KR20120099067A - 균일한 보행자 충돌을 제공하는 로브를 갖는 에너지 흡수기 - Google Patents

균일한 보행자 충돌을 제공하는 로브를 갖는 에너지 흡수기 Download PDF

Info

Publication number
KR20120099067A
KR20120099067A KR1020127014603A KR20127014603A KR20120099067A KR 20120099067 A KR20120099067 A KR 20120099067A KR 1020127014603 A KR1020127014603 A KR 1020127014603A KR 20127014603 A KR20127014603 A KR 20127014603A KR 20120099067 A KR20120099067 A KR 20120099067A
Authority
KR
South Korea
Prior art keywords
lobe
energy absorber
energy
impact
lobes
Prior art date
Application number
KR1020127014603A
Other languages
English (en)
Inventor
다니엘 랄스톤
비드야 리반카
아미트 아쇼크 쿨카니
다린 에반스
올라프 인젤
야신 고지
알렉산더 베쉬
올리베르 노키
엔고크-당 구옌
Original Assignee
폭스바겐 악티엔 게젤샤프트
쉐이프 코프.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 폭스바겐 악티엔 게젤샤프트, 쉐이프 코프. filed Critical 폭스바겐 악티엔 게젤샤프트
Publication of KR20120099067A publication Critical patent/KR20120099067A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/34Protecting non-occupants of a vehicle, e.g. pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/1806Structural beams therefor, e.g. shock-absorbing
    • B60R2019/1833Structural beams therefor, e.g. shock-absorbing made of plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/186Additional energy absorbing means supported on bumber beams, e.g. cellular structures or material
    • B60R2019/1873Cellular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/1893Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact comprising a multiplicity of identical adjacent shock-absorbing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/003Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks characterised by occupant or pedestian
    • B60R2021/0039Body parts of the occupant or pedestrian affected by the accident
    • B60R2021/0051Knees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/34Protecting non-occupants of a vehicle, e.g. pedestrians
    • B60R2021/343Protecting non-occupants of a vehicle, e.g. pedestrians using deformable body panel, bodywork or components

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

범퍼 시스템은 보행자 충돌 중에 압괴되어 에너지를 흡수하도록 구성된 중공의 종방향으로 이격된 로브를 갖는 폴리머 재료의 사출 성형된 에너지 흡수기, 및 인접하는 로브를 상호연결하는 스트랩을 구비한다. 상기 로브는 특히 에너지 흡수기의 선택된 중심 부분을 따라서, 로브의 전단 벽의 압괴 중의 충돌 스트로크 중에 특정 충돌 위치에 관계없이 소정 정도의 +/-30% 이내, 또는 보다 바람직하게 +/-20% 이내와 같은 비교적 균일한 충돌 에너지 흡수를 제공하도륵 크기형성 및 치수화되며, 잠재적으로 코너에 외부 리브 및/또는 개구를 구비한다. 균일성의 이유는 보행자의 다리가 에너지 흡수기를 가격하는 특정 위치에 관계없이 보행자 안전을 촉진하기 위한 것이다.

