도 좋다.
상기 제2 금속전극의 폭은, 1㎛ 내지 50㎛, 바람직하게는 3㎛ 내지 30㎛이어도 좋다. 광폭 금속전극 와이어가 전류를 보다 효율적으로 전달할 수 있을 테지만, 그것은 n 타입층으로부터의 방사광을 보다 많이 방해를 하거나 흡수할 수 있다. 이에 대한 하나의 해결책이, n 타입층으로부터의 방사광이 상기 금속전극 와이어에 의하여 방해되거나 흡수되는 것을 방지하도록 구성된 전류 블로킹구조를 배치하는 것이다. 하지만, 상기 광폭 금속전극 와이어가 채용되면, 상기 전류 블로킹구조의 크기도 그에 따라서 증가될 필요가 있고, 이로써 상기 액티브층의 방사영역이 감소되고, 따라서 상기 액티브층을 통한 광의 양이 감소된다. 상기 제2 금속전극 와이어들 사이의 공간은, 50㎛ 내지 600㎛일 수 있다. 상기 전류전달성능은, 상기 공간이 적절할 때에 향상된다. 하지만, 상기 금속전극 와이어들 사이의 공간이 커지면 접촉면적이 감소될 수 있고, 이로써 반대로 작동전압에 영향을 준다. 바람직하게는, 상기 제2 금속전극의 총 표면적은, 상기 제2 도전타입 반도체층의 표면의 25% 미만을 차지하고, 상기 반사미러층과 상기 제1 도전타입 반도체층 사이의 접촉면적은, 상기 제1 도전타입 반도체층의 표면적의 75%를 초과하여 차지한다. 상기 제2 금속전극 와이어의 두께는, 0.1㎛ 내지 50㎛, 바람직하게는 1㎛ 내지 10㎛이어도 좋다. 두꺼운 제2 금속전극은, 낮은 직렬저항값을 가지지만, 대응되는 제조시간 및 비용은 불가피하게 증가된다.
상기 제2 금속전극의 상술한 재료는, 단순히 예시의 목적일 뿐이고, 본 발명의 범위를 제한하고자 하는 의도가 아님은 당연하다.
도 14의 (a)~(f), 도 15의 (a)~(f), 도 16의 (a)~(f), 도 17의 (a)~(f), 도 18의 (a)~(f), 및 도 19의 (a)~(f)는 각각, 본 발명의 다른 실시예에 의한 대형 수직 LED장치의 평면도를 나타내고, 여기서 그 다이(die) 사이즈는 0.3㎟ 초과이다. 도 20의 (a)~(d)는 각각, 본 발명의 다른 실시예에 의한 수직 LED장치의 평면도를 나타내고, 여기서 그 다이(die) 사이즈는 0.3㎟ 미만이다. 도 21의 (a)~(i)는 각각, 본 발명의 다른 실시예에 의한 직사각 다이형상을 가지는 수직 LED장치의 평면도를 나타낸다. 도 22의 (a), (b)는, 도 4 내지 도 12, 도 14의 (a)~(f), 도 15의 (a)~(f), 도 16의 (a)~(f), 도 17의 (a)~(f), 도 18의 (a)~(f), 및 도 19의 (a)~(f)에 도시된 LED장치들과 같은 본 발명의 대형 수직 LED장치의 측면도를 나타낸다. 도 23의 (a), (b)는, 도 13에 도시된 소형 수직 LED장치의 측면도를 나타낸다. 도 24의 (a), (b)는, 도 21의 (a)에 도시된 직사각 다이형상을 가지는 수직 LED장치의 측면도를 나타낸다.
본 발명은, 수직 LED장치의 금속전극이, 반도체층 상에 구비되어, 외향으로 배치된 금속전극을 형성한다는 점에 특징을 가진다. 상기 금속전극을 가장자리에 배치하는 구성을 통하여, 정육면 또는 직육면 형상을 가지는 수직 LED장치의 전류전달성능은 최적화될 수 있고, 금속전극의 광흡수는 감소될 수 있으며, 이로써 상기 LED장치의 휘도, 효율, 및 가용수명을 증가시키므로, 다른 종래기술 LED장치에 비하여 월등한 성능을 나타낸다.
