KR20110101045A - 초임계 처리 장치 및 초임계 처리 방법 - Google Patents

초임계 처리 장치 및 초임계 처리 방법 Download PDF

Info

Publication number
KR20110101045A
KR20110101045A KR1020110006364A KR20110006364A KR20110101045A KR 20110101045 A KR20110101045 A KR 20110101045A KR 1020110006364 A KR1020110006364 A KR 1020110006364A KR 20110006364 A KR20110006364 A KR 20110006364A KR 20110101045 A KR20110101045 A KR 20110101045A
Authority
KR
South Korea
Prior art keywords
processing
liquid
supercritical
inert gas
processing container
Prior art date
Application number
KR1020110006364A
Other languages
English (en)
Inventor
다카유키 도시마
미츠아키 이와시타
가즈유키 미츠오카
슈이치 오카모토
히데오 나마츠
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20110101045A publication Critical patent/KR20110101045A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0021Cleaning by methods not provided for in a single other subclass or a single group in this subclass by liquid gases or supercritical fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02101Cleaning only involving supercritical fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers

Abstract

패턴 붕괴의 발생이나, 처리용 액체를 구성하는 물질의 기판 내로의 주입을 억제한 초임계 처리 장치 및 초임계 처리 방법을 제공한다.
처리 용기는 초임계 유체에 의해 처리가 행해지는 기판을 수용하고, 액체 공급부는 처리 용기 내에 불소 화합물을 포함하는 처리용 액체를 공급한다. 유체 배출부는 처리 용기로부터 초임계 유체를 배출하고, 열분해 성분 배제부는 상기 처리 용기 내 또는 상기 액체 공급부로부터 공급되는 액체 내에서, 상기 액체의 열분해를 촉진하는 성분을 배제하는 한편, 가열부는, 하이드로플루오로에테르 또는 하이드로플루오로카본인 불소 화합물을 포함하는 상기 처리용 액체를 가열한다.