Description

균일한 보행자 충돌을 제공하는 로브를 갖는 에너지 흡수기{ENERGY ABSORBER WITH LOBES PROVIDING UNIFORM PEDESTRIAN IMPACT}
본 출원은, 2009년 11월 6일자로 출원되고 발명의 명칭이 "보행자 부상을 감소시키는 로브를 갖는 에너지 흡수기(ENERGY ABSORBER WITH LOBES REDUCING PEDESTRIAN INJURY)"이며 그 전체 내용이 본 명세서에 원용되는 가출원 제61/258,653호의 이익을 35 U.S.C. 119(e)조 하에 청구한다.
본 발명은 에너지 흡수기를 갖는 차량 범퍼 시스템에 관한 것이며, 여기에서 에너지 흡수기는 충돌 시에 소정의 저항율 및 에너지 흡수율로 붕괴하도록 구성된 중공 압괴 로브(hollow crush lobes)를 갖는다.
현대의 차량 범퍼는 보통, 금속제 보강 빔의 앞면에 배치되고 충돌 에너지를 흡수하도록 구성되는 폴리머 에너지 흡수기를 구비한다. 이들 에너지 흡수기는 보통, 전방으로 돌출하고 수평 방향으로 긴 형태의 중공 로브("압괴 박스"로도 지칭됨)를 가지며, 여기에서 인접하는 로브는 스트랩에 의해 상호연결된다. 로브는 보통, 차량 장착 위치에 있을 때 상부 및 하부 수평 전단 벽, 좌우 수직 전단 벽, 및 전방 벽을 구비하는 중공의 "박스형" 구조물이다. 그러나, 이격된 긴 형태의 박스형 로브의 이 개념은 범퍼 시스템의 길이에 걸쳐서 일관성 없는 에너지 흡수를 초래하며 따라서 보행자의 다리가 에너지 흡수기의 어디를 가격하는지에 따라 가변적인 성능을 초래한다.
예를 들어, 보행자의 다리가 충돌 중에 로브 사이에서 에너지 흡수기와 접촉하면, 보행자의 다리는 두 개의 수직 전단 벽(즉, 특정 스트랩의 양 쪽에 있는 두 개의 전단 벽, 도 2의 종래 기술에서 좌측 다리 충돌체 참조)과 마주칠 것 같으며, 이는 다리에 대해 비교적 높은 충돌력을 발생시킨다. 또한, 다리가 로브의 중심에서 에너지 흡수기와 접촉하면, 다리는 기본적으로 임의의 수직 전단 벽(도 2의 종래 기술에서 우측 다리 충돌체 참조)을 비켜가며, 따라서 충돌 중의 에너지 흡수율이 상당히 낮을 것이다. 특히, 특별히 보행자의 다리 내의 상이한 밀도 및 재료(즉, 뼈, 살, 피부)와 다리의 통통함이 주어질 경우, 에너지 흡수기 상의 전단 벽(즉, 충돌 중에 압괴되어 에너지를 흡수하는 벽)의 어떤 간격 또는 위치 또는 형상이 최상의 결과를 줄 것인지가 전혀 명확하지 않다.
특히, 보행자의 다리에 대한 충돌은 복잡하고 복제하기 어려우며, 따라서 다양한 정부 및 보험 회사는 보행자 충돌 검사를 수행할 때 사용하기 위한 표준화된 보행자 다리 충돌 장치("표준화된 다리 충돌체"로도 지칭됨)를 개발해왔다. 구체적으로, UNECE로 불리는 국제연합의 위원회는 보행자-다리-시뮬레이팅 충돌체(50)를 사용하는 표준을 보급해왔다(도 2 참조). 충돌체(50)는 70㎜ 직경의 스틸 막대("뼈"를 나타냄)인 중심 코어(51)를 가지며, 이 중심 코어는 25㎜ 두께의 발포층(52)("살"을 나타냄)에 의해 둘러싸이고, 이후 6㎜ 두께의 네오프렌 슬리브(53)("피부"를 나타냄)에 래핑되어, 132㎜의 총 직경을 갖는다. 그 내부를 통해서 상이한 밀도가 포함되므로, 가장 균일한 "최상의" 저항 프로파일을 위해서 로브의 어떤 크기 또는 형상이 최적하게 제공되어야 하는지가 전혀 명확하지 않으며 전단 벽 또는 로브의 간격도 그러하다.
상기 이유로 인해, 에너지 흡수기의 길이에 걸쳐서 신뢰성있고 예측가능한 보행자 충돌 특징을 제공할 뿐 아니라 보다 심한 충돌에 대해 바람직한 충돌 특징을 제공하기 위해 중공 압괴 로브를 갖는 에너지 흡수기에서의 개선이 필요하다.
본 발명의 일 태양에서는, 길이 방향을 갖는 차량용 범퍼 시스템이 제공되며, 상기 범퍼 시스템은 길이 방향에 대해 60°로 배향된 수직 평면에 의해 형성되고 범퍼 시스템의 전방과 결합되는 코너를 가지며, 상기 범퍼 시스템은 추가로 코너 각각의 약 66㎜ 내측에 형성되지만 범퍼 시스템의 250㎜의 중심 구역을 배제하는 "범퍼 테스트 영역"을 갖는다. 범퍼 시스템은 차량 프레임에 부착되도록 구성된 범퍼 보강 빔, 및 상기 빔의 앞면에 배치되는 에너지 흡수기를 구비한다. 에너지 흡수기는 보행자 충돌 중에 압괴되어 에너지를 흡수하도록 구성되는 복수의 이격된 중공 압괴 로브를 범퍼 테스트 영역에 구비한다. 로브는 "범퍼 테스트 영역"의 길이를 따르는 종방향 위치에서 압괴 로브를 10㎜ 이상 압괴시키는 충돌 침입(impact intrusion)에 대해 소정의 평균 충돌 에너지 흡수 힘-편위 프로파일의 +/-30% 이내의 균일한 충돌 에너지 흡수를 압괴 중에 제공하도록 구성된다. 이러한 구성에 의해, 범퍼 시스템은 보행자의 다리가 에너지 흡수기를 가격하는 특정 위치에 관계없이 보행자 안전을 제공한다.
본 발명의 다른 태양에서, 에너지 흡수기는 구조 부재에 대한 충돌 중에 에너지를 흡수하기 위해 구조 부재의 앞면에 배치되도록 구성되며, 에너지 흡수기는 보강 빔과 결합하도록 구성된 베이스 플랜지를 구비하고, 상기 베이스 플랜지로부터 연장되는 복수의 이격된 중공 로브를 구비한다. 에너지 흡수기는 적어도 세 개의 인접한 중공 로브를 구비하지만 에너지 흡수기의 단부 섹션을 배제하고 약 250㎜의 중심 구역을 배제하는 테스트 영역이 형성된다. 로브 각각은 충돌 시에 압괴되어 에너지를 흡수하도록 구성된 전단 벽을 가지며, 베이스 플랜지는 인접하는 로브를 상호연결하는 스트랩을 구비한다. 테스트 영역에서의 로브와 스트랩은 충돌체가 에너지 흡수기를 가격하는 특정 위치에 관계없이 보행자 안전을 위해 "테스트 영역"의 길이를 따르는 종방향 위치에서 10㎜ 이상의 충돌 침입에 대해 소정의 평균 충돌 에너지 흡수 힘-편위 프로파일의 +/-30% 이내의 균일한 충돌 에너지 흡수를 압괴 중에 제공하도록 구성, 크기형성 및 이격된다. 테스트 영역에서의 로브는 종방향으로 90㎜ 내지 132㎜ 이격된 중심선을 갖는다.
본 발명의 다른 태양에서, 에너지 흡수기는 빔의 앞면에 배치되도록 구성된다. 에너지 흡수기는 베이스 플랜지, 및 상기 베이스 플랜지로부터 연장되고 네 개의 코너를 형성하도록 접합되는 상부 및 하부 전단 벽과 수직 전단 벽을 갖는 적어도 하나의 중공 로브를 포함한다. 각각의 코너의 베이스에는 적어도 하나의 개구가 효과적으로 배치되며, 상기 적어도 하나의 개구는 각 코너의 칼럼 강도를 감소시키기 위해 각각의 코너 주위에서 부분적으로 관련 인접 벽 안으로 연장된다. 전단 벽과 개구는 보행자의 다리가 에너지 흡수기를 가격하는 특정 위치에 관계없이 보행자의 다리에 대한 예측가능하고 균일한 충돌 저항을 초래하도록 형상화 및 크기형성되며, 상기 충돌 저항은 에너지 흡수를 위해 적어도 하나의 중공 로브를 10㎜ 초과하여 압괴시키는 충돌 중에 소정의 힘 편위 프로파일의 +/-30% 이내로 균일하다.
본 발명의 다른 태양에서, 차량용 에너지 흡수 시스템은 차량에 부착되도록 구성된 구조 부재; 및 상기 구조 부재의 앞면에 배치되는 에너지 흡수기를 구비한다. 에너지 흡수기는 테스트 영역을 형성하고 충돌 시에는 압괴 로브가 에너지를 흡수하기 위해 붕괴되는 힘-편위 곡선의 작용 부분을 형성하는 적어도 네 개의 중공 압괴 로브를 갖는다. 압괴 로브는 종방향으로 이격되어 있으며, 테스트 영역의 길이를 따르는 위치에서 소정의 평균 충돌 에너지 흡수 힘-편위 프로파일의 +/-30% 이내의 힘-편위 곡선의 작용 부분 중의 균일한 충돌 에너지 흡수를 제공하도록 구성된다.
본 발명의 다른 태양에서는, 지지 구조물과 결합하도록 구성된 베이스 플랜지를 갖는 에너지 흡수기를 제공하고, 상기 베이스 플랜지로부터 연장되어 테스트 영역을 형성하는 이격된 중공 로브를 구비하는 단계를 포함하는 방법이 제공되며, 상기 로브 각각은 중공 로브의 10㎜ 이상의 붕괴를 초래하는 침입 스트로크에 대해 보행자-다리-시뮬레이팅 충돌체에 충돌될 때 힘 편위 프로파일을 따라서 압괴되어 에너지를 흡수하도록 구성된 전단 벽을 구비한다. 상기 방법은 리브가 존재한다면 압괴 로브의 전단 벽에 위치하는 경우에 그리고 개구가 존재한다면 인접하는 전단 벽에 의해 형성된 코너에 위치하는 경우에 압괴 로브 상에 개구와 외부 리브 중 적어도 하나를 형성하여 보행자의 다리가 에너지 흡수기를 가격하는 특정 위치에 관계없이 균일한 성능 및 보행자 안전을 제공함으로써 에너지 흡수기의 테스트 영역을 따르는 충돌체에 의한 충돌의 특정 위치에 관계없이 에너지 흡수의 균일성을 소정의 평균 에너지 흡수 프로파일의 +/- 30% 이내로 향상시키기 위해 에너지 흡수기의 압괴 로브를 튜닝하는 단계를 더 구비한다.
본 발명의 상기 및 기타 태양, 목적 및 특징은 하기 명세서, 청구범위 및 첨부도면을 검토하는 당업자에 의해 이해될 것이다.
도 1 내지 도 3은 종래의 범퍼 시스템을 도시하며, 도 1은 평면도이고, 도 2는 부분 평면도에서 페시아(fascia)를 뺀 것으로 보행자-다리-시뮬레이팅 충돌체(50)도 도시하는 도면이며, 도 3은 단면도이다.
도 4 내지 도 9는 본 발명을 구체화하는 범퍼 시스템의 사시도, 확대 부분 사시도, 평면도, 앞면도, 후방 사시도 및 저면도이며, 도 4 및 도 6은 보강 빔과 에너지 흡수기를 도시하고, 도 4 내지 도 9는 그 보행자 충돌 영역에 걸쳐서 균일한 보행자 충돌 저항을 제공하도록 구성된 에너지 흡수기를 도시한다.
도 10 내지 도 12는 단면도이며, 도 10은 도 9에서의 원으로 그려진 영역 X에서의 확대 단면도이고, 도 11 및 도 12는 도 10에서의 라인 XI-XI 및 라인 XⅡ-XⅡ를 따라서 취한 단면도이다.
도 13은 도 11과 유사한 확대 단면도이지만, 도 4에 도시된 I형 빔에 부착된 에너지 흡수기를 도시하는 확대 단면도이다.
도 14는 도 6과 유사한 평면도이지만, 빔에 부착되고 보행자-다리-시뮬레이팅 테스트 충돌체에 의해 세 개의 상이한 위치에서 가격되는 에너지 흡수기를 도시하는 평면도이다.
도 15는 종방향으로 상호 11㎜ 이격된 여섯 개의 상이한 위치에서의 본 발명을 구체화하는 범퍼 시스템에 대한 힘 대 변위 곡선을 도시하는 그래프이며, 이 범퍼 시스템은 도 4 내지 도 14에 도시된 시스템이다.
도 16 및 도 17은 각각 종래의 보강 빔 상에 종래의 에너지 흡수기를 갖는 두 개의 종래의 범퍼 시스템에 대한 힘 대 변위 곡선을 도시하는 그래프로서, 도 16은 사출 성형된 에너지 흡수기이고 도 17은 금속 에너지 흡수기이다.
도 18 내지 도 20은 동일한 형상의 이격된 로브를 갖는 유사한 에너지 흡수기와 동일한 보강 빔을 갖는 본 발명의 범퍼 시스템에 대한 힘 대 변위 곡선을 도시하는 그래프로서, 도 18 내지 도 20에서의 로브의 벽은 그 전방 섹션에 걸쳐서 충돌 강도의 일관성을 향상시키고 30㎜ 내지 70㎜의 충돌 스트로크에 걸쳐서 상이한 최대 충돌-저항력을 초래하기 위해 코너에서 상이한 두께 및/또는 상이한 개구를 가지며, 도 18 내지 도 20 각각에서의 로브는 60㎜ 깊이이고, 각각의 그래프는 저항력에서 최대 차이가 예상되는 두 개의 충돌을 도시한다.
도 21 내지 도 23 및 도 24 내지 도 26은 도 18 내지 도 20과 유사한 그래프이지만, 도 21 내지 도 23에서 로브의 깊이는 70㎜이고 도 24 내지 도 26에서 로브의 깊이는 80㎜이다.
도 27은 구멍을 갖는 수정된 에너지 흡수기의 섹션의 사시도이며, 도 28은 도 27의 에너지 흡수기를 구비하는 범퍼 시스템에 대한 힘 대 변위 곡선이다.
도 29는 도 27과 유사하지만 코너에 개구를 갖는 수정된 에너지 흡수기의 섹션의 사시도이다.
도 30은 도 29와 유사하고(즉, 코너 개구를 전혀 갖지 않는) 압괴 로브의 상부 및 하부 측벽을 안정화시키기 위한 외부 리브를 구비하는 수정된 에너지 흡수기의 섹션의 사시도이며, 도 31은 도 27의 에너지 흡수기를 구비하는 범퍼 시스템에 대한 힘 대 변위 곡선이다.
