WO2011055202A2 - 发光二极体装置 - Google Patents

发光二极体装置 Download PDF

Info

Publication number
WO2011055202A2
WO2011055202A2 PCT/IB2010/002774 IB2010002774W WO2011055202A2 WO 2011055202 A2 WO2011055202 A2 WO 2011055202A2 IB 2010002774 W IB2010002774 W IB 2010002774W WO 2011055202 A2 WO2011055202 A2 WO 2011055202A2
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
diode device
layer
metal electrode
light
Prior art date
Application number
PCT/IB2010/002774
Other languages
English (en)
French (fr)
Other versions
WO2011055202A3 (zh
Inventor
刘文煌
单立伟
朱振甫
Original Assignee
旭明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭明光电股份有限公司 filed Critical 旭明光电股份有限公司
Priority to JP2012535951A priority Critical patent/JP2013508994A/ja
Priority to EP10827984.5A priority patent/EP2498307A4/en
Priority to CN2010800015952A priority patent/CN102439741B/zh
Priority to KR1020127011705A priority patent/KR101250964B1/ko
Publication of WO2011055202A2 publication Critical patent/WO2011055202A2/zh
Publication of WO2011055202A3 publication Critical patent/WO2011055202A3/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Definitions

  • the present invention relates to a vertical light emitting diode (LED) device, and more particularly to a high brightness light emitting diode device having a metal electrode disposed on the outer side.
  • LED vertical light emitting diode
  • FIG. 1A is a structural view of a conventional small-sized vertical type light-emitting diode device 100.
  • FIG. 1B is a cross-sectional view showing the structure of the light-emitting diode device 100 of FIG. 1A, and FIG.
  • the structure of the conventional small-sized light-emitting diode device 100 typically includes: a first electrode 109; a conductive substrate layer 108 formed on the first electrode 109; and a specular reflection layer 106 formed on the conductive substrate layer 108.
  • the first electrical semiconductor layer 104 is formed on the specular reflection layer 106; the active layer 103 (or luminescent layer) is formed on the first electrical semiconductor layer 104; and the second electrical semiconductor layer 102 is formed on the active layer
  • the second metal electrode 101 is formed on the second electrical semiconductor layer 102. As shown in FIG.
  • the second metal electrode 101 is located at the center of the second electrical semiconductor layer 102, and since the size is small, the current dispersion effect is good, so there is no need to set an extra Metal wire.
  • the second metal electrode pad region 210 is located at the center of the second electrical semiconductor layer 202, and is generally improved by the radial metal electrode 201.
  • Current dispersion characteristics but the outline of a general light-emitting diode device is mostly square or rectangular, so that it is difficult to arrange each radial metal wire on the light-emitting layer in such a manner as to achieve an optimum current dispersion effect, and it is difficult to ensure adjacent radiation.
  • the metal wires have the same spacing between each other; and the metal electrodes on both sides belong to the high-illumination side, which is easy to absorb light and cause a decrease in brightness. As shown in Figs.
  • another conventional large-size vertical type light-emitting diode device 200A and 200B has a high-illumination side on both sides of the metal electrode, and is also easy to absorb light to cause a decrease in brightness. Therefore, the conventional LED devices still have the following problems that are urgently needed to be improved, such as insufficient current density, low light extraction efficiency, insufficient brightness, insufficient efficiency, and long service life.
  • the present invention provides an improved vertical type light emitting diode device having higher output brightness and efficiency than conventional LED devices, and can be added without additional cost. It fully meets the needs of modern people for high energy efficiency, and it does not involve complex process technology, which is very economical.
  • the present invention solves the above problems and achieves the above object by providing an LED device having improved current dispersion and reduced light absorption characteristics of a metal electrode.
  • An aspect of the present invention is a vertical type light emitting diode (LED) device having a metal electrode disposed on an outer side, the LED device comprising: a first electrode; a conductive base layer formed on the first electrode; a mirror surface a reflective layer formed on the conductive base a first electrical semiconductor layer formed on the specular reflective layer; an active layer formed on the first electrical semiconductor layer; a second electrical semiconductor layer formed on the active layer; and a second metal electrode Formed on the second electrical semiconductor layer and located on the outer side of the second electrical semiconductor layer, and the two sides of the second metal electrode are respectively a high-illumination side and a low-light side, wherein the low-light side is located in the specular reflection
  • the width of the layer is outside the range.
  • the current dispersion efficiency of the vertical type light-emitting diode device can be optimized and the light absorption of the metal electrode can be reduced, thereby improving brightness, improving efficiency, saving energy, and increasing service life.
  • LED devices in which the current dispersion characteristics of the semiconductor layer and the metal electrode absorption characteristics have been improved, can exhibit brightness, efficiency and service life superior to conventional LED devices.
  • FIG. 4 shows a top view of a large-sized vertical GaN (gallium nitride) light emitting diode device 300 in accordance with an embodiment of the present invention.
  • FIG. 5 also shows a top view and a cross-sectional view of the light emitting diode device 300 of FIG.
  • FIG. 6 shows a perspective view of the light emitting diode device 300 of FIG.
  • the size of the n-type (second) electrical semiconductor layer 302 is 1 mm 2 .
  • the large-size vertical type LED device 300 of the present invention comprises: a conductive base layer 308 formed on the first electrode 309 by the first electrode 309, and a specular reflection layer 306 formed on the conductive base layer 308, formed on the specular reflection layer 306.
  • the active layer 303 also referred to as "light emitting layer”
  • the n-type (second) electrical semiconductor layer 302 formed on the active layer 303 and the n-type (second) electrical semiconductor layer 302
  • the second metal electrode 301 is disposed on the outer side of the n-type electrical semiconductor layer 302, and the two sides of the second metal electrode 301 are respectively a high-illumination side 301 ′ and a low-light side 30 ⁇ , wherein the second The illumination side 301" is outside the width range W of the specular reflection layer 306, that is, the low illumination side 30 is not covered by the specular reflection layer 306, and three metal electrode lines are disposed at the center to be connected to the second metal electrode 301.
  • the number of metal electrode lines disposed in the center can be matched with the outline and size of the overall LED device or according to requirements.
  • the partial area of the surface of the second electrical semiconductor layer can be patterned to improve the light extraction efficiency.
  • the LED device 300 further includes a metal pad region 310 (shown in Figures 4 and 6), which is used for electrical connection. It is worth noting that the metal pad for electrical connection in the drawing is used. Zone 310 is merely illustrative, the invention The present invention is limited to the conditions listed herein.