Description

초임계 처리 장치 및 초임계 처리 방법{SUPERCRITICAL PROCESSING APPARATUS AND SUPERCRITICAL PROCESSING METHOD}
본 발명은, 예를 들어 표면에 패턴이 형성된 반도체 웨이퍼 등의 기판을 초임계 유체에 의해 처리하는 기술에 관한 것이다.
기판인 예를 들어 반도체 웨이퍼(이하, 웨이퍼라고 함) 표면에, LSI를 비롯한 대규모이고 고성능인 반도체 디바이스를 제작함에 있어서는, 웨이퍼 표면에 극미세한 패턴을 형성할 필요가 있다. 이 패턴은, 표면에 레지스트를 도포한 웨이퍼를 노광, 현상, 세정하는 각종 공정을 거쳐 레지스트를 패터닝하고, 또한 상기 웨이퍼를 에칭함으로써 레지스트 패턴을 웨이퍼에 전사하여 형성된다. 그리고 이 에칭후에는 웨이퍼 표면의 먼지나 자연 산화막을 제거하기 위해, 웨이퍼를 세정하는 처리가 행해지고 있다.
세정 처리는, 예를 들어 도 12의 (a)에 모식적으로 나타낸 바와 같이, 표면에 패턴(11)이 형성된 웨이퍼(W)를 예를 들어 약액이나 린스액 등의 처리액(101) 내에 침지하거나, 웨이퍼(W) 표면에 처리액(101)을 공급하거나 함으로써 실행된다. 그런데, 반도체 디바이스의 고집적화에 따라, 세정 처리를 행한 후 처리액을 건조시킬 때, 레지스트나 웨이퍼 표면의 패턴(11)이 붕괴되는 패턴 붕괴의 발생이 문제가 되고 있다.
패턴 붕괴는, 세정 처리를 끝내고 웨이퍼(W) 표면에 남은 액체를 건조시킬 때, 패턴(11) 좌우의 처리액이 불균일하게 건조되면, 이 패턴(11)을 좌우로 인장하는 모세관력의 균형이 깨져 처리액이 많이 남아 있는 방향으로 패턴(11)이 붕괴되는 현상이다. 도 12의 (b)에는, 패턴(11)이 형성되지 않은 좌우 외측 영역의 처리액의 건조가 완료되는 한편, 패턴(11)의 간극에는 처리액이 잔존하고 있는 상태를 나타내고 있다. 그 결과, 패턴(11) 사이에 잔존하는 처리액으로부터 받는 모세관력에 의해, 좌우 양측의 패턴(11)이 내측을 향해 붕괴된다. 이러한 패턴 붕괴의 발생은, 반도체 제조 기술을 응용하여 제조되는 MEMS(Micro-Electro-Mechanical System)의 분야 등에서도 문제가 되고 있다.
패턴 붕괴를 일으키는 모세관력은, 세정 처리후의 웨이퍼(W)를 둘러싸는 예를 들어 대기 분위기와 패턴(11)의 사이에 잔존하는 처리액과의 사이의 액체/기체 계면에서 작용하는 처리액의 표면장력에 기인한다. 이 때문에, 기체나 액체와의 사이에서 계면을 형성하지 않는 초임계 상태의 유체(초임계 유체)를 이용하여 처리액을 건조시키는 처리 방법(이하, 초임계 처리라고 함)이 주목받고 있다.
이 방법에서는, 도 13의 (a)에 나타낸 바와 같이 예를 들어 밀폐된 용기 내에서 웨이퍼(W) 표면의 액체를 초임계 유체(102)로 치환한 후, 용기로부터 서서히 초임계 유체(102)를 방출한다. 이에 따라, 웨이퍼(W)의 표면이 처리액→초임계 유체→대기 분위기로 순서대로 치환되어, 액체/기체 계면을 형성하지 않고 웨이퍼(W) 표면에서 처리액을 제거할 수 있어, 패턴 붕괴의 발생을 억제할 수 있다.
초임계 처리에 이용되는 유체로는 이산화탄소나 하이드로플루오로에테르(HydroFluoro Ether : 이하 HFE라고 함), 하이드로플루오로카본(HydroFluoro Carbon : 이하 HFC라고 함) 등이 이용되지만, 초임계 상태의 이산화탄소는 처리액과의 혼화성이 낮아, 처리액으로부터 초임계 유체로의 치환이 어려운 경우도 있다. 한편, HFE나 HFC와 같은 불소 화합물은 처리액과의 혼화성은 양호하지만, 이들 불소 화합물 중에는 초임계 상태가 되는 고온, 고압하에서 열분해되어, 예를 들어 불화수소(HF)의 상태로 불소 원자를 방출하는 경우가 있다.
예를 들어 도 13의 (a)에 나타낸 바와 같이 웨이퍼(W)의 표면에 SiO2막(12)이 형성되어 있는 경우에는, 불소 화합물로부터 불소 원자가 방출되면 도 13의 (b)에 나타낸 바와 같이 SiO2막(12)이 에칭될 우려가 있다. 또 불소 원자가 웨이퍼(W)나 패턴(11) 등의 반도체 디바이스 내에 주입되어 디바이스의 특성을 저하시키는 요인도 된다. 특히 초임계 처리가 행해지는 분위기 내에 산소나 수분이 존재하는 경우에는, 이들 성분이 불소 화합물의 열분해를 촉진하는 성분이 되어, SiO2막(12)이 에칭이나 디바이스 내로의 불소 원자의 주입이 발생하기 쉬워진다.
여기서 특허문헌 1에는, HCF2CF2OCH2CF3, CF3CHFCF2OCH2CF3, CF3CHFCF2OCH2CF2CF3 등의 HFE와 용제의 혼합 용액을 초임계 상태로 하고, 세정 처리가 행해진 후의 기판에 이 초임계 유체를 작용시켜 기판을 건조시키는 기술이 기재되어 있다. 그러나 상기 특허문헌 1에 기재된 기술에서는, HFE로부터의 불소 원자의 방출과 같은 문제에 관해서는 주목하고 있지 않다.
일본 특허 공개 제2006-303316호 : 0035 단락∼0038 단락
본 발명은 이러한 사정을 감안하여 이루어진 것으로, 패턴 붕괴의 발생이나, 처리용 액체를 구성하는 물질의 기판 내로의 주입을 억제한 초임계 처리 장치 및 초임계 처리 방법을 제공한다.
본 발명에 따른 초임계 처리 장치는, 초임계 유체에 의해 기판에 대하여 처리를 행하는 밀폐 가능한 처리 용기와,
이 처리 용기 내에 불소 화합물을 포함하는 처리용 액체를 공급하는 액체 공급부와,
상기 처리 용기로부터 상기 초임계 유체를 배출하는 유체 배출부와,
상기 처리 용기 내 또는 상기 액체 공급부로부터 공급되는 액체 내에서, 상기 액체의 열분해를 촉진하는 성분을 배제하기 위한 열분해 성분 배제부와,
상기 처리 용기 내에 공급된 상기 액체를 가열하는 가열부를 포함하고,
상기 불소 화합물은, 하이드로플루오로에테르 또는 하이드로플루오로카본인 것을 특징으로 한다.
상기 초임계 처리 장치는 이하의 특징을 포함하고 있어도 좋다.
(a) 상기 열분해 성분 배제부는, 상기 액체 공급부로부터 공급되기 전의 처리용 액체 내에 불활성 가스를 공급하여 버블링을 행하는 버블링부를 포함한다.
(b) 상기 열분해 성분 배제부는, 상기 처리 용기 내에 불활성 가스를 공급하는 제1 가스 공급부를 포함한다.
(c) (b)의 경우에, 기판의 반입을 끝내고 처리 용기를 밀폐했을 때 이 처리 용기에서 상기 처리용 액체의 열분해를 촉진하는 성분을 배제하기 위해, 밀폐전에 상기 처리 용기 내에 상기 불활성 가스를 공급하도록 상기 열분해 성분 배제부를 제어하는 제어부를 포함한다.
(d) (b) 또는 (c)의 경우에, 상기 처리 용기에서 처리용 액체의 열분해를 촉진하는 성분을 배제하기 위해, 이 처리 용기로의 기판의 반입을 끝내고 처리 용기를 밀폐한 후, 상기 처리 용기 내에 상기 불활성 가스를 공급하도록 상기 열분해 성분 배제부를 제어하는 제어부를 포함한다.
(e) 상기 처리 용기는, 반입 반출구를 통해 기판이 반입 반출되는 케이스 내에 수용되고, 상기 열분해 성분 배제부는, 상기 처리 용기를 둘러싸는 분위기에서 상기 액체의 열분해를 촉진하는 성분을 배제하기 위해, 이 케이스부 내에 불활성 가스를 공급하는 제2 가스 공급부를 더 포함한다.
(f) (b)∼(e)의 경우에, 상기 불활성 가스는, 노점이 -50℃ 이하의 질소 가스이다.
(g) 상기 불소 화합물은, 산소 원자에서 볼 때 α위치에 위치하는 탄소 원자의 탄소-탄소 결합이 1개 이하, β위치에 위치하는 탄소 원자의 탄소-탄소 결합이 2개 이하인 플루오로알킬기로 구성되는 하이드로플루오로에테르이다.
(h) 상기 불소 화합물은, 1,1,2,2-테트라플루오로-1-(2,2,2-트리플루오로에톡시)에탄, 1,1,2,3,3,3-헥사플루오로-1-(2,2,2-트리플루오로에톡시)프로판, 2,2,3,3,3-펜타플루오로-1-(1,1,2,3,3,3-헥사플루오로프로폭시)프로판으로 이루어진 군에서 선택되는 하나 이상의 하이드로플루오로에테르를 포함한다.
본 발명에 의하면, 하이드로플루오로에테르(HFE)나 하이드로플루오로카본(HFC) 등의 불소 화합물을 이용하고, 처리 시스템에서 불소 화합물의 열분해를 촉진하는 인자를 배제함으로써 상기 불소 화합물의 분해가 촉진되기 어려운 조건하에서 초임계 처리를 행한다. 이 때문에, 기판 표면에 패턴이 형성되어 있는 경우에는 패턴 붕괴의 발생을 억제하고, 또 불소 화합물을 구성하는 불소 원자의 기판 내로의 주입을 억제하여, 고품질의 처리 결과를 얻을 수 있다.
도 1은 웨이퍼의 세정 처리 장치의 일례를 나타내는 종단 측면도이다.
도 2는 실시형태에 따른 초임계 처리 장치의 종단 측면도이다.
도 3은 상기 초임계 처리 장치로의 처리액 및 불활성 가스의 공급, 배출 계통을 나타내는 설명도이다.
도 4는 상기 초임계 처리 장치에 의해 실행되는 동작의 흐름을 나타내는 흐름도이다.
도 5는 상기 초임계 처리 장치로의 웨이퍼의 반입 동작을 나타내는 제1 설명도이다.
도 6은 상기 반입 동작을 나타내는 제2 설명도이다.
도 7은 상기 초임계 처리 장치에 의해 행해지는 초임계 처리의 내용을 나타내는 설명도이다.
도 8은 상기 초임계 처리 장치로의 불활성 가스 등의 공급 타이밍의 예를 나타내는 설명도이다.
도 9는 상기 초임계 처리 장치로의 불활성 가스 등의 공급 타이밍의 다른 예를 나타내는 설명도이다.
도 10은 실시예에 따른 HFE의 구조식이다.
도 11은 비교예에 따른 HFE의 구조식이다.
도 12는 패턴 붕괴의 발생 양상을 나타내는 설명도이다.
도 13은 초임계 유체를 이용한 처리 양상을 나타내는 설명도이다.
이하, 본 발명의 실시형태로서, 세정 처리가 행해진 후의 웨이퍼에 대하여, 웨이퍼에 부착된 처리액을 불소 화합물, 예를 들어 HFE의 초임계 유체에 의해 제거하는 초임계 처리 장치에 관해 설명한다. 본 실시형태에 따른 초임계 처리 장치의 구체적인 구성을 설명하기 전에, 세정 처리의 일례로서 스핀 세정에 의해 웨이퍼를 1장씩 세정하는 매엽식 세정 장치에 관해 간단히 설명한다.
도 1은 매엽식 세정 장치(2)를 나타내는 종단 측면도이다. 세정 장치(2)는, 처리 공간을 형성하는 외측 챔버(21) 내에 배치된 웨이퍼 유지 기구(23)에 의해 웨이퍼(W)를 거의 수평으로 유지하고, 이 웨이퍼 유지 기구(23)를 수직축 둘레에 회전시킴으로써 웨이퍼(W)를 회전시킨다. 그리고 회전하는 웨이퍼(W)의 위쪽에 노즐 아암(24)을 진입시켜, 그 선단부에 설치된 노즐(241)로부터 약액 및 린스액을 미리 정해진 순서로 공급하여 웨이퍼(W)의 표면의 세정 처리가 행해진다. 또, 웨이퍼 유지 기구(23)의 내부에도 약액 공급로(231)가 형성되어 있어, 여기로부터 공급된 약액 및 린스액에 의해 웨이퍼(W)의 이면 세정이 행해진다.
세정 처리는, 예를 들어 알칼리성의 약액인 SC1액(암모니아와 과산화수소수의 혼합액)에 의한 파티클이나 유기성 오염 물질의 제거→린스액인 탈이온수(DeIonized Water : DIW)에 의한 린스 세정→산성 약액인 희불산 수용액(이하, DHF(Diluted HydroFluoric acid))에 의한 자연 산화막의 제거→DIW에 의한 린스 세정의 순서로 행해지고, 이들 약액은 외측 챔버(21) 내에 배치된 내측 컵(22)이나 외측 챔버(21)에 수용되어 배액구(221, 211)로부터 배출된다. 또 외측 챔버(21) 내의 분위기는 배기구(212)로부터 배기된다.
세정 처리를 끝낸 웨이퍼(W)의 표면에는, 예를 들어 웨이퍼 유지 기구(23)의 회전을 정지한 상태로 웨이퍼(W) 표면에 예를 들어 IPA(IsoPropyl Alcohol) 등의 액체를 공급하여, 웨이퍼(W)에 잔존하고 있는 DIW와 치환한다. 그리고, 또한 웨이퍼(W) 표면에, 예를 들어 후술하는 초임계 처리 장치에서 사용하는 HFE와 동종의 HFE를 공급하여 IPA를 HFE로 치환하여, 웨이퍼(W) 표면이 HFE의 액체로 도포된 상태로 한다. HFE가 도포된 웨이퍼(W)는, 예를 들어 웨이퍼 유지 기구(23)에 설치된 도시되지 않은 전달 기구에 의해 외부의 반송 장치에 전달되어, 세정 장치(2)로부터 반출된다.