상술한 설명은 본 발명의 바람직한 실시예를 나타내는 것이고, 이는 예시일 뿐이며, 제한하는 것이 아니다. 본 발명의 사상 및 범위를 벗어나지 않으면서 다양한 등가적 변형 및 변경이 이루어질 수 있고, 이들은 첨부된 청구범위에 속하는 것으로 해석되어야 함은, 이 기술분야의 통상의 전문가에게 있어서 자명하다.
100 소형 수직 LED장치 101 제2 금속전극 102 제2 도전타입 반도체층 103 액티브층 104 제1 도전타입 반도체층 106 반사미러층 108 도전성 기판층 109 제1 전극 200, 200A, 200B 대형 수직 LED장치 201 방사형 금속전극 202 제2 도전타입 반도체층 210 제2 금속전극 패드영역 300 대형 LED장치 301 제2 금속전극 301' 고조도측벽 301'' 저조도측벽 302 제2 도전타입 반도체층 303 액티브층 304 제1 도전타입 반도체층 306 반사미러층 308 도전성 기판층 309 제1 전극 310 금속패드 영역 311 보호층 312 광학투명층 314 반사미러층
Claims (16)
- 반사미러층,
상기 반사미러층 상에 형성된 제1 도전타입 반도체층,
상기 제1 도전타입 반도체층 상에 형성된 액티브층,
상기 액티브층 상에 형성된 제2 도전타입 반도체층, 및
상기 제2 도전타입 반도체층 상에 형성된 제2 금속전극
을 구비하고,
상기 제2 금속전극의 두 측벽은 각각, 고(高)조도측벽 및 저(低)조도측벽이고,
상기 저조도측벽은, 상기 반사미러층의 폭 범위를 벗어나서 위치되며,
상기 반사미러층과 상기 제1 도전타입 반도체층 사이의 접촉면적은, 상기 제1 도전타입 반도체층의 표면적의 75%를 초과하여 차지하는 발광다이오드 장치. - 청구항 1에 있어서,
상기 액티브층의 재질은, AlInGaN, InGaN, AlGaN, GaN, AlGaInP, 및 AlGaAs로 구성되는 그룹으로부터 선택되는 적어도 하나의 물질인 발광다이오드 장치. - 청구항 1에 있어서,
상기 반사미러층의 재질은, Ag, Al, Au, Rh, Pt, Cu, Ni, W, In, Pd, Zn, Ge, Bi, AlSi, Ag/Ni, Ni/Ag/Ni/Au, Ag/Ni/Au, Ag/Ti/Ni/Au, Ti/Al, Ni/Al, 및 이들의 합금으로 구성되는 그룹으로부터 선택되는 적어도 하나의 물질인 발광다이오드 장치. - 청구항 1에 있어서,
상기 반사미러층과 상기 제1 도전타입 반도체층 사이에 배치되는 투명층을 더욱 구비하는 발광다이오드 장치. - 청구항 1에 있어서,
상기 반사미러층은, PVD, CVD, 증발, 스퍼터링, 전기도금, 무전해도금, 코팅, 프린팅, 또는 이들의 조합의 적어도 하나를 이용하여 형성되는 발광다이오드 장치. - 청구항 1에 있어서,
상기 제2 도전타입 반도체층은, n 타입 질화갈륨 반도체인 발광다이오드 장치. - 청구항 1에 있어서,
상기 제2 금속전극의 재질은, Cr/Au, Cr/Al, Cr/Pt/Au, Cr/Ni/Au, Cr/Al/Pt/Au, Cr/Al/Ni/Au, Al, Ti/Al, Ti/Au, Ti/Al/Pt/Au, Ti/Al/Ni/Au, Ti/Al/Pt/Au, WTi, Al/Pt/Au, Al/Pt/Al, Al/Ni/Au, Al/Ni/Al, Al/W/Al, Al/W/Au, Al/TaN/Al, Al/TaN/Au, Al/Mo/Au, 및 이들의 합금으로 구성되는 그룹으로부터 선택되는 적어도 하나의 물질인 발광다이오드 장치. - 청구항 7에 있어서,
상기 제2 금속전극은, PVD, CVD, 증발, 스퍼터링, 전기도금, 무전해도금, 코팅, 프린팅, 또는 이들의 조합의 적어도 하나를 이용하여 형성되는 발광다이오드 장치. - 청구항 1에 있어서,
상기 제2 금속전극의 총 표면적은, 상기 제2 도전타입 반도체층의 표면적의 25% 미만을 차지하는 발광다이오드 장치. - 청구항 1에 있어서,
상기 제2 금속전극에 연결되도록 내향하여 배치된 적어도 하나의 금속전극 와이어를 더욱 구비하는 발광다이오드 장치. - 청구항 10에 있어서,
상기 제2 금속전극 및 상기 금속전극 와이어의 두께는, 0.1 내지 50㎛인 발광다이오드 장치. - 청구항 1에 있어서,
상기 제2 도전타입 반도체층과 상기 제2 금속전극 사이에 배치되는 도전성 투명층을 더욱 구비하는 발광다이오드 장치. - 청구항 1에 있어서,
상기 제2 도전타입 반도체층의 일부 표면이 패턴화되어 있는 발광다이오드 장치. - 청구항 1에 있어서,
상기 반사미러층을 보호하도록 구성된 보호층을 더욱 구비하는 발광다이오드 장치. - 청구항 14에 있어서,
상기 보호층의 재질은, Ni, W, Mo, Pt, Ta, Rh, Au, V, WTi, TaN, SiO2, SiNx, Al2O3, AlN, ITO 및 Ni-Co로 구성되는 그룹으로부터 선택되는 적어도 하나의 물질인 발광다이오드 장치. - 청구항 15에 있어서,
상기 보호층은, PVD, CVD, 증발, 스퍼터링, 전기도금, 무전해도금, 코팅, 프린팅, 또는 이들의 조합의 적어도 하나를 이용하여 형성되는 발광다이오드 장치.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98137664 | 2009-11-06 | ||
TW098137664A TWI412161B (zh) | 2009-11-06 | 2009-11-06 | 發光二極體裝置 |