  • the number of metal pad regions 310 can be increased or decreased according to actual needs.
  • the LED device 300 can include a conductive transparent layer (not shown) disposed on the second electrical semiconductor.
  • the layer 302 is between the second metal electrode 301.
  • Figure 7 also shows a large vertical type according to another embodiment of the present invention.
  • a top view and a cross-sectional view of a large-sized vertical type light-emitting diode device 400' according to another embodiment of the present invention are also shown, which roughen the surface of the entire second electrical semiconductor layer 302 to further increase light.
  • the surface of the second electrical semiconductor layer 302 may be roughened by a ball/sphere or by a wet/dry etching technique, but is not limited thereto.
  • Fig. 9 also shows a top view and a cross-sectional view of a large-sized vertical type light-emitting diode device 500 according to another embodiment of the present invention.
  • the LED device 500 further includes a protective layer 311 that can be used to protect the specularly reflective layer 306 to prevent the specularly reflective layer 306 from reducing brightness due to oxidation.
  • the material of the protective layer 311 is selected from
  • the protective layer 311 can be formed using at least one of the following: PVD VD, evaporation, sputtering, electroplating, electroless plating, coating, printing, or a combination thereof.
  • Figure 10 also shows a top view and a cross-sectional view of a large-sized vertical type light-emitting diode device 600 in accordance with another embodiment of the present invention.
  • an optically transparent layer 312 is disposed between the specularly reflective layer 314 and the first electrically conductive semiconductor layer 304 to form an omni-directional reflector.
  • the specular reflection layer 314 may be a high reflectivity metal layer or a Bragg reflection layer (DBR) to improve external quantum efficiency, and the manufacturing method may be, for example, PVD, CVD, evaporation, sputtering, electroplating, electroless plating, coating. Conventional methods of printing, combinations thereof, and the like.
  • the specularly reflective layer may have a single layer or a multilayer structure.
  • the material of the specular reflection layer may be a metal selected from one of the following:
  • the material of the Bragg reflector layer can be, for example:
  • the material of the omnidirectional reflective layer may be, for example:
  • the conductive substrate layer can be metal or tantalum,
  • a semiconductor material such as GaP, SiC GaN, AlN GaAs, InP, AlGaAs, ZnSe or the like, or a combination thereof, such as PVD, CVD, evaporation, sputtering, electroplating, electroless plating, coating, printing, wafer bonding It may be formed by a conventional method such as a combination thereof; its thickness may be from 10 to 1000 ⁇ m as needed.
  • the surface of the second electrical semiconductor layer 302 shown in FIG. 10 is roughened only on the high-illumination side, the surface of the entire second electrical semiconductor layer 302 may be roughened as needed.
  • Table 1 shows a large size (1 mm 2 ) vertical type nitride (GaN) blue light emitting diode device 300 and four conventional designs A, B:, 0 of 1 ⁇ 0 according to an embodiment of the present invention.
  • the brightness of the device (output optical power) is compared.
  • the light-emitting diode devices of the five designs are taken from the same epitaxial wafer, using the same bracket, the most
  • the finished product is also obtained by the same packaging process using silicone.
  • Table 1 the luminance output optical power is measured using an integrating sphere, which is well known to those skilled in the art, and the relevant details are omitted herein. It can be seen from Table 1 that the LED device of the present invention has a higher output power than other LED devices.
  • Figure 11 shows a large size (0.6 mm 2 ) sag according to another embodiment of the present invention.
  • FIG. 12 shows a top view and a cross-sectional view of the light emitting diode device 700 of FIG.
  • the light emitting diode device 700 includes: a second metal electrode 701, a second electrical semiconductor layer 702, an active layer (light emitting layer) 703, a first electrical semiconductor layer 704, a specular reflective layer 706, a conductive underlayer 708, and a first An electrode 709; wherein the second electrical semiconductor layer 702 has a size of 0.6 mm 2 , and each of the second metal electrodes 701 is disposed on the outer side of the second electrical semiconductor layer 702, and the two sides of the second metal electrode 701 are respectively The high illumination side 701 'and the low illumination side 70 ⁇ , wherein the low illumination side 70 ⁇ is located outside the width range W of the specular reflection layer 706, ie, the low illumination side 701 ” is not covered by the specular reflection layer 706. Furthermore, in this implementation In the example, a metal pad region 710 for electrical connection is provided.
  • Figure 13 also shows a top view and a cross-sectional view of a small-sized vertical GaN (gallium nitride) light-emitting diode device 800 in accordance with an embodiment of the present invention.
  • the light emitting diode device 800 includes: a second metal electrode 801, a second electrical semiconductor layer 802, an active layer (light emitting layer) 803, a first electrical semiconductor layer 804, a specular reflective layer 806, a conductive underlayer 808, and An electrode 809.
  • the size of the second type electrical semiconductor layer 802 is 0.1 mm 2 .
  • the small-sized vertical type LED device 800 of the present invention comprises: a first electrode 809, a conductive base layer 808 formed on the first electrode 809, a specular reflection layer 806 formed on the conductive base layer 808, and a specular reflection layer 806. a first electrically conductive semiconductor layer 804, an active layer 803 (also referred to as a "light emitting layer") formed on the first electrical semiconductor layer 804, a second electrical semiconductor layer 802 formed on the active layer 803, and a second metal electrode formed on the second electrical semiconductor layer 802
  • the second metal electrode 801 is disposed on an outer side of the second electrical semiconductor layer 802. And the two sides of the second metal electrode 801 are respectively a high light side 801 ' and a low light side
  • the low-light side 80 ⁇ is disposed outside the width of the specular reflection layer 806, that is, the low-light side 801" is not covered by the specular reflection layer 806.
  • the first electrical semiconductor layers (304, 704, and 804) are p-type, and the second electrical semiconductor layers (302, 702, and 802) are n-type.
  • the type semiconductor layer has a better electrical conductivity, and a smaller number of metal electrodes can be used to reduce shading and increase brightness.
  • a preferred doping level ranges from 1 x 10 15 cm - 3 to 1 x 10 22 cm - 3 , and a preferred semiconductor layer thickness is 0.3 ⁇ to ⁇ ⁇ .
  • the material of the active layer may be selected from the group consisting of aluminum nitride ((A l x Ga 1-x ) y In 1-y N; 0 ⁇ x ⁇ l; 0 ⁇ y ⁇ ⁇ ) U double heterogeneous A group consisting of quantum well structures, or selected from eight gallium phosphide-containing indium phosphates! ⁇ ⁇ ? ⁇ ⁇ ! ⁇ ⁇ ⁇ A group of materials consisting of double heterogeneous and quantum well structures, or a group consisting of double heterogeneous and quantum well structures containing aluminum gallium arsenide (Al x Ga 1-x As; 0 ⁇ x ⁇ l) .