여기서 웨이퍼(W) 표면의 DIW를 일단 IPA로 치환하는 이유는, 후술하는 바와 같이 HFE가 초임계 상태가 되었을 때 수분이 잔존하고 있으면, 이 수분이 HFE의 열분해를 촉진하기 때문이다. 따라서, DIW를 IPA로 치환하여 웨이퍼(W) 표면의 수분을 가능한 한 배제하고, 그 후, 이 IPA를 HFE로 치환함으로써 초임계 처리 장치 내에 반입되는 수분을 가능한 한 적게 하고 있다. 여기서 IPA 등의 알콜에도 초임계 상태에서의 HFE의 열분해를 촉진하는 작용이 존재하지만, 수분과 비교하면 그 촉진 작용은 작다. 또, 예를 들어 DIW의 배제에 충분한 양의 HFE를 사용할 수 있는 경우 등에는, IPA에 의한 치환을 생략하고 직접 웨이퍼(W) 표면의 DIW를 HFE에 의해 치환해도 좋다.
세정 장치(2)에서의 세정 처리를 끝낸 웨이퍼(W)는 표면에 HFE가 도포된 상태인 채로 초임계 처리 장치에 반송되어, 표면에 부착된 처리액을 제거하는 초임계 처리가 행해진다. 이하, 본 실시형태에 따른 초임계 처리 장치(3)의 구성에 관해 도 2, 도 3을 참조하면서 설명한다.
초임계 처리 장치(3)는, 웨이퍼(W)에 대한 초임계 처리가 행해지는 상부 용기(31) 및 그 바닥판(32)과, 이 상부 용기(31) 내에 웨이퍼(W)를 저장하는 기구와, 상부 용기(31)에 처리용 액체인 HFE를 공급하여 초임계 상태로 하기 위한 기구를 포함한다.
상부 용기(31) 및 바닥판(32)은, 본 실시형태의 처리 용기에 해당하며, 웨이퍼(W)를 저장하고 초임계 상태의 HFE를 이용하여 웨이퍼(W) 표면에 부착된 액체(본 예에서는 세정 장치(2)에서 도포된 HFE)를 제거하는 초임계 처리가 행해진다. 상부 용기(31)는 웨이퍼(W)에 대한 초임계 처리가 행해지는 처리 공간(30)을 이루는 오목부가 예를 들어 하면측에 형성된 편평한 원반형상의 내압 용기이며, 예를 들어 스테인레스 스틸 등으로 구성된다. 상부 용기(31)의 하면측에 설치된 오목부는, 예를 들어 편평한 원반형으로 형성되며, 후술하는 웨이퍼(W)의 배치대(321)와 결합하여 예를 들어 직경 300 mm의 웨이퍼(W)를 저장하는 처리 공간(30)을 상부 용기(31)와 바닥판(32) 사이에 형성한다. 여기서 상부 용기(31)는, 보다 바람직하게는 금, 플래티늄 등에 의한 귀금속 코팅, 테플론(등록상표) 코팅, 폴리이미드, 에폭시 수지 등에 의한 수지 코팅을 함으로써 HFE로부터의 불소 원자의 방출을 억제할 수 있다.
도 2에 나타낸 바와 같이, 상부 용기(31)에는, 처리 공간(30)의 측면을 향하여 개구된 3개의 유로(311, 312, 313)가 형성되어 있다. 도면 부호 311은 처리 공간(30) 내에 처리용 액체인 HFE를 액체의 상태로 공급하는 HFE 공급로, 도면 부호 312는 처리 공간(30)으로부터 초임계의 HFE를 배출하는 HFE 배출로, 도면 부호 313은 처리 공간(30)으로부터 처리 전후에 처리 공간(30) 내의 분위기를 배출하기 위한 배출로이다.
도 3에 나타낸 바와 같이 HFE 공급로(311)는, 차단 밸브(421)가 설치된 HFE 공급 라인(42)을 통해 HFE 공급부(4)에 접속되어 있다. 이들 HFE 공급부(4)로부터 HFE 공급로(311)에 이르기까지의 각 기기는, 처리 공간(30)(처리 용기 내)에 HFE를 공급하는 본 실시형태의 액체 공급부에 해당한다. 또, HFE 배출로(312)는 차단 밸브(431) 및 냉각부(432)가 설치된 HFE 회수 라인(43)을 통해 HFE 공급부(4)에 접속되어 있고 HFE를 리사이클할 수 있다. 냉각부(432)는, 예를 들어 초임계 상태나 기체의 상태로 처리 공간(30)으로부터 배출된 HFE를 냉각시켜, 액체의 상태로 회수하는 역할을 한다. 그리고 HFE 배출로(312)로부터 HFE 공급부(4)에 이르기까지의 각 기기는, 본 실시형태의 유체 배출부에 해당한다.
HFE 공급부(4)에는, HFE를 처리 용기측을 향해 압송하기 위한 압송 가스 공급 라인(401)이 설치되어 있다. 압송 가스 공급 라인(401)은, 예를 들어 도시되지 않은 개폐 밸브에 의해 후술하는 배기 라인(412)을 닫은 상태로, HFE 공급부(4)를 구성하는 저장조 내에 압송 가스인 예를 들어 질소 가스를 공급함으로써, 내부의 HFE를 처리 용기를 향해 송출할 수 있다. HFE의 공급량은 예를 들어 압송 가스 공급 라인(401)으로부터 공급되는 질소 가스량의 증감에 의해 조정할 수 있다. 여기서 처리 용기에 대하여 HFE를 공급하는 방법은 압송 가스를 이용하는 경우에 한정되지 않고, 예를 들어 HFE 공급 라인(42) 송액 펌프를 설치하여, 이 송액 펌프에 의해 HFE를 공급해도 좋다.
또, 배출로(313)의 출구측은 차단 밸브(441) 및 가스 포집부(442)를 통해 배출 라인(44)에 접속되어 있고, 이 배출 라인(44)은 예를 들어 공장의 제해 설비에 접속되어 있다. 가스 포집부(442)는 예를 들어 활성탄이 충전된 흡착 컬럼으로서 구성되어, 처리 공간(30)으로부터 배출된 가스 내에 포함되는 HFE를 흡착하는 기능을 갖추고 있다. 활성탄에 흡착된 HFE는, 예를 들어 가스 포집부(442)를 배출 라인(44)에 대하여 오프라인의 상태로 하여 상기 가스 포집부(442)에 스팀을 통과시키고, 활성탄으로부터 HFE를 탈착시켜 이 스팀을 냉각시킴으로써 회수할 수 있다.
이상과 같이 본 예에서는, HFE 공급로(311), HFE 배출로(312), 배출로(313)를 HFE 공급로(311)측에 설치한 예를 나타냈지만, 이들 유로(311, 312, 313)는 물론 바닥판(32)측에 설치해도 된다.
도 2에 나타낸 바와 같이 상부 용기(31)는, 예를 들어 십자형으로 교차된 캔틸레버형의 누름 부재(381)를 개재하여 상부 용기(31) 전체를 수용하는 케이스(38)의 상면에 고정되어 있다. 누름 부재(381)는 처리 공간(30) 내의 초임계 유체로부터 받는 힘에 저항하여 상부 용기(31)를 아래쪽을 향해 누르는 역할을 하고 있다.
바닥판(32)은 상부 용기(31)의 오목부를 하면측에서 막아, 웨이퍼(W)를 수용하는 처리 공간(30)을 형성하고 웨이퍼(W)를 유지하는 역할을 한다. 바닥판(32)은 예를 들어 스테인레스 스틸 등으로 구성되며, 상부 용기(31)의 오목부의 개구면보다 예를 들어 더욱 더 큰 원판형의 부재로서 형성되어 있다. 바닥판(32)의 상면에는 상부 용기(31)의 오목부 내에 결합 가능한 원판형으로 형성된 예를 들어 스테인레스 스틸제의 배치대(321)가 고정되어 있다. 도 2에 나타낸 바와 같이, 배치대(321)의 상면에는 웨이퍼(W)의 배치 영역(323)을 이루는 오목부가 형성되어 있다.
또 바닥판(32)은, 지지봉(351)과 그 구동 기구(352)를 포함하는 바닥판 승강 기구(35)에 의해 승강 가능하게 구성되어 있고, 전술한 세정 장치(2)로부터 세정 처리를 끝낸 웨이퍼(W)를 반송하는 도시되지 않은 반송 장치와의 사이에서 웨이퍼(W)를 전달하는 아래쪽의 전달 위치와, 상부 용기(31)의 오목부를 막아 처리 공간(30)을 형성하여, 웨이퍼(W)에 대하여 초임계 처리를 행하는 처리 위치와의 사이를 이동할 수 있다. 도면 중, 도면 부호 34는 승강시에 바닥판(32)의 승강 궤도를 가이드하는 가이드 부재이며, 가이드 부재(34)는 바닥판(32)의 둘레 방향을 따라서 예를 들어 3개소에 거의 등간격으로 배치되어 있다.
여기서 초임계 처리를 실행중인 처리 공간(30) 내의 압력은, 예를 들어 절대압으로 3 MPa이나 되는 고압이 되어, 바닥판(32)에는 하방향의 큰 힘이 작용하기 때문에, 바닥판(32)의 아래쪽에는 바닥판(32)의 바닥면을 지지하는 지지 기구(33)가 설치되어 있다. 지지 기구(33)는, 바닥판(32)의 바닥면을 지지하여 처리 공간(30)을 밀폐하고 바닥판(32)의 승강 동작에 맞춰 승강하는 지지 부재(331)와, 이 지지 부재(331)의 승강 궤도를 이루는 가이드 부재(332)와, 예를 들어 유압 펌프 등으로 구성되는 구동 기구(333)로 구성된다. 지지 기구(33)에 관해서도 예를 들어 전술한 가이드 부재(34)와 마찬가지로, 바닥판(32)의 둘레 방향을 따라서 예를 들어 3개소에 거의 등간격으로 배치되어 있다.
바닥판(32)의 중앙부에는, 외부의 반송 장치와의 사이에서 웨이퍼(W)를 전달하기 위한 리프터(361)가 설치되어 있다. 리프터(361)는 바닥판(32) 및 배치대(321)의 거의 중앙을 상하 방향으로 관통하고, 그 상단부에는 웨이퍼(W)를 거의 수평으로 유지하기 위한 예를 들어 원판형으로 형성된 웨이퍼 유지부(363)가 고정되어 있고, 하단부에는 리프터(361)의 구동 기구(362)가 설치되어 있다.
배치대(321)의 상면측 중앙부에는, 전술한 웨이퍼 유지부(363)를 저장하는 오목부가 설치되어 있고, 바닥판(32)과는 독립적으로 리프터(361)를 승강시킴으로써, 이 바닥판(32)으로부터 웨이퍼 유지부(363)를 돌출 함몰시켜, 웨이퍼(W)를 외부의 반송 장치와 바닥판(32) 상의 배치 영역(323) 사이에서 전달할 수 있다. 여기서 도 2에 나타낸 바와 같이 웨이퍼 유지부(363)의 상면은, 바닥판(32)의 오목부내에 저장되었을 때, 배치 영역(323)인 배치대(321)의 상면과 동일면이 된다.
또한 바닥판(32)의 내부에는, 처리 공간(30) 내에 공급된 HFE를 예를 들어 200℃로 승온시켜, 이 유체의 팽창을 이용하여 처리 공간(30) 내를 예를 들어 3 MPa로 승압하여 처리액을 초임계 상태로 하기 위한 예를 들어 저항 발열체를 포함하는 히터(322)가 매설되어 있다. 도 3에 나타낸 바와 같이 히터(322)는 전원부(6)에 접속되어 있고, 이 전원부(6)로부터 공급되는 전력에 의해 발열하여 배치대(321) 및 그 상면에 배치된 웨이퍼(W)를 통해 처리 공간(30) 내의 HFE를 가열할 수 있다. 히터(322)는 본 실시형태의 가열부에 해당한다.
이상에 설명한 구성을 갖춘 본 실시형태에 따른 초임계 처리 장치(3)는, 배경기술에서 설명한 HFE의 열분해에 의한 불소 원자의 방출을 억제하기 위해, 초임계 처리용 유체로서 사용하는 HFE와 장치와의 양면에서 HFE의 열분해를 촉진하는 성분을 배제하기 위한 특별한 구성을 채택하고 있다.
HFE의 열분해를 촉진하는 성분을 배제하기 위해 설치된 구체적인 장치 구성의 설명에 들어가기 전에, HFE나 HFC 등의 불소 화합물과 이들 불소 화합물의 열분해를 촉진하는 성분의 관계에 관해 설명한다.
인화성의 문제가 없고 독성도 낮은 불소계 화합물의 액체로는, 하이드로플루오로에테르(탄소, 수소, 불소, 에테르 산소로 구성되며, COC 결합을 갖는 것), 하이드로플루오로카본(탄소, 수소, 불소로 구성됨)이 있다. 하이드로플루오로에테르로는 예를 들어, CF3CF2CH2OCHF2나 CF3CF2OCH2CF3, C3F7OCH3, C4F9OCH3, C4F9OCH2CH3, (CF3)2CFCF(OCH3)CF2CF3, CHF2CF2OCH2CF3, CF3CHFOCHF2 등이 있고, 하이드로플루오로카본으로는 예를 들어, C4F9H, C5F11H, C6F13H, C4F9CH2CH3, C6F13CH2CH3, CF3CH2CF2CH3, c-C5F7H3, CF3CF2CHFCHFCF3, CF3CH2CHF2 등이 있고, 이들은 상온, 상압에서 액체이다. 또, 이들 불소 화합물은 대기 수명이 몇년으로 짧고(통상의 퍼플루오로카본은 1000∼50000년), 환경적으로도 문제없는 재료이다. 이 하이드로플루오로에테르 또는 하이드로플루오로카본을 미리 정해진 온도, 압력하에 있도록 하면, 이들 불소 화합물은 초임계 상태가 되고, 그 후, 대기압으로 감압함으로써 액처리후의 웨이퍼(W)를 건조시키는 초임계 처리를 실행할 수 있다.
하이드로플루오로에테르 중에서, 특히 비점이 50℃ 이상이며 임계 온도로서 200℃ 정도 또는 그 이하가 되어, 사용하기 쉬운 하이드로플루오로에테르(플루오로알킬쇄(鎖)는 C6 이하)로서 시판되고 있는 것으로 (표 1)에 나타내는 것이 있다.
(표 1) 대표적인 하이드로플루오로에테르의 비점과 임계점(임계 온도, 임계 압력)
Figure pat00001
어느 하이드로플루오로에테르도 초임계 상태로 하기 위해서는, 온도가 185℃ 이상으로, 거의 200℃의 온도로 승온시켜야 한다.
또, 하이드로플루오로카본 중에서, 특히 비점이 50℃ 이상이며 시판되고 있는 것으로 (표 2)에 나타내는 것이 있다.
(표 2) 대표적인 하이드로플루오로카본의 비점과 임계점(임계 온도, 임계 압력)
Figure pat00002
상기 표에 기재된 하이드로플루오로카본 중에는 임계 온도는 알려져 있지 않는 것도 있지만, 대부분의 하이드로플루오로카본은 (표 1)에 기재된 하이드로플루오로에테르와 마찬가지로, 임계 온도가 200℃ 부근이다.