PCT/IB2010/002774 WO2011055202A2 (zh) | 2009-11-06 | 2010-11-01 | 发光二极体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120099669A true KR20120099669A (ko) | 2012-09-11 |
KR101250964B1 KR101250964B1 (ko) | 2013-04-05 |
Family
ID=43970459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020127011705A KR101250964B1 (ko) | 2009-11-06 | 2010-11-01 | 발광다이오드 장치 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8450758B2 (ko) |
EP (1) | EP2498307A4 (ko) |
JP (1) | JP2013508994A (ko) |
KR (1) | KR101250964B1 (ko) |
CN (1) | CN102439741B (ko) |
TW (1) | TWI412161B (ko) |
WO (1) | WO2011055202A2 (ko) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI412161B (zh) | 2009-11-06 | 2013-10-11 | Semileds Optoelectronics Co | 發光二極體裝置 |
US9847372B2 (en) * | 2011-12-01 | 2017-12-19 | Micron Technology, Inc. | Solid state transducer devices with separately controlled regions, and associated systems and methods |
JP6535465B2 (ja) * | 2012-01-10 | 2019-06-26 | ルミレッズ ホールディング ベーフェー | 選択的な領域粗化による制御されたled光出力 |
CN103383986A (zh) * | 2012-05-04 | 2013-11-06 | 旭明光电股份有限公司 | 具有波长转换层的发光二极管晶粒及其制造方法 |
CN102709446A (zh) * | 2012-06-18 | 2012-10-03 | 东莞市大亮光电有限公司 | 一种小功率直插式led |
WO2014014300A2 (ko) | 2012-07-18 | 2014-01-23 | 주식회사 세미콘라이트 | 반도체 발광소자 |
EP2782147B1 (en) * | 2012-07-18 | 2020-03-11 | Semicon Light Co. Ltd. | Method for manufacturing semiconductor light-emitting element |
JP5734935B2 (ja) * | 2012-09-20 | 2015-06-17 | 株式会社東芝 | 半導体装置及びその製造方法 |
US9748511B2 (en) * | 2013-05-23 | 2017-08-29 | Oledworks Gmbh | Light-emitting device with alternating arrangement of anode pads and cathode pads |
CN103456859A (zh) * | 2013-09-05 | 2013-12-18 | 深圳市智讯达光电科技有限公司 | 倒装led芯片的反射层结构及倒装led芯片 |
TWI633678B (zh) | 2014-01-27 | 2018-08-21 | Glo公司 | 具有布拉格反射器之led裝置及單分led晶圓基板為具有該裝置之晶粒之方法 |
JP2016072479A (ja) | 2014-09-30 | 2016-05-09 | 日亜化学工業株式会社 | 発光素子 |
WO2017026753A1 (ko) * | 2015-08-07 | 2017-02-16 | 엘지이노텍 주식회사 | 발광소자 및 발광소자 패키지 |
KR102425124B1 (ko) * | 2015-08-24 | 2022-07-26 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | 발광소자 및 발광소자 패키지 |
TWI790984B (zh) * | 2017-01-26 | 2023-01-21 | 晶元光電股份有限公司 | 發光元件 |
US10615094B2 (en) * | 2017-01-28 | 2020-04-07 | Zhanming LI | High power gallium nitride devices and structures |
CN109962130B (zh) * | 2019-04-15 | 2024-08-20 | 扬州乾照光电有限公司 | 一种六面粗化的红外led芯片及制作方法 |
TWD219684S (zh) * | 2021-07-09 | 2022-07-01 | 晶元光電股份有限公司 | 發光二極體之部分 |
TWI773587B (zh) * | 2021-11-17 | 2022-08-01 | 友達光電股份有限公司 | 燈板 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0883927A (ja) * | 1994-09-09 | 1996-03-26 | Shin Etsu Handotai Co Ltd | AlGaInP系発光装置 |
JP2000091638A (ja) * | 1998-09-14 | 2000-03-31 | Matsushita Electric Ind Co Ltd | 窒化ガリウム系化合物半導体発光素子 |