  • the second metal electrodes (301, 701, and 801) and the first electrodes (309, 709, and 809) may be formed by a conventional method such as PVD, CVD, evaporation, sputtering, electroplating, electroless plating, coating, Printing or a combination thereof.
  • the second metal electrode can be a single layer or a multilayer structure comprising one of the following: Cr/Au r/Al O/Pt/Au Cr/Ni/Au O/Al/Pt/Au Cr/Al/Ni/Au, A1, Ti/Al, Ti/Au Ti/Al Pt/Au, Ti/Al /Ni/Au Ti/Al/Pt/Au, WTi, A1/Pt/Au, A1/Pt/Al, A1/Ni/Au, A1/Ni/Al, A1/W/A1, A1/W/Au > Al/TaN/Al >Al/TaN/A u, Al/Mo/Au, an alloy composed of two or more thereof or other suitable conductive material may also be used.
  • the second metal electrode may have a line width of from 1 micrometer to 50 micrometers, preferably from 3 micrometers to 30 micrometers. Although a wider metal electrode line disperses the current more efficiently, it blocks or absorbs more of the light emitted from the n-type layer.
  • One solution is to provide a current blocking structure that is used to avoid The light emitted by the n-type layer is blocked or absorbed by the metal electrode lines. If a wider metal electrode line is used, the size of the current blocking structure must be increased correspondingly, which will reduce the light-emitting area of the active layer and thus reduce the amount of light penetrating the active layer.
  • the distance between the second metal electrode lines may be from 50 micrometers to 600 micrometers, and the current dispersion is better when the spacing is appropriate, but the thin metal electrode lines may adversely reduce the contact area and affect the operating voltage.
  • the total metal area of the second metal electrode accounts for less than twenty-five percent of the area of the second electrical semiconductor layer; and the area of the specularly reflective layer in contact with the first electrical semiconductor layer occupies the first electrical property. More than seventy-five percent of the area of the semiconductor layer.
  • the thickness of the second metal electrode line may be from 0.1 to 50 ⁇ m, and preferably from 1 ⁇ m to 10 ⁇ m. Thicker ones have lower series resistance, but inevitably consume longer manufacturing time and higher cost.
  • FIGS. 15A-15F, FIGS. 16A-16F, FIGS. 17A-17F, FIGS. 18A-18F, and FIGS. 19A-19F respectively show a large-sized vertical type light emitting diode device according to other embodiments of the present invention.
  • 20A-20D respectively show top views of a vertical type light emitting diode device according to other embodiments of the present invention, wherein the grain size is less than 0.3 mm 2 ;
  • 21 A-21I respectively show top views of a rectangular parallelepiped vertical light-emitting diode device according to other embodiments of the present invention.
  • 22A-22B show a large-sized vertical type light emitting diode device of the present invention (Figs. 4-12, 14A-14F, Figs. 15A-15F, Figs. 16A-16F, Figs. 17A-17F, Figs. 18A-18F, and 19A-19B are side views of the light emitting diode device;
  • FIGS. 23A-23B are side views of the small-sized vertical light emitting diode of FIG. 13;
  • FIGS. 24A-24B show the rectangular parallelepiped grain of FIG. 21A. Side view of a light-emitting diode device.
  • the present invention is characterized in that the metal electrode of the vertical type light-emitting diode device is disposed on the semiconductor layer so as to be disposed on the outer side of the metal electrode, and is disposed through the metal electrode disposed outside, thereby optimizing vertical light emission of the square and the rectangular parallelepiped
  • FIG. 1A shows a top view of a conventional small-sized vertical type light-emitting diode device
  • FIG. 1B shows a conventional small-sized vertical type light-emitting diode.
  • FIG. 2 is a top view showing a conventional large-sized vertical type light-emitting diode device
  • FIG. 3A is a top view and a detailed sectional view showing a conventional large-sized vertical type light-emitting diode device, the metal electrode thereof Both sides belong to the high light side;
  • FIG. 3B also shows an upper view and a detailed sectional view of another conventional large-size vertical type light-emitting diode device, wherein both sides of the metal electrode belong to the high-illumination side;
  • FIG. 4 shows a top view of a large-sized vertical type light-emitting diode device according to an embodiment of the present invention, wherein the grain size is 1 mm 2 ;
  • Figure 5 also shows a top view and a cross-sectional view of the large-size vertical type LED device of Figure 4;
  • FIG. 6 is a perspective view showing the large-sized vertical type light-emitting diode device of FIG. 4;
  • FIG. 7 is a top view and a detailed sectional view showing a large-sized vertical type light-emitting diode device according to an embodiment of the present invention, wherein a crystal grain is shown in FIG. The size is l mm 2 ;
  • Figure 8 also shows a top view and a detailed cross-sectional view of a large-sized vertical type light-emitting diode device according to another embodiment of the present invention, wherein the grain size is 1 mm 2 ;
  • Figure 9 also shows another embodiment according to the present invention.
  • FIG. 10 also shows a large-sized vertical type light-emitting diode device according to another embodiment of the present invention. a top view and a detailed sectional view in which the grain size is 1 mm 2 ;
  • FIG. 11 shows a large-sized vertical type light emitting light according to another embodiment of the present invention.
  • Figure 12 also shows a top view and a cross-sectional view of the large-size vertical type LED device of Figure 11;
  • Figure 13 also shows a top view and a cross-sectional view of a small-sized vertical type light-emitting diode device according to an embodiment of the present invention, wherein the grain size is 0.1 mm 2 ;
  • FIGS. 14A-14F, FIGS. 15A-15F, FIGS. 16A-16F, FIGS. 17A-17F, FIGS. 18A-18F, and FIGS. 19A-19F respectively show a large-sized vertical type light emitting diode device according to other embodiments of the present invention.
  • FIGS. 20A-20D respectively show top views of a vertical type light emitting diode device according to other embodiments of the present invention, wherein the grain size is less than 0.3 mm 2 ;
  • 21A-21I are top views respectively showing a vertical type light emitting diode device of a rectangular parallelepiped according to another embodiment of the present invention.
  • Figure 22A-22B is a side elevational view of the large-sized vertical type light-emitting diode device of the present invention
  • Figures 23A-23B are side views of the small-sized vertical type light-emitting diode of Figure 13;
  • 24A-24B are side views showing the rectangular parallelepiped vertical type light emitting diode device of Fig. 21A.
  • first electrical semiconductor layer 306 specular reflection layer 308 conductive base layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种高亮度之垂直型发光二极体(LED,LightEmittingDiode)装置,其具有外移之金属电极。该LED装置系利用沉积技术,例如物理气相沉积(PVD,physicalvapordeposition)、化学气相沉积(CVD,chemicalvapordeposition)、蒸镀(evaporation)或电镀(electro-plating)或其结合技术,在发光二极体之磊晶结构表面的外侧上形成金属电极,之后再加以封装而成,其中发光二极体之成分可为氮化物、磷化物或砷化物。本发明之LED具有增进电流分散(CurrentSpreading)效能、减少金属电极吸光、提高亮度、提高效率、进而改善能源效率的优点。该金属电极系位于该装置的外侧并且位于发光侧上。该金属电极具有两侧壁,该金属电极的其中一侧壁可比另一侧壁接收更多自该装置所发射的光。