하이드로플루오로에테르나 하이드로플루오로카본으로 대표되는 불소 화합물의 액체는, 일반적으로 열안정성이 높은 것이 알려져 있지만, 본 실시형태에서 사용되는 초임계 상태를 달성하기 위한 온도 영역(200℃ 부근)에서는, 산소 존재하에서 미량이기는 하지만 산화 분해에 의한 산분(酸分)의 발생이 확인되는 것을 알 수 있다. 한편, 실질적으로 산소 부재하에서 동일한 처리를 실시하면 산분의 발생은 전혀 확인되지 않아, 산화 분해가 진행되지 않는 것이 판명되었다.
따라서 예비적인 실험으로서 (표 3)에 나타낸 하이드로플루오로에테르나 하이드로플루오로카본에 관한 열안정성 시험을 행하였다. 시험은, SUS-304제 내압 용기 내에 시료인 각 하이드로플루오로에테르, 하이드로플루오로카본의 액체를 넣고, (표 3)에 나타내는 조건하에서 200℃, 72시간의 열안정성 시험을 실시했다. 여기서 내압 용기 내에는 기상 분위기가 형성되도록, 용기에는 상기 용기의 용적보다 적은 양의 시료를 넣고, 이 기상 분위기 내에 약 20 vol%의 산소가 존재하는 분위기와, 산소 농도가 50 volppm 미만의 분위기(모두 잔부(殘部)는 질소 가스)의 2조건으로 시험을 행했다. 또한, 열안정성 시험의 시료로서 사용한 각종 불소 화합물은 아르곤 가스를 시료액 내에 버블링함으로써 용존 산소의 양을 (표 3)에 나타내는 정도까지 저감시켰다.
시험후의 시료를 동일한 양의 물로 추출하는 조작을 행하여, 추출수의 pH 및 불소 이온 농도를 측정함으로써 산분(酸分), F 이온분의 증가를 평가한 결과를 (표 3)에 나타낸다.
(표 3) 열안정성 시험 결과
Figure pat00003
(표 3)의 결과에서, (1) 수분 농도의 값에 관계없이, 분위기 내의 산소 농도가 낮으면 pH는 7 정도로 산분의 발생은 억제되어 있고, (2) CF3CH2OCF2CHF2, C6F13H에서는 산소 농도가 50 ppm 이하이면, pH는 7로 산분 발생은 확인되지 않고, (3) C4F9OCH3에서는 산소 농도를 50 ppm 이하로 하면 산분 발생은 억제되지만, pH는 6∼7이기 때문에 완전하게 억제된 것은 아니라는 것을 알 수 있다.
이상에 나타낸 열안정성 시험의 결과에서, HF(산분)의 발생을 억제하기 위해서는, 기상 분위기 내의 산소 농도를 낮추면 되는 것을 알 수 있다. 기상 분위기 내의 산소 농도가 높은 경우에는, 상기 산소가 불소계 화합물의 액체에 용해되어, 불소계 액체의 산화 분해를 촉진하는 것으로 생각된다. 따라서, 불소계 화합물의 액체 그 자체의 용존 산소를 저감시키고, 처리 용기 안의 처리 분위기 내의 산소를 저감시키는 것이 중요해진다.
또한, 전술한 각 불소 화합물은 고가이므로, 도 3에 나타내는 예를 들어 활성탄 흡착식의 전술한 가스 포집부(442) 등에 의해 회수하여, 환경 내로의 배출을 억제하고 있다. 활성탄에 의해 포집된 불소 화합물은, 스팀 탈착에 의해 회수된다. 따라서, 이 탈착 처리시의 불소 화합물의 열안정성을 조사하기 위해, 활성탄 존재하에 120℃에서 72시간 열처리했을 때의 안정성을 시험후의 산분 및 F 이온분을 분석하여 평가하였다.
그 결과, 후술하는 실시예에 나타낸 바와 같이, C4F9OCH3에서는 산분 160 ppm, F 이온분 45 ppm과 분해에 의한 HF의 생성이 확인되었다. 한편, CF3CH2OCF2CHF2(도 10의 (a)), CF3CH2OCF2CHFCF3(도 10의 (b)), CF3CHFCF2OCH2CF2CF3(도 10의 (c))는 분해되기 어렵고, 예를 들어 CF3CH2OCF2CHF2는 전술한 바와 동일한 조건(120℃)에서의 안정성 시험에서, 산분, F 이온분 모두 검출 한계(산분 1 ppm, F 이온분 O.02 ppm) 이하인 것이 확인되었다.
전술한 안정성 시험에 이용한 C4F9OCH3은, 분기 구조를 갖는 (CF3)2CFCF2OCH3(도 11의 (a))과 직쇄(直鎖) 구조를 갖는 CF3CF2CF2CF2OCH3의 혼합물이지만, C4F9OCH3에서 HF의 생성이 확인된 이유는, C4F9OCH3에서 에테르산소의 α위치 또는 β위치에 위치하는 플루오로알킬쇄 내의 탄소가 분기 구조를 갖는 (CF3)2CFCF2OCH3가 포함되어 있는 것에 의해, 분기 탄소에 결합하는 불소 원자가 HF로서 이탈하기 쉬운 것에 기인하는 것으로 추정된다. HF가 이탈하기 쉬운 하이드로플루오로에테르는, 도 11의 (a)에 나타낸 것에 한정되지 않고, 예를 들어 도 11의 (b)나 도 11의 (c)에 나타낸, 에테르 산소의 α위치 또는 β위치에 위치하는 플루오로알킬쇄 내의 탄소가 분기 구조를 갖는 하이드로플루오로에테르로도 분해되어 HF를 방출하기 쉽다는 것을 알 수 있다.
여기서 도 10의 (a)∼도 10의 (c)에 기재된 임계 처리에 적합한 하이드로플루오로에테르와, 도 11의 (a)∼도 11의 (c)에 기재된 열분해되기 쉬운 하이드로플루오로에테르의 화학 구조를 비교하면, 열분해되기 쉬운 하이드로플루오로에테르에서는, 산소 원자에 결합하는 각 플루오로알킬기의 한쪽 이상에서, 산소 원자에서 볼 때 α위치 또는 β위치에 있는 탄소 원자로 하이드로플루오로기가 분기되어 있는 것을 알 수 있다.
이에 비해, 초임계 상태에서 안정된 도 10의 (a)∼도 10의 (c)에 나타내는 하이드로플루오로에테르에서는 이러한 분기는 존재하지 않고, 산소 원자에서 볼 때 α위치, β위치의 탄소 원자 모두에서 하이드로플루오로기는 직쇄형으로 되어 있다. 이것을 각 위치에서의 탄소 원자의 탄소-탄소 결합의 수로 표현하면, 열적으로 안정된 하이드로플루오로에테르는, 산소 원자에서 볼 때 α위치에 위치하는 탄소 원자의 탄소-탄소 결합의 수가 1개 이하(0개를 포함)이고, β위치에 위치하는 탄소 원자의 탄소-탄소 결합의 수가 2개 이하(0개를 포함)인 플루오로알킬기로 구성되어 있다고 할 수 있다. 그리고 이러한 구조를 갖는 하이드로플루오로에테르는, 초임계 상태나 활성탄으로부터의 스팀 탈착시에 분해되기 어려워, 본 실시형태에 따른 초임계 처리에 적합한 하이드로플루오로에테르라고 할 수 있다.
또 열분해되기 어려운 CF3CH2OCF2CHF2, CF3CH2OCF2CHFCF3, CF3CHFCF2OCH2CF2CF3 중에서는, CF3CH2OCF2CHF2(1,1,2,2-테트라플루오로-1-(2,2,2-트리플루오로에톡시)에탄)이 가장 임계점이 낮아, 사용하기 쉬운 하이드로플루오로에테르라고 할 수 있다. 이하, 본 실시형태에 따른 초임계 처리 장치(3)에서도 HFE 공급부(4)로부터는 CF3CH2OCF2CHF2가 공급되는 것으로 설명을 한다.
이상의 검토 결과에서, 열분해되기 어려운 불소 화합물의 액체(실시형태에 따른 초임계 처리 장치(3)에서는 하이드로플루오로에테르(HFE))를 이용하여, 상기 액체 내의 용존 산소나 초임계 처리가 행해지는 처리 분위기 내의 산소를 배제함으로써 HFE의 열분해를 억제하여, HFE로부터 방출된 HF에 의한 웨이퍼(W)의 에칭이나 반도체 디바이스 내로의 불소 원자의 주입 등의 문제의 발생을 억제하고 있다.
본 실시형태의 초임계 처리 장치(3)에 설치되어 있는 HFE의 열분해를 억제하기 위한 구체적인 구성의 설명에 들어가기 전에, HFE 내의 용존 산소를 저감시켜, 처리 용기 내에서 산소를 배제하는 방법에 관해 검토한다. 우선, 처리용 액체 내의 용존 산소를 저감시키는 방법으로서, 예를 들어, 밀폐 가능한 용기에 상기 불소 화합물의 액체를 넣고, 액체 내에 불활성 가스를 도입하여 버블링함으로써 상기 액체 내에 용존하고 있는 산소를 방출하는 방법을 들 수 있다. 버블링의 시간은 예를 들어 5분∼10분 정도이면 되고, 용기를 밀폐하여, 외부에서 산소(공기)가 혼입되지 않도록 다소 가압 상태로 함으로써 용존 산소 농도를 저감시킬 수 있다.
버블링에 이용하는 불활성 가스로는 질소, 헬륨, 아르곤 등을 이용할 수 있지만, 아르곤은 산소에 비하여 비중이 커 산소 치환 효율의 관점에서 바람직하고, 질소 가스는 비용의 관점에서 바람직하다.
또한, 밀폐 가능한 용기에 불소 화합물의 액체를 넣고 융점 부근까지 냉각시킨 후, 감압 탈기하여 시스템 내로부터 산소 등의 용존 가스를 제거한 후에 용기를 밀폐하여, 외부에서 산소(공기)가 혼입되지 않도록 함으로써도 용존 산소를 억제할 수 있다.
또, 예를 들어 HFE를 전용 회수 용기에서 회수하는 장치 구성을 채택하는 경우 등에는, 회수 용기에 아르곤 등의 불활성 가스를 도입하여 회수액 내의 용존 산소를 저감시키는 것도 효율적이다.
다음으로 초임계 처리가 행해지는 처리 분위기에서 산소를 배제하는 방법에 관해 검토하면, HFE를 저장한 밀폐 용기(예를 들어 도 3의 HFE 공급부(4)에 해당)를 초임계 처리 장치(3)의 처리 용기(본 예에서는 상부 용기(31) 및 바닥판(32))에 접속하고, 상기 처리 용기 내에 불활성 가스인 질소나 아르곤 등을 도입하여 산소 농도를 저하시켜 둔다. 그 후, 처리 용기에 웨이퍼(W)를 반입하고 용기를 밀폐한 후, 밀폐 용기로부터 처리 용기에 배관을 통해 HFE를 도입한다. 예를 들어 처리 용기가 밀폐될 때까지 불활성 가스는 도입된 그대로의 상태로 하여, 처리 용기 내로의 산소 혼입을 방지한다. 밀폐후에는 질소의 도입을 정지하여 처리 용기의 온도를 임계점까지 상승시켜 처리를 실행한다.
여기서 불소 화합물(하이드로플루오로에테르나 하이드로플루오로카본)의 열분해는, 지금까지 검토한 산소의 존재하에서 현저해질 뿐만 아니라, 물이나 알콜 등의 존재하에서도 발생한다. 특히, 산화 분해되기 쉬운 구조의 불소 화합물의 액체를 초임계 처리의 처리액으로서 사용하는 경우에는, 이들 물이나 알콜을 저감시키는 것은, 용존 산소의 영향만큼 현저하지는 않더라도 중요하다. 이것은, 물이나 알콜이 프로톤(수소 이온) 공급원이 되어, HF가 생성되기 쉬워지는 것에 기인한다.
특히 물의 존재는 불소 화합물의 열분해를 일으키기 쉽고, 그 때문에, 초임계 처리가 행해지는 분위기 내에서는 수분을 배제하여, 그 진입을 제한하는 것이 바람직하다. 특히, 처리 대상인 웨이퍼(W)나 처리 용기의 내벽에 흡착된 수분자나, 고습도 환경은 불소 화합물의 열분해를 일으키는 요인이 되어, 이들 수분자는 제거하는 것이 바람직하다. 따라서 예를 들어, 전술한 바와 같이 웨이퍼(W)의 액처리를 끝낸 후, 웨이퍼(W) 표면에 잔존하는 DIW를 IPA나 HFE로 치환하거나, 또 처리 용기에 웨이퍼(W)를 반입하기 전에 처리 용기 내를 충분히 건조한 공기나 질소로 치환시켜 수분을 제거하거나 하면 좋다. 또한, 웨이퍼(W)를 처리 용기에 반입한 후에도, 충분히 노점이 낮은 건조 공기나 건조 질소로 처리 용기 내의 분위기를 치환, 퍼지하여 수분을 제거하는 것이 바람직하다. 또, 처리 용기가 설치된 초임계 처리 장치(3) 내의 분위기, 예를 들어 도 2에 나타낸 케이스(38) 내의 분위기를 저습도로 하여 외부로부터의 수분의 침입을 억제해도 좋다.
한편, 웨이퍼(W)의 반입 반출시에 처리 용기가 예를 들어 대기에 개방된 상태가 되면, 그 내벽에 수분이 흡착되는 것도 우려되어, 다음 웨이퍼(W)를 처리할 때의 문제가 된다. 따라서 초임계 처리용 불소 화합물의 액체를 도입하기까지의 기간 동안에 처리 대상의 웨이퍼(W)나 처리 용기의 내부의 온도를 높여 두어 수분의 흡착을 억제하는 것도 바람직한 대책이다. 구체적으로는, 처리 용기의 내벽(천판(天板), 측벽, 바닥부 등)이나 기판 유지대(도 2에 나타내는 배치대(321))의 온도를 조절하여, 수분의 흡착을 억제하는 것도 생각할 수 있다.
이상에서 검토한 결과를 감안하여, 본 실시형태에 따른 초임계 처리 장치(3)는, (A) HFE 내의 용존 산소를 저감시키고, (B) 초임계 처리가 행해지는 처리 용기(상부 용기(31) 및 바닥판(32)) 내의 처리 공간(30)으로부터 산소나 수분을 배제하고, 또한 (C) 처리 용기의 벽면 등에 대한 수분의 흡착을 억제하기 위한 각종 구성을 갖춤으로써 HFE의 열분해를 억제하고 있다. 이들은 본 실시형태의 열분해 성분 배제부에 해당한다. 이하, 열분해 성분 배제부의 구체적인 장치 구성에 관해 설명한다.
우선 (A)의 HFE 내의 용존 산소를 저감시키는 열분해 성분 배제부로서, HFE 공급부(4)에는, 그 내부에 저장되어 있는 HFE에서 용존 산소를 배제하기 위한 버블링부(41)가 설치되어 있다. 버블링부(41)는, 예를 들어 원관(圓管)의 관벽에 다수의 작은 구멍을 배치한 배기관 등으로서 구성되며, 불활성 가스(본 예에서는 질소 가스)를 공급하는 불활성 가스 공급 라인(411)과 접속되어 있다.