JP2000174339A (ja) * | 1998-12-04 | 2000-06-23 | Mitsubishi Cable Ind Ltd | GaN系半導体発光素子およびGaN系半導体受光素子 |
JP2001177148A (ja) * | 1999-12-16 | 2001-06-29 | Toshiba Corp | 半導体発光素子及びその製造方法 |
JP4754711B2 (ja) * | 2000-06-21 | 2011-08-24 | 昭和電工株式会社 | Iii族窒化物半導体発光ダイオード、発光ダイオードランプ、光源、iii族窒化物半導体発光ダイオード用電極およびその製造方法 |
JP2003197965A (ja) * | 2001-12-25 | 2003-07-11 | Sanken Electric Co Ltd | 半導体発光素子及びその製造方法 |
EP2105977B1 (en) * | 2002-01-28 | 2014-06-25 | Nichia Corporation | Nitride semiconductor element with supporting substrate and method for producing nitride semiconductor element |
US20050205886A1 (en) * | 2002-11-29 | 2005-09-22 | Sanken Electric Co., Ltd. | Gallium-containing light-emitting semiconductor device and method of fabrication |
WO2004051758A1 (ja) * | 2002-11-29 | 2004-06-17 | Sanken Electric Co., Ltd. | 半導体発光素子及びその製造方法 |
JP2005322945A (ja) * | 2003-02-12 | 2005-11-17 | Rohm Co Ltd | 半導体発光素子 |
JP3841092B2 (ja) * | 2003-08-26 | 2006-11-01 | 住友電気工業株式会社 | 発光装置 |
JP2005086137A (ja) * | 2003-09-11 | 2005-03-31 | Mitsubishi Cable Ind Ltd | GaN系発光ダイオード |
JP2005327979A (ja) * | 2004-05-17 | 2005-11-24 | Toshiba Corp | 半導体発光素子および半導体発光装置 |
KR100665120B1 (ko) * | 2005-02-28 | 2007-01-09 | 삼성전기주식회사 | 수직구조 질화물 반도체 발광소자 |
JP2006245379A (ja) * | 2005-03-04 | 2006-09-14 | Stanley Electric Co Ltd | 半導体発光素子 |
JP4956902B2 (ja) * | 2005-03-18 | 2012-06-20 | 三菱化学株式会社 | GaN系発光ダイオードおよびそれを用いた発光装置 |
DE102005025416A1 (de) * | 2005-06-02 | 2006-12-14 | Osram Opto Semiconductors Gmbh | Lumineszenzdiodenchip mit einer Kontaktstruktur |
US7564063B2 (en) * | 2006-03-23 | 2009-07-21 | Eastman Kodak Company | Composite electrode for light-emitting device |
SG140512A1 (en) * | 2006-09-04 | 2008-03-28 | Tinggi Tech Private Ltd | Electrical current distribution in light emitting devices |
JP4770785B2 (ja) * | 2007-04-25 | 2011-09-14 | 日立電線株式会社 | 発光ダイオード |
JP2008283096A (ja) * | 2007-05-14 | 2008-11-20 | Hitachi Cable Ltd | 半導体発光素子 |
JP2009021323A (ja) * | 2007-07-11 | 2009-01-29 | Dowa Electronics Materials Co Ltd | 半導体発光素子 |
KR100843426B1 (ko) * | 2007-07-23 | 2008-07-03 | 삼성전기주식회사 | 반도체 발광소자 |
TWI419355B (zh) * | 2007-09-21 | 2013-12-11 | Nat Univ Chung Hsing | 高光取出率的發光二極體晶片及其製造方法 |
JP5474292B2 (ja) * | 2007-11-06 | 2014-04-16 | シャープ株式会社 | 窒化物半導体発光ダイオード素子 |
KR101382836B1 (ko) * | 2007-11-23 | 2014-04-08 | 엘지이노텍 주식회사 | 반도체 발광소자 및 그 제조방법 |
JP2009200178A (ja) * | 2008-02-20 | 2009-09-03 | Hitachi Cable Ltd | 半導体発光素子 |
CN101990714B (zh) * | 2008-04-30 | 2012-11-28 | Lg伊诺特有限公司 | 发光器件和用于制造发光器件的方法 |
CN101442092B (zh) * | 2008-11-14 | 2011-03-23 | 厦门乾照光电股份有限公司 | 一种高亮度发光二极管及其制造方法 |