Description

、發明說明
【發明所屬之技術領域】
本發明係關於垂直型發光二極體 (LED, Light Emitting Diode) 裝置,特別是關於具有設置於外側之金屬電極之高亮度發光二極 體裝置。
【先前技術】 目前,發光二極體因生產成本低廉、生產困難度不高、尺寸小、 耗電量少且效率高 ,所以被廣泛使用於日常生活中 ,例如手機、 電子看板、手電筒 、及交通訊號燈等。儘管如此,吾人仍持續不斷 地致力於提升發光二極體的發光效率與亮度。 近年來, 已開發出以氮化物、磷化物為材料的高亮度發光二 極體,其不僅可發出紅、藍、綠光,且可用以產生各色光與白光。 目前, 業界正積極開發用於照明領域之發光二極體, 早期的做法 係採組合多顆發光二極體以形成陣列 ,藉此獲得高輸出功率 ,但 包含發光二極體陣列之 LED裝置在製程上比單一高功率發光二 極體裝置更複雜, 因此成本較高且較不易具有穩定之可靠度。
一種增加 LED的功率及發光量的方法是增加其大小及發光 表面積。惟習用的 LED通常因半導體材料層的導電性較差 , 而使 電流無法有效且均勻地從接點分散到整個活化層 , LED內部會發 生部分區域電流密度過高之情况, 因而影響整體亮度; 甚至於導 致活化層附近過早劣化,大幅地降低使用壽命。 圖 1A為習知小尺寸垂直型發光二極體裝置 100之結構上視 圖 , 圖 IB為圖 1A中之發光二極體裝置 100之結構剖面圖 , 而圖 2為習知大尺寸垂直型發光二極體裝置 200之結構上視圖 。參照圖 1B, 習知小尺寸發光二極體裝置 100的結構典型上包含: 第一電 極 109; 導電基底層 108,形成於第一電極 109上;鏡面反射層 106,形成於導電基底層 108上; 第一電性半導體層 104,形成於 鏡面反射層 106上; 活化層 103(或稱發光層),形成於第一電性半 導體層 104上; 第二電性半導體層 102,形成於活化層 103上; 第二金屬電極 101 ,形成於第二電性半導體層 102上。如圖 1A所 示,在小尺寸垂直型發光二極體裝置 100中 , 第二金屬電極 101 位於第二電性半導體層 102之中心,且由於尺寸小, 電流分散效 果佳,故不需要設置額外的金屬導線。
由於習知大尺寸垂直型發光二極體裝置的電流無法均勻散佈 係影響發光二極體裝置之發光效率的主因 , 因此考慮增加半導體 材料層之厚度, 以便增加導電性。對於如圖 1A, 1B所示之小尺寸 LED (約 0.25mm2以下) 而言 ,此種方式確實有助於提高亮度與 電流分散效能;但增加半導體材料層之厚度,除了會增加生產成 本以外, 更常因應力等問題, 而使得半導體材料層之厚度無法因 配合大尺寸發光二極體裝置的電流分散效能需求而無限制地增加。 因此,若對於如圖 2所示之大尺寸者而言 ,僅藉由增加半導體材 料層之厚度並無法得到令人滿意的效果, 因為當 LED裝置之尺 寸增加時, 更不易均勻地將電流由 n型接點或 p型接點經由半導 體材料層散佈出去。 由此可知, LED之尺寸大幅地受限於半導體 材料層之電流分散特徵。
如圖 2所示 ,在習知大尺寸垂直型發光二極體裝置 200中 , 第二金屬電極焊墊區 210係位於第二電性半導體層 202之中心 , 通常利用放射狀金屬電極 201以提高電流分散特性,但一般發光 二極體裝置之輪廓大多為正方形或矩形,如此不僅難以將各放射 狀金屬線以能夠達到最佳電流分散效果之方式配置於發光層上, 亦難以確保相鄰放射狀金屬線之間具有相同間距; 而且其金屬電 極兩側都屬於高光照側, 易於吸收光而造成亮度下降。如圖 3A及 3B所示 , 另一習知大尺寸垂直型發光二極體裝置 200A與 200B, 其金屬電極兩側都屬於高光照側, 同樣易於吸收光而造成 亮度下降。 因此, 習知 LED裝置仍普遍存在下列亟需改進的問題 例如電流密度不夠均勻 、光摘取效率不高、亮度無法滿足需求、效 率無法滿足需求、使用壽命不夠長等等。
【發明內容】 有鑒於上述問題,本發明提供一種改良式垂直型發光二極體 裝置,其具有較習知 LED裝置更高之輸出亮度及效率 ,並且能 夠在不需要增加額外成本之情况下, 充分滿足現代人對於高能源 效率的需求,其中亦未涉及複雜的製程技術,可謂十分具有經濟 效益。 本發明係藉由提供具有改良電流分散與減少金屬電極吸光特 性之 LED裝置而解決上述問題並達成上述目的。 本發明之一態樣為一種垂直型發光二極體 (LED ) 裝置,其 具有設置於外側的金屬電極,該 LED裝置包括: 第一電極; 導 電基底層 ,形成於該第一電極上;鏡面反射層 ,形成於該導電基 底層上; 第一電性半導體層 ,形成於該鏡面反射層上; 活化層 , 形成於該第一電性半導體層上; 第二電性半導體層 ,形成於該活 化層上; 第二金屬電極,形成於該第二電性半導體層上,並且位 在第二電性半導體層之外側,且第二金屬電極的兩側分別為高光 照側與低光照側,其中低光照側係位於鏡面反射層的寬度範圍外。
利用本發明之外移的金屬電極,可最佳化垂直型發光二極體 裝置的電流分散效能與減少金屬電極吸光,進而提高亮度、提高 效率、節省能源、增長使用壽命。
【實施方式】
以下敘述本發明之較佳實施例 ,其包含根據本發明之垂直型
LED裝置的不同實拖例 ,其中半導體層之電流分散特性與金屬電 極吸光特性已經過改良, 而能展現優於習用 LED裝置之亮度、效 率及使用壽命。
圖 4顯示根據本發明之一實施例之大尺寸垂直型 GaN (氮化 鎵) 發光二極體裝置 300的上視圖 。圖 5同時顯示圖 4之發光二極 體裝置 300的上視圖及剖面圖 。 圖 6顯示圖 4之發光二極體裝置 300的立體圖 。在本實施例中 , n-型(第二)電性半導體層 302的尺 寸為 1 mm2。本發明之大尺寸垂直型發光二極體裝置 300包括: 第 一電極 309形成於第一電極 309上之導電基底層 308 成於導電 基底層 308上之鏡面反射層 306、形成於鏡面反射層 306上之 P-型 (第一)電性半導體層 304、形成於 P-型(第一)電性半導體層 304上 之活化層 303 (亦稱為「發光層」 ) 、形成於活化層 303上之 n-型 (第二)電性半導體層 302、以及形成於 n-型(第二)電性半導體層 302 上之第二金屬電極 301 ,其中第二金屬電極 301設置於 n-型電性 半導體層 302之外側,且第二金屬電極 301的兩側分別為高光照 側 301 '與低光照側 30Γ,其中低光照側 301 "係位於鏡面反射層 306的寬度範圍 W外, 即,低光照側 30Γ並不被鏡面反射層 306 所涵蓋, 中央設置三道金屬電極線與第二金屬電極 301相連接。 應注意: 中央設置的金屬電極線之數目可配合整體 LED裝置之 外形輪廓及尺寸或依需求而定。其中 , 第二電性半導體層之表面 的局部面積可被加以圖案化,以提高光摘取效率。此外, LED裝 置 300更包含金屬焊墊區 310 (如圖 4及圖 6所示) ,其係作為 電性連接之用 。值得注意的是, 圖式中用於電性連接之金屬焊墊 區 310僅為例示性質 ,本發明不限於此處所列之狀况。金屬焊墊 區 310的數量可依實際需求而增減。又,發光二極體裝置 300可包 含導電透明層(未顯示),其係設置在第二電性半導體層 302與第 二金屬電極 301之間。
圖 7同時顯示依據本發明之另一實施例之大尺寸垂直型
GaN (氮化鎵)發光二極體裝置 400的上視圖及剖面圖 ,其係將 位於高光照側之第二電性半導體層 302的表面進行粗糙化, 以增 加光摘取效率; 而圖 8則同時顯示本發明之另一實施例之大尺寸 垂直型發光二極體裝置 400'的上視圖及剖面圖 ,其係將整個第二 電性半導體層 302的表面進行粗糙化,以進一步增加光摘取效率。 第二電性半導體層 302的表面可利用球 /球體或利用濕式 /乾式蝕 刻技術予以粗糙化,但並不限於此。
圖 9同時顯示依據本發明之另一實施例之大尺寸垂直型發光 二極體裝置 500的上視圖及剖面圖 。發光二極體裝置 500更包含保 護層 311 ,其可用來保護鏡面反射層 306, 以避免鏡面反射層 306 因氧化而降低亮度。保護層 311之材料係選自於
Ni、W o 、Ta ¾h、Au、V、WTi、TaN、Si02、SiNx、A1203、A1N iTO 以及 Ni-Co所組成之族群中的至少一者。保護層 311可使用下列至 少其中一者而形成: PVD VD、蒸鍍、濺鍍、電鍍、無電電鍍、塗佈、 印刷或其結合。雖然圖 9所示之第二電性半導體層 302的表面僅在 高光照側被粗糙化,但吾人可視實際需要而將整個第二電性半導 體層 302的表面予以粗糙化。
圖 10同時顯示依據本發明之另一實施例之大尺寸垂直型發 光二極體裝置 600的上視圖及剖面圖 。於發光二極體裝置 600中 , 在鏡面反射層 314與第一電性半導體層 304之間設置光學透明層 312, 以形成全方位反射層(omni-directional reflector)。鏡面反射層 314可採用高反射率金屬層 、或布拉格反射層 (DBR), 以提高外部 量子效率,其製造方法則可採用如 PVD、CVD、蒸鍍、濺鍍、電鍍、 無電電鍍、塗佈、印刷或其結合等等的習知方法。在本發明之實施 例中 ,鏡面反射層可具有單層或多層結構。 又 ,鏡面反射層之材 料可為選自於如下其中之一的金屬 :
Ag/Ni、Ni/Ag/Ni/Au、Ag/Ni/Au、Ag/Ti/Ni/Au、A1、Ti/Al、Ni/Al、Au、 其兩者以上之組合或其合金中含有
Ag、Au €r ^ ¾h€u、W in 、Zn }e ¾i、AlSi或 Al等金 屬亦可。布拉格反射層之材料可為例如 :
Si02、Ti02、MgO、A1203、ITO、ZnO、SiNx或其兩者以上之組合; 全 方位反射層之材料可為例如 :
Si02、Ti02、MgO、A1203、ITO、ZnO、SiNx或其兩者以上之組合。導電 基底層可為金屬或矽 、
GaP、SiC GaN、A1N GaAs、InP、AlGaAs、ZnSe等半導體材料或其 兩者以上之組合, 同理可用例如 PVD、CVD、蒸鍍、濺鍍、電鍍、無 電電鍍、塗佈、印刷、晶片黏著或其結合等習知方法加以形成; 其 厚度可視需要而自 10至 1000微米 。雖然圖 10所示之第二電性半 導體層 302的表面僅在高光照側被粗糙化,但吾人可視需要而將 整個第二電性半導體層 302的表面予以粗糙化。
表 1顯示根據本發明之一實施例之大尺寸 ( 1 mm2 ) 垂直型 氮化物 (氮化鎵) 藍光發光二極體裝置 300與四種習知設計 A 、B : 、0之1^0裝置的亮度 (輸出光功率)比較結果。其中此五種 設計的發光二極體裝置係取自同一磊晶片 ,使用相同的支架,最
表 1,晶粒尺寸 = 1.0mra; 金屬電極式樣 於 350mA的輸出功率(mW) 輸出光功率比 本發明之設計 407.68 100.0%
Figure imgf000010_0001
習知設計 A 379.% 93.2% 習知設計 B 352.63 86.5% 習知設計 C 333.90 81.9% 習知-凝 D 336.74 82.6%
Figure imgf000010_0002
後亦以矽膠進行完全相同的封裝程序而獲得成品。在表 1中 , 亮 度輸出光功率係利用積分球加以量測,此已為熟悉此項技藝者所 熟知,在此省略其相關細節。 由表 1可發現本發明之 LED裝置較 習知其他 LED裝置有更高之輸出功率。
圖 11顯示根據本發明之另一實施例之大尺寸 (0.6 mm2 ) 垂 直型 GaN (氮化鎵) 發光二極體裝置 700的上視圖 ; 而圖 12則 同時顯示圖 11之發光二極體裝置 700的上視圖及剖面圖 。發光二 極體裝置 700包含: 第二金屬電極 701 、第二電性半導體層 702、活 化層(發光層) 703、第一電性半導體層 704、鏡面反射層 706、導電基 底層 708、以及第一電極 709; 其中第二電性半導體層 702之尺寸 為 0.6 mm2, 而每一第二金屬電極 701設置於第二電性半導體層 702之外側 ,且第二金屬電極 701的兩側分別為高光照側 701 '與 低光照側 70Γ, 其中低光照側 70Γ係位於鏡面反射層 706的寬度 範圍 W外 , 即 ,低光照側 701 "並不被鏡面反射層 706所涵蓋。此 外 ,在本實施例中 ,設置了一個電性連接用之金屬焊墊區 710。
圖 13同時顯示根據本發明之一實施例之小尺寸垂直型 GaN (氮化鎵) 發光二極體裝置 800的上視圖及剖面圖 。發光二極體 裝置 800包含: 第二金屬電極 801、第二電性半導體層 802、活化層 (發光層) 803、第一電性半導體層 804、鏡面反射層 806、導電基底層 808、以及第一電極 809。在本實拖例中 , 第二型電性半導體層 802 的尺寸為 0.1 mm2。本發明之小尺寸垂直型發光二極體裝置 800包 括 : 第一電極 809 成於第一電極 809上之導電基底層 808 成 於導電基底層 808上之鏡面反射層 806、形成於鏡面反射層 806上 之第一電性半導體層 804、形成於第一電性半導體層 804上之活化 層 803 (亦稱為「發光層」) 、形成於活化層 803上之第二電性半導 體層 802、及形成於第二電性半導體層 802上之第二金屬電極
801 , 其中第二金屬電極 801設置於第二電性半導體層 802之外側 , 且第二金屬電極 801的兩側分別為高光照側 801 '與低光照側
801", 其中低光照側 80Γ係設置於鏡面反射層 806的寬度範圍 W 外, 即 ,低光照側 801 "並不被鏡面反射層 806所涵蓋。
較佳的情况為 , 第一電性半導體層 (304、704、及 804)為 p型 , 而第二電性半導體層(302、702、及 802)為 n型。 型半導體層具有 較佳之導電率 , 可使用較少數目之金屬電極, 以便減少遮光及增 加亮度。再者,較佳的掺雜位準範圍為 lxl015cm-3至 lxl022cm-3, 較佳之半導體層厚度為 0.3μπι至 ΙΟΟμηι。在一實施例中 ,吾人可 用習知方法,如金屬有機化學氣相沉積法 (MOCVD , metal- organic chemical vapor deposition)、 氣相 晶; ¾r(VPE, vapor phase epitaxy)、或分子束 晶法 (MBE, molecular beam epitaxy)等等之方 式, 而形成第一電性半導體層 、第二電性半導體層 、以及活化層 , 此部分為熟悉此項技藝者所熟知 ,在此不加贅述。該活化層之材 質係可選自於由含氮化鋁鎵 ((A lxGa1-x)yIn1-yN;0≤x≤l ;0≤y≤\ )U 料雙異質與量子井結構所組成之一族群, 或選自於由含磷化鋁鎵 銦 八!^ ^^? ^ ^! ^ ^ ^材料雙異質與量子井結構所 組成之一族群, 或由含砷化鋁鎵 (AlxGa1-xAs;0≤x^ l)材料雙異質 與量子井結構所組成之一族群。第二金屬電極 (301 、701 、以及 801) 與第一電極 (309、 709、以及 809)可用習知方法加以形成,例如 PVD、CVD、蒸鍍、濺鍍、電鍍、無電電鍍、塗佈、印刷或其結合等方 法。舉例而言 , 第二金屬電極可為包含下列其中之一的單層或多 層結構: Cr/Au r/Al O/Pt/Au Cr/Ni/Au O/Al/Pt/Au Cr/Al/Ni/Au、A1、Ti/ Al、Ti/Au Ti/Al Pt/Au、Ti/Al/Ni/Au Ti/Al/Pt/Au、WTi、A1/Pt/Au、A1/ Pt/Al、A1/Ni/Au、A1/Ni/Al、A1/W/A1、A1/W/Au >Al/TaN/Al >Al/TaN/A u、Al/Mo/Au, 亦可使用其兩者以上所組成之合金或其他適當的導 電材料。
第二金屬電極之線寬可為 1微米至 50微米 ,較佳則為 3微米 至 30微米 。較寬的金屬電極線雖能更有效的分散電流,但卻會阻 止或吸收更多從 n型層發射出的光, 有一解決方法為設置電流阻 塞 (current blocking)結構, 其係用以避免由 n型層發射出的光受到 金屬電極線阻擋或吸收。若使用較寬的金屬電極線, 須對應地增 加電流阻塞結構的尺寸,如此將使得活化層的發光面積減少 , 因 而減少穿透活化層之光線量。第二金屬電極線之間距可為 50微米 至 600微米 , 間距適當則電流分散性越佳 ,但較疏之金屬電極線 反而會不利地減少接觸面積的區域, 影響操作電壓。較佳的情况 為 , 第二金屬電極之金屬總面積佔第二電性半導體層面積的百分 之二十五以下 ; 以及鏡面反射層與第一電性半導體層接觸的面積 佔第一電性半導體層面積的百分之七十五以上。至於第二金屬電 極線之厚度則可為 0.1至 50微米 ,較佳之厚度則為 1微米至 10 微米 。較厚者其串聯電阻較低,但不免會耗費更長的製造時間及 更高的成本。
值得注意的是,上述關於第二金屬電極之材質僅為舉例 ,並 非用以限定本發明 。 圖 14A-14F、圖 15A-15F、圖 16A-16F、圖 17A- 17F、圖 18A- 18F 、以及圖 19A-19F分别顯示根據本發明之其他實施例之大尺寸 垂直型發光二極體裝置的上視圖 ,其中晶粒尺寸為大於 0.3 mm2; 圖 20A-20D分别顯示根據本發明之其他實施例之垂直型發 光二極體裝置的上視圖 ,其中晶粒尺寸為小於 0.3 mm2; 以及圖 21 A-21I分別顯示根據本發明之其他實施例之長方體晶粒垂直型 發光二極體裝置的上視圖。圖 22A-22B顯示本發明之大尺寸垂直 型發光二極體裝置 (如圖 4-12、圖 14A-14F、圖 15A- 15F、圖 16A- 16F、圖 17A-17F、圖 18A-18F 、以及圖 19A-19F所示之發光二極體 裝置)的側視圖 ; 圖 23A-23B顯示圖 13之小尺寸垂直型發光二極 體的側視圖 ; 以及圖 24A-24B顯示圖 21A之長方體晶粒垂直型發 光二極體裝置的側視圖 。
本發明特徵在於: 垂直型發光二極體裝置之金屬電極以設置 於外側的金屬電極之方式設置於半導體層上,透過設置於外側的 金屬電極配置,可最佳化正方體與長方體之垂直型發光二極體裝 置的電流分散效能與減少金屬電極吸光,進而提高亮度、提高效 率、增長使用壽命,展現出比習知技術更優越的效能。
如熟悉此技術者所瞭解的, 以上僅為說明本發明之較佳實施 例,並非用以限定本發明。凡其他未脫離本發明之精神及範圍之 等效改變或修飾,均應包含在所附之申請專利範圍內 。
【圖式簡單說明】 在本發明之隨附圖式中 ,相同的元件以相同的元件符號表示 圖 1A顯示習知小尺寸垂直型發光二極體裝置之上視圖 ; 圖 1B顯示習知小尺寸垂直型發光二極體裝置之剖面圖 ; 圖 2顯示習知大尺寸垂直型發光二極體裝置之上視圖 ; 圖 3A同時顯示習知大尺寸垂直型發光二極體裝置之上視圖 及細部剖面圖 , 其金屬電極的兩側皆屬於高光照側;
圖 3B同時顯示另一習知大尺寸垂直型發光二極體裝置之上 視圖及細部剖面圖 , 其金屬電極的兩側皆屬於高光照側;
圖 4顯示根據本發明之一實施例之大尺寸垂直型發光二極體 裝置的上視圖 , 其中晶粒尺寸為 1 mm2
圖 5同時顯示圖 4之大尺寸垂直型發光二極體裝置的上視圖 及剖面圖 ;
圖 6顯示圖 4之大尺寸垂直型發光二極體裝置的立體圖 ; 圖 7同時顯示根據本發明之一實施例之大尺寸垂直型發光二 極體裝置的上視圖及細部剖面圖 , 其中晶粒尺寸為 l mm2 ;
圖 8同時顯示根據本發明之另一實施例之大尺寸垂直型發光 二極體裝置的上視圖及細部剖面圖 , 其中晶粒尺寸為 l mm2 ; 圖 9同時顯示根據本發明之另一實施例之大尺寸垂直型發光 二極體裝置的上視圖及細部剖面圖 , 其中晶粒尺寸為 l mm2 ; 圖 10同時顯示根據本發明之另一實施例之大尺寸垂直型發 光二極體裝置的上視圖及細部剖面圖 , 其中晶粒尺寸為 l mm2 ; 圖 11顯示根據本發明之另一實施例之大尺寸垂直型發光二 極體裝置的上視圖 ,其中晶粒尺寸為 0.6 mm2
圖 12同時顯示圖 11之大尺寸垂直型發光二極體裝置的上視 圖及剖面圖 ;
圖 13同時顯示根據本發明之一實施例之小尺寸垂直型發光 二極體裝置的上視圖及剖面圖 ,其中晶粒尺寸為 0.1 mm2
圖 14A-14F、圖 15A-15F、圖 16A-16F、圖 17A-17F、圖 18A- 18F、及圖 19A-19F分别顯示根據本發明之其他實施例之大尺寸垂 直型發光二極體裝置的上視圖 ,其中晶粒尺寸為大於 0.3 mm2; 圖 20A-20D分别顯示根據本發明之其他實施例之垂直型發光 二極體裝置的上視圖 ,其中晶粒尺寸為小於 0.3 mm2
圖 21A-21I分別顯示根據本發明之其他實施例之長方體晶粒 之垂直型發光二極體裝置的上視圖 ;
圖 22 A-22B顯示本發明之大尺寸垂直型發光二極體裝置的側 視圖 ; 圖 23A-23B顯示圖 13之小尺寸垂直型發光二極體的側視 圖 ; 以及
圖 24A-24B顯示圖 21A之長方體晶粒垂直型發光二極體裝置 的側視圖 。
【主要元件符號說明】
100 發光二極體裝置
101 第二金屬電極
102 第二電性半導體層 103 活化層
104 第一電性半導體層 106 鏡面反射層
108 導電基底層
109 第一電極
200 發光二極體裝置 200A 發光二極體裝置 200B 發光二極體裝置 201 第二金屬電極 202 第二電性半導體層 203 活化層
204 第一電性半導體層 206 鏡面反射層
210 金屬焊墊區
300 發光二極體裝置 301 第二金屬電極 301' 高光照側
30 Γ 低光照側
302 第二電性半導體層 303 活化層
304 第一電性半導體層 306 鏡面反射層 308 導電基底層
309 第一電極
310 金屬焊墊區
311 保護層
312 光學透明層
314 鏡面反射層
400 發光二極體裝置 400' 發光二極體裝置 500 發光二極體裝置 600 發光二極體裝置 700 發光二極體裝置 701 第二金屬電極 701' 高光照側
701" 低光照側
702 第二電性半導體層 703 活化層
704 第一電性半導體層 706 鏡面反射層
708 導電基底層
709 第一電極
710 金屬焊墊區
800 發光二極體裝置 801 第二金屬電極 801' 高光照側 801" 低光照側 802 第二電性半導 803 活化層
804 第一電性半導 806 鏡面反射層 808 導電基底層 809 第一電極 W 寬度範圍

Claims

七、 申請專利範圍 :
1.一種發光二極體裝置, 包括:
一鏡面反射層 ;
一第一電性半導體層 ,形成於該鏡面反射層上;
一活化層 ,形成於該第一電性半導體層上;
一第二電性半導體層 ,形成於該活化層上;
一第二金屬電極,形成於該第二電性半導體層上,
其中該第二金屬電極的兩側分別為高光照側與低光照側, 而 該低光照側係位於該鏡面反射層的寬度範圍外,且該鏡面反射層 與該第一電性半導體層接觸的面積佔該第一電性半導體層面積的 百分之七十五以上。
2.如申請專利範圍第 1項所述之發光二極體裝置,其中該活 化層之材料係選自於由
AlInGaN、InGaN、AlGaN GaN、AlGaInP、AlGaAs所組成之族群中 的至少一者。
3.如申請專利範圍第 1項所述之發光二極體裝置,其中該鏡 面反射層之材料係選自於由
Ag、A1、Au i h t€u -Ni、W in d、Zn e i、AlSi、Ag/Ni -Ni/Ag/ Ni/Au Ag/Ni/Au、Ag/Ti/Ni/Au、Ti/Al、N〖/A1及其合金所組成之族群 中的至少一者。
4.如申請專利範圍第 1項所述之發光二極體裝置, 更包含: 一透明層 ,設置於該鏡面反射層與該第一電性半導體層之間。
5. 如申請專利範圍第 1項所述之發光二極體裝置,其中該鏡 面反射層係使用下列至少其中一者而形成: PVD、CVD、蒸鍍、濺 鍍、電鍍、無電電鍍、塗佈、印刷或其結合。
6.如申請專利範圍第 1項所述之發光二極體裝置,其中該第 二電性半導體層為 n型氮化鎵半導體。
7.如申請專利範圍第 1項所述之發光二極體裝置,其中該第 二金屬電極之材料係選自於由
Cr/Au /Al /Pt/Au r/Ni/Au r/Al/Pt/Au /Al Ni/Au、A1、Ti/ Al、Ti/Au、Ti/Al/Pt/Au、Ti/Al/Ni/Au、Ti/Al/Pt/Au、WTi、A1/Pt/Au、A1/ Pt/Al、A1/Ni/Au、A1/Ni/Al、A1/W/A1、A1/W/Au、Al/TaN/Al―、 Al/TaN/A u、 Al/Mo/Au及其合金所組成之族群中的至少一者。
8.如申請專利範圍第 7項所述之發光二極體裝置,其中該第 二金屬電極係使用下列至少其中一者而形成: PVD、CVD、蒸鍍、 濺鍍、電鍍、無電電鍍、塗佈、印刷或其結合。
9.如申請專利範圍第 1項所述之發光二極體裝置, 其中該第 二金屬電極之金屬總面積佔該第二電性半導體層面積的百分之二 十五以下。
10.如申請專利範圍第 1項所述之發光二極體裝置, 更包含 中央設置至少一道金屬電極線, 而該金屬電極線與該第二金屬電 極相連接。
11.如申請專利範圍第 10項所述之發光二極體裝置, 其中該 第二金屬電極與該金屬電極線之金屬厚度為 0.1微米至 50微米 。
12.如申請專利範圍第 1項所述之發光二極體裝置, 更包含: 一導電透明層 ,設置於該第二電性半導體層與該第二金屬電 極之間 。
13.如申請專利範圍第 1項所述之發光二極體裝置, 其中該 第二電性半導體層之表面的局部面積被加以圖案化。
14.如申請專利範圍第 1項所述之發光二極體裝置, 更包含: 一保護層 , 用以保護該鏡面反射層 。
15.如申請專利範圍第 14項所述之發光二極體裝置, 其中該 保護層之材料係選自於
Ni、W Mo Pt、Ta iUi、Au、V、WTi、TaN 、Si02、SiNx、A1203、A1N iTO 與 Ni-Co所組成之族群中的至少一者。
16.如申請專利範圍第 15項所述之發光二極體裝置,其中該 保護層係使用下列至少其中一者而形成: PVD VD、蒸鍍、濺鍍、 電鍍、無電電鍍、塗佈、印刷或其結合。
八、 圖式
PCT/IB2010/002774 2009-11-06 2010-11-01 发光二极体装置 WO2011055202A2 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012535951A JP2013508994A (ja) 2009-11-06 2010-11-01 発光ダイオード装置
EP10827984.5A EP2498307A4 (en) 2009-11-06 2010-11-01 LIGHT EMITTING DIODE DEVICE
CN2010800015952A CN102439741B (zh) 2009-11-06 2010-11-01 发光二极管装置
KR1020127011705A KR101250964B1 (ko) 2009-11-06 2010-11-01 발광다이오드 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW098137664A TWI412161B (zh) 2009-11-06 2009-11-06 發光二極體裝置
TW98137664 2009-11-06

Publications (2)

Publication Number Publication Date
WO2011055202A2 true WO2011055202A2 (zh) 2011-05-12
WO2011055202A3 WO2011055202A3 (zh) 2011-09-01

Family

ID=43970459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/002774 WO2011055202A2 (zh) 2009-11-06 2010-11-01 发光二极体装置

Country Status (7)

Country Link
US (2) US8450758B2 (zh)
EP (1) EP2498307A4 (zh)
JP (1) JP2013508994A (zh)
KR (1) KR101250964B1 (zh)
CN (1) CN102439741B (zh)
TW (1) TWI412161B (zh)
WO (1) WO2011055202A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063862A (ja) * 2012-09-20 2014-04-10 Toshiba Corp 半導体装置及びその製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412161B (zh) 2009-11-06 2013-10-11 Semileds Optoelectronics Co 發光二極體裝置
US9847372B2 (en) * 2011-12-01 2017-12-19 Micron Technology, Inc. Solid state transducer devices with separately controlled regions, and associated systems and methods
CN108767076B (zh) * 2012-01-10 2021-10-15 亮锐控股有限公司 通过选择性区域粗糙化控制的led光输出
CN103383986A (zh) * 2012-05-04 2013-11-06 旭明光电股份有限公司 具有波长转换层的发光二极管晶粒及其制造方法
CN102709446A (zh) * 2012-06-18 2012-10-03 东莞市大亮光电有限公司 一种小功率直插式led
EP2782148B1 (en) 2012-07-18 2020-05-06 Semicon Light Co. Ltd. Semiconductor light-emitting device
EP2782147B1 (en) * 2012-07-18 2020-03-11 Semicon Light Co. Ltd. Method for manufacturing semiconductor light-emitting element
WO2014187896A1 (en) * 2013-05-23 2014-11-27 Koninklijke Philips N.V. Light-emitting device with alternating arrangement of anode pads and cathode pads
CN103456859A (zh) * 2013-09-05 2013-12-18 深圳市智讯达光电科技有限公司 倒装led芯片的反射层结构及倒装led芯片
TWI633678B (zh) 2014-01-27 2018-08-21 Glo公司 具有布拉格反射器之led裝置及單分led晶圓基板為具有該裝置之晶粒之方法
JP2016072479A (ja) 2014-09-30 2016-05-09 日亜化学工業株式会社 発光素子
KR102425124B1 (ko) * 2015-08-24 2022-07-26 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 및 발광소자 패키지
US10636943B2 (en) 2015-08-07 2020-04-28 Lg Innotek Co., Ltd. Light emitting diode and light emitting diode package
TWI790984B (zh) * 2017-01-26 2023-01-21 晶元光電股份有限公司 發光元件
US10615094B2 (en) * 2017-01-28 2020-04-07 Zhanming LI High power gallium nitride devices and structures
TWI773587B (zh) * 2021-11-17 2022-08-01 友達光電股份有限公司 燈板

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883927A (ja) * 1994-09-09 1996-03-26 Shin Etsu Handotai Co Ltd AlGaInP系発光装置
JP2000091638A (ja) * 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体発光素子
JP2000174339A (ja) * 1998-12-04 2000-06-23 Mitsubishi Cable Ind Ltd GaN系半導体発光素子およびGaN系半導体受光素子
JP2001177148A (ja) * 1999-12-16 2001-06-29 Toshiba Corp 半導体発光素子及びその製造方法
JP4754711B2 (ja) * 2000-06-21 2011-08-24 昭和電工株式会社 Iii族窒化物半導体発光ダイオード、発光ダイオードランプ、光源、iii族窒化物半導体発光ダイオード用電極およびその製造方法
JP2003197965A (ja) * 2001-12-25 2003-07-11 Sanken Electric Co Ltd 半導体発光素子及びその製造方法
ATE445233T1 (de) * 2002-01-28 2009-10-15 Nichia Corp Nitrid-halbleiterbauelement mit einem trägersubstrat und verfahren zu seiner herstellung
US20050205886A1 (en) * 2002-11-29 2005-09-22 Sanken Electric Co., Ltd. Gallium-containing light-emitting semiconductor device and method of fabrication
CN100521261C (zh) * 2002-11-29 2009-07-29 三垦电气株式会社 半导体发光元件及其制造方法
JP2005322945A (ja) * 2003-02-12 2005-11-17 Rohm Co Ltd 半導体発光素子
JP3841092B2 (ja) * 2003-08-26 2006-11-01 住友電気工業株式会社 発光装置
JP2005086137A (ja) * 2003-09-11 2005-03-31 Mitsubishi Cable Ind Ltd GaN系発光ダイオード
JP2005327979A (ja) * 2004-05-17 2005-11-24 Toshiba Corp 半導体発光素子および半導体発光装置
KR100665120B1 (ko) * 2005-02-28 2007-01-09 삼성전기주식회사 수직구조 질화물 반도체 발광소자
JP2006245379A (ja) * 2005-03-04 2006-09-14 Stanley Electric Co Ltd 半導体発光素子
JP4956902B2 (ja) * 2005-03-18 2012-06-20 三菱化学株式会社 GaN系発光ダイオードおよびそれを用いた発光装置
DE102005025416A1 (de) * 2005-06-02 2006-12-14 Osram Opto Semiconductors Gmbh Lumineszenzdiodenchip mit einer Kontaktstruktur
US7564063B2 (en) * 2006-03-23 2009-07-21 Eastman Kodak Company Composite electrode for light-emitting device
SG140512A1 (en) * 2006-09-04 2008-03-28 Tinggi Tech Private Ltd Electrical current distribution in light emitting devices
JP4770785B2 (ja) * 2007-04-25 2011-09-14 日立電線株式会社 発光ダイオード
JP2008283096A (ja) * 2007-05-14 2008-11-20 Hitachi Cable Ltd 半導体発光素子
JP2009021323A (ja) * 2007-07-11 2009-01-29 Dowa Electronics Materials Co Ltd 半導体発光素子
KR100843426B1 (ko) * 2007-07-23 2008-07-03 삼성전기주식회사 반도체 발광소자
TWI419355B (zh) * 2007-09-21 2013-12-11 Nat Univ Chung Hsing 高光取出率的發光二極體晶片及其製造方法
JP5474292B2 (ja) * 2007-11-06 2014-04-16 シャープ株式会社 窒化物半導体発光ダイオード素子
KR101382836B1 (ko) * 2007-11-23 2014-04-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP2009200178A (ja) * 2008-02-20 2009-09-03 Hitachi Cable Ltd 半導体発光素子
CN101990714B (zh) * 2008-04-30 2012-11-28 Lg伊诺特有限公司 发光器件和用于制造发光器件的方法
CN101442092B (zh) * 2008-11-14 2011-03-23 厦门乾照光电股份有限公司 一种高亮度发光二极管及其制造方法
US7883910B2 (en) * 2009-02-03 2011-02-08 Industrial Technology Research Institute Light emitting diode structure, LED packaging structure using the same and method of forming the same
TWI412161B (zh) 2009-11-06 2013-10-11 Semileds Optoelectronics Co 發光二極體裝置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2498307A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063862A (ja) * 2012-09-20 2014-04-10 Toshiba Corp 半導体装置及びその製造方法
US9172017B2 (en) 2012-09-20 2015-10-27 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US9331235B2 (en) 2012-09-20 2016-05-03 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
CN102439741A (zh) 2012-05-02
US10862013B2 (en) 2020-12-08
KR101250964B1 (ko) 2013-04-05
EP2498307A2 (en) 2012-09-12
JP2013508994A (ja) 2013-03-07
US20130277702A1 (en) 2013-10-24
WO2011055202A3 (zh) 2011-09-01
TW201117422A (en) 2011-05-16
US8450758B2 (en) 2013-05-28
CN102439741B (zh) 2013-10-23
EP2498307A4 (en) 2013-12-18
KR20120099669A (ko) 2012-09-11
TWI412161B (zh) 2013-10-11
US20110114966A1 (en) 2011-05-19

Similar Documents

Publication Publication Date Title
TWI412161B (zh) 發光二極體裝置
US11817537B2 (en) Interconnects for light emitting diode chips
US10475960B2 (en) Light emitting device having gallium nitrade substrate
US8563999B2 (en) Light emitting device, light emitting device package and illumination system for reducing dislocation in semiconductor layer
US20230261157A1 (en) Contact structures of led chips for current injection
US20070114564A1 (en) Vertical gallium nitride based light emitting diode
US11545595B2 (en) Contact structures for light emitting diode chips
TW202029521A (zh) 發光元件
KR101039948B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
CN108140697B (zh) 发光器件
US11094848B2 (en) Light-emitting diode chip structures
KR20120055332A (ko) 발광소자 및 발광소자 패키지
US20240072099A1 (en) Light-emitting diode chip structures
KR20120048401A (ko) 발광소자
KR20120016831A (ko) 반도체 발광 소자 및 그 제조방법
KR20120044724A (ko) 발광소자 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001595.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827984

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012535951

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3797/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127011705

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010827984

Country of ref document: EP