도 32는 도 13과 유사한 단면도이지만, 수정된 에너지 흡수기를 구비하는 단면도이다.
종래 기술의 설명
도 1 내지 도 3은 범퍼 보강 빔(100)(도 2 및 도 3 참조)을 구비하고 그 앞면에 폴리머 에너지 흡수기(101)를 구비하며, 미적으로 채색된 페시아(102)(예를 들면, RRIM, 사출 성형된 TPO 또는 다른 재료)로 커버되는 종래의 범퍼 시스템의 한 형태를 도시한다. 에너지 흡수기(101)는 앞면과 접촉하며, 충돌 시에 압괴되어 에너지를 흡수하도록 구성된 벽을 갖는 에너지-흡수 압괴 로브(103)를 구비한다. 벽은 수직 전단 벽(104)을 구비한다. 도시된 로브(103)는 빔의 길이에 평행하게 긴 형태이고 보행자의 다리[표준 다리 충돌체(50)에 의해 도시됨]의 길이보다 상당히 긴 길이를 가지며, 따라서 그 충돌 저항은 충돌 위치에 따라 널리 변화한다. 보행자의 다리[충돌체(50)에 의해 도시됨]가 위치 M(도 2)(즉 충돌이 인접한 로브 사이에 집중되는 위치)에서 충돌될 때, 다리는 두 개의 수직 전단 벽(104)으로부터 비교적 높은 충돌 저항을 받는다. 그러나, 위치 N(즉, 충돌이 단일 로브 상에 집중되는 위치)에서 충돌될 때, 다리는 비교적 낮은 충돌 저항을 받는다(즉, 임의의 수직 전단 벽으로부터 충돌 저항을 거의 받지 않음). 이는 로브가 긴 형태이이서, 위치 N에 가까운 수직 전단 벽이 전혀 없기 때문이다. 이 조건은 보행자가 충돌될 때 충돌 에너지 흡수를 일관성 없고 예측 불가능하게 만든다.
보행자 충돌을 평가하는 하나의 조직이 국제연합(UN)의 위원회인 UNECE이며, 이 조직에서는 국제 기술 규정(Global Technical Regulation: GTR) 제9호를 발표하였다. 이는 멤버 국가에 의해 채택되는 과정에 있으며 각각의 개별 국가에서 채택되면 이것은 규정이 될 것이다. 보행자 충돌 기준은 주로 차량의 코너 사이에 위치하는 범퍼 시스템의 전방 섹션에 적용되는 바, 이는 이 섹션이 보행자 충돌이 종종 가격되어 최대 부상을 초래하는 곳이기 때문이다.
UNECE의 국제 기술 규정 제9호에서, "범퍼의 코너"는 차량의 수직 종방향 평면과 60도 각도를 이루고 범퍼의 외표면에 접선하는 수직 평면과 차량의 접촉부에 의해 형성된다. (도 1 및 도 6 참조.) "범퍼 테스트 영역" BTA(본 명세서에서는 보행자 충돌을 평가하기 위해 사용되는 "보행자-충돌 범퍼 테스트 영역"으로도 지칭됨)은 이후 "코너"의 66㎜ 내측에 있는 위치들 사이의 지역에 형성된다. 구체적으로, "범퍼 테스트 영역"은 범퍼의 코너와 교차하는 두 개의 종방향 수직 평면(VP)에 의해 제한되고 범퍼의 코너의 내측에 평행하게 66㎜ 이동되는 범퍼의 앞면을 의미한다.
표준화된 테스트 고정구[충돌체(50)](도 2 및 도 14 참조)("보행자 다리 충돌체"로도 지칭됨)는 "통상적인" 보행자의 다리에 대한 충돌을 시뮬레이팅하기 위해 규정 제9호 하의 범퍼 충돌 테스트에 사용된다. 이는 70㎜ 직경의 내부 스틸 막대(51)(즉, "뼈"), 상기 막대(51)의 주위에 25㎜ 두께의 튜브를 형성하여 120㎜의 외경을 형성하는 발포재(52)의 실린더(즉, "살"), 및 상기 발포재(52)의 주위에 6㎜ 두께의 튜브를 형성하여 약 132㎜의 외경을 형성하는 슬리브(53)(즉, "피부")를 구비한다.
도 16 및 도 17은 앞서 정의된 "범퍼 테스트 영역"에서 그 길이에 걸쳐서 그 저항력의 균일성을 위한 벤치마크를 형성하기 위해 테스트되는 종래의 에너지 흡수기를 갖는, 하나는 폴리머 재료로 제조되고 다른 하나는 금속으로 제조되는 두 개의 종래의 범퍼 시스템에 대한 힘 대 편위 곡선을 도시한다. 도시하듯이, 저항력은 충돌이 범퍼 시스템을 따라서 어디에서 발생하는지에 따라서 약 30㎜의 압괴/침입 시에 약 150% 내지 400% 만큼 변화하였다. 예를 들어, 도 16에서 테스트된 에너지 흡수기를 갖는 종래의 범퍼 시스템에서, 30㎜ 침입 시에, 저항력은 (가격당하는 위치에 따라서) 약 1000N 정도로 낮거나 약 5000N 정도로 높았다. 또한 도 16에서, 저항력의 크기에 있어서의 주목할 만한 큰 차이는 10㎜ 정도의 낮은 침입에서 식별되어지며, 30㎜ 내지 60㎜ 이상의 침입에서는 극적인 차이가 나타났다. 도 17에서 테스트된 에너지 흡수기를 갖는 종래의 범퍼 시스템에서, 30㎜ 침입 시에, 저항력은 약 1700N 정도로 낮거나 약 4300N 이하였다. 다시, 저항력의 크기는 10㎜ 정도의 낮은 침입에서 상당하고 달라지기 시작하며, 30㎜ 내지 60㎜ 이상의 침입에서는 상당하다.
바람직한 실시예의 상세한 설명
본 명세서에서는, 설명을 용이하게 하기 위해 높이, 폭, 길이, 상, 하, 좌, 우 등과 같은 각종 용어가 사용된다. 이들 용어는 설명을 용이하게 하기 위해 사용되지만, 불필요하게 제한적이도록 의도되지는 않는다. 또한, 때때로 이들 용어가 차량-장착 배향(로브가 수평으로/전방으로 향하는 배향)에서의 부분을 지칭하지만 다른 때 이들 용어는 테이블과 같은 휴지면 상에 놓이는(로브가 상방으로 향하는) 에너지 흡수기를 지칭하기 위해 사용되는 것을 알아야 한다.
차량 범퍼 시스템(20)(도 4 내지 도 6)은 마운트(22)에 의해 차량 프레임에 장착되는 보강 빔(21), 및 그 앞면 상에 제공되고 페시아[도 2에서의 페시아(23A) 참조]에 의해 커버되는 에너지 흡수기(23)를 구비한다. 도시된 에너지 흡수기(23)(도 6 내지 도 10)는 폴리머 재료를 사출 성형한 것이며, 중공의 종방향으로 이격된 에너지-흡수 로브(24)("압괴 박스"로도 지칭됨) 및 상기 로브(24)를 상호연결하고 앞면과 접촉하는 동일-평면(co-planar) 스트랩(25)[베이스 플랜지(27)와 동일 평면상에서 베이스 플랜지의 부분을 형성함]을 구비한다. 에너지 흡수기(23)가 약 90㎜ 내지 약 132㎜(보다 바람직하게는 100㎜ 내지 120㎜, 가장 바람직하게는 약 110㎜)의 중심선 간격 사이에 설정되는 로브 종방향 간격(치수 DLS)을 갖는 에너지-흡수 압괴 로브(24) 및 약 15㎜ 내지 50㎜(보다 바람직하게는 약 20㎜ 내지 45㎜, 또는 가장 바람직하게는 30㎜ 내지 40㎜)의 스트랩 폭(범퍼 빔의 종방향으로 측정됨)을 구비하면, 그 성능이 충돌 위치에 관계없이 현저하게 더 일관적인 것으로 밝혀졌다.
예를 들어, 본 발명을 사용하여 만들어진 에너지 흡수기[예컨대, 로브(24)를 갖는 에너지 흡수기(23)]는 10㎜를 초과하여 40㎜ 이상까지의 충돌 스트로크에 대해 그 범퍼 충돌 영역에 걸쳐서 소정의 평균 충돌 에너지-흡수 프로파일의 +/-30% 이내(또는 보다 바람직하게는 25%의 범위 이내, 가장 바람직하게는 20% 내지 10%의 낮은 변동 범위 이내)의 범위에서 저항의 균일한 충돌력을 제공하도록 구성될 수 있다. 하나의 최적의 에너지 흡수기 범위는 로브 중심 사이의 간격이 치수 A인 경우, 주어진 로브의 깊이가 치수 B인 경우, 및 A:B의 비율이 +/-20% 범위 내에서 약 110:65인 경우일 것이다.
본 발명에서, 전체 범퍼 테스트 영역은 균일한 충돌 에너지-흡수 프로파일을 가질 수 있음을 알아야 한다. 그러나, 많은 경우에 에너지 흡수기는 범퍼 테스트 영역의 중심 구역에 걸쳐서 균일성을 갖지 않을 것이라고도 생각되며, 따라서 본 발명의 범위는 이 가능성을 포함할 것으로 생각된다. 구체적으로, 범퍼 시스템 내의 에너지 흡수기의 중심 구역에서 균일성이 없는 것은 여러가지 상이한 이유로 인한 것일 수 있다. 예를 들어, 보행자는 충돌 직전에 차량의 행로에서 벗어나려는 그 노력으로 인해 보통 범퍼 테스트 영역의 중심에 의해 가격당하지 않는다. 또한, 범퍼 시스템의 중심 구역에 부착된 번호판이 충돌 결과를 변화시킬 수도 있으며, 따라서 균일성 요건이 무의미하다. 또한, 중심 구역에서의 균일성 요건을 무의미하게 만들 수 있는 다른 구조적 특징부가 범퍼 시스템의 중심에 배치될 수 있다. 따라서, 충돌 에너지 흡수 프로파일의 균일성의 요건은 약 250㎜의 거리, 또는 보다 바람직하게는 약 200㎜의 거리에 걸쳐서 본 발명의 범퍼 시스템에서 에너지 흡수기의 중심 구역을 배제할 수도 있다.
테스트는, 압괴 로브(24)의 깊이(차량-장착 위치에 있을 때 범퍼 빔의 앞면에 있는 베이스 플랜지로부터 압괴 로브의 선단까지 측정됨)는 차량 상의 패키지 공간이 요구하는 대로 그리고 충돌 스트로크에 대해 OEM 차량 제조업자에 의해 허용되는 대로 변경될 수 있음을 보여준다. 예를 들어, 압괴 로브의 깊이는 약 50 내지 90㎜이거나, 보다 바람직하게는 약 55㎜ 내지 80㎜일 수 있다. 본 발명은 균일성이 도 16 내지 도 24에 도시하듯이 그리고 후술하듯이 상이한 압괴 스트로크로 확장되게 할 수 있다.
테스트는, 압괴 로브(24)의 수직 높이(즉, 에너지 흡수기가 차량-장착 위치에 있을 때의 수직 치수)는 로브 간격 및 로브 폭 만큼 중요하지 않음을 보여준다. 그러나, 일반적으로 말해서, 바람직한 로브 높이(차량-장착 위치에 있을 때 전후 방향으로 측정되고 전단 벽의 외표면 상의 중간 지점에서 측정됨)는 약 50㎜ 내지 90㎜이고, 보다 바람직하게는 약 60㎜ 내지 80㎜이다.
테스트는, 로브(24) 내의 전단 벽 및 전방(앞면) 벽의 벽 두께가 충돌 저항의 강도 및 균일성에 영향을 미침을 보여준다. 바람직하게, 에너지 흡수기(23)는 사출 성형된 폴리프로필렌 또는 TPO 재료로 제조되며, 약 1.5㎜ 내지 2.8㎜의 벽 두께(또는 보다 바람직하게는 약 1.75㎜ 내지 2.4㎜의 벽 두께)를 갖는 상부 및 하부(수평) 전단 벽(45, 46)을 구비하고 약 1.5㎜ 내지 2.8㎜의 벽 두께(또는 보다 바람직하게는 약 1.75㎜ 내지 2.0㎜의 벽 두께)를 갖는 수직 전단 벽(47, 48)을 구비하며 약 1.5㎜ 내지 2.8㎜의 벽 두께(또는 보다 바람직하게는 약 1.75㎜ 내지 2.0㎜의 벽 두께)를 갖는 전방(앞면) 벽(49)을 구비하도록 만들어진다. 전단 벽(47, 48)(상부, 하부 및 측부)은 몰딩을 촉진하는 빼기 각도(draft angle)로 인해 벽 두께가 변경될 수도 있음을 알아야 한다. 특히, 도시된 전단 벽(45 내지 48)은 200㎜ 내지 350㎜ 반경과 같은 (차량에 장착될 때 전후 방향으로) 약간의 크라운 또는 곡률("크라운"으로도 지칭됨)을 갖는다. 그러나, 전단 벽은 무한 반경 크라운(즉, 평탄 벽)을 가질 수 있거나 또는 다른 비선형 형상을 가질 수 있을 것으로 생각된다. 본 명세서에서 사용될 때, 수직 전단 벽 내의 "크라운"은 벽의 오목한 측에서 전단 벽으로부터 반경방향 거리 이격된 수직 축 주위의 반경을 의미한다. 수평 전단 벽 내의 "크라운"은 벽의 볼록한 측에서 전단 벽으로부터 반경방향 거리 이격된 수평 축 주위의 반경을 의미한다.
로브 벽(45 내지 49)에 의해 형성된 코너는 그 칼럼 강도로 인해 로브 압괴 중에 국소 에너지 흡수에 악영향을 미칠 수 있으며, 따라서 수직 전단 벽(47 또는 48) 중 하나와 정렬된 충돌 위치에서 로딩에 스파이크를 초래할 수 있다. 동시에, 코너의 형상도 범퍼 충돌 영역에서 에너지 흡수기에 걸친 에너지 흡수의 균일성에 영향을 미친다. 도시된 로브(24)는 사출 성형을 촉진하기 위해 모든 코너를 따라서 반경화되며, 이는 벽(45 내지 49) 중 임의의 두 개와 베이스 플랜지(27) 및 스트랩(25) 사이를 따르는/그 사이의 접합부에서 발견되는 곡선형 코너에 의해 입증된다. 코너의 바람직한 형상의 횡단 단면적은 통상 약 2㎜ 내지 8㎜의 반경, 또는 보다 바람직하게 약 3㎜ 내지 6㎜ 반경, 또는 가장 바람직하게 약 3㎜ 내지 5㎜의 반경을 형성한다. 그럼에도 불구하고, 본 발명은 보다 좁거나 큰 반경 또는 곡선형 형상을 갖는 로브 구조물/코너 또는 다른 형상의 코너에 사용될 수 있음을 알아야 한다. 스트랩의 폭(예를 들면, "20㎜ 폭")을 인용하는 데이터에서 스트랩 폭은 스트랩의 평탄 부분(즉, 예를 들면 약 15㎜)을 구비하며, 또한 각 측부에서는 반경화된 코너의 약 절반(즉, 그 측정을 위해 사용되는 절차에 기초하여, 각 측부에서 약 추가 3㎜)을 구비한다. 여기에서의 논의는 주로 로브의 중심선 간격을 언급하며 대개는 주어진 로브 상의 수직 전단 벽의 간격이나 로브(24) 사이의 간격을 언급하지 않는 것에 유의해야 하지만, 코너 반경의 나머지는 본 논의를 위한 측벽(45 내지 48)의 부분이 된다.
전방 충돌의 균일성은, 후술하듯이 각 로브(24)의 코너의 바닥 또는 벽의 접합부에 있는 개구(60)(도 5)나 구멍 또는 수직 전단 벽(47-48)의 상부에 있는 개구(61)와 같은 취약 구조물(때로는 "압괴 개시제"로 지칭됨)의 제공을 포함하는, 충돌력이 바람직하지 않게 높은 특정 영역에서의 "칼럼" 강성 저하에 의해 향상될 수 있다. 즉, 개구(60, 61)는 바람직하지 않게 높은 강성을 갖는 위치에서 칼럼 및 벽 강성을 저하시키도록 작용하며, 그렇지 않을 경우 이는 위치-특정 하중 스파이크를 초래할 것이다. 예를 들어, 개구(60)는 네 개의 전단 벽(45 내지 48)과 빔-접촉 스트랩(25)/베이스 플랜지(27)에 의해 형성된 네 개의 코너 각각의 바닥에 구비된다. 또한, 개구(61)(도 5)는 수직 전단 벽(47, 48) 각각 상의 중심 위치에서 전방 앞면 벽(49)의 외부 에지에 유리하게 구비될 수 있다. 개구(60, 61)는 임의의 크기 또는 형상일 수 있다고 생각되지만, 테스트는 개구가 코너를 가로질러서 그 코너를 형성하는 두 개 또는 세 개의 인접한 벽 안으로 연장되는 상태에서 장방형 개구가 양호하게 작용하는 것을 보여준다.
종종 전방 충돌의 균일성은 충돌력이 소정의 평균 충돌 강도에 비해서 바람직하지 않게 낮은 특정 영역에서 로브(24)의 강성을 증가시킴으로써 향상될 수 있다. 예를 들어, 이것은 상부 및 하부 전단 벽(47, 48)(도 30) 상에 외부 리브(62)를 제공하여, 에너지 흡수기(23D)(도 30)에 관하여 후술하듯이 상부 및 하부 전단 벽(47, 48)을 강화시킴으로써 이루어질 수 있다.
도시된 에너지 흡수기(23)(도 6 내지 도 10)는 로브(24)가 그로부터 전방으로 연장되어 나오는 베이스 플랜지(27)를 구비하며, 상기 베이스 플랜지(27)의 상부 및 하부 에지를 따라서 이격되는 후방으로-연장되는 상부 및 하부 부착 플랜지(28)를 더 구비한다. 일부 에너지 흡수기(23)에서, 테스트는 베이스 플랜지(27)에 인접하는[그리고 베이스 플랜지(27)/스트랩(25) 상으로 연장되는] 로브의 네 코너의 각각에 개구(60)를 구비하는 것이 유익할 것이라는 것을 보여준다. 로브(24)는 코너를 제외하고는 비교적 평탄한 벽을 갖는 박스-형상이다. 각각의 로브(24)는 상부 및 하부 벽(45, 46)을 구비하며, (종방향으로 "박스"의 단부를 형성하는) 수직 전단 벽(47, 48)도 구비하고, 박스 형상의 전방을 "폐쇄하는" 전방 벽(49)도 구비한다. 벽(45 내지 48)은 보다 소프트한 충돌을 제공하기 위해(즉, 압괴 및 붕괴가 시작되기 전에 하중 스파이크가 덜하도록) 약간 크라운 형성되거나 만곡된다.
로브의 상부에서 하부로 연장되는 것으로 언급되는 일부 코너는 로브 및 스트랩(25)/베이스 플랜지(27)의 인접한 벽(45 내지 49)을 연결하는 재료에 의해 형성된다. 이들 코너는 범퍼 빔 앞면에 대해 약 "90도" 각도로(예상되는 충돌 방향으로) 연장되는 반경화된 구조물을 형성하지만, 몰딩을 촉진하기 위한 빼기 각도를 갖는다. 이들 코너는 상당한 국소 충돌 강성을 제공할 수 있으며, 에너지 흡수기의 길이를 따라서 보행자의 다리에 대한 충돌 저항의 비일관성을 증가시킬 수 있다. 개구(60, 61)를 제공하여 이들 코너를 취약화함으로써, 수직 전단 벽 위에 집중되는 충돌로 인해 발생하게 될 높은 하중 스파이크는 에너지 흡수기를 따르는 다른 위치와 보다 정합되도록 감소된다. 벽(45 내지 49)의 임의의 것과 스트랩(25) 및 베이스 플랜지(27)의 접합에 의해 형성되는 도시된 코너는 통상 약 2㎜ 내지 8㎜ 반경, 또는 보다 바람직하게는 약 3㎜ 내지 6㎜ 반경, 그리고 가장 바람직하게는 약 3㎜ 내지 5㎜ 반경이지만, 본 발명은 보다 좁거나 보다 큰 반경을 갖는 로브 벽 구조물에 대해 사용될 수 있다.
에너지 흡수기(23)는 다른 수단에 의해 보강 빔(21)에 부착될 수 있다고 생각된다. 도시된 에너지 흡수기(23)는 에너지 흡수기의 길이를 따라서 이격되는 상부 및 하부 부착 플랜지(28)를 구비한다. 도시된 하부 부착 플랜지(28)는 세 개의 인접하는 하부 플랜지(33 내지 35)(도 8) 세트를 구비하며, 상부 부착 플랜지(28)는 단일의 광폭 대향 상부 플랜지(36)를 구비한다. 중심 하부 플랜지(34)와 상부 플랜지(36)는 교합 보강 빔(21)의 상부 및 하부 벽에 있는 교합 특징부(또는 구멍)와 마찰 결합하기 위한 투쓰(37) 또는 패드(40)를 각각 구비할 수 있다. 플랜지(33 내지 36)는 또한 강도 증가를 위해 외부 보강 리브(38, 41)를 구비할 수 있다. 플랜지(33 내지 36)는 (예를 들어 페시아가 부착될 때까지) 보강 빔에 일시적으로 보유되기 위한 마찰 발생 패드를 (투쓰 대신에) 구비할 수 있다. 도시된 상부 플랜지(36)는 확대 융기 패드(40)를 구비하며, 외부 보강 리브(41)도 구비한다. 투쓰(37)와 패드(40)는 범퍼 보강 빔(21) 상에 대한 에너지 흡수기 부착을 촉진하기 위해 경사진 주둥이(ramped throat)를 형성하는 경사 인입면을 갖고 구성된다. 에너지 흡수기(23)는 추가로(또는 대신에) 범퍼 시스템을 커버하는 RIM 페시아에 부착되도록 구성될 수 있다고 생각된다.
도 2 및 도 6은 보행자의 다리(본 명세서에서는 "보행자의 다리" 또는 "보행자 다리 충돌체"로도 지칭됨)를 시뮬레이팅하는(즉, "묘사하는") 종래의 표준화된 테스트 고정구(50)를 도시하고 있음을 알아야 한다. 레그(50)는 전술했듯이 스틸 막대(51)(즉, "뼈"), 발포재(52)(즉, "살"), 및 슬리브(53)(즉, "피부")를 구비한다.
도 14에 도시하듯이, 다리(50)는 도면에서 A, B 또는 C 위치로 도시되고 각각 보행자-충돌 범퍼 테스트 영역에 위치하는 상이한 위치에서 에너지 흡수기(23)와 충돌할 수 있다. 충돌 위치 A에서는 수직 전단 벽(X, Y)이 균등하게 결합되며, 위치 C에서는 수직 전단 벽(Y, Z)이 균등하게 결합된다. 충돌 위치의 중심이 로브 중심(center-of-lobe) 충돌 위치 "A"로부터 로브 에지(edge-of-lobe) 충돌 위치 "C"로 시프트됨에 따라, 수직 전단 벽(47, 48) 중 하나와 정확히 정렬되는 하나의 위치(충돌 위치 B 참조)를 갖는 이행이 있다. 바람직한 압괴 로브(24)는 110㎜의 중심선 간격(치수 DLS)을 갖는 것에 유의해야 한다. 이것은 에너지 흡수기(23) 내의 주어진 로브에서 수직 전단 벽(47, 48) 사이에 (반경화된 코너뿐 아니라 몰딩을 위한 빼기 각도가 설명되어야 함을 감안하여) 약 65㎜ 내지 70㎜의 종방향 간격을 초래하지만, 인접하는 로브의 수직 전단 벽(47, 48) 사이의 종방향 간격은 약 40㎜ 내지 45㎜이다. 표준화된 다리 충돌체(50)가 132㎜의 외부 치수를 갖는 것을 고려하면, 이 간격 및 로브 폭이 전체 보행자-충돌 범퍼 테스트 영역에 걸쳐서 비교적 일정한 충돌 저항을 제공할 것임은 반직관적이다. (도 6 참조.) 따라서, 이것은 예상 밖의 예기치 않은 이익을 제공하는, 놀라운 예상 밖의 결과이다.
도 15는 도 4 및 도 6에 도시된 것과 같은 범퍼 시스템(20)에 대한 힘 편위 곡선("힘 편위 프로파일"로도 지칭됨)을 도시하며, 여기에서 에너지 흡수기(23)는 보행자-충돌 범퍼 테스트 영역(bumper test area: BTA)에 걸쳐서 동일한 로브(24)를 구비하고, 이들 로브(24)는 종방향으로 중심선이 110㎜ 이격되며, 인접하는 로브를 분리시키는 약 35㎜ 내지 40㎜의 스트랩을 갖는다. 도시된 에너지 흡수기(23)에서의 수직 전단 벽(47, 48)과 또한 상부 및 하부 전단 벽(45, 46)은 약 150㎜ 내지 300㎜ 반경의 곡률을 갖는다. 로브(24)는 65㎜의 깊이를 갖고, 약 1.5㎜ 내지 2.5㎜의 벽 두께를 가지며, 베이스 플랜지에 인접한 로브의 각 코너에서 개구(60)를 구비하고, 전방 벽(49) 상으로 연장되는 수직 전단 벽(47, 48)의 선단에 집중되는 개구(61)를 더 구비한다. 로브(24)는 상부 및 하부 전단 벽(47, 48)에 리브(66) 또는 기복부(undulation)를 전혀 구비하지 않는다.
도 15는 여섯 군데의 충돌 위치에서 실시된 테스트로부터의 데이터이며, 각각의 충돌 위치는 이전 충돌 위치로부터 11㎜ 떨어져 위치한다. 도 6 및 도 10에 도시하듯이, 제1 충돌 위치(A)는 중심 위치(스트랩 상부)에서 로브 사이를 향한다. 다음 충돌 위치(B)는 편측으로 11㎜ 인도되며, 다음 충돌 위치(C)는 편측을 향하여 11㎜ 더 인도되고, 충돌 위치(D, E, F)에 대해서도 마찬가지이다. 충돌 위치(F)는 로브(24)의 중심으로 향한다. 모든 로브(24)가 대칭적이고 크기 및 형상이 동일하므로, 충돌 위치(A 내지 F)는 범퍼 테스트 영역에 걸친 모든 위치에서의 충돌 저항을 나타내는 바, 각각의 로브의 기저 구조물과 충돌체(50)에 대한 그 관계가 범퍼 테스트 영역 치수(BTA)에서 에너지 흡수기(23)의 길이에 걸쳐서 계속 반복되기 때문이다. 도 15의 그래프에 도시되어 있듯이, 모두 여섯 군데의 위치(A 내지 F)에서의 저항의 힘은 25㎜ 침입까지 거의 동일하고, 30㎜ 침입 시에 약 +/-5% 충돌 저항 이내로 유사하며, 약 60㎜ 침입 시에 약 +/-10% 충돌 저항 이내로 여전히 유사하다. (본 발명의 에너지 흡수기에 대한 테스트 결과를 나타내는 도 15를 벤치마크로서 사용되고 하나는 플라스틱 부분이고 다른 하나는 금속 부분인 두 개의 공지된/종래의 부분을 나타내는 도 16 및 도 17과 비교한다.)
보행자의 다리에 대한 충돌 중에, 힘 편위 곡선("힘-편위 프로파일" 또는 "충돌력-대-침입 프로파일"로도 지칭됨)은 충돌에 대한 저항력이 제로에서부터 증가하고 이후 레벨 저하되며 이후 다시 급증하는 결과를 보여준다. 구체적으로, 충돌의 힘-편위 곡선의 제1 부분은 보행자 다리의 살과 피부(본 명세서에서 힘-편위 곡선의 "초기 충돌 및 압축 부분"으로 지칭됨)의 변형, 휨 및 압축에 의해 크게 영향받는다. 이어지는 제2 부분(본 명세서에서 힘-편위 곡선의 "작용 부분"으로 지칭됨)에서 에너지 흡수기는 에너지를 흡수하기 위해 압괴되는 압괴 로브의 전단 벽에 의해 그 일을 수행한다. (이 단계 중에, 전단 벽은 "오그라들고" 다수의 불규칙한 굴곡 및 절첩을 형성하여, 재료 변형을 통한 상당한 에너지 흡수를 초래한다.) 이어지는 제3 부분(본 명세서에서 힘-편위 곡선의 "적층 평탄 부분" 또는 달리 말해서 "보강 빔 저항 부분"으로 지칭됨)에서 에너지 흡수기는 기본적으로 평탄하게 압괴되며 따라서 저항력은 주로 기저 지지 구조물(범퍼 시스템의 경우에 대개 금속으로 만들어지고 대단히 견고한 보강 빔)의 저항력이다. 예를 들어, 도 15에서, 제1 부분(즉 힘 편위 곡선에서의 "초기 충돌 및 압축 부분")은 제로 침입에서부터 약 30㎜ 침입까지이고; 제2 부분(즉 "작용 부분")은 30㎜ 침입에서부터 내지 약 63㎜ 침입까지이며(저항력은 작은 변동 범위 내에서 비교적 일정하게 유지됨); 제3 부분(즉 "빔 저항 부분")은 63㎜ 이상의 침입이다(여기에서 저항력은 급증한다). 대조적으로, 도 18에서, 제1 부분(즉 "초기 충돌 및 압축 부분")은 제로 침입에서부터 약 25㎜ 침입까지이고; 제2 부분(즉 "작용 부분")은 25㎜ 침입에서부터 내지 약 60㎜ 침입까지이며; 제3 부분(즉 "빔 저항 부분")은 60㎜ 이상의 침입이다. 대조적으로, 도 21에서, 제1 부분(즉 "초기 충돌 및 압축 부분")은 제로 침입에서부터 약 25㎜ 침입까지이고; 제2 부분(즉 "작용 부분")은 25㎜ 침입에서부터 내지 약 70㎜ 침입까지이며; 제3 부분(즉 "빔 저항 부분")은 70㎜ 이상의 침입이다.
본 출원인은 에너지 흡수기 로브 치수 및 최적 범위의 감도를 결정하기 위해 다양한 연구를 하였다. 연구 결과 특정 범퍼 시스템("차량 적용")에 대한 양호한 범위가 다음과 같이 제안되었다. 본 출원인의 견해로 본 치수는 의미심장하고 진보성이 있으며, 예를 들어 로브 중심선 사이의 110㎜ 간격이 충돌체(50)의 어떤 치수보다 예기치않게 상이하고 통상적인 사람 다리의 어떤 치수보다 예기치않게 상이하기 때문에 놀라운 예상 밖의 결과를 제공한다는 것에 유의해야 한다.
로브 폭 간격 90㎜ 내지 132㎜
(보다 바람직하게는 100㎜-120㎜, 최적하게는 110㎜)
로브 높이 60㎜+/-20% 또는 보다 바람직하게는 +/-10%
깊이 50㎜ 내지 80㎜(스타일링에 의해 크게 영향받음)
벽 크라운 평면적이거나 크라운형성되거나, 또는
보다 바람직하게는 150㎜ 및 300㎜
두께 1.5㎜ 내지 2.25㎜+/-10%
벽을 따르는 주름/보강 리브 (필요에 따라)
코너를 따라서 및 접합부에서의 반경/구멍 (필요에 따라 변경됨)
스트랩 폭 15㎜ 내지 50㎜
(구멍, 리브와 조합하여 필요에 따라 변경됨)
본 에너지 흡수기(23)는 선형 보강 빔과 교합하도록 만들어질 수 있거나, 종방향으로 스윕되는(swept) 보강 빔(21)(도 6 및 도 14 참조)과 교합하도록 만들어질 수 있을 것으로 생각된다. 스윕되는 빔의 경우에, 에너지 흡수기의 로브는 예상 충돌의 방향과 평행하게 면하도록 배향될 수 있거나, 및/또는 전방으로 똑바로 면하도록 배향될 수 있거나, 및/또는 차량의 코너에 대한 그 관계에 따라서 및 차량 설계에 따라서 전방에 대해 약간 경사져 배향될 수 있다. 예를 들어, 로브(24)는 보강 빔의 앞면의 인접 부분에 수직하게 연장될 수 있거나(이 경우 단부 로브는 빔의 곡선형 스윕으로 인해 잠재적으로 중심 로브에 평행하게 연장되지 않을 것임), 또는 단부 로브는 (보강 빔의 단부가 후방으로 만곡되어도 모든 로브가 차량의 주행 방향에 평행하게 차량으로부터 전방으로 평행하게 연장되도록) 경사져서 내측으로 약간 경사질 수 있다. 또한, 빔은 다른 재료로 제조될 수 있고 다른 공정에 의해 형성될 수 있음을 알아야 하며, 이러한 빔은 스틸로 롤 형성되거나, 알루미늄으로 압출되거나, 강화 폴리머로 몰딩된다.
도시된 에너지 흡수기는 에너지를 흡수하는데 적합한 폴리머 재료로 사출 성형되며, 이 재료는 주지되어 있고 시중에서 입수 가능하다. 도시된 에너지 흡수기는 빔의 단부가 상당한 스윕 또는 증가성 스윕(즉 단부 근처에서 증가하는 후방 곡률)을 가질 때에도 보강 빔의 앞면 주위에 가요적으로 래핑되어 그와 결합하도록 그 스트랩(25)에서 충분한 종방향 가요성을 갖는다. 그러나, 본 발명의 범위는 스틸이나 다른 재료로 제조된 에너지 흡수기를 포함하며 에너지 흡수기는 종방향으로 비가요성일 수 있고 특정 빔 앞면의 프로파일에 대해 포개지도록 만들어질 수 있을 것으로 생각된다.
도 18 내지 도 20은 동일한 보강 빔(21)을 갖고 에너지 흡수기(23)와 매우 흡사한 에너지 흡수기를 갖는 본 발명의 범퍼 시스템(20)에 대한 힘 대 변위 곡선을 도시하는 그래프이다. 구체적으로, 도 18 내지 도 20에서의 세 개의 에너지 흡수기 각각은 동일하게 형상화된 로브 및 로브 간격(즉 로브 중심선 코너에서 110㎜)을 갖지만, 도 18 내지 도 20의 에너지 흡수기에서의 로브의 벽(45 내지 49)은 코너에서 약간 다른 두께 및/또는 다른 개구를 갖는다. 구체적으로, 도 18 내지 도 20 각각에서의 로브는 60㎜의 깊이이며 각각은 110㎜의 로브의 중심선 간격을 갖는다. [즉 로브는 (사이드-위치된) 수직 전단 벽의 베이스에서 약 88㎜ 내지 90㎜이며, 스트랩 폭은 약 20㎜ 내지 22㎜이다.] 도 18 내지 도 20의 에너지 흡수기 사이에서 전단 벽(45 내지 48)의 두께는 변경되었으며, 범퍼 시스템의 빔 충돌 영역에 걸쳐서 모든 종방향 위치에서 충돌 저항력의 균일성을 최적화하기 위해 필요에 따라 전단 벽(45 내지 48)의 코너에 개구(60 내지 61)가 추가되었다.
도 18 내지 도 20의 그래프 각각은 두 개의 충돌을 도시하는 바, 하나의 충돌은 비교적 높은 충돌 저항력이 예상되도록 수직 전단 벽(47)(또는 48)과 정렬된 로브(24) 상의 위치에서 이루어지고, 다른 하나의 충돌은 비교적 낮은 충돌 저항력이 예상되는 로브(24) 위에 집중된다. 도 18 내지 도 20에서 테스트된 에너지 흡수기는 각각, 개구(60, 61)의 벽 두께 및/또는 배치를 조절함으로써 특정 충돌 위치에 관계없이 일관된 충돌 저항을 제공하도록 최적화되었다. 도시하듯이, 도 18 내지 도 20에서의 에너지 흡수기 각각에 대한 힘 편위 곡선은 30㎜의 충돌 스트로크("침입")까지 거의 동일하다. 특히, 도 18 내지 도 20의 에너지 흡수기는 또한, 30㎜ 내지 65㎜의 침입 범위에서 상이한 레벨의 충돌 저항력을 초래하기 위해 최적 벽 두께를 위해 조절된 벽을 구비한다. 예를 들어, 도 18에서, 30㎜ 내지 65㎜ 침입에서 소정의 저항력은 3kN이다. 대조적으로, 도 19에서 30㎜ 내지 65㎜ 침입에서 소정의 저항력은 4kN이며 도 20에서 30㎜ 내지 65㎜ 침입에서 소정의 저항력은 5kN이다.
더 깊은 로브(24)를 갖는 에너지 흡수기를 갖는 범퍼 시스템에 대해 도 18 내지 도 20에 도시된 것과 유사한 테스트가 이루어졌다. 70㎜ 깊이 구멍을 갖는 에너지 흡수기에 대한 결과가 도 21 내지 도 23에 도시되어 있다. 도 24 내지 도 26은 유사하지만 80㎜ 깊이 로브를 갖는 에너지 흡수기를 사용하는 테스트의 결과를 도시한다. 이 결과는 상기 논의에 의하면 일목요연할 것으로 믿어진다. 각각의 경우에, 충돌 저항력은 30㎜ 침입 시의 약 +/-20% 이내와 같은, 소정 레벨의 충돌 저항력에 비교적 가깝게 유지되었다. 충돌 저항의 일관성은 상이한 "맞춤화된(customized)" 개구(60, 61)뿐 아니라 후술되는 외부 리브(62)를 사용하여 에너지 흡수기를 튜닝함으로써 더 향상될 수 있음을 알아야 한다.
하기의 수정된 범퍼 시스템 및 에너지 흡수기에서, 동일하고 유사한 부품, 특징부 및 특징은 동일한 도면번호를 사용하여 확인된다. 상당한 변화가 있는 경우, 동일한 식별 번호가 사용되지만, "A", "B", "C" 등과 같은 문자가 추가된다. 이것은 중복 과잉적인 논의를 감소시키기 위해 이루어진다.
도 27(및 도 28에 도시된 테스트 결과)과 도 29 및 도 30(및 도 31에 도시된 테스트 결과)과 도 32에 도시된 에너지 흡수기는 본 발명의 범위에 대한 추가 이해를 제공한다. 도 27(및 도 28의 그래프에 도시된 테스트 결과)은 본 개념이 개구 및 외부 리브에 의존하지 않는 에너지 흡수기(23B)에 구체화될 수 있음을 보여준다. 도 29는 베이스 개구(60)만 구비하는[로브의 앞면에서 외부 코너에 개구(61)를 구비하지 않는] 에너지 흡수기(23C)를 도시한다. 도 30은 개구(60, 61)를 사용할 뿐 아니라 외부 리브(62)도 사용하여 에너지 흡수기(23D)를 튜닝함으로써 본 개념이 확장될 수 있음을 도시한다(그리고 도 31은 이로부터 데이터의 그래프를 도시한다). 도 30에서, 외부 리브(62)는 관련(상부 또는 하부) 벽의 인접한 부분과 함께 T형 단면을 형성한다.
도 32는 본 개념이 다른 빔과 다른 지지 구조물에 사용될 수 있음을 도시한다. 예를 들어, 도 31에서의 범퍼 보강 빔(21E)은 도 13에 도시된 것과 동일하지만, 빔(21E) 상의 중심 채널(65)이 차량을 향하는 것과 반대로 (차량으로부터 멀리) 전방으로 향하도록 역전된 배향으로 사용된다. 에너지 흡수기(23E)는 빔(21E) 내의 채널(65) 내로 연장되는 위치결정 탭(locater tab)(66)을 구비하며, 따라서 상기 탭(66)은 에너지 흡수기(23E)를 충돌 중에 빔(21E)의 앞면 상에 유지하는 것을 보조한다.
구체적으로, 도 27은 도 4에서의 에너지 흡수기(23)의 로브 치수와 동일한 로브 치수를 갖는 수정된 에너지 흡수기(23B)를 도시하지만, 특징적으로 에너지 흡수기(23B)는 코너를 취약화하기 위한 코너 개구(60, 61)를 전혀 갖지 않으며, 상부 및 하부 전단 벽(45, 46)을 보강하기 위한 외부 리브(62)도 전혀 갖지 않는다. 리브(24B)는 50㎜의 깊이를 가지며, 100㎜의 종방향 간격을 갖는다. 도 28은 도 27의 에너지 흡수기(23B)를 구비하는 범퍼 시스템에 대한 힘 대 변위 곡선이다. 특히, 에너지 흡수는 도표로 표시된 네 개의 충돌에 의해 도시되는 충돌 위치에 관계없이 매우 일관적이며; 하나의 충돌은 인접한 로브 사이에서 이루어지고, 하나의 충돌은 로브의 에지에서 이루어지며, 하나의 충돌은 로브의 정중앙에서 이루어지고, 다른 충돌은 로브의 중심 상에서 이루어진다. 구체적으로, 충돌 저항력은 30㎜ 침입까지 (약 +/-5%의 평균 수치 이내에서) 매우 유사하며, 추가로 45㎜ 침입까지 (약 +/-10% 이내에서) 유사하다.
도 29는 도 27에서의 것과 동일하지만 베이스 개구(60)를 구비하는 에너지 흡수기(23C)를 도시한다. 도시된 에너지 흡수기(23C)는 로브(24C)의 앞면 상의 외부 코너에 개구(61)를 구비하지 않는다.
도 30은 도시된 치수를 갖는 수정된 에너지 흡수기(23D)를 도시하지만, 특히 코너를 취약화하기 위한 코너 개구(60)와, 상부 및 하부 벽(45, 46)을 보강하기 위한 외부 리브(62)를 모두 갖지 않는다. 도시된 로브(24D)는 65㎜의 깊이와, 100㎜의 종방향 간격을 갖는다. 도 31은 도 30의 에너지 흡수기(23D)를 구비하는 범퍼 시스템에 대한 힘 대 변위 곡선이다. 특히, 에너지 흡수는 도표로 표시된 네 개의 충돌에 의해 도시되는 충돌 위치에 관계없이 매우 일관적이며; 하나의 충돌은 인접한 로브 사이에서 이루어지고, 하나의 충돌은 로브의 에지에서 이루어지며, 하나의 충돌은 로브의 정중앙에서 이루어지고, 다른 충돌은 로브의 중심 상에서 이루어진다. 구체적으로, 충돌 저항력은 30㎜ 침입까지 (약 +/-5%의 평균 수치 이내에서) 매우 유사하며, 추가로 45㎜ 침입까지 (약 +/-10% 이내에서) 유사하다.
도 31은 도 13에 도시된 것과 유사한 빔(21E)과 에너지 흡수기(23E)를 구비하는 범퍼 시스템을 도시한다. 그러나, 도 31에서의 빔(21E)은, 도 13에 도시된 빔(21)과 동일하지만, 빔(21E) 상의 중심 채널(65)이 (차량으로부터 멀리) 전방을 향하도록 역전된 배향으로 사용된다. (도 13에서, 채널은 차량을 향해 내측을 향하였다.) 도 31에서의 에너지 흡수기(23E)는, 충돌 중에 에너지 흡수기(23E)를 빔(21E)의 앞면에 유지시키기 위해 빔(21E) 내의 채널(65) 안으로 연장되는 위치결정 탭(66)을 구비한다.
도시된 에너지 흡수기는 폴리머로 사출 성형되지만, 구체적으로는 에너지 흡수기가 다른 재료(변형 가능한 스틸, 다른 금속 및 비금속 재료 등)로 제조될 수 있고 다른 제조 방법(열성형, 압축 성형, 스탬핑 등)에 의해 제조될 수 있으며 여전히 본 발명의 범위 내에 있을 수 있다고 생각된다. 본 발명은 차량 범퍼의 바로 상에가 아닌 차량 상의 위치에, 예를 들어 도어 사이드 충돌, A-필러 충돌, 및 대쉬하(under-the-dash) 충돌을 위해 차량 내부 및/또는 외부의 위치에 사용될 수 있으며 여전히 본 발명의 범위 내에 있을 수 있다고 생각된다.
상기 구조에 대해 본 발명의 개념을 벗어나지 않는 변경 및 수정이 이루어질 수 있음을 알아야 하며, 추가로 이러한 개념은 달리 명시되지 않는 한 하기 청구범위에 의해 커버되도록 의도됨을 알아야 한다.

Claims (37)

  1. 길이 방향을 갖는 차량용 범퍼 시스템이며,
    상기 범퍼 시스템은 길이 방향에 대해 60°로 배향된 수직 평면에 의해 형성되고 범퍼 시스템의 전방과 결합되는 코너를 가지며, 상기 범퍼 시스템은 추가로 코너 각각의 약 66㎜ 내측에 형성되지만 범퍼 시스템의 250㎜의 중심 구역을 배제하는 "범퍼 테스트 영역"을 추가로 갖고,
    차량 프레임에 부착되도록 구성된 범퍼 보강 빔; 및
    상기 빔의 앞면에 배치되는 에너지 흡수기를 포함하며,
    상기 에너지 흡수기는 보행자 충돌 중에 압괴되어 에너지를 흡수하도록 구성되는 복수의 이격된 중공 압괴 로브를 범퍼 테스트 영역에 구비하고, 상기 로브는 "범퍼 테스트 영역"의 길이를 따르는 종방향 위치에서 압괴 로브를 10㎜ 이상 압괴시키는 충돌 침입에 대해 소정의 평균 충돌 에너지 흡수 힘-편위 프로파일의 +/-30% 이내의 균일한 충돌 에너지 흡수를 압괴 중에 제공하도록 구성되며, 이로 인해 범퍼 시스템은 보행자의 다리가 에너지 흡수기를 가격하는 특정 위치에 관계없이 보행자 안전을 제공하는 차량용 범퍼 시스템.
  2. 제1항에 있어서, 상기 로브는 충돌 시에 압괴되어 예측 가능한 정도의 에너지를 흡수하도록 구성된 전단 벽을 구비하는 차량용 범퍼 시스템.
  3. 제2항에 있어서, 상기 전단 벽은 한 쌍의 대향 수직 전단 벽을 구비하는 차량용 범퍼 시스템.
  4. 제2항에 있어서, 상기 전단 벽은 한 쌍의 대향 수평 전단 벽을 구비하는 차량용 범퍼 시스템.
  5. 제2항에 있어서, 상기 전단 벽에 의해 제공되는 저항력은 충돌 스트로크의 작용 부분 동안 +/-30% 이내에서 비교적 일정하게 유지되며, 상기 작용 부분은 로브의 전단 벽이 에너지를 흡수하는 방식으로 압괴 및 절첩될 때인 차량용 범퍼 시스템.
  6. 제5항에 있어서, 상기 전단 벽에 의해 제공되는 저항력은 충돌 스트로크의 작용 부분 중에 +/-20% 이내에서 비교적 일정하게 유지되는 차량용 범퍼 시스템.
  7. 제1항에 있어서, 보행자 충돌 중에 로브에 의해 제공되는 저항력은 30㎜ 내지 60㎜ 침입의 범위에서 충돌 스트로크 중에 비교적 일정한 차량용 범퍼 시스템.
  8. 제1항에 있어서, 상기 에너지 흡수기는 폴리머 재료로 제조되는 차량용 범퍼 시스템.
  9. 제1항에 있어서, 상기 에너지 흡수기는 사출 성형되는 차량용 범퍼 시스템.
  10. 제1항에 있어서, 상기 로브는 로브 중심선을 구비하며, 로브 중심선 사이의 로브 간격은 90㎜ 내지 132㎜인 차량용 범퍼 시스템.
  11. 제10항에 있어서, 상기 로브 중심선 사이의 로브 간격은 100㎜ 내지 120㎜인 차량용 범퍼 시스템.
  12. 제1항에 있어서, 상기 로브의 각각은 65㎜ 내지 90㎜ 이격되는 수직 전단 벽을 구비하며, 각각의 인접한 로브 쌍은 전단 벽의 베이스에서 15㎜ 내지 30㎜ 이격되는 인접한 수직 전단 벽을 구비하는 차량용 범퍼 시스템.
  13. 제1항에 있어서, 상기 로브는 차량-장착 위치에 있을 때 60㎜+/-30%의 로브 높이를 갖는 차량용 범퍼 시스템.
  14. 제1항에 있어서, 상기 로브는 차량-장착 위치에 있을 때 약 40㎜ 내지 100㎜의 깊이를 갖는 차량용 범퍼 시스템.
  15. 제1항에 있어서, 상기 로브는 차량-장착 위치에 있을 때 200㎜ 이상의 곡률반경의 크라운을 갖는 수직 전단 벽을 구비하는 차량용 범퍼 시스템.
  16. 제1항에 있어서, 상기 로브는 차량-장착 위치에 있을 때 200㎜ 이상의 곡률반경의 크라운을 갖는 수평 전단 벽을 구비하는 차량용 범퍼 시스템.
  17. 제1항에 있어서, 상기 로브는 1.5㎜ 내지 2.8㎜의 두께를 갖는 벽을 구비하는 차량용 범퍼 시스템.
  18. 제1항에 있어서, 상기 로브는 상기 벽 중 적어도 하나를 따라서 연장되는 기복부와 리브 중 적어도 하나를 갖는 벽을 구비하는 차량용 범퍼 시스템.
  19. 제1항에 있어서, 상기 로브는 코너를 따라서 그리고 벽의 접합부에서 약 2㎜ 내지 10㎜의 반경을 구비하는 차량용 범퍼 시스템.
  20. 구조 부재에 대한 충돌 중에 에너지를 흡수하기 위해 구조 부재의 앞면에 배치되도록 구성된 에너지 흡수기이며,
    상기 에너지 흡수기는 보강 빔과 결합하도록 구성된 베이스 플랜지를 구비하고, 상기 베이스 플랜지로부터 연장되는 복수의 이격된 중공 로브를 구비하며,
    상기 에너지 흡수기에는 적어도 세 개의 인접한 중공 로브를 구비하지만 에너지 흡수기의 단부 섹션을 배제하고 약 250㎜의 중심 구역을 배제하는 테스트 영역이 형성되며,
    상기 로브 각각은 충돌 시에 압괴되어 에너지를 흡수하도록 구성된 전단 벽을 갖고, 상기 베이스 플랜지는 인접하는 로브를 상호연결하는 스트랩을 구비하며,
    테스트 영역에서의 로브와 스트랩은 충돌체가 에너지 흡수기를 가격하는 특정 위치에 관계없이 보행자 안전을 위해 "테스트 영역"의 길이를 따르는 종방향 위치에서 10㎜ 이상의 충돌 침입에 대해 소정의 평균 충돌 에너지 흡수 힘-편위 프로파일의 +/-30% 이내의 균일한 충돌 에너지 흡수를 압괴 중에 제공하도록 구성되고 크기형성되고 이격되며, 테스트 영역에서의 로브는 종방향으로 90㎜ 내지 132㎜ 이격된 중심선을 갖는 에너지 흡수기.
  21. 제20항에 있어서, 상기 로브 각각은 대향 수직 전단 벽을 구비하는 에너지 흡수기.
  22. 제21항에 있어서, 상기 로브 각각은 대향 수평 전단 벽을 구비하는 에너지 흡수기.
  23. 제20항에 있어서, 상기 에너지 흡수기는 폴리머 재료로 제조되는 에너지 흡수기.
  24. 제20항에 있어서, 상기 에너지 흡수기는 금속 재료로 제조되는 에너지 흡수기.
  25. 제20항에 있어서, 상기 로브는 종방향으로 100㎜ 내지 120㎜ 이격된 중심선을 갖는 에너지 흡수기.
  26. 빔의 앞면에 배치되도록 구성된 에너지 흡수기이며,
    베이스 플랜지, 및
    상기 베이스 플랜지로부터 연장되고, 네 개의 코너를 형성하도록 접합되는 상부 및 하부 전단 벽과 수직 전단 벽을 가지며, 각 코너의 베이스에 효과적으로 설치되는 적어도 하나의 개구를 갖는 적어도 하나의 중공 로브를 포함하며,
    상기 적어도 하나의 개구는 각 코너의 칼럼 강도를 감소시키기 위해 각각의 코너 주위에서 부분적으로 관련 인접 벽 안으로 연장되고, 상기 전단 벽과 개구는 보행자의 다리가 에너지 흡수기를 가격하는 특정 위치에 관계없이 보행자의 다리에 대한 예측가능하고 균일한 충돌 저항을 초래하도록 형상화 및 크기형성되며, 상기 충돌 저항은 에너지 흡수를 위해 상기 적어도 하나의 중공 로브를 10㎜ 초과하여 압괴시키는 충돌 중에 소정의 힘 편위 프로파일의 +/-30% 이내로 균일한 에너지 흡수기.
  27. 제26항에 있어서, 상기 충돌 저항은 적어도 하나의 중공 로브가 충돌 중에 압괴됨에 따라 30㎜ 내지 60㎜의 충돌 침입 중에 일정한 저항력의 +/-30% 이내로 비교적 일정한 에너지 흡수기.
  28. 제26항에 있어서, 상기 로브는 로브 중심선을 구비하며, 상기 로브 중심선은 90㎜ 내지 132㎜ 이격되어 있는 에너지 흡수기.
  29. 제26항에 있어서, 상기 적어도 하나의 로브는 적어도 두 개의 로브를 구비하며, 각각의 로브는 동일한 크기와 형상을 갖는 에너지 흡수기.
  30. 제26항에 있어서, 상기 적어도 하나의 로브는 적어도 두 개의 로브를 구비하며, 각각의 로브는 적어도 두 개의 로브의 측부로부터 내측으로 이격된 위치에서 상부 및 하부 벽 상에 배치되는 외부 리브를 갖는 에너지 흡수기.
  31. 제26항에 있어서, 상기 적어도 하나의 로브는 폴리머 재료로 제조되는 에너지 흡수기.
  32. 제26항에 있어서, 상기 적어도 하나의 로브는 금속 재료로 제조되는 에너지 흡수기.
  33. 차량용 에너지 흡수 시스템이며,
    차량에 부착되도록 구성된 구조 부재; 및
    상기 구조 부재의 앞면에 배치되는 에너지 흡수기를 포함하고,
    상기 에너지 흡수기는 테스트 영역을 형성하고 충돌 시에는 압괴 로브가 에너지를 흡수하기 위해 붕괴되는 힘-편위 곡선의 작용 부분을 형성하는 적어도 네 개의 중공 압괴 로브를 가지며, 상기 압괴 로브는 종방향으로 이격되어 있고, 테스트 영역의 길이를 따르는 위치에서 소정의 평균 충돌 에너지 흡수 힘-편위 프로파일의 +/-30% 이내의 힘-편위 곡선의 작용 부분 중의 균일한 충돌 에너지 흡수를 제공하도록 구성되는 차량용 에너지 흡수 시스템.
  34. 제33항에 있어서, 상기 압괴 로브는 적어도 네 개의 중공 압괴 로브의 길이를 따르는 모든 종방향 위치에서 30㎜ 내지 60㎜ 충돌 침입 시에 소정의 평균 충돌 에너지 흡수치의 30% 이내의 균일한 충돌 에너지 흡수를 제공하도록 구성되는 차량용 에너지 흡수 시스템.
  35. 제33항에 있어서, 상기 구조 부재는 범퍼 보강 빔을 구비하는 차량용 에너지 흡수 시스템.
  36. 제33항에 있어서, 상기 에너지 흡수기는 폴리머 재료로 제조되는 차량용 에너지 흡수 시스템.
  37. 지지 구조물과 결합하도록 구성된 베이스 플랜지를 갖는 에너지 흡수기를 제공하고, 상기 베이스 플랜지로부터 연장되어 테스트 영역을 형성하는 이격된 중공 로브를 구비하는 단계로서, 상기 로브 각각은 중공 로브의 10㎜ 이상의 붕괴를 초래하는 침입 스트로크를 위해 보행자-다리-시뮬레이팅 충돌체에 충돌될 때 힘 편위 프로파일을 따라서 압괴되어 에너지를 흡수하도록 구성된 전단 벽을 구비하는 단계; 및
    리브가 존재한다면 압괴 로브의 전단 벽에 위치하는 경우에 그리고 개구가 존재한다면 인접하는 전단 벽에 의해 형성된 코너에 위치하는 경우에 압괴 로브 상에 개구와 외부 리브 중 적어도 하나를 형성하여 보행자의 다리가 에너지 흡수기를 가격하는 특정 위치에 관계없이 균일한 성능 및 보행자 안전을 제공함으로써 에너지 흡수기의 테스트 영역을 따르는 충돌체에 의한 충돌의 특정 위치에 관계없이 에너지 흡수의 균일성을 소정의 평균 에너지 흡수 프로파일의 +/- 30% 이내로 향상시키기 위해 에너지 흡수기의 압괴 로브를 튜닝하는 단계를 포함하는 방법.
KR1020127014603A 2009-11-06 2010-11-05 균일한 보행자 충돌을 제공하는 로브를 갖는 에너지 흡수기 KR20120099067A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25865309P 2009-11-06 2009-11-06
US61/258,653 2009-11-06

Publications (1)

Publication Number Publication Date
KR20120099067A true KR20120099067A (ko) 2012-09-06

Family

ID=43970786

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127014603A KR20120099067A (ko) 2009-11-06 2010-11-05 균일한 보행자 충돌을 제공하는 로브를 갖는 에너지 흡수기

Country Status (9)

Country Link
US (1) US8196979B2 (ko)
EP (1) EP2496445B1 (ko)
JP (1) JP5744041B2 (ko)
KR (1) KR20120099067A (ko)
CN (1) CN102762414B (ko)
AU (1) AU2010315046A1 (ko)
ES (1) ES2531562T3 (ko)
RU (1) RU2012123392A (ko)
WO (1) WO2011057103A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150027113A (ko) * 2012-05-23 2015-03-11 사빅 글로벌 테크놀러지스 비.브이. 엇갈린, 수직 배향 크러쉬 로브들을 구비한 에너지 완충기
KR20160069853A (ko) * 2014-12-09 2016-06-17 엘지전자 주식회사 자동차의 범퍼

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564237B2 (ja) * 2009-11-27 2014-07-30 株式会社アステア バンパ補強材
US8646552B2 (en) * 2010-07-21 2014-02-11 Shape Corp. Integrated energy absorber and air flow management structure
US20120032458A1 (en) * 2010-08-04 2012-02-09 Oakwood Energy Management, Inc. Bumper system with friction-fit energy absorber and method
US8186748B2 (en) 2010-08-31 2012-05-29 International Automotive Components Group North America, Inc. Energy absorber for vehicle overhead system
US8348313B2 (en) * 2010-08-31 2013-01-08 International Automotive Components Group North America, Inc. Energy absorber for vehicle bumper
US8480143B2 (en) * 2010-12-10 2013-07-09 Ford Global Technologies, Llc Energy absorbing structure for vehicle bumper
JP5727883B2 (ja) * 2011-07-05 2015-06-03 本田技研工業株式会社 車両用バンパ構造
US8876179B2 (en) 2012-02-01 2014-11-04 Sabic Global Technologies B.V. Energy absorbing assembly and methods of making and using the same
US9731669B2 (en) * 2012-02-28 2017-08-15 Sabic Global Technologies B.V. Energy absorbing system
CN103879367B (zh) * 2012-12-19 2016-08-17 北汽福田汽车股份有限公司 汽车、保险杠及其吸能件
KR101617919B1 (ko) * 2013-01-25 2016-05-03 (주)엘지하우시스 보강부를 갖는 주행 장치용 백빔
US8973957B2 (en) * 2013-04-22 2015-03-10 Shape Corp. Bumper energy absorber with sensor and configured lobes
US9156416B2 (en) * 2013-07-22 2015-10-13 GM Global Technology Operations LLC Energy absorbing vehicle component
CN103754189B (zh) * 2014-01-23 2016-03-16 奇瑞汽车股份有限公司 汽车用行人上腿部保护装置及汽车
US20150323034A1 (en) * 2014-05-08 2015-11-12 GM Global Technology Operations LLC Energy absorber system and vehicle
US9233657B1 (en) 2014-08-29 2016-01-12 Toyota Motor Engineering & Manufacturing North America, Inc. Bumper energy absorber with local stiffening
US9248795B1 (en) 2014-09-22 2016-02-02 Toyota Motor Engineering & Manufacturing North America, Inc. Frontal impact energy absorption members
JP6531662B2 (ja) * 2016-02-17 2019-06-19 スズキ株式会社 車体前部構造
US9827931B2 (en) * 2016-03-11 2017-11-28 Ford Global Technologies, Llc Bumper reinforcing assembly
US10000171B2 (en) * 2016-06-10 2018-06-19 Ford Global Technologies, Llc Vehicle energy-absorbing device
US9919667B2 (en) * 2016-06-27 2018-03-20 Ford Global Technologies, Llc Bumper assembly
FR3056507A1 (fr) * 2016-09-29 2018-03-30 Peugeot Citroen Automobiles Sa Vehicule comprenant un dispositif d’absorption de chocs
US10099638B2 (en) 2017-02-27 2018-10-16 Ford Global Technologies, Llc Bumper assembly
US9932004B1 (en) 2017-03-02 2018-04-03 Honda Motor Co., Ltd. Vehicle energy absorption system
CN110126767A (zh) * 2018-02-09 2019-08-16 福特环球技术公司 卡车前端处的保险杠组件和保险杠系统
CN110696765A (zh) * 2018-07-09 2020-01-17 标致雪铁龙汽车股份有限公司 一种车辆后保险杠中支架及车辆
JP7053395B2 (ja) * 2018-07-20 2022-04-12 トヨタ自動車株式会社 衝撃吸収体
US11820308B2 (en) * 2019-01-24 2023-11-21 Zephyros, Inc. Pultruded sleeve reinforcement assembly
CN110182156B (zh) * 2019-06-04 2023-11-14 东莞广泽汽车饰件有限公司 一种缓冲汽车撞击的吸能件及其制造方法
DE102019135201A1 (de) * 2019-12-19 2021-06-24 Bayerische Motoren Werke Aktiengesellschaft Fußgängerschutzvorrichtung für ein Kraftfahrzeug
CN111186404A (zh) * 2020-01-19 2020-05-22 欧伟聪 一种新能源汽车碰撞集中缓冲的保险杠
DE102020104097B4 (de) * 2020-02-17 2024-09-05 Benteler Automobiltechnik Gmbh Kraftfahrzeug-Stoßfänger
CN113978405B (zh) * 2021-11-08 2023-06-27 岚图汽车科技有限公司 一种用于保护行人大腿的前保险杠总成安装结构
FR3132680A1 (fr) * 2022-02-15 2023-08-18 Psa Automobiles Sa Armature de pare-chocs optimisée pour un choc piéton amélioré.

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938841A (en) * 1973-12-07 1976-02-17 Ford Motor Company Resilient bumper assembly
US3933387A (en) * 1975-03-10 1976-01-20 General Motors Corporation Thermoformed plastic energy absorber for vehicles
US4275912A (en) * 1979-12-03 1981-06-30 General Motors Corporation Multisectioned cellular energy-absorbing unit and mounting therefor
US4597601A (en) * 1985-03-18 1986-07-01 Transpec, Inc. Energy absorbing vehicle bumper
US4941701C1 (en) * 1987-12-28 2001-06-26 Melea Ltd Vehicle bumper
US4925224A (en) * 1989-03-06 1990-05-15 Romeo-Rim, Inc. Energy absorbing vehicle bumper
US5139297A (en) * 1991-09-12 1992-08-18 Ford Motor Company Internal stroking bumper beam
US5290078A (en) * 1992-06-01 1994-03-01 General Motors Corporation Integral fasteners for an energy absorber of a vehicular bumper assembly
US5290079A (en) * 1992-12-22 1994-03-01 General Motors Corporation Reinforced composite impact beam for a bumper assembly and method
US5425561A (en) * 1993-12-21 1995-06-20 General Motors Corporation Flexible insert for an automotive bumper
US5988713A (en) * 1996-09-13 1999-11-23 Daikyo Co., Ltd. Bumper reinforcement
JPH11129839A (ja) * 1997-10-30 1999-05-18 Kanegafuchi Chem Ind Co Ltd 車両用ピラーカバー
US6199942B1 (en) * 1998-02-04 2001-03-13 Oakwood Energy Management, Inc. Modular energy absorbing assembly
US6752450B2 (en) * 1998-02-04 2004-06-22 Oakwood Energy Management, Inc. Formed energy absorber
US7360822B2 (en) * 1998-02-04 2008-04-22 Oakwood Energy Management, Inc. Modular energy absorber and method for configuring same
FR2777615B1 (fr) * 1998-04-15 2000-12-29 Plastic Omnium Cie Absorbeur de chocs a section ondulee et pare-chocs muni d'un tel absorbeur de chocs
US6082792A (en) * 1998-05-07 2000-07-04 General Electric Company Vehicle bumper
US20020060462A1 (en) * 1998-07-02 2002-05-23 Glance Patrick M. Bumper beam absorber
US6443513B1 (en) * 1998-07-02 2002-09-03 Concept Analysis Corporation Cup bumper absorber
US20040201255A1 (en) * 1998-10-19 2004-10-14 Martin Jonsson Lightweight beam
DE10123748A1 (de) * 2000-05-19 2001-11-22 Sumitomo Chemical Co Stoßfängerverstärkungsteil
ATE238180T1 (de) * 2000-10-19 2003-05-15 Benteler Automobiltechnik Gmbh Stossfängeranordnung
JP2002166804A (ja) * 2000-12-01 2002-06-11 Kojima Press Co Ltd 車両用衝撃吸収構造体及びそれを用いた車両用内装部品の衝撃吸収構造
US6406081B1 (en) * 2001-03-20 2002-06-18 General Electric Company Energy absorber system
US6575510B2 (en) * 2001-04-16 2003-06-10 Shape Corporation Bumper system with face-abutting energy absorber
US6609740B2 (en) * 2001-04-16 2003-08-26 Shape Corporation Bumper system with face-mounted energy absorber
US6874832B2 (en) * 2001-04-16 2005-04-05 Netshape International, Llc Bumper system with face-mounted energy absorber
FR2827235B1 (fr) * 2001-07-16 2003-10-03 Plastic Omnium Cie Poutre de pare-chocs de vehicule automobile et pare-chocs muni d'une telle poutre
JP2005502523A (ja) * 2001-09-12 2005-01-27 ゼネラル・エレクトリック・カンパニイ クラッシュカンを備えたバンパービーム
US6938936B2 (en) * 2001-09-12 2005-09-06 General Electric Company Energy absorber with crash cans
CN100488812C (zh) * 2001-09-12 2009-05-20 沙伯基础创新塑料知识产权有限公司 缓冲梁和包括缓冲梁的缓冲装置
CN100360344C (zh) * 2001-10-29 2008-01-09 通用电气公司 包括能量吸收器的缓冲器组件
US6644701B2 (en) * 2002-01-14 2003-11-11 Shape Corporation Bumper energy absorber with foam and non-foam pieces
FR2836878B1 (fr) * 2002-03-08 2004-07-09 Plastic Omnium Cie Absorbeur d'energie destine a s'intercaler entre une poutre rigide et une peau de pare-chocs et ensemble d'absorption d'energie
US6672635B2 (en) * 2002-06-06 2004-01-06 Netshape Corporation Bumper with integrated foam and non-foam components
US6663150B1 (en) * 2002-06-06 2003-12-16 Netshape Corporation Bumper with integrated energy absorber and beam
US6866313B2 (en) * 2002-07-30 2005-03-15 General Electric Co. Bumper assembly including and energy absorber
US6685243B1 (en) * 2002-07-30 2004-02-03 Shape Corporation Bumper for reducing pedestrian injury
CN100347008C (zh) * 2002-08-23 2007-11-07 通用电气公司 用于汽车的行人能量吸收器
US6923494B2 (en) 2002-08-23 2005-08-02 General Electric Company Pedestrian energy absorber for automotive vehicles
DE60325812D1 (de) * 2002-08-28 2009-03-05 Jsp Corp Kern eines Stossfängers
US6994384B2 (en) * 2002-11-20 2006-02-07 General Electric Company Integrated solitary bumper beam
JP2004210040A (ja) * 2002-12-27 2004-07-29 Honda Motor Co Ltd 衝撃吸収部材の取付構造
US6746061B1 (en) * 2003-02-04 2004-06-08 Shape Corporation Bumper beam with interference-fit energy absorber
US20040174025A1 (en) * 2003-03-07 2004-09-09 General Electric Company Blow molded energy absorber for a vehicle front end
DE10324460A1 (de) * 2003-05-30 2004-12-16 Volkswagen Ag Stoßfängeranordnung für ein Fahrzeug, insbesondere für ein Kraftfahrzeug
FR2855810B1 (fr) * 2003-06-03 2005-07-29 Plastic Omnium Cie Support d'aile pour vehicule automobile
US6971690B2 (en) * 2003-06-18 2005-12-06 Netshape International, Llc Bumper system with “W” beam and energy absorber
JP2007524535A (ja) * 2003-07-03 2007-08-30 ネットシェイプ・インターナショナル・リミテッド・ライアビリティ・カンパニー 熱成形エネルギー吸収体を組み込んだバンパーシステム
US6997490B2 (en) * 2003-07-22 2006-02-14 Netshape International Llc Integrated bumper energy absorber and fascia support component
US7220374B2 (en) * 2003-10-22 2007-05-22 Cadillac Products Automotive Company Molded foam vehicle energy absorbing device and method of manufacture
US6949209B2 (en) * 2003-10-22 2005-09-27 Cadillac Products Automotive Company Molded foam vehicle energy absorbing device and method of manufacture
JP4280153B2 (ja) * 2003-11-28 2009-06-17 キョーラク株式会社 車両用衝撃吸収体
US7147258B2 (en) * 2004-04-13 2006-12-12 Netshape International, Llc Bumper with nesting energy-absorbing end piece
JP4350584B2 (ja) * 2004-05-07 2009-10-21 本田技研工業株式会社 車体前部構造
US7222896B2 (en) * 2004-06-22 2007-05-29 Netshape Energy Management Llc Bumper having separate energy absorber and fascia support
US7073831B2 (en) * 2004-06-23 2006-07-11 Netshape International Llc Bumper with crush cones and energy absorber
CA2511270C (en) * 2004-07-01 2014-03-11 Magna International Inc. Bumper system for a motor vehicle
US20060018089A1 (en) * 2004-07-23 2006-01-26 Chun-Chien Chou Notebook type keyboard apparatus
US7086690B2 (en) * 2004-08-24 2006-08-08 General Electric Company Bumper assembly including twin energy absorbers
US7188876B2 (en) * 2004-09-14 2007-03-13 General Electric Company Bumper assembly including energy absorber with vertical translation crush lobes
US7163243B2 (en) * 2004-12-13 2007-01-16 Netshape International, Llc Bumper for pedestrian impact having thermoformed energy absorber
US7163242B2 (en) * 2005-01-05 2007-01-16 General Electric Company Bumper system with energy absorber
US7278667B2 (en) * 2005-05-23 2007-10-09 General Electric Company Bumper assembly with energy absorber
US7296833B2 (en) * 2005-09-27 2007-11-20 Sabic Innovative Plastics Ip Bv Bumper system with integrated energy absorber underbar
JP4316575B2 (ja) * 2006-02-24 2009-08-19 小島プレス工業株式会社 車両用衝撃吸収構造体及びその取付構造
US7234741B1 (en) * 2006-03-07 2007-06-26 Nissan Technical Center North America, Inc. Vehicle bumper assembly
JP5288313B2 (ja) * 2007-02-02 2013-09-11 シェイプ・コープ クラッシュボックス及び背部ストラップを有するエネルギー吸収体
KR100870413B1 (ko) 2007-06-19 2008-11-25 주식회사 성우하이텍 차량용 범퍼빔 유닛
US8016331B2 (en) * 2008-02-14 2011-09-13 Shape Corp. Energy absorber with sidewall stabilizer ribs
US7959197B2 (en) * 2008-10-30 2011-06-14 Shape Corp. Bumper beam with multi-concavity-defining cross section

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150027113A (ko) * 2012-05-23 2015-03-11 사빅 글로벌 테크놀러지스 비.브이. 엇갈린, 수직 배향 크러쉬 로브들을 구비한 에너지 완충기
KR20160069853A (ko) * 2014-12-09 2016-06-17 엘지전자 주식회사 자동차의 범퍼

Also Published As

Publication number Publication date
US20110109105A1 (en) 2011-05-12
CN102762414A (zh) 2012-10-31
AU2010315046A1 (en) 2012-06-21
JP5744041B2 (ja) 2015-07-01
ES2531562T3 (es) 2015-03-17
EP2496445A2 (en) 2012-09-12
CN102762414B (zh) 2015-09-30
EP2496445B1 (en) 2014-12-17
WO2011057103A3 (en) 2011-10-20
RU2012123392A (ru) 2013-12-20
US20120061978A9 (en) 2012-03-15
EP2496445A4 (en) 2013-05-01
US8196979B2 (en) 2012-06-12
WO2011057103A2 (en) 2011-05-12
JP2013510046A (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
KR20120099067A (ko) 균일한 보행자 충돌을 제공하는 로브를 갖는 에너지 흡수기
JP4330652B2 (ja) 車両用金属製アブソーバ、車両用バンパシステム、自動車バンパ用アブソーバ及び自動車バンパシステム
KR101717511B1 (ko) 유니타리 에너지 흡수 조립체 및 이의 제조 방법
KR101855303B1 (ko) 에너지 흡수 조립체
US8016331B2 (en) Energy absorber with sidewall stabilizer ribs
US20140312636A1 (en) Bumper energy absorber with sensor and configured lobes
KR101146880B1 (ko) 범퍼빔 배열체
US7357444B2 (en) Tunable geometry for energy absorbing foam to lower peak load during side impact
US9260069B2 (en) Shock absorbing member
EP2599668B1 (en) Crash box for a vehicle
US10086785B2 (en) Frontal shield system for enhanced vehicle compatibility performance
US9260135B2 (en) Deflector structure
US7165794B2 (en) Passive safety device
CN108501844B (zh) 一种具有刚度补偿功能的防撞梁缓冲结构
KR100822927B1 (ko) 차량용 범퍼
JP4967523B2 (ja) 衝撃吸収部材
US9108580B2 (en) Bumper system with pedestrian-friendly lower apron
KR102640394B1 (ko) 차량용 충격흡수장치
US20240359649A1 (en) Bumper Crossmember For A Vehicle
JP3638709B2 (ja) 道路防護柵端末支柱用クッションカバー
KR20040022547A (ko) 자동차용 프런트 범퍼

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application