불활성 가스 공급 라인(411)으로부터 공급된 질소 가스가 버블링부(41)를 통해 HFE 공급부(4) 안의 HFE 내에 분산 공급되고, 이에 따라 HFE 내의 질소 가스의 기포 내에 용존 산소를 확산시킴으로써 용존 산소의 배제가 실행된다. 도면 중, 도면 부호 412는 버블링후의 질소 가스를 HFE 공급부로부터 배기하는 배기 라인(412)이다.
또 (B)의 처리 용기(상부 용기(31) 및 바닥판(32)) 내의 처리 공간(30)에서 산소나 수분을 배제하는 열분해 성분 배제부로서, 초임계 처리 장치(3)는 처리 공간(30) 내에 HFE가 공급되지 않는 기간 동안, 상기 처리 공간(30) 내에 불활성 가스를 공급하기 위한 기구를 갖추고 있다. 예를 들어 처리 공간(30)에 HFE를 공급하는 HFE 공급로(311)에는, 차단 밸브(421)의 상류측에 설치된 전환 밸브(422)를 통해 처리 공간(30) 내에 불활성 가스를 공급하기 위한 불활성 가스 라인(45)과, 전술한 HFE 공급 라인(42)이 전환 가능하게 접속되어 있다.
불활성 가스 라인(45)에는 예를 들어 노점이 -50℃ 이하, 바람직하게는 -60℃로 조절되어, 예를 들어 산소 농도가 서브 ppm 정도로 산소를 거의 포함하지 않는 고순도 질소 가스가 공급되고, 상기 질소 가스를 처리 공간(30)으로 공급할 수 있다. 불활성 가스를 가열한 상태로 처리 공간(30)에 공급하는 이유는, 후술하는 바와 같이 히터(314, 322)에 의해 가열된 상태로 되어 있는 상부 용기(31)나 배치대(321)의 가열 상태를 유지하기 위해서이다. 또한 불활성 가스로서 공급되는 질소 가스 내의 수분은 가능한 한 적은 편이 바람직하기 때문에, 노점의 하한치는 특별히 설정할 필요는 없고, 처리 공간(30)에 공급된 불활성 가스는, 예를 들어 전술한 배출로(313)를 통해 배출 라인(44)으로 배출되도록 되어 있다.
이어서 (C)의 처리 용기의 벽면에 대한 수분의 흡착을 억제하는 열분해 성분 배제부로서, 초임계 처리 장치(3)는 초임계 처리를 행하지 않는 기간 동안에도 이들 상부 용기(31), 배치대(321)를 구성하는 부재를 가열하는 기능을 갖추고 있다. 본 예에 따른 초임계 처리 장치(3)에서는, 예를 들어 상부 용기(31)에 관해서는, 예를 들어 바닥판(32) 내에 설치된 전술한 히터(322)를 이용하여 배치대(321)를 가열할 수 있게 되어 있다.
한편, 상부 용기(31)에 관해서도 예를 들어 저항 발열체를 포함하는 히터(314)가 매설되어 있고, 도 3에 나타낸 바와 같이 전원부(6)로부터 공급되는 전력에 의해 히터(314)를 발열시켜 상부 용기(31)를 가열할 수 있다. 또 전술한 바와 같이, 불활성 가스를 공급하는 불활성 가스 라인(45)에도 예를 들어 저항 발열체를 감는 것 등에 의해 구성되는 히터(452)가 설치되어 있어, 불활성 가스(질소 가스)를 예를 들어 100℃로 가열하여, 처리 공간(30) 내에 열에너지를 반입하여, 상부 용기(31)나 배치대(321)의 표면을 가열할 수 있다.
전술한 각 히터(322, 314, 452)는, 처리 용기(상부 용기(31) 및 바닥판(32))의 가열부에 해당하지만, 처리 공간(30)을 형성하는 상부 용기(31), 배치대(321)를 가열하기 위해 이들 3개의 히터(322, 314, 452)를 모두 설치할 필요는 없다. 예를 들어 어느 1개 또는 2개의 히터(322, 314, 452)를 이용하여 가열을 실행해도 좋다.
또한 도 2에 나타낸 바와 같이, 상부 용기(31), 바닥판(32)을 저장하는 케이스(38)의 천정부에는, 상기 케이스(38)에 불활성 가스를 통과시키기 위한 불활성 가스 공급실(39)이 설치되어 있고, 이 불활성 가스 공급실(39)도 처리 공간(30) 내에서 산소나 수분을 배제하는 (B)의 열분해 성분 배제부의 하나를 구성하고 있다. 불활성 가스 공급실(39)에는, 예를 들어 노점을 -50℃ 이하의 -60℃로 조절한 질소 가스가 공급된다.
불활성 가스 공급실(39)에 공급된 불활성 가스는, 케이스(38)의 천정면에 설치된 다수의 급기 구멍(391)을 통해 케이스(38) 내에 공급되어, 예를 들어 케이스(38)의 하부측의 측벽면에 설치된 배기부(383)로부터 배기되도록 되어 있다. 이러한 구성에 의해, 케이스(38) 내에는 위쪽으로부터 아래쪽을 향해 흐르는 불활성 가스의 다운플로우가 형성되어, 예를 들어 웨이퍼(W)의 반입 반출시에 바닥판(32)을 전달 위치까지 강하시켜 처리 공간(30)을 개방했을 때, 처리 공간(30) 내에 산소나 수분이 주입되는 것을 억제할 수 있다.
이상에 설명한 구성을 갖춘 초임계 처리 장치(3)는, 도 2, 도 3에 나타낸 바와 같이 제어부(7)가 접속되어 있다. 제어부(7)는 예를 들어 도시하지 않는 CPU와 기억부를 갖춘 컴퓨터를 포함하며, 기억부에는 상기 초임계 처리 장치(3)의 작용, 즉, 초임계 처리 장치(3) 내에 웨이퍼(W)를 반입하고, HFE를 이용하여 초임계 처리를 행하여, 반출하기까지의 동작에 관계되는 제어에 관한 단계(명령)군이 짜여진 프로그램이 기록되어 있다.
또한 제어부(7)는, 처리 공간(30) 내에서 산소나 수분을 제거하기 위한 제1 가스 공급부(전환 밸브(422) 등)를 제어하여, 미리 설정된 기간 동안, 처리 공간(30) 내에 불활성 가스를 공급하는 제어부로서 기능하고, 또 처리 용기(상부 용기(31) 및 바닥판(32))의 가열부[히터(322, 314, 452)]를 제어하여, 미리 설정된 기간 동안에 상부 용기(31)나 배치대(321)를 가열하는 제어부로서 기능하기 위한 프로그램이 기록되어 있다. 이들 각 프로그램은, 예를 들어 하드디스크, 컴팩트디스크, 마그넷 광디스크, 메모리카드 등의 기억 매체에 저장되고, 거기에서 컴퓨터에 설치된다.
이하, 도 4의 흐름도 및 도 5∼도 7의 각 동작 설명도를 참조하면서 초임계 처리 장치(3)의 작용에 관해 설명한다. 우선 초임계 처리 장치(3)가 가동을 시작하면(스타트), 처리 공간(30)을 닫은 상태로 하고, 불활성 가스 라인(45)으로부터 상기 처리 공간(30) 내에 불활성 가스를 공급한다. 또한, 각 히터(322, 314, 452)를 온으로 하여 상부 용기(31), 배치대(321)의 온도를 도시되지 않은 온도 검출부로부터의 온도 검출 결과에 기초하여 예를 들어 100℃로 조절한 상태로 대기한다(단계 S101, 도 5의 (a)).
처리 공간(30)을 닫은 상태로 불활성 가스를 공급함으로써, 처리 공간(30) 내에 존재하고 있던 산소 및 수분이 배제되고, 또한 상부 용기(31)나 배치대(321)를 가열함으로써, 이들 부재(31, 321)에 흡착되어 있던 수분이 이탈하여 처리 공간(30) 내에 HFE의 열분해를 촉진하는 성분이 배제된 분위기가 형성된다.
또, 도 5∼도 7의 각 도면에서는 불활성 가스 공급실(39)의 기재를 생략했지만, 불활성 가스 공급실(39)로부터는 급기 구멍(391)을 통해 불활성 가스가 공급되고 있어, 케이스(38) 내에는 불활성 가스의 다운플로우가 항상 형성되어 있다.
이 상태로 대기하고 있는 초임계 처리 장치(3)에 대하여, 세정 장치(2)에서 액처리를 끝내고, HFE가 도포된 상태의 웨이퍼(W)가 케이스(38)의 측면에 설치된 반입 반출구(382)를 통해 반입되어 온다. 초임계 처리 장치(3)는, 도 5의 (b)에 나타낸 바와 같이, 바닥판(32)을 아래쪽의 전달 위치까지 이동시키고 차단 밸브(421)를 차단하여, 불활성 가스 라인(45)으로부터의 불활성 가스의 공급을 정지한다(단계 S102). 이 때, 지지 기구(33)의 지지 부재(331)는 바닥판(32)의 이동에 맞춰 하강하고, 또 웨이퍼 유지부(363)의 상면이 웨이퍼(W)의 반송 경로의 아래쪽에 위치하도록 리프터(361)를 동작시킨다. 또한, 도 5의 (a)∼도 6의 (b)에서는 도시의 편의상, 지지 기구(33)와 가이드 부재(34)를 1조씩 나타냈다.
외부의 반송 장치의 반송 아암(82)에 배치된 웨이퍼(W)가 초임계 처리 장치(3) 내에 반입되고, 웨이퍼(W)의 중심부가 리프터(361)의 위쪽에 도달하면, 도 6의 (a)에 나타낸 바와 같이 리프터(361)를 상승시켜 반송 아암(82)과 교차시키고, 웨이퍼(W)를 웨이퍼 유지부(363) 상에 유지하여 반송 아암(82)을 케이스(38)의 밖으로 방출한다(단계 S103). 그리고 도 6의 (b)에 나타낸 바와 같이, 가이드 부재(34)에 의해 가이드하면서 바닥판(32)을 상승시켜 리프터(361)의 웨이퍼 유지부(363)를 배치대(321)의 오목부 내에 저장하고, 웨이퍼(W)를 배치대(321)상에 배치하고 배치대(321)를 상부 용기(31)의 개구부에 결합시켜 웨이퍼(W)를 처리 공간(30) 내에 수용한다(단계 S104). 이 때 지지 기구(33)의 지지 부재(331)는 바닥판(32)의 동작에 맞춰 상승하여, 바닥판(32)의 바닥면을 지지 고정한다.
이와 같이 처리 공간(30) 내로의 불활성 가스의 공급을 정지하고, 처리 공간(30)을 개방하여 웨이퍼(W)의 반입을 행하더라도, 케이스(38) 내에는 불활성 가스의 다운플로우가 형성되어 있기 때문에, 케이스(38)측으로부터 처리 공간(30) 내에 산소나 수분이 들어가는 경우는 거의 없고, 처리 공간(30) 내에서는 HFE의 열분해를 촉진하는 성분을 배제한 상태가 유지되고 있다. 여기서 웨이퍼(W)의 반입시에 불활성 가스 라인(45)으로부터의 불활성 가스의 공급을 정지하는 것은, 웨이퍼(W)에 가열된 불활성 가스가 직접 분무되어 웨이퍼(W) 표면에 도포된 HFE가 건조되는 것을 방지하기 위해서이다. 단, 후술하는 바와 같이 처리 공간(30) 내로의 불활성 가스의 공급, 정지 타이밍은 다양하게 변경할 수 있다.
그리고 도 7의 (a)에 나타낸 바와 같이, 전환 밸브(422)를 HFE 공급 라인(42)측으로 전환하고, HFE 공급로(311) 및 배출로(313)의 차단 밸브(421, 441)를 「개방」으로 하여(도 7의 (a) 중 「O」으로 기재), HFE 공급로(311)로부터 처리 공간(30) 내로의 HFE의 공급을 시작하고 처리 공간(30) 내의 분위기를 배출로(313)측으로 배출하여 처리 공간(30) 내의 분위기를 HFE로 치환한다(단계 S105).
그리고 처리 공간(30) 내에 미리 정해진 양, 예를 들어 처리 공간(30)의 용량의 80% 정도의 HFE를 공급하면, HFE 공급로(311), HFE 배출로(312) 및 배출로(313)의 차단 밸브(421, 431, 441)를 「차단」으로 하여(도 7의 (b) 중에「S」로 기재), 처리 공간(30)을 밀폐한다(단계 S106). 그리고 처리 공간(30) 내의 온도가 예를 들어 200℃가 되도록 바닥판(32)의 히터(322)의 출력을 높이면, 밀폐된 처리 공간(30) 내에서 HFE가 가열되고, HFE가 팽창하여 처리 공간(30) 내가 예를 들어 3 MPa까지 승압되어, 결국은 HFE가 초임계 상태가 된다(도 7의 (c), 단계 S107).
HFE가 초임계 상태가 됨으로써 웨이퍼(W)의 표면의 액체가 초임계 유체로 상태 변화하여 웨이퍼(W)를 건조시키는 초임계 처리가 실행된다. 액체로부터 초임계 유체의 상태 변화시에는, 액체/초임계 유체 사이에 계면이 형성되지 않기 때문에, 웨이퍼(W) 상의 패턴(11)에 모세관력이 작용하지 않아, 패턴 붕괴를 발생시키지 않고 웨이퍼(W)를 건조시킬 수 있다. 또한 초임계 처리에 이용되고 있는 HFE는 전술한 바와 같이 버블링에 의해 용존 산소가 배제되어 있는 것, 또한 HFE 자체의 열안정성이 높은 것, 처리 공간(30) 내에 산소나 수분이 거의 존재하지 않기 때문에 HFE의 열분해가 촉진되기 어려운 상태로 되어 있기 때문에, 상기 초임계 처리에 따른 HFE로부터의 불소 원자의 방출은 거의 발생하지 않는다. 따라서, 웨이퍼(W) 표면에 형성된 SiO2막(12) 등의 막을 에칭하거나, 웨이퍼(W)나 패턴(11) 등의 반도체 디바이스 내에 불소 원자가 주입되거나 하는 것을 억제하면서 웨이퍼(W)를 건조시킬 수 있다.
그 후, 미리 정해진 시간이 경과하면, 도 7의 (d)에 나타낸 바와 같이 HFE 배출로(312)의 차단 밸브(431)를 「개방」으로 하여 처리 공간(30) 내로부터 HFE를 배출한다(단계 S108). HFE 회수 라인(43)측으로 배출된 HFE는 냉각부(432)에서 냉각되어 HFE 공급부(4)로 회수된다. 이 조작에 의해 처리 공간(30) 내가 탈압되어, 내부의 압력이 대기압과 동일한 정도가 되면, 도 7의 (e)에 나타낸 바와 같이 HFE 배출로(312)의 차단 밸브(431)를 「차단」, HFE 공급로(311)와 배출로(313)의 차단 밸브(421, 441)를 「개방」으로 하고 전환 밸브(422)를 전환하여 불활성 가스 라인(45)으로부터의 불활성 가스의 공급을 시작한다(단계 S109). 처리 공간(30) 내에 잔존하고 있던 HFE는, 배출 라인(44) 상에 설치된 가스 포집부(442)에서 포집된다.
이어서 바닥판(32)을 강하시켜, 처리 공간(30)을 개방한 후, 반입시와는 반대의 경로로 초임계 처리 장치(3)로부터 웨이퍼(W)를 반출하고 일련의 동작을 끝낸다(단계 S110). 그리고 웨이퍼(W)가 반출되면 바닥판(32)을 상승시켜 처리 공간(30)을 닫은 후, 상부 용기(31), 배치대(321)의 온도가 100℃가 되도록 각 히터(322)의 출력을 조절하고 다음 웨이퍼(W)의 반입을 대기한다(단계 S101).
본 실시형태에 따른 초임계 처리 장치(3)에 의하면 이하의 효과가 있다. 초임계 처리를 시작하기 전까지 처리 용기(상부 용기(31) 및 바닥판(32)) 내에서 HFE의 열분해를 촉진하는 성분을 배제하고, 또한 HFE 내에서도 용존 산소를 배제해 두고 열분해되기 어려운 성질을 갖는 HFE를 이용함으로써 HFE의 분해가 촉진되기 어려운 조건하에서 초임계 처리를 행한다. 이 때문에, 웨이퍼(W) 표면에 형성된 패턴(11)의 패턴 붕괴의 발생을 억제하고, 또한 HFE를 구성하는 불소 원자의 웨이퍼(W) 내로의 주입을 억제하여, 고품질의 처리 결과를 얻을 수 있다.
전술한 (A)∼(C)의 열분해 성분 배제부는, 이들 중 하나 이상을 갖추고 있으면, 그 열분해 성분 배제부에 의한 HFE의 열분해를 촉진하는 성분의 배제능력에 따라서 본 발명의 효과를 얻을 수 있지만, 특히 (A)의 HFE 내의 용존 산소의 저감과, (B)의 처리 공간(30)에서의 산소나 수분의 배제가 효과적이다.
여기서 도 4 내지 도 7을 참조하여 설명한 작용 설명에서는, 도 8의 (a)에 모식적으로 나타낸 바와 같이, 처리 공간(30)으로부터 HFE 회수 라인(43)을 향해 HFE가 배출되어 내부의 압력이 저하된 후, 다음 웨이퍼(W)가 반입되기까지의 기간 동안, 처리 공간(30) 내에 불활성 가스를 공급하여 처리 공간(30) 내에 HFE의 열분해 성분이 배제된 분위기를 형성한 예를 나타냈지만, 불활성 가스를 공급하는 기간은 이것에 한정되지 않는다. 이하에 설명하는 도 8의 (a) 및 도 8의 (b), 도 9의 (a) 및 도 9의 (b)에서, 최상단의 컬럼은 처리 공간(30) 내의 분위기를 우측 방향으로 진행하는 시간축을 따라서 나타내고, 2단째의 컬럼은 케이스(38)측의 분위기를 나타내고 있다. 이들 2개의 컬럼의 아래쪽에는, 각 타이밍에 대응하는 처리 공간(30)의 개폐 상태(바닥판(32)을 강하시킨 상태를 「개방」, 바닥판(32)을 상승시켜 처리 공간(30)을 밀폐한 상태를 「폐쇄」로 함), HFE 공급로(311)측의 전환 밸브(422)의 전환처 및 HFE 공급로(311)측, 배출 라인(44)(배출로(313))측, HFE 회수 라인(HFE 배출로(312))측의 각 차단 밸브(421, 441, 431)의 개폐 상태를 나타내고 있다.
예를 들어 도 8의 (b)에 나타낸 바와 같이, 웨이퍼(W)의 반입 반출 동작을 행할 때에만 처리 공간(30)에 불활성 가스를 공급해도 좋다. 도 8의 (b)에 나타낸 예에서는 웨이퍼(W)를 반출하기 위해 개방한 처리 공간(30)은, 다음 웨이퍼(W)가 반입될 때까지 개방된 그대로의 상태로 되어 있지만, 예를 들어 웨이퍼(W)를 반출한 후 처리 공간(30)을 폐쇄하고, 처리 공간(30)이 개방되는 웨이퍼(W)의 반입 기간만 처리 공간(30)에 불활성 가스를 공급하여 외부로부터의 산소나 수분의 진입을 막아도 좋다. 도 8의 (b), 도 9의 (a) 및 도 9의 (b)의 각 도면에서는, 케이스(38) 내의 분위기를 나타내는 컬럼의 표시를 생략했지만, 도 8의 (a)의 경우와 마찬가지로 케이스(38) 내에는 불활성 가스의 다운플로우를 형성해도 좋다. 또 본 예와 같이 웨이퍼(W)가 반입된 후에 처리 공간(30) 내의 분위기가 불활성 가스로 치환되는 경우에는 케이스(38) 내에 형성하는 다운플로우를 예를 들어 노점이 -50℃ 이하의 건조 공기로서 수분만을 배제함으로써, 질소 가스의 사용량을 삭감해도 좋고, 또한 케이스(38) 내를 통상의 대기 분위기로 해도 좋다.
또한 도 9의 (a)에 나타낸 바와 같이 웨이퍼(W)의 반입을 끝내고, 처리 공간(30)을 폐쇄하여, 상기 처리 공간(30) 내에 존재하는 산소나 수분을 방출하기에 충분한 양의 불활성 가스를 단시간 공급한 후, HFE를 공급해도 좋다. 이와 같이, (1) HFE의 도입 시작전까지 처리 공간(30)에서 HFE의 열분해를 촉진하는 성분이 배제되어 있는 것, (2) HFE의 도입 시작전까지 웨이퍼(W) 표면의 HFE가 건조하지 않는 것의 조건이 만족되면 본 발명의 효과를 얻을 수 있다.
따라서, 도 9의 (b)에 나타낸 바와 같이, 처리 공간(30) 내의 HFE를 배출하고 나서, 다음 처리를 행하기 위해 HFE의 공급을 시작하기까지의 기간 동안, 계속적으로 처리 공간(30) 내에 불활성 가스를 공급해도 좋다. 케이스(38)측에 불활성 가스의 다운플로우가 형성되어 있는 경우에는, 처리 공간(30)을 개방하여 웨이퍼(W)를 반입하고 있는 기간 동안은, 케이스(38)측으로부터 처리 공간(30) 내에 불활성 가스가 유입되게 되기 때문에 더욱 바람직하다.
또한 각 히터(322, 314, 452)에서 상부 용기(31), 배치대(321)를 가열하는 기간에 관해서도 불활성 가스의 공급 기간과 마찬가지로, (1) 웨이퍼(W)의 반입을 끝내고 처리 공간(30)를 밀폐하여, HFE의 도입이 시작되기 전까지 처리 공간(30) 내에서 HFE의 열분해를 촉진하는 성분이 배제되어 있는 것, (2) HFE의 도입 시작전까지 웨이퍼(W) 표면의 HFE가 건조하지 않는 것의 조건을 만족하도록 설정하면 본 발명의 효과를 얻을 수 있다.
이 때 상부 용기(31), 배치대(321)로부터 이탈시킨 수분을 처리 공간(30) 내에 체류시키지 않도록, 상부 용기(31), 배치대(321)의 가열과 병행하여, 또는 가열후에 처리 공간(30) 내에 퍼지 가스를 통과시키는 퍼지 가스 공급부를 설치하고, 이탈한 수분을 배출하는 조작을 조합하는 것이 바람직하다. 여기서 수분을 배출하기 위해 이용되는 퍼지 가스는, 수분의 함유량이 적은 가스인 것이 바람직하지만, 전술한 -50℃ 이하 정도까지 노점 조정된 가스가 아니어도 좋다.
그 밖에, 처리 용기[상부 용기(31), 바닥판(32)] 내로의 불활성 가스의 공급은, 처리 공간(30)을 닫은 상태로 행하는 경우에 한정되지 않고, 예를 들어 바닥판(32)을 강하시켜 처리 공간(30)을 개방한 상태로 불활성 가스의 공급을 행해도 좋다.
그리고 초임계 처리 장치(3)는 처리 공간(30) 내에 HFE의 열분해를 촉진하는 성분이 배제된 분위기를 형성하기 위해, 처리 공간(30) 내에 불활성 가스를 공급하고, 상부 용기(31), 배치대(321)를 가열하고, 또한 불활성 가스 공급실(39)로부터 케이스(38) 내에 불활성 가스를 공급하는 각 구성을 모두 건조 분위기 형성부로서 갖추고 있는 경우에 한정되지 않고, 이들 구성을 1개 또는 2개 조합하여 건조 분위기를 형성하도록 해도 좋다.
이상에 설명한 각종 실시형태에서는, 웨이퍼(W)에 대하여 초임계 처리를 행하기 위한 불소 화합물을 포함하는 처리용 액체로서 HFE를 채택한 예를 나타냈지만, 본 발명을 적용할 수 있는 처리용 액체는 HFE에 한정되지 않는다. 불소 화합물을 포함하는 처리용 액체로서 예를 들어 HFC(하이드로플루오로카본)도 좋다. 이 경우에도 (A) HFC 내의 용존 산소를 저감시키고, (B) 초임계 처리가 행해지는 처리 공간(30)에서 산소나 수분을 배제하고, 또한 (C) 처리 용기의 벽면 등에 대한 수분의 흡착을 억제하는 열분해 성분 배제부를 갖춘 초임계 처리 장치(3)를 이용하는 것 등에 의해, HFC의 열분해를 억제하여 불소 원자의 웨이퍼(W) 내로의 주입을 억제하면서, 웨이퍼(W)를 건조시킬 수 있다.
[실시예]
(실험 1) 가스 포집부(442)에 이용하는 활성탄의 존재하에서의 HFE의 열분해성을 조사했다.
A. 실험 조건
(실시예 1-1) 도 10의 (a)에 나타내는 CF3CH2OCF2CHF2(1,1,2,2-테트라플루오로-1-(2,2,2-트리플루오로에톡시)에탄을 활성탄의 존재하에서 120℃, 대기압의 조건하에서 72시간 열처리하여, 상기 HFE 내에 방출된 불소 이온 농도 및 산분 농도를 계측했다.
(실시예 1-2) 도 10의 (b)에 나타내는 CF3CH2OCF2CHFCF3(1,1,2,3,3,3-헥사플루오로-1-(2,2,2-트리플루오로에톡시)프로판을 (실시예 1-1)과 동일한 열처리를 행하여, 불소 이온 농도 및 산분 농도를 계측했다.
(실시예 1-3) 도 10의 (c)에 나타내는 CF3CHFCF2OCH2CF2CF3(2,2,3,3,3-펜타플루오로-1-(1,1,2,3,3,3-헥사플루오로프로폭시)프로판을 (실시예 1-1)과 동일한 열처리를 행하여, 불소 이온 농도 및 산분 농도를 계측했다.
(비교예 1-1) 도 11의 (a)에 나타내는 (CF3)2CFCF2OCH3(1,1,2,3,3,3-헥사플루오로-1-메톡시-2-트리플루오로메틸프로판)을 (실시예 1-1)과 동일한 열처리를 행하여, 불소 이온 농도 및 산분 농도를 계측했다.
(비교예 1-2) 도 11의 (b)에 나타내는 (CF3)2CFCF2OCH2CH3(1,1,2,3,3,3-헥사플루오로-1-에톡시-2-트리플루오로메틸프로판)을 (실시예 1-1)과 동일한 열처리를 행하여, 불소 이온 농도 및 산분 농도를 계측했다.
(비교예 1-3) 도 11의 (c)에 나타내는 (CF3)2CFCF(OCH3)CF2CF3(1,1,1,2,3,4,4,5,5,5-데카플루오로-2-트리플루오로메틸-3-메톡시펜탄)을 (실시예 1-1)과 동일한 열처리를 행하여, 불소 이온 농도 및 산분 농도를 계측했다.
B. 실험 결과
(실시예 1-1)∼(실시예 1-3)의 각 HFE에서는, 활성탄의 존재하에서 열처리를 행하더라도 불소 이온, 산분은 검출 한계(불소 이온 0.02 ppm, 산분 1 ppm) 이하였다. 한편, (비교예 1-1)에서는 불소 이온 농도가 45 ppm, 산분이 160 ppm이고, (비교예 1-2, 1-3)에서도 동등한 정도의 불소 이온, 산분이 계측되었다. 따라서, 활성탄의 존재하에서도 각 실시예에 따른 HFE는 열적 안정성이 높고, 비교예에 따른 HFE는 실시예의 HFE와 비교하여 열적 안정성이 낮다고 할 수 있다.
(실험 2) (실시예 1-1)에 따른 HFE를 이용하여 각종 패턴(11)이 형성된 웨이퍼(W)로부터 액처리후의 액체를 제거하는 초임계 처리를 행하여, 패턴 붕괴의 발생 유무를 확인했다.
A. 실험 조건
(실시예 2-1) 실리콘 산화막에 캔틸레버 구조의 MEMS를 형성한 웨이퍼(W)에 관해 액처리후의 초임계 처리를 행하였다.
(실시예 2-2) 실리콘 산화막에 미세한 패턴(11)을 형성한 웨이퍼(W)에 관해 액처리후의 초임계 처리를 행하였다.
(실시예 2-3) 미세 구멍을 갖는 다공성 산화막에 패턴(11)을 형성한 웨이퍼(W)에 관해 액처리후의 초임계 처리를 행하였다.
B. 실험 결과
(실시예 2-1)∼(실시예 2-3)에 따른 각 웨이퍼(W)에 관해 확대 관찰을 행한 결과, 패턴 붕괴나 다공성 산화막의 미세 구멍에 대한 손상의 발생없이 초임계 처리가 행해지고 있는 것을 확인할 수 있었다.
W : 웨이퍼 2 : 세정 장치
3 : 초임계 처리 장치 30 : 처리 공간
31 : 상부 용기 311 : HFE 공급로
312 : HFE 배출로 313 : 배출로
314 : 히터 32 : 바닥판
321 : 배치대 322 : 히터
39 : 불활성 가스 공급실 4 : HFE 공급부
42 : HFE 공급 라인 43 : HFE 회수 라인
44 : 배출 라인 45 : 불활성 가스 라인
452 : 히터 6 : 전원부
7 : 제어부

Claims (18)

  1. 초임계 유체에 의해 기판에 대하여 처리를 행하는 밀폐 가능한 처리 용기와,
    이 처리 용기 내에 불소 화합물을 포함하는 처리용 액체를 공급하는 액체 공급부와,
    상기 처리 용기로부터 상기 초임계 유체를 배출하는 유체 배출부와,
    상기 처리 용기 내 또는 상기 액체 공급부로부터 공급되는 액체 내에서, 상기 액체의 열분해를 촉진하는 성분을 배제하기 위한 열분해 성분 배제부와,
    상기 처리 용기 내에 공급된 상기 액체를 가열하는 가열부를 포함하고,
    상기 불소 화합물은, 하이드로플루오로에테르 또는 하이드로플루오로카본인 것을 특징으로 하는 초임계 처리 장치.
  2. 제1항에 있어서, 상기 열분해 성분 배제부는, 상기 액체 공급부로부터 공급되기 전의 처리용 액체 내에 불활성 가스를 공급하여 버블링을 행하는 버블링부를 포함하는 것을 특징으로 하는 초임계 처리 장치.
  3. 제1항 또는 제2항에 있어서, 상기 열분해 성분 배제부는, 상기 처리 용기 내에 불활성 가스를 공급하는 제1 가스 공급부를 포함하는 것을 특징으로 하는 초임계 처리 장치.
  4. 제3항에 있어서, 기판의 반입을 끝내고 처리 용기를 밀폐했을 때, 이 처리 용기에서 상기 처리용 액체의 열분해를 촉진하는 성분을 배제하기 위해, 밀폐전에 상기 처리 용기 내에 상기 불활성 가스를 공급하도록 상기 열분해 성분 배제부를 제어하는 제어부를 포함하는 것을 특징으로 하는 초임계 처리 장치.
  5. 제3항에 있어서, 상기 처리 용기에서 처리용 액체의 열분해를 촉진하는 성분을 배제하기 위해, 이 처리 용기로의 기판의 반입을 끝내고 처리 용기를 밀폐한 후, 상기 처리 용기 내에 상기 불활성 가스를 공급하도록 상기 열분해 성분 배제부를 제어하는 제어부를 포함하는 것을 특징으로 하는 초임계 처리 장치.
  6. 제1항 또는 제2항에 있어서, 상기 처리 용기는, 반입 반출구를 통해 기판이 반입 반출되는 케이스 내에 수용되고, 상기 열분해 성분 배제부는, 상기 처리 용기를 둘러싸는 분위기에서 상기 액체의 열분해를 촉진하는 성분을 배제하기 위해, 이 케이스 내에 불활성 가스를 공급하는 제2 가스 공급부를 더 포함하는 것을 특징으로 하는 초임계 처리 장치.
  7. 제3항에 있어서, 상기 불활성 가스는, 노점이 -50℃ 이하의 질소 가스인 것을 특징으로 하는 초임계 처리 장치.
  8. 제1항 또는 제2항에 있어서, 상기 불소 화합물은, 산소 원자에서 볼 때 α위치에 위치하는 탄소 원자의 탄소-탄소 결합이 1개 이하, β위치에 위치하는 탄소 원자의 탄소-탄소 결합이 2개 이하인 플루오로알킬기로 구성되는 하이드로플루오로에테르인 것을 특징으로 하는 초임계 처리 장치.
  9. 제8항에 있어서, 상기 불소 화합물은, 1,1,2,2-테트라플루오로-1-(2,2,2-트리플루오로에톡시)에탄, 1,1,2,3,3,3-헥사플루오로-1-(2,2,2-트리플루오로에톡시)프로판, 2,2,3,3,3-펜타플루오로-1-(1,1,2,3,3,3-헥사플루오로프로폭시)프로판으로 이루어진 군에서 선택되는 하나 이상의 하이드로플루오로에테르를 포함하고 있는 것을 특징으로 하는 초임계 처리 장치.
  10. 처리 용기 내에 패턴이 형성된 기판을 반입하는 공정과,
    상기 처리 용기 내 또는 상기 처리 용기에 공급되는 불소 화합물을 포함한 처리용 액체 내에서, 상기 처리용 액체의 열분해를 촉진하는 성분을 배제하는 공정과,
    상기 기판이 수용된 처리 용기 내에 상기 처리용 액체를 공급하는 공정과,
    상기 처리 용기를 밀폐하고, 상기 처리 용기 내에 공급된 액체를 가열하여 얻은 초임계 유체에 의해 상기 기판에 대하여 처리를 행하는 공정과,
    상기 처리 용기를 개방하여 초임계 유체를 배출하는 공정을 포함하고,
    상기 불소 화합물은, 하이드로플루오로에테르 또는 하이드로플루오로카본인 것을 특징으로 하는 초임계 처리 방법.
  11. 제10항에 있어서, 상기 처리용 액체의 열분해를 촉진하는 성분을 배제하는 공정은, 이 액체 내에 불활성 가스를 공급하여 버블링하는 공정을 포함하는 것을 특징으로 하는 초임계 처리 방법.
  12. 제10항 또는 제11항에 있어서, 상기 처리용 액체의 열분해를 촉진하는 성분을 배제하는 공정은, 상기 처리 용기 내에 불활성 가스를 공급하는 공정을 포함하는 것을 특징으로 하는 초임계 처리 방법.
  13. 제12항에 있어서, 상기 불활성 가스를 공급하는 공정은, 기판의 반입을 끝내고 처리 용기를 밀폐했을 때 이 처리 용기 내에서 상기 처리용 액체의 열분해를 촉진하는 성분을 배제하기 위해, 밀폐전에 상기 처리 용기 내에 상기 불활성 가스를 공급하는 것을 특징으로 하는 초임계 처리 방법.
  14. 제12항에 있어서, 상기 불활성 가스를 공급하는 공정은, 상기 처리 용기에서 처리용 액체의 열분해를 촉진하는 성분을 배제하기 위해, 이 처리 용기로의 기판의 반입을 끝내고 처리 용기를 밀폐한 후, 상기 처리 용기 내에 상기 불활성 가스를 공급하는 것을 특징으로 하는 초임계 처리 방법.
  15. 제12항에 있어서, 상기 처리 용기는, 반입 반출구를 통해 기판이 반입 반출되는 케이스 내에 수용되고, 상기 불활성 가스를 공급하는 공정은, 상기 처리 용기를 둘러싸는 분위기에서 상기 처리용 액체의 열분해를 촉진하는 성분을 배제하기 위해, 상기 처리 용기를 개방한 상태로 상기 케이스 내부에 불활성 가스를 공급하는 공정을 더 포함하는 것을 특징으로 하는 초임계 처리 방법.
  16. 제12항에 있어서, 상기 불활성 가스는 노점이 -50℃ 이하의 질소 가스인 것을 특징으로 하는 초임계 처리 방법.
  17. 제10항 또는 제11항에 있어서, 상기 불소 화합물은, 산소 원자에서 볼 때 α위치에 위치하는 탄소 원자의 탄소-탄소 결합이 1개 이하, β위치에 위치하는 탄소 원자의 탄소-탄소 결합이 2개 이하인 플루오로알킬기로 구성되는 하이드로플루오로에테르인 것을 특징으로 하는 초임계 처리 방법.
  18. 제17항에 있어서, 상기 불소 화합물은, 1,1,2,2-테트라플루오로-1-(2,2,2-트리플루오로에톡시)에탄, 1,1,2,3,3,3-헥사플루오로-1-(2,2,2-트리플루오로에톡시)프로판, 2,2,3,3,3-펜타플루오로-1-(1,1,2,3,3,3-헥사플루오로프로폭시)프로판으로 이루어진 군에서 선택되는 하나 이상의 하이드로플루오로에테르를 포함하는 것을 특징으로 하는 초임계 처리 방법.
KR1020110006364A 2010-03-05 2011-01-21 초임계 처리 장치 및 초임계 처리 방법 KR20110101045A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2010-049567 2010-03-05
JP2010049567A JP5506461B2 (ja) 2010-03-05 2010-03-05 超臨界処理装置及び超臨界処理方法

Publications (1)

Publication Number Publication Date
KR20110101045A true KR20110101045A (ko) 2011-09-15

Family

ID=44530244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110006364A KR20110101045A (ko) 2010-03-05 2011-01-21 초임계 처리 장치 및 초임계 처리 방법

Country Status (4)

Country Link
US (1) US8465596B2 (ko)
JP (1) JP5506461B2 (ko)
KR (1) KR20110101045A (ko)
TW (1) TWI467646B (ko)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160048652A (ko) * 2014-10-24 2016-05-04 도쿄엘렉트론가부시키가이샤 기판 처리 방법, 기판 처리 장치 및 기억 매체
KR101654627B1 (ko) 2015-07-31 2016-09-07 세메스 주식회사 기판 처리 장치 및 방법
KR20170137239A (ko) 2016-06-02 2017-12-13 세메스 주식회사 기판 처리 장치 및 방법
KR20180059641A (ko) 2016-11-25 2018-06-05 세메스 주식회사 기판 처리 장치 및 방법
KR20180086165A (ko) 2018-07-11 2018-07-30 세메스 주식회사 기판 처리 장치
US10109506B2 (en) 2016-05-26 2018-10-23 Semes Co., Ltd. Unit for supplying fluid, apparatus and method for treating substrate with the unit
KR20190011542A (ko) 2017-07-25 2019-02-07 세메스 주식회사 기판 처리 장치 및 방법
KR20200009832A (ko) 2018-07-20 2020-01-30 세메스 주식회사 유체 공급 유닛 및 이를 가지는 기판 처리 장치
KR20200040497A (ko) * 2018-10-10 2020-04-20 (주)엘케이시스템즈 건조액 액화회수장치 및 이를 이용한 반도체 건조시스템
KR20200142673A (ko) * 2019-06-13 2020-12-23 주식회사 테스 기판처리장치 및 이를 이용한 기판처리방법
US11020777B2 (en) 2014-11-03 2021-06-01 Semes Co., Ltd. Substrate treating apparatus
KR20220137169A (ko) * 2017-03-10 2022-10-11 어플라이드 머티어리얼스, 인코포레이티드 고압 웨이퍼 처리 시스템들 및 관련된 방법들

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626249B2 (ja) * 2012-03-27 2014-11-19 東京エレクトロン株式会社 基板処理システム、基板処理方法及び記憶媒体
JP6068029B2 (ja) * 2012-07-18 2017-01-25 株式会社東芝 基板処理方法、基板処理装置および記憶媒体
KR102037844B1 (ko) 2013-03-12 2019-11-27 삼성전자주식회사 초임계 유체를 이용하는 기판 처리 장치, 이를 포함하는 기판 처리 시스템, 및 기판 처리 방법
JP6342343B2 (ja) 2014-03-13 2018-06-13 東京エレクトロン株式会社 基板処理装置
JP6109772B2 (ja) 2014-03-13 2017-04-05 東京エレクトロン株式会社 分離再生装置および基板処理装置
JP6104836B2 (ja) 2014-03-13 2017-03-29 東京エレクトロン株式会社 分離再生装置および基板処理装置
US9814097B2 (en) * 2014-04-14 2017-11-07 Taiwan Semiconductor Manufacturing Co., Ltd. Baking apparatus for priming substrate
JP6674186B2 (ja) 2014-06-11 2020-04-01 三井・ケマーズ フロロプロダクツ株式会社 半導体パターン乾燥用置換液および半導体パターン乾燥方法
JP5885794B2 (ja) * 2014-08-22 2016-03-15 株式会社東芝 基板処理方法及び装置
JP6525567B2 (ja) * 2014-12-02 2019-06-05 キヤノン株式会社 インプリント装置及び物品の製造方法
JP6498573B2 (ja) * 2015-09-15 2019-04-10 東京エレクトロン株式会社 基板処理方法、基板処理装置および記憶媒体
JP6444843B2 (ja) * 2015-10-26 2018-12-26 東京エレクトロン株式会社 基板処理方法、基板処理装置および記憶媒体
US10566182B2 (en) 2016-03-02 2020-02-18 Tokyo Electron Limited Substrate processing apparatus, substrate processing method, and storage medium
JP6755776B2 (ja) * 2016-11-04 2020-09-16 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記録媒体
KR102358561B1 (ko) * 2017-06-08 2022-02-04 삼성전자주식회사 기판 처리 장치 및 집적회로 소자 제조 장치
US11302526B2 (en) 2019-01-14 2022-04-12 Samsung Electronics Co., Ltd. Supercritical drying apparatus and method of drying substrate using the same
JP7307575B2 (ja) * 2019-03-28 2023-07-12 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP7236338B2 (ja) * 2019-06-28 2023-03-09 株式会社Screenホールディングス 基板処理装置
WO2021065428A1 (ja) 2019-10-03 2021-04-08 セントラル硝子株式会社 ハイドロフルオロエーテルを含む溶剤、およびハイドロフルオロエーテルを含む溶剤を用いる基板処理方法
KR20240047397A (ko) * 2021-08-09 2024-04-12 에이씨엠 리서치 (상하이), 인코포레이티드 초임계 유체 기반의 건조 장치 및 방법
WO2023153222A1 (ja) * 2022-02-08 2023-08-17 東京エレクトロン株式会社 基板処理装置、および基板処理方法
WO2024085000A1 (ja) * 2022-10-20 2024-04-25 東京エレクトロン株式会社 流体供給システム、基板処理装置及び基板処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608748B2 (ja) * 1999-08-05 2011-01-12 東京エレクトロン株式会社 洗浄装置、洗浄システム及び洗浄方法
JP4499604B2 (ja) * 2005-04-22 2010-07-07 エヌ・ティ・ティ・アドバンステクノロジ株式会社 超臨界処理方法
WO2007114448A1 (ja) * 2006-04-05 2007-10-11 Asahi Glass Company, Limited デバイス基板の洗浄方法
JP4884180B2 (ja) * 2006-11-21 2012-02-29 東京エレクトロン株式会社 基板処理装置および基板処理方法
US7838425B2 (en) * 2008-06-16 2010-11-23 Kabushiki Kaisha Toshiba Method of treating surface of semiconductor substrate
JP5359286B2 (ja) * 2009-01-07 2013-12-04 東京エレクトロン株式会社 超臨界処理装置、基板処理システム及び超臨界処理方法
JP5293459B2 (ja) * 2009-07-01 2013-09-18 東京エレクトロン株式会社 基板処理装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160048652A (ko) * 2014-10-24 2016-05-04 도쿄엘렉트론가부시키가이샤 기판 처리 방법, 기판 처리 장치 및 기억 매체
US11020777B2 (en) 2014-11-03 2021-06-01 Semes Co., Ltd. Substrate treating apparatus
KR101654627B1 (ko) 2015-07-31 2016-09-07 세메스 주식회사 기판 처리 장치 및 방법
US10109506B2 (en) 2016-05-26 2018-10-23 Semes Co., Ltd. Unit for supplying fluid, apparatus and method for treating substrate with the unit
KR20170137239A (ko) 2016-06-02 2017-12-13 세메스 주식회사 기판 처리 장치 및 방법
KR20180059641A (ko) 2016-11-25 2018-06-05 세메스 주식회사 기판 처리 장치 및 방법
KR20220137169A (ko) * 2017-03-10 2022-10-11 어플라이드 머티어리얼스, 인코포레이티드 고압 웨이퍼 처리 시스템들 및 관련된 방법들
KR20190011542A (ko) 2017-07-25 2019-02-07 세메스 주식회사 기판 처리 장치 및 방법
US10818519B2 (en) 2017-07-25 2020-10-27 Semes Co., Ltd. Apparatus and method for treating substrate
KR20180086165A (ko) 2018-07-11 2018-07-30 세메스 주식회사 기판 처리 장치
KR20200009832A (ko) 2018-07-20 2020-01-30 세메스 주식회사 유체 공급 유닛 및 이를 가지는 기판 처리 장치
KR20200040497A (ko) * 2018-10-10 2020-04-20 (주)엘케이시스템즈 건조액 액화회수장치 및 이를 이용한 반도체 건조시스템
KR20200142673A (ko) * 2019-06-13 2020-12-23 주식회사 테스 기판처리장치 및 이를 이용한 기판처리방법

Also Published As

Publication number Publication date
US8465596B2 (en) 2013-06-18
JP2011187570A (ja) 2011-09-22
US20110214694A1 (en) 2011-09-08
TWI467646B (zh) 2015-01-01
JP5506461B2 (ja) 2014-05-28
TW201201263A (en) 2012-01-01

Similar Documents

Publication Publication Date Title
KR20110101045A (ko) 초임계 처리 장치 및 초임계 처리 방법
JP5359286B2 (ja) 超臨界処理装置、基板処理システム及び超臨界処理方法
TWI689004B (zh) 用於高深寬比半導體元件結構具有污染物去除之無黏附乾燥處理
JP5544666B2 (ja) 基板処理装置
JP6085423B2 (ja) 基板処理方法、基板処理装置および記憶媒体
JP5293459B2 (ja) 基板処理装置
JP5686261B2 (ja) 基板処理装置及び基板処理方法
JP5712902B2 (ja) 基板処理装置、基板処理方法及び記憶媒体
US8944078B2 (en) Substrate processing apparatus, substrate processing method and storage medium
JP6068029B2 (ja) 基板処理方法、基板処理装置および記憶媒体
KR101841789B1 (ko) 기판 처리 시스템, 기판 처리 방법 및 기억 매체
JP2013080908A (ja) 基板処理装置及び基板処理方法
KR101643455B1 (ko) 기판 처리 방법 및 장치
US20130028690A1 (en) Apparatus and method for treating substrate
US20090084405A1 (en) Substrate treating apparatus and substrate treating method
JP5471740B2 (ja) 基板処理装置
WO2005005063A1 (en) Cleaning and drying a substrate
KR100516644B1 (ko) 기판 처리방법 및 기판 처리장치
CN109216180A (zh) 基板处理方法和基板处理装置
JP2013179245A (ja) 基板処理方法、基板処理装置および記憶媒体
JP5222499B2 (ja) 基板処理装置
TWI823392B (zh) 基板處理方法及基板處理裝置
WO2022220037A1 (ja) 基板処理方法、基板処理装置および乾燥処理液
US20130081658A1 (en) Apparatus and method for treating substrate
KR20220098062A (ko) 기판 처리 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application