US7883910B2 (en) * | 2009-02-03 | 2011-02-08 | Industrial Technology Research Institute | Light emitting diode structure, LED packaging structure using the same and method of forming the same |
TWI412161B (zh) | 2009-11-06 | 2013-10-11 | Semileds Optoelectronics Co | 發光二極體裝置 |
-
2009
- 2009-11-06 TW TW098137664A patent/TWI412161B/zh active
-
2010
- 2010-11-01 KR KR1020127011705A patent/KR101250964B1/ko not_active IP Right Cessation
- 2010-11-01 EP EP10827984.5A patent/EP2498307A4/en not_active Withdrawn
- 2010-11-01 CN CN2010800015952A patent/CN102439741B/zh active Active
- 2010-11-01 WO PCT/IB2010/002774 patent/WO2011055202A2/zh active Application Filing
- 2010-11-01 JP JP2012535951A patent/JP2013508994A/ja active Pending
- 2010-11-03 US US12/939,142 patent/US8450758B2/en active Active
-
2013
- 2013-04-24 US US13/869,218 patent/US10862013B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2498307A2 (en) | 2012-09-12 |
TW201117422A (en) | 2011-05-16 |
WO2011055202A3 (zh) | 2011-09-01 |
US8450758B2 (en) | 2013-05-28 |
US20110114966A1 (en) | 2011-05-19 |
CN102439741A (zh) | 2012-05-02 |
KR101250964B1 (ko) | 2013-04-05 |
TWI412161B (zh) | 2013-10-11 |
US10862013B2 (en) | 2020-12-08 |
WO2011055202A2 (zh) | 2011-05-12 |
EP2498307A4 (en) | 2013-12-18 |
JP2013508994A (ja) | 2013-03-07 |
CN102439741B (zh) | 2013-10-23 |
US20130277702A1 (en) | 2013-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101250964B1 (ko) | 발광다이오드 장치 | |
US7880181B2 (en) | Light emitting diode with improved current spreading performance | |
EP2207211B1 (en) | Electrode structure for a light emitting diode | |
US11817537B2 (en) | Interconnects for light emitting diode chips | |
US20070114545A1 (en) | Vertical gallium-nitride based light emitting diode | |
US10475960B2 (en) | Light emitting device having gallium nitrade substrate | |
US20230261157A1 (en) | Contact structures of led chips for current injection | |
EP2346098B1 (en) | Light emiting device | |
US20120007128A1 (en) | Semiconductor light emitting device and light emitting apparatus having the same | |
KR20120045542A (ko) | 발광소자 | |
KR20150139194A (ko) | 발광 다이오드 및 그 제조 방법 | |
US20070114564A1 (en) | Vertical gallium nitride based light emitting diode | |
TWI789293B (zh) | 發光元件 | |
JP4957130B2 (ja) | 発光ダイオード | |
CN108140697B (zh) | 发光器件 | |
TWI781867B (zh) | 發光元件 | |
US20240072099A1 (en) | Light-emitting diode chip structures | |
TWI804437B (zh) | 發光元件 | |
CN113809212A (zh) | 发光元件 | |
KR20170047752A (ko) | 발광소자 및 발광소자 패키지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160219 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170313 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180305 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |