KR20110078744A - 항혈관신생 활성을 가지는 재조합 아데노바이러스 - Google Patents
항혈관신생 활성을 가지는 재조합 아데노바이러스 Download PDFInfo
- Publication number
- KR20110078744A KR20110078744A KR1020090135629A KR20090135629A KR20110078744A KR 20110078744 A KR20110078744 A KR 20110078744A KR 1020090135629 A KR1020090135629 A KR 1020090135629A KR 20090135629 A KR20090135629 A KR 20090135629A KR 20110078744 A KR20110078744 A KR 20110078744A
- Authority
- KR
- South Korea
- Prior art keywords
- extracellular domain
- vegfr
- tertiary
- recombinant adenovirus
- adenovirus
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
- C12N15/861—Adenoviral vectors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/71—Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
- A61K35/761—Adenovirus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/42—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum viral
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/08—Vasodilators for multiple indications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10341—Use of virus, viral particle or viral elements as a vector
- C12N2710/10343—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Rheumatology (AREA)
- Physical Education & Sports Medicine (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Ophthalmology & Optometry (AREA)
- Diabetes (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dermatology (AREA)
- Urology & Nephrology (AREA)
Abstract
본 발명은 (a) 아데노바이러스의 ITR (inverted terminal repeat) 뉴클레오타이드 서열; 및 (b) (i) VEGFR-1(Vascular Endothelial Growth Factor Receptor 1)의 세포외 도메인과 (ii) VEGFR-2(Vascular Endothelial Growth Factor Receptor 2)의 세포외 도메인을 포함하는 키메릭 데코이 수용체(chimeric decoy receptor)를 코딩하는 뉴클레오타이드 서열을 포함하는 혈관신생 억제능이 개선된 재조합 아데노바이러스 및 이를 포함하는 약제학적 혈관신생 억제용 조성물에 관한 것이다. 키메릭 데코이 수용체를 발현하는 본 발명의 재조합 아데노바이러스는 혈관신생을 매우 효과적으로 억제하여, 다양한 혈관신생-관련 질환의 유전자치료제로 이용될 수 있다. 특히, 본 발명의 재조합 아데노바이러스는 종양세포 살상능이 우수하다.
아데노바이러스, 혈관신생, 데코이수용체, 종양, 암, VEGFR
Description
본 발명은 키메릭 데코이 수용체를 발현하는 혈관신생 억제능이 개선된 재조합 아데노바이러스 및 이를 포함하는 약제학적 혈관신생 억제용 조성물에 관한 것이다.
기존의 혈관으로부터 새로운 혈관이 형성되는 신생 혈관 형성은 정교하게 조절되는 일련의 과정으로 세포외기질(extracellular matrix)과 기저막(basement membrane)의 분해를 통해 시작되며 모세 혈관 내피 세포의 분열, 분화, 주변 기질(stroma) 로의 침윤, 그리고 새로운 기능적 관 네트워크로의 재 조직화를 통해 완성된다1. 신생혈관 형성을 위해서는 여러 종류의 성장인자들이 필요하며 이들 중 혈관내피세포 성장인자(vascular endothelial growth factor, VEGF), 특히 VEGF-A가 주로 관여함이 밝혀졌다. Alternative splicing을 통해 형성되는 7종류의 인체 VEGF-A isoform(VEGF121, VEGF145, VEGF148, VEGF165, VEGF183, VEGF189, VEGF206)들은 각각 121, 145, 148, 165, 183, 189 그리고 206개의 아미노산으로 구성되어 있으며 이 중 VEGF121의 염기서열은 모든 isoform들에 공유되어 있다2-4. VEGF와 VEGF 수용체의 결합으로 혈관내피세포의 세포고사 억제, 림프 신생 혈관 형성, 면역 억제, 혈관 투과성(vascular permeability), 그리고 조혈모 세포의 생존(hematopoietic stem cell survival) 등이 조절된다4-7.
고형암은 혈관이 없는 상태에서 2-3 mm 이하의 크기까지 자랄 수 있지만 그 이상의 성장을 위해서는 산소와 영양소의 공급을 위해 VEGF에 의해 매개되는 신생 혈관 형성이 필수적이다. 정상적인 조직에서 혈관 네트워크는 유도인자와 억제인자의 적절한 비율을 통해 효과적인 혈류속도와 고른 혈관들의 너비를 지닌 계층적 구조를 갖추고 있다8. 그러나 종양에서 보이는 혈관계는 혈관 벽에 의한 투과성이 증가되어 있고, 높은 내압을 지니고 있으며, 혈관이 커져 있는 등 비정상적으로 발달되어 있다. 종양내 무절제한 신생 혈관 형성 및 비정상적인 혈관의 형태는 종양내부의 저산소증과 낮은 pH에 의해 고발현 되는 VEGF와 이의 수용체인 VEGFR2의 결합으로 생성되는 세포내 신호에 의해 발생한다9.
VEGF에 의한 신생 혈관 형성은 종양의 성장뿐만 아니라 침윤과 전이에도 중요한 역할을 한다10. 폐암, 위암, 신장암, 방광암, 난소암, 그리고 자궁암과 같은 다양한 종양에서 VEGF가 과발현 되어 있음이 밝혀졌고, VEGF의 발현이 높은 암일수 록 예후도 좋지 않음이 보고되었다11. 종양이 자라나는데 있어 신생 혈관 생성을 통한 혈류 공급의 증가는 필수적이기 때문에 종양 내 혈관 생성 억제는 암 치료의 주요 표적이 되고 있고, angiostatin, endostatin, thrombospondin-1 그리고 uPA-fragment 등이 현재 신생 혈관 생성 억제제로 이용되고 있으며 VEGF의 활성을 억제하거나 VEGF의 세포 수용체인 VEGFR-1(Flt-1) 또는 VEGFR-2(KDR)의 기능을 억제함으로써 종양의 성장을 억제하거나 전이를 억제하는 연구가 활발히 진행되고 있다12-16. 세포내뿐만 아니라 세포외에서도 VEGF와 세포 수용체와의 결합을 저해할 수 있는 중화항체 및 VEGFR-1 또는 VEGFR-2 특이적 중화항체들을 누드마우스에 형성된 인간 종양 이종이식물(human tumor xenografts)에 처리한 경우, 혈관내피세포의 세포고사를 유도하고 종양의 성장을 현저하게 억제하였다17.
VEGF 트랩(trap)은 세포 표면에 있는 VEGFR1과 VEGFR2의 도메인을 결합하여 제작한 수용성 decoy VEGF 수용체로서 VEGF와 높은 친화력을 가지고 있다. 현재까지 VEGF 트랩에 관한 많은 연구가 진행되고 있으며 그에 따라 VEGF-A, VEGF-B, 그리고 PGF(placental growth factor)에 대한 친화력이 더 증가된 VEGF 트랩들이 제작되었다18. 여러 종양 이종이식 모델들에서 진행된 전 임상 시험에서 VEGF 트랩의 항종양 효과가 검증되었으며19-21, VEGF 트랩 또는 항암제 각각을 처리했을 때에 비해 상용적으로 이용되는 항암제와의 병합치료 시 향상된 종양 성장 억제 효과 를 볼 수 있었다22. VEGF 트랩이 VEGF 단일 클론 항체인 bevacizumab 이나 VEGFR2 항체인 DC101에 비해 우세한 항종양 효과를 보이는 이유는 모든 VEGF isoform들과의 높은 친화력뿐만 아니라 VEGF subfamily 중 PGF와의 결합능도 가지고 있기 때문이다23. 따라서 VEGF와 친화력이 강한 VEGF 트랩을 종양내에서 지속적으로 발현시켜 준다면 종양에서 분비되는 VEGF의 발현양을 현저히 감소시켜 뛰어난 항종양 효과를 나타낼 수 있으며 이를 통해 상당한 치료 효과를 보일 것으로 기대된다.
아데노바이러스는 우수한 유전자 전달 효율을 나타내며 높은 역가로 생산이 가능하고 쉽게 농축할 수 있기 때문에 암 유전자치료를 위한 유전자 전달체로 각광을 받고 있다24-25. 그러나 아데노바이러스를 이용한 암유전자 치료제가 임상적으로 이용되기 위해서는 주변의 정상조직의 세포에는 부작용 없이 암 세포만을 선택적으로 살상할 수 있는 특이성과 동시에 암세포를 효과적으로 사멸시킬 수 있는 살상능이 높은 아데노바이러스의 개발이 필수적이다. 종양 세포에서는 p53 단백질의 변이뿐 아니라 retinoblastoma 단백질(pRb)의 변이가 빈번하거나 혹은 pRb 관련 신호기전이 상당부분 손상되어 있기 때문에, pRb와의 결합능이 소실된 아데노바이러스는 정상 세포에서는 pRb의 활성으로 아데노바이러스의 복제가 억제 되지만 pRb의 기능이 억제된 종양 세포에서는 활발하게 복제되어 암세포를 선택적으로 살상할 수 있다. 이러한 배경 하에, 본 연구실에서는 종양 특이적 살상 아데노바이러스의 암세포 특이적 복제능을 증진시키기 위하여, 아데노바이러스의 E1A 유전자 부위 중 pRb와의 결합에 관여하는 CR1 부위의 Glu 아미노산을 Gly로 치환시키고 CR2 부 위의 7개 아미노산(DLTCHEA)을 Gly(GGGGGGG)으로 치환시킴으로써 pRb와의 결합능이 소실되고, 동시에 p53 단백질의 기능을 억제하는 E1B 55 kDa과 세포고사 억제 기능을 하는 E1B 19 kDa 유전자를 제거함으로써, p53이 불활성화된 종양세포들에서만 선택적으로 복제가 가능하고 이에 따른 암세포 특이적 세포 살상 및 세포고사를 함께 유발할 수 있는 개선된 종양 선택적 살상 아데노바이러스인 Ad-ΔB7을 제작하여, 우수한 생체 내ㆍ외 항종양 효과를 보고한 바 있다26-28.
본 명세서 전체에 걸쳐 다수의 인용문헌 및 특허 문헌이 참조되고 그 인용이 표시되어 있다. 인용된 문헌 및 특허의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 외래 서열을 아데노바이러스 지놈에 삽입시키는 전략으로 아데노바이러스의 혈관신생 억제능 특히 종양세포 살상능(oncolytic activity)을 향상시키기 위하여 연구 노력한 결과, VEGFR의 키메릭 데코이 수용체를 코딩하는 뉴클레오타이드 서열을 아데노바이러스의 지놈에 삽입시켜 발현시키면 아데노바이러스의 혈관신생 억제능 특히 종양세포 살상능 크게 향상되는 것을 발견함으로써, 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 키메릭 데코이 수용체를 발현하는 혈관신생 억제능이 개선된 재조합 아데노바이러스를 제공하는 데 있다.
본 발명의 다른 목적은 키메릭 데코이 수용체를 발현하는 재조합 아데노바이러스를 포함하는 약제학적 혈관신생 억제용 조성물을 제공하는 데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 (a) 아데노바이러스의 ITR (inverted terminal repeat) 뉴클레오타이드 서열; 및 (b) (i) VEGFR-1(Vascular Endothelial Growth Factor Receptor 1)의 세포외 도메인과 (ii) VEGFR-2(Vascular Endothelial Growth Factor Receptor 2)의 세포외 도메인을 포함하는 키메릭 데코이 수용체(chimeric decoy receptor)를 코딩하는 뉴클레오타이드 서열을 포함하는 혈관신생 억제능이 개선된 재조합 아데노바이러스를 제공한다.
본 발명자들은 외래 서열을 아데노바이러스 지놈에 삽입시키는 전략으로 아데노바이러스의 혈관신생 억제능 특히 종양세포 살상능(oncolytic activity)을 향상시키기 위하여 연구 노력한 결과, VEGFR의 키메릭 데코이 수용체를 코딩하는 뉴클레오타이드 서열을 아데노바이러스의 지놈에 삽입시켜 발현시키면 아데노바이러스의 혈관신생 억제능 특히 종양세포 살상능이 크게 향상되는 것을 발견하였다.
기존의 혈관으로부터 새로운 혈관이 형성되는 신생 혈관 형성은 종양이 성장하고 전이되는데 있어 매우 중요한 역할을 한다. 신생혈관 형성이 일어나기 위해서는 여러 종류의 성장인자들이 필요한데, 이들 중 혈관내피세포 성장인자(vascular endothelial growth factor, VEGF)가 신생혈관 형성에 주로 관여함이 밝혀졌다.
본 발명의 아데노바이러스 벡터에 탑재되는 VEGFR-1(Vascular Endothelial Growth Factor Receptor 1)의 세포외도메인과 VEGFR-2(Vascular Endothelial Growth Factor Receptor 2)의 세포외도메인을 포함하는 키메릭 데코이 수용체(chimeric decoy receptor)는 소위 VEGF 트랩(trap)의 일종으로서, VEGF-A, VEGF-B, 그리고 PGF(placental growth factor)에 대한 친화력이 우수하며, 이들 성장인자들에 대한 데코이 수용체로 작용하고, 혈관신생을 억제한다.
본 명세서에서 사용되는 용어 “데코이 수용체”는 VEGF-A, VEGF-B, PGF 또는 이들 모두에 결합하여 이들 성장인자가 정상적인 수용체와 결합하는 것을 억제하는 수용체를 의미한다.
본 명세서에서 사용되는 용어 “키메릭 데코이 수용체”는 VEGFR-1로부터 유래된 세포외도메인과 VEGFR-2로부터 유래된 세포외도메인을 결합하여 제조된 수용체를 의미한다.
본 발명에서 이용되는 키메릭 데코이 수용체는 VEGFR-1의 7개 세포외 도메인 중에서 최소 하나의 세포외 도메인과 VEGFR-2의 7개 세포외도메인 중에서 최소 하나의 세포외 도메인이 결합하여 만들어지는 키메릭 수용체이다.
본 발명의 바람직한 구현예에 따르면, 상기 키메릭 데코이 수용체는 VEGFR-1의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-1의 세포외도메인과 VEGFR-2의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인을 포함한다.
보다 바람직하게는, 상기 키메릭 데코이 수용체는 (i) VEGFR-1의 1차 세포외도메인과 VEGFR-2의 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인; (ii) VEGFR-1의 2차 세포외도메인과 VEGFR-2의 1차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인; (iii) VEGFR-1의 3차 세포외도메인과 VEGFR-2의 1차 세포외도메인, 2차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인; (iv) VEGFR-1의 4차 세포외도메인과 VEGFR-2의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인; 또는 (v) VEGFR-1의 5차 세포외도메인과 VEGFR-2의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인을 포함한다.
택일적으로, 상기 키메릭 데코이 수용체는 (i) VEGFR-2의 1차 세포외도메인과 VEGFR-1의 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-1의 세포외도메인; (ii) VEGFR-2의 2차 세포외도메인과 VEGFR-1의 1차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-1의 세포외도메인; (iii) VEGFR-2의 3차 세포외도메인과 VEGFR-1의 1차 세포외도메인, 2차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포 외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-1의 세포외도메인; (iv) VEGFR-2의 4차 세포외도메인과 VEGFR-1의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-1의 세포외도메인; 또는 (v) VEGFR-2의 5차 세포외도메인과 VEGFR-1의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-1의 세포외도메인을 포함한다.
본 발명에서 이용되는 키메릭 데코이 수용체는 바람직하게는, 2-4개의 세포외도메인, 가장 바람직하게는 3개의 세포외도메인을 포함한다.
보다 더 바람직하게는, 키메릭 데코이 수용체는 (i) VEGFR-2의 1차 세포외도메인, VEGFR-1의 2차 세포외도메인 및 VEGFR-2의 3차 세포외도메인; (ii) VEGFR-1의 2차 세포외도메인, VEGFR-2의 3차 세포외도메인 및 VEGFR-2의 4차 세포외도메인; 또는 (iii) VEGFR-1의 2차 세포외도메인, VEGFR-2의 3차 세포외도메인, VEGFR-2의 4차 세포외도메인 및 VEGFR-2의 5차 세포외도메인을 포함한다.
보다 더 바람직하게는, 키메릭 데코이 수용체는 (i) VEGFR-1의 2차 세포외도메인, VEGFR-2의 3차 세포외도메인 및 VEGFR-1의 4차 세포외도메인; 또는 (ii) VEGFR-1의 2차 세포외도메인, VEGFR-2의 3차 세포외도메인, VEGFR-1의 4차 세포외도메인 및 VEGFR-1의 5차 세포외도메인을 포함한다.
가장 바람직하게는, 본 발명에서 이용되는 키메릭 데코이 수용체는 VEGFR-1 의 2차 세포외도메인, VEGFR-2의 3차 세포외도메인 및 VEGFR-2의 4차 세포외도메인을 포함한다.
VEGFR-1 및 VEGFR-2의 아미노산 서열 및 뉴클레오타이드 서열은 GenBank에서 확인할 수 있다. 예를 들어, VEGFR-1의 2차 세포외도메인의 뉴클레오타이드 서열 및 아미노산 서열은 서열목록 제1서열 및 제2서열이며, VEGFR-2의 3차 세포외도메인의 뉴클레오타이드 서열 및 아미노산 서열은 서열목록 제3서열 및 제4서열이고, VEGFR-2의 4차 세포외도메인의 뉴클레오타이드 서열 및 아미노산 서열은 서열목록 제5서열 및 제6서열이다.
본 발명의 바람직한 구현예에 따르면, 상기 키메릭 데코이 수용체는 면역글로불린(Ig)의 Fc 영역이 융합되어 있다. 보다 바람직하게는, 본 발명에서 이용되는 키메릭 데코이 수용체는 IgG의 Fc 영역, 가장 바람직하게는 인간 IgG의 Fc 영역이 융합되어 있다. Ig의 Fc 영역은 상기 키메릭 데코이 수용체의 N-말단 또는 C-말단을 통하여, 바람직하게는 C-말단을 통하여 융합된다.
바람직한 Ig의 Fc 영역의 뉴클레오타이드 서열 및 아미노산 서열은 서열목록 제7서열 및 제8서열에 기재되어 있다.
키메릭 데코이 수용체를 코딩하는 뉴클레오타이드 서열은 아데노바이러스 지놈에 탑재된다.
키메릭 데코이 수용체를 코딩하는 뉴클레오타이드 서열은 적합한 발현 컨스트럭트 (expression construct) 내에 존재하는 것이 바람직하다. 상기 발현 컨스트럭트에서, 키메릭 데코이 수용체-코딩 뉴클레오타이드 서열은 프로머터에 작동적 으로 연결되는 (operatively linked) 것이 바람직하다. 본 명세서에서, 용어 “작동적으로 결합된”은 핵산 발현 조절 서열 (예: 프로모터, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다. 본 발명에 있어서, 키메릭 데코이 수용체-코딩 뉴클레오타이드 서열에 결합된 프로모터는, 바람직하게는 동물세포, 보다 바람직하게는 포유동물 세포에서 작동하여 키메릭 데코이 수용체-코딩 뉴클레오타이드 서열의 전사를 조절할 수 있는 것으로서, 포유동물 바이러스로부터 유래된 프로모터 및 포유동물 세포의 지놈으로부터 유래된 프로모터를 포함하며, 예컨대, U6 프로모터, H1 프로모터, CMV (cytomegalo virus) 프로모터, 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, HSV의 tk 프로모터, RSV 프로모터, EF1 알파 프로모터, 메탈로티오닌 프로모터, 베타-액틴 프로모터, 인간 IL-2 유전자의 프로모터, 인간 IFN 유전자의 프로모터, 인간 IL-4 유전자의 프로모터, 인간 림포톡신 유전자의 프로모터, 인간 GM-CSF 유전자의 프로모터, inducible 프로모터, 암세포 특이적 프로모터 (예컨대, TERT 프로모터, PSA 프로모터, PSMA 프로모터, CEA 프로모터, E2F 프로모터 및 AFP 프로모터) 및 조직 특이적 프로모터 (예컨대, 알부민 프로모터)를 포함하나, 이에 한정되는 것은 아니다. 가장 바람직하게는, CMV 프로모터이다.
암을 대상으로 유전자 치료를 시행하는 경우에는 일생동안 치료 유전자의 발현을 지속시킬 필요가 없고, 국소 투여할 경우에 아데노바이러스에 의한 면역반응 이 크게 문제시 되지 않거나, 오히려 장점이 될 수 있기 때문에 아데노바이러스를 이용한 암유전자 치료제 개발 연구가 활발하게 이루어지고 있다. 따라서 본 발명에서도 기본적으로 아데노바이러의 지놈 골격을 이용하여 암의 유전자 치료를 달성하고 있다.
아데노바이러스는 중간 정도의 지놈 크기, 조작의 편의성, 높은 타이터, 광범위한 타깃세포 및 우수한 감염성 때문에 유전자 전달 벡터로서 많이 이용되고 있다. 지놈의 양 말단은 100-200 bp의 ITR (inverted terminal repeat)를 포함하며, 이는 DNA 복제 및 패키징에 필수적인 시스 엘리먼트이다. 지놈의 E1 영역 (E1A 및 E1B)은 전사 및 숙주 세포 유전자의 전사를 조절하는 단백질을 코딩한다. E2 영역 (E2A 및 E2B)은 바이러스 DNA 복제에 관여하는 단백질을 코딩한다.
아데노바이러스 지놈의 작은 부분만이 cis에서 필요한 것으로 알려져 있기 때문에 (Tooza, J. Molecular biology of DNA Tumor viruses, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.(1981)), 아네노바이러스는 대량의 외래 DNA 분자를 운반할 수 있는 능력이 있으며, 이는 특히 293과 같은 특정 세포주를 이용하는 경우에 그러하다. 이러한 측면에서, 본 발명의 재조합 아데노바이러스에 있어서, 키메릭 데코이 수용체-코딩 뉴클레오타이드 서열 이외에 다른 아데노바이러스의 서열은 적어도 ITR 서열을 포함한다.
키메릭 데코이 수용체-코딩 뉴클레오타이드 서열은 E1 영역 (E1A 영역 및/또는 E1B 영역, 바람직하게는 E1B 영역) 또는 E3 영역에 삽입되는 것이 바람직하고, 보다 바람직하게는 E3 영역에 삽입된다. 한편, 다른 외래 뉴클레오타이드 서열 (예: 사이토카인, 면역-보조자극 인자, 자살 유전자 및 종양 억제 유전자)도 추가적으로 아데노바이러스에 포함시킬 수 있으며, 이는 E1 영역 (E1A 영역 및/또는 E1B 영역, 바람직하게는 E1B 영역) 또는 E3 영역에 삽입되는 것이 바람직하고, 보다 바람직하게는 E1 영역 (E1A 영역 및/또는 E1B 영역, 바람직하게는 E1B 영역)에 삽입된다. 또한, 상기 삽입 서열들은 E4 영역에도 삽입될 수 있다.
또한, 아데노바이러스는 야생형 지놈의 약 105%까지 패킹할 수 있기 때문에, 약 2 kb를 추가적으로 패키징할 수 있다. 따라서, 아데노바이러스에 삽입되는 상술한 외래 서열은 아데노바이러스의 지놈에 추가적으로 결합시킬 수도 있다.
본 발명의 바람직한 구현예에서, 본 발명의 재조합 아데노바이러스는 비활성화된 E1B 19 유전자, E1B 55 유전자 또는 E1B 19/E1B 55 유전자를 갖는다. 본 명세서에서, 유전자와 관련하여 사용되는 용어 “비활성화”는 그 유전자의 전사 및/또는 해독이 정상적으로 이루어지지 아니하여, 그 유전자에 의해 코딩되는 정상적인 단백질의 기능이 나타나지 않는 것을 의미한다. 예를 들어, 비활성화 E1B 19 유전자는 그 유전자에 변이 (치환, 부가, 부분적 결실 또는 전체적 결실)가 발생되어 활성의 E1B 19 kDa 단백질을 생성하지 못하는 유전자이다. E1B 19가 결실되는 경우에는 세포고사능을 증가시킬 수 있고, E1B 55 유전자가 결실된 경우에는 종양세포 특이성을 갖게 한다 (참조: 특허출원 제2002-23760호). 본 명세서에서 바이러스 지놈 서열과 관련하여 사용되는 용어, “결실”은 해당 서열이 완전히 결실된 것뿐만 아니라, 부분적으로 결실된 것도 포함하는 의미를 가진다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 재조합 아데노바이러스는 활성의 E1A 유전자를 포함한다. E1A 유전자를 포함하는 재조합 아데노바이러스는 복제 가능한 특성을 갖게 된다. 본 발명의 보다 바람직한 구현예에 따르면, 본 발명의 재조합 아데노바이러스는 비활성화된 E1B 19 유전자 및 활성의 E1A 유전자를 포함한다. 본 발명의 보다 더 바람직한 구현예에 따르면, 본 발명의 재조합 아데노바이러스는 비활성화된 E1B 19 유전자 및 활성의 E1A 유전자를 포함하고, 키메릭 데코이 수용체-코딩 뉴클레오타이드 서열은 결실된 E3 영역에 삽입되어 있는 것이다.
본 발명의 가장 바람직한 구현예에 따르면, 본 발명의 재조합 아데노바이러스는 비활성화된 E1B 19 유전자 및 변이된 활성의 E1A 유전자를 포함하고, 키메릭 데코이 수용체-코딩 뉴클레오타이드 서열은 결실된 E3 영역에 삽입되어 있는 것이다. 여기서 변이된 활성의 E1A 유전자는 Rb (retinoblastoma 단백질) 결합 부위를 코딩하는 뉴클레오타이드 서열 중에서 45번째 Glu 잔기가 Gly으로 치환된 변이 및 121-127번째 아미노산 서열이 전체적으로 Gly으로 치환된 변이를 갖는다.
종양 세포에서는 p53 단백질의 변이뿐 아니라 Rb의 돌연변이 혹은 Rb 관련 신호기전이 상당부분 손상되어 있기 때문에, Rb와의 결합능이 소실된 아데노바이러스는 정상 세포에서는 Rb의 활성으로 아데노바이러스의 복제가 억제 되지만 Rb의 기능이 억제된 종양 세포에서는 활발하게 복제되어 암세포를 선택적으로 살상할 수 있다. 따라서, 상술한 Rb 결합 부위에서의 변이를 포함하는 본 발명의 재조합 아데노바이러스는 암세포 특이성이 매우 우수하다.
하기의 실시예에서 예증된 바와 같이, 키메릭 데코이 수용체를 발현하는 본 발명의 재조합 아데노바이러스는 VEGF에 의한 신생혈관의 형성, 특히 VEGF에 의한 종양세포에서의 혈관신생을 선택적으로 억제함으로써 항종양 효과를 극대화한다. 그리고 키메릭 데코이 수용체를 발현하는 본 발명의 재조합 아데노바이러스는 낮은 역가의 바이러스로도 높은 살상 효과를 유도할 수 있기 때문에 투여된 체내에서서의 안전성이 매우 우수하다.
본 발명의 다른 양태에 따르면, 본 발명은 (a) 상술한 재조합 아데노바이러스의 치료학적 유효량; 및 (b) 약제학적으로 허용되는 담체를 포함하는 항혈관신생 조성물을 제공한다.
본 발명의 약제학적 조성물에 유효성분으로 포함되는 재조합 아데노바이러스는 상술한 본 발명의 재조합 아데노바이러스와 동일한 것이므로, 재조합 아데노바이러스에 대한 상세한 설명은 본 발명의 약제학적 조성물에도 그대로 적용된다. 따라서, 본 명세서의 불필요한 반복 기재에 의한 과도한 복잡성을 피하기 위하여 공통 사항은 그 기재를 생략한다.
본 발명의 항혈관신생 조성물에 의해 예방 또는 치료될 수 있는 질환 또는 질병은 과다한 혈관신생에 의해 초래되는 모든 질환 또는 질병을 포함하며, 바람직하게는 암, 종양, 당뇨병성 망막증, 미숙아 망막증, 각막 이식 거부, 신생혈관 녹내장, 홍색증, 증식성 망막증, 건선, 혈우병성 관절, 아테롬성 동맥경화 플라크 내에서의 모세혈관 증식, 켈로이드, 상처 과립화, 혈관 접착, 류마티스 관절염, 골관절염, 자가면역 질환, 크론씨병, 재발협착증, 아테롬성 동맥경화, 장관 접착, 캣 스크래치 질환, 궤양, 간경병증, 사구체신염, 당뇨병성 신장병증, 악성 신경화증, 혈전성 미소혈관증, 기관 이식 거부, 신사구체병증, 당뇨병, 염증 또는 신경퇴행성 질환이다.
본 발명에서 개발된 키메릭 데코이 수용체를 발현하는 재조합 아데노바이러스는 신생혈관 형성을 효과적으로 억제하여 다양한 혈관신생-관련 질환 특히 항종양 효과가 현격히 증대되며, 특히 E1B 55 유전자가 비활성화 되거나 E1A에서 Rb 결합 부위가 변이가 된 경우에는, 암세포 특이성이 매우 우수하다. 이는 결과적으로 암치료에 필요한 바이러스 투여량을 감소시킬 수 있어 바이러스에 의한 생체내 독성과 면역반응을 크게 줄일 수 있다.
본 발명의 조성물에 포함되는 재조합 아데노바이러스는, 다양한 종양 세포에 대하여 살상 효능을 나타내므로, 본 발명의 약제학적 조성물은 종양과 관련된 다양한 질병 또는 질환, 예컨대 뇌암, 위암, 폐암, 유방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 식도암, 췌장암, 방광암, 전립선암, 대장암, 두경부암, 피부암, 흑생종, 결장암 및 자궁경부암 등의 치료에 이용될 수 있다. 본 명세서에서 용어 “치료”는 (ⅰ) 혈관신생의 예방; (ⅱ) 혈관신생의 억제에 따른 혈관신생 관련된 질병 또는 질환의 억제; 및 (ⅲ) 혈관신생의 억제에 따른 혈관신생과 관련된 질병 또는 질환의 경감을 의미한다. 따라서, 본 명세서에서 용어 “치료학적 유효량”은 상기한 약리학적 효과를 달성하는 데 충분한 양을 의미한다.
본 발명의 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.
본 발명의 약제학적 조성물은 비경구 투여가 바람직하고, 예컨대 정맥내 투여, 복강내 투여, 종양내 투여, 근육내 투여, 피하 투여, 또는 국부 투여를 이용하여 투여할 수 있다. 난소암에서 복강내로 투여하는 경우 및 간암에서 문맥으로 투여하는 경우에는 주입 방법으로 투여할 수 있고, 유방암의 경우에는 종양 매스에 직접 주사하여 투여할 수 있으며, 결장암의 경우에는 관장으로 직접 주사하여 투여할 수 있고, 방광암의 경우에는 카테테르 내로 직접 주사하여 투여할 수 있다.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 질병 증상의 정도, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 목적하는 치료에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 일반적으로, 본 발명의 약제학적 조성물은 1 × 105 - 1 × 1015 PFU/㎖의 재조합 아데노바이러스를 포함하며, 통상적으로 1 × 1010 PFU를 이틀에 한번씩 2주 동안 주사한다.
본 발명의 약제학적 조성물은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 됨으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
본 발명의 약제학적 조성물은 단독의 요법으로 이용될 수 있으나, 다른 통상적인 화학 요법 또는 방사 요법과 함께 이용될 수도 있으며, 이러한 병행 요법을 실시하는 경우에는 보다 효과적으로 암 치료를 할 수 있다. 본 발명의 조성물과 함께 이용될 수 있는 화학요법제는 시스플라틴 (cisplatin), 카르보플라틴 (carboplatin), 프로카르바진 (procarbazine), 메클로레타민 (mechlorethamine), 시클로포스파미드 (cyclophosphamide), 이포스파미드 (ifosfamide), 멜팔란(melphalan), 클로라부실 (chlorambucil), 비술판 (bisulfan), 니트로소우레아 (nitrosourea), 디악티노마이신 (dactinomycin), 다우노루비신 (daunorubicin), 독소루비신 (doxorubicin), 블레오마이신 (bleomycin), 플리코마이신 (plicomycin), 미토마이신 (mitomycin), 에토포시드 (etoposide), 탁목시펜 (tamoxifen), 택솔 (taxol), 트랜스플라티눔 (transplatinum), 5-플루오로우라실 (5-fluorouracil), 빈크리스틴 (vincristin), 빈블라스틴 (vinblastin) 및 메토트렉세이트 (methotrexate) 등을 포함한다. 본 발명의 조성물과 함께 이용될 수 있는 방사 요법은 X-선 조사 및 γ-선 조사 등이다.
본 발명의 특징 및 장점을 요약하면 다음과 같다:
(a) 본 발명의 재조합 아데노바이러스는 혈관신생을 억제하는 키메릭 데코이 수용체를 발현한다.
(b) 키메릭 데코이 수용체를 발현하는 본 발명의 재조합 아데노바이러스는 혈관신생을 매우 효과적으로 억제하여, 다양한 혈관신생-관련 질환의 유전자치료제로 이용될 수 있다.
(c) 특히, 본 발명의 재조합 아데노바이러스는 종양세포 살상능이 우수하다.
(d) 기존의 혈관신생 관련 항암제(예컨대, 아바스틴)는 세포증직억제(cytostatic) 효과만을 가지고 있어서 암 치료제로서의 한계를 가지고 있으나, 본 발명의 재조합 아데노바이러스는 세포사멸(cytocidal) 효과를 가지고 있어서 암 세포를 사멸시킬 수 있으며 이에 기존의 암 치료제의 한계를 극복할 수 있다.
(e) 또한, 기존의 혈관신생 관련 항암제는 정상 세포에도 작용하여 부작용을 유발하지만, 본 발명의 재조합 아데노바이러스는 암 세포에 특이적으로 작용하여 이러한 부작용을 크게 줄일 수 있다.
(f) 기존의 VEGF 트랩은 단백질 제제로서 생체 내에서 반감기가 짧다. 그러나, 본 발명의 재조합 아데노바이러스는 지속적으로 VEGF 트랩을 과발현 하기 때문에 이러한 문제점을 해결할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실험재료 및 방법
1. 대상 세포주 및 세포배양
실험에 사용된 세포주들은 인체 폐암 세포주인 A549와 H460은 ATCC(American Type culture Collection, Manassas, VA, USA)에서 구입하였고, HUVEC(Human umbilical vascular endothelial cell)은 Lonza(Basel, 스위스)로부터 구입 하였으며, 아데노바이러스 초기 발현 유전자인 E1 부위가 숙주 유전체 내에 내재되어 있는 HEK293 세포주(ATCC)를 아데노바이러스 생산 세포주로 사용하였다. HUVEC 세포를 제외한 모든 세포주들은 10% 우태아 혈청(FBS; Gibco-BRL, Grand Island, NY, USA)이 포함된 DMEM 배양액으로 항생제 100 U/㎖ 페니실린, 100 ㎍/㎖ 스트렙토마이신(Gibco-BRL)을 첨가하여 5% CO2 의 존재 하에 37℃ 항온 배양기에서 배양하였다. HUVEC 세포는 5% FBS가 포함된 EGM-2MV(Lonza, Walkersville, MC, USA) 에 항생제 100 U/㎖ 페니실린, 100 ㎍/㎖ 스트렙토마이신(Gibco-BRL)을 넣고 배양한 계대 배양 5-8 사이의 세포들로 실험을 하였다.
2. KH903을 발현하는 아데노바이러스들의 제작, 생산 및 역가산출
KH903을 발현하는 재조합 아데노바이러스를 제작하기 위하여 KH903 플라스미드인 pKH903(KangHong, Cheng du, 중국)을 아데노바이러스 E1 셔틀벡터인 pCA14(Microbix)에 EcoRI 절단하고 삽입한 뒤 이를 다시 BglII로 절단하여 얻어진 KH903 DNA 절편을 BamHI으로 절단한 E3 셔틀 벡터 pSP72ΔE3(본 연구실에서 제작, Cancer Gene Therapy, 12:61-71(2005))에 삽입하였다. KH903은 VEGFR-1의 2차 세포외도메인(서열목록 제1서열 및 제2서열), VEGFR-2의 3차 세포외도메인(서열목록 제3서열 및 제4서열) 및 VEGFR-2의 4차 세포외도메인(서열목록 제5서열 및 제6서열)이 순차적으로 결합하여 제조된 키메릭 데코이 수용체에 인간 IgG Fc 영역(서열목록 제7서열 및 제8서열)이 융합되어 만들어진 것이다. 제작된 pSP72ΔE3/KH903 벡터를 XbaI으로 잘라 pSP72ΔE3/CMV 벡터(본 연구실에서 제작, Cancer Gene Therapy, 12:61-71(2005))의 CMV 프로모터를 삽입하여 pSP72ΔE3-CMV-KH903 E3 셔틀벡터를 제조하였다. KH903을 발현하는 복제 불능 아데노바이러스를 제작하기 위하여, 상기에서 제작된 pSP72ΔE3-CMV-KH903 E3 셔틀벡터를 PvuI으로 처리하여 선형화시키고, E3 유전자가 소실되고 E1 부위에 lacZ가 삽입되어 있으며 아데노바이러스 타입 35의 파이버 놉(knob)으로 치환된 pdE1-k35 토탈벡터[Ad35 파이버 놉부분을 가진 아데노바이러스(Cell Genesys)로부터 PCR을 통해 700 bp의 35 knob 부분을 얻어 NcoI/MfeI으로 잘라 미리 NcoI/MfeI으로 자른 pSK5543(Coxsackie and adenovirus receptor binding ablation reduces adenovirus liver tropism and toxicity, Human Gene Ther 16:248-261(2005))과 라이게이션하여 pSK5543/35k를 제작하였다. 제작된 pSK5543/35k는 SacII/XmnI으로 잘라 SpeI으로 자른 dE1/lacZ 상동재조합을 통해 pdE1-k35를 제작하였다]를 SpeI 제한효소로 처리하여 선형화시켰다. 이들을 함께 대장균 BJ5183(스위스국 Fribourgh 대학의 Verca; Heider, H. et al., Biotechniques, 28(2):260-265, 268-270(2000)에서 동시 형질전환시켜 유전자 상동 재조합(homologous recombination)을 유도하여 lacZ 유전자와 KH903을 동시에 발현하는 복제 불능 아데노바이러스 벡터인 pdE1-k35/KH903를 제작하였다. VEGF를 효과적으로 억제시킬 수 있는 VEGF 트랩을 발현하는 종양 특이적 살상 아데노바이러스를 제작하기 위해서는, 상기에서 제작된 pSP72ΔE3-CMV-KH903 E3 셔틀벡터를 PvuI으로 처리하여 선형화시킨 뒤, SpeI 제한효소를 처리하여 선형화 시킨 pRdB 아데노바이러스 토탈 벡터(E1A의 Rb 결합 부위가 변이되고, E1B 19 kDa 유전자와 E1B 55 kDa 유전자가 함께 소실된 종양 특이적 살상 아데노바이러스, 참조: 대한민국 특허 제0746122호)와 함께 대장균 BJ5183에서 동시 형질전환시켜 pRdB/KH903 종양 선택적 살상 아데노바이러스 벡터를 제작하였다. E1A의 Rb 결합 부위 변이는 ElA 유전자 서열에 위치한 Rb 결합 부위를 코딩하는 뉴클레오타이드 서열 중에서 45번째 Glu 잔기가 Gly으로 치환된 변이 및 121-127번째 아미노산 서열이 전체적으로 Gly으로 치환된 변이이다. 상동 재조합된 아데노바이러스 벡터들을 HindⅢ 제한효소로 처리하여 상동 재조합 유무를 확인한 후, 확인된 플라스미들은 PacⅠ제한효소로 절단한 뒤 HEK293 세포주에 형질 전환시켜 아데노바이러스를 생산하였다. 대조군으로 사용된 바이러스는 E1 부위의 유전자들이 결손되고 그 부위에 lacZ 유전자를 가진 dE1-k35 와 동시에 E1B 19 kDa와 E1B 55 kDa 유전자들이 모두 결손된 RdB이며, 각각의 아데노바이러스는 HEK293 세포주에서 증식시켜 CsCl 농도구배로 농축시켜 순수 분리하였으며, 한계적정분석(limiting titration assay) 및 포토스펙트로프토미터(photospectrometer)로 역가(plaque forming unit; PFU)를 산출하였다.
3. 웨스턴 블롯팅
KH903을 발현하는 아데노바이러스가 인체 폐암 세포주에 감염되었을 때 세포 내에서 KH903 단백질이 생성되어 세포 배양액으로 분비되어 나오는 지를 검증하기 위하여, A549세포에 제작한 아데노바이러스인dE1-k35/KH903을 20, 50 및 100 MOI로 각각 처리하고 48 시간 뒤에 세포 배양액과 세포를 모두 수거하여 SDS-PAGE(sodium-dodecyl sulfate poly-acrylamide gel electrophoresis)를 시행하였다. 전기영동 후 젤에 있는 단백질들을 PVDF(polyvinylidene fluoride) 막에 전기이동(electro-transfer) 시킨 후, KH903의 구조 중 인간 IgG Fc 부위를 특이적으로 인지하는 항체를 일차항체(Cell signaling, Danvers, MA, USA)로 결합시켰다. HRP(horseradish peroxidase)가 결합된 염소 항-마우스 IgG를 이차항체(Cell signaling, Danvers, MA, USA)로 반응시킨 뒤, ECL(enhanced chemiluminescence) (Pierce, Rockford, IL, USA) 방법으로 LAS4000을 이용하여 막 상의 단백질과 항체와의 결합여부를 조사하고 각 단백질의 발현양상을 확인하였다.
4. VEGF 발현변화
종양에서 분비되는 VEGF를 효과적으로 억제할 수 있는 KH903을 발현하는 아데노바이러스에 의해 VEGF의 발현이 감소되는지를 검증하기 위하여, ELISA(enzyme-linked immunosorbent assay)를 시행하였다. 먼저 VEGF의 발현이 효과적으로 억제되는지를 검증하기 위하여 폐암세포주인 A549, H460, H322(ATCC), H358(ATCC) 및 H1299(ATCC) 를 6-웰 플레이트에 각각 3 x 105 cells/well으로 분주한 뒤 다음날 아데노바이러스를 2-100의 MOI(multiplicity of infection)로 감염시키고 6 시간 후 5% FBS가 포함된 DMEM 배지로 교체하였다. 바이러스 감염 후 48 시간에 배지를 회수하기 위하여, 배지 회수 24 시간 전에 FBS가 포함되지 않은 DMEM으로 교체하였다. 회수된 배지는 800 x g로 원심분리하여 상층액을 분리한 뒤, 이 중 150 ㎍을 이용하여 VEGF ELISA 분석을 시행하였다.
5. MTT 분석
아데노바이러스 감염에 따른 KH903의 발현에 의한 혈관 내피 세포 증식능의 억제를 정량화하기 위해, MTT (3-(4,5-dimethylathiazol-2yl)-2,5-diphenyltetrazolium bromide, 2 mg/ml) 분석을 수행하였다. HUVEC을 2% 젤라틴으로 코팅된 48-웰 플레이트에 분주하고 24 시간 후 30 MOI의 제작한 재조합 아데노바이러스를 처리하였다. 바이러스 처리 전 HUVEC 은 EBM-2(Lonza, Walkersville, MC, USA) 배지로 혈청기아(starvation)를 주었다. 바이러스 처리 후 72 시간 후에 세포의 생존율을 측정하기 위해 배지를 제거한 후, MTT 용액을 각 웰 당 150 ㎕을 넣고 5% CO2의 존재 하에 37℃ 항온 배양기에서 4 시간 동안 반응시킨 후 상층액을 제거하였다. 상층액이 제거된 플레이트웰에 1 ㎖의 DMSO(dimethyl sulphoxide)를 첨가하고 37℃에서 10 분간 반응시킨 후, DMSO로 용출된 상층액을 540 ㎚에서 흡광도를 측정하여 세포의 상대적 생존율을 측정하였다.
6. 내피세포 이동성 분석
HUVEC의 화학주성 이동성을 알아보기 위하여, 6.5-㎜ 직경 폴리카보네이트 여과지(8-㎛ 동공크기)의 Transwell(Corning Costar, Cambridge, MA, USA)을 이용하여 내피세포 이동성 분석을 진행하였다. 먼저, 상부 챔버의 필터에 0.1% 젤라틴을 이용해 코팅하였다. 젤라틴이 다 건조하면 6시간 동안 혈청-결여 배지에서 배양하여 혈청 기아를 준 HUVEC을 1 x 105 세포로 카운팅 하여 상부 챔버에 넣고 dE1-k35와 dE1-k35/KH903 아데노바이러스를 감염시켜 수거한 세포 배양액을 하부 챔버에 넣고 플레이트는 37℃ 에서 3 시간 30 분 동안 배양시켰다. 3 시간 30 분 후 플레이트를 꺼내 상부 챔버의 배지를 따라낸 후 세포를 메탄올로 1 분간 고정 하고 H & E 염색을 하여 슬라이드를 제작하였다. 이후에 그룹 별로 200배의 배율에서 여덟 군데의 사진을 찍어 평균을 구해 세포의 이동성을 정량화하였다.
7. 튜브 형성 분석
종양에서 분비되는 VEGF를 효과적으로 억제할 수 있는 KH903에 의한 VEGF의 발현 감소로 혈관 내피 세포의 튜브 형성 기능이 변화되는지를 알아보기 위하여, HUVEC을 이용한 튜브 형성 분석을 시행하였다. 먼저 250 ㎕의 성장인자-감소 마트리젤(Collabo-rative Biomedical Products, Bedford, MA, USA)을 미리 -20℃에 넣어둔 24-웰 플레이트에 균일하게 분주한 뒤, 37℃에서 30 분간 굳혔다. HUVEC(5-7 계대 배양) 세포는 6 시간 동안 혈청-결여 EBM-2(Lonza, Walkersville, MC, USA) 배지에서 배양하여 혈청기아 시킨 뒤, 트립신을 처리하여 세포 수를 측정하였다. dE1-k35 또는 dE1-k35/KH903 아데노바이러스를 각각 20 MOI 처리한 후 48 시간 후에 수득한 A549 및 H460 세포 배양액을 혈청기아 전처리가 된 HUVEC(1.5 x 105 cells/well)세포와 섞은 뒤, 마트리젤이 분주된 24-웰 플레이트에 분주하고 배양하였다. 양성 대조군으로는 20 ng/㎖의 VEGF 단백질을 이용하였다. 배양 후 12 시간에서 16 시간 사이에 배양액을 제거하고 PBS로 2번 세척한 뒤 현미경으로 튜브 형성을 관찰하였다.
8. 엑스 비보 대동맥 고리 스프라우팅 분석
종양에서 분비되는 VEGF를 효과적으로 억제할 수 있는 KH903에 의한 혈관 형성 억제를 관찰하기 위하여, 대동맥 고리 스프라우팅 분석을 시행하였다. 오리엔트(Orient Bio, Korea, Inc.,)에서 구입한 6 주령의 Sprague Dawley rat으로부터 대동맥을 분리하고, 대동맥 주변의 섬유-지방 조직을 제거한 뒤, 1 ㎜ 두께의 고리 로 얇게 잘랐다. 미리 차갑게 해둔 48-웰 플레이트에 마트리젤을 200 ㎕씩 분주하고 대동맥 고리를 각각의 well 안의 matrigel에 심어준 후 37℃에서 20 분간 굳혔다. 30 분 후 matrigel이 굳으면, 튜브 형성 분석에서 사용되었던 세포 배양액 250 ㎕를 각각의 well에 처리하여 배양 하고 매일 현미경으로 대동맥 고리로부터 생성되어진 혈관들을 관찰하였다. 양성 대조군으로는 VEGF 단백질(20 ng/㎖)을 처리하였다. 배양 후 새로 형성된 혈관들은 이중-암맹 분석으로 양성 대조군을 5점, 혈관이 형성되지 않은 실험군을 0점으로 점수를 부여하여 분석하였으며, 각각의 실험군에 대해 12개의 대동맥 고리를 대상으로 대동맥 고리 스프라우팅 분석을 수행하였다.
9. KH903을 발현하는 종양선택적 살상 아데노바이러스의 세포살상능 검증
종양에서 분비된 VEGF를 감소시키는 KH903의 발현 여부가 아데노바이러스의 복제에 어떠한 영향을 미치는지 검증하기 위하여, 세포병변 효과(cytopathic effect: CPE) 분석을 수행 하였다. 폐암 세포주를 포함한 인체 종양 세포주들을 48-웰 플레이트에 각각 분주하고, 24 시간 후 dE1-k35, dE1-k35/KH903, RdB, 또는 RdB/KH903 아데노바이러스를 0.1-10 MOI로 감염시켰다. 대조군 바이러스와의 차이가 가장 두드러지는 시점에 배지를 제거하고 플레이트 바닥에 남아있는 세포들을 0.5% 크리스탈 바이올렛으로 고정하고 염색한 후 분석하였다.
10. 생체 내 항종양 효과 검증
오리엔트에서 구입한 생후 6-8 주 정도 경과된 누드 생쥐 복부 피하에 1 x 107 개의 인체 폐암 세포주 H460을 주사하였다. 종양의 용적이 약 70-100 ㎜3 정도 되었을 때, RdB, RdB/KH903 아데노바이러스를 음성 대조군인 PBS와 함께 각각 이틀 간격으로 세 번 종양 내에 직접 주사한 후 종양의 크기를 이틀 간격으로 측정하였다. 종양의 용적은 칼리퍼스로 종양의 단축과 장축을 측정하여 다음과 같은 공식으로 산출하였다: 종양의 용적 (mm3) = (단축 mm)2x 장축mm x 0.523.
11. VEGF와 결합하는 KH903을 발현하는 종양선택적 살상 아데노바이러스 투여에 따른 종양 조직 내 신생혈관형성 억제효과 검증
6-8 주령의 누드 생쥐 복부 피하에 폐암 세포주인 H460을 주사한 후 종양의 크기가 약 100-120 ㎜3 정도 되었을 때, RdB, RdB/KH903 아데노바이러스 또는 음성 대조군인 PBS를 이틀 간격으로 3회 종양 내 투여하였다. 마지막 바이러스를 투여한 후 10 일경에 종양을 적출하여 IHC zinc fixative(Formalin-free) (BD Biosciences Pharmingen, San Diego, CA, USA) 용액에 고정시킨 뒤 파라핀 블록을 제작하였다. 제작된 파라핀 블록을 4 ㎛ 두께로 잘라 슬라이드로 만든 뒤, 이를 자일렌, 100%, 95%, 80%, 70% 에탄올 용액에 차례로 담궈 파라핀을 제거(deparafinization)한 후 hematoxylin과 eosin(H & E)으로 염색하였다. 종양이 분비하는 VEGF와 결합하여 발현을 감소시키는 KH903에 의하여 종양 조직 내 혈관 형성이 억제 되었는지 확인하기 위하여, 혈관 내피 세포 특이적 항원인 CD31을 선택적으로 인지할 수 있는 항체 인 래트 항-마우스 CD31 단일클론항체(MEC13.3; BD Biosciences Pharmingen)를 이용하여 조직 면역 염색을 시행하였다. 파라핀이 제거된 4 ㎛ 두께의 종양 조직 슬라이드를 3% H2O2 용액에 10 분간 반응시켜 내인성 과산화 효소의 작용을 차단시키고, Protein Block Serum free(DakoCytomation, Carpinteria, CA, USA)으로 30 분간 비특이적인 항체 반응이 일어나지 않도록 한 후, CD31 항체를 일차 항체로 혼성화시켰다. 바이오틴이 결합된 폴리클로날 항-래트 IgG 항체(BD Biosciences Pharmingen)를 이차항체로 반응시킨 뒤 DAB(DakoCytomation, Carpinteria, CA, USA)을 이용하여 CD31의 발현 양상을 규명하였다.
12. 종양 내 혈관수의 계산
혈관 내피 세포 특이적 항원인 CD31(platelet endothelial cell adhesion molecule1) 양성으로 염색된 종양 내 혈관을 먼저 저배율로 관찰하여 무작위로 사진을 찍은 후, 배율을 높여 100 배 시야에서 관찰되는 혈관의 수를 정량 하였다. 세 장의 슬라이드로부터 각각 5개 시야를 선택하여 혈관 수를 계산하고 평균값을 산출하여 그 값을 대표 값으로 사용하였다.
실험 결과
1. VEGF와 특이적으로 결합하는 KH903을 발현하는 아데노바이러스의 제작 및 VEGF 발현변화 검증
VEGF에 특이적으로 결합하여 종양에서 분비하는 VEGF의 발현을 억제하는 VEGF 트랩인 KH903을 발현하는 아데노바이러스 dE1-k35/KH903를 제작하였다(도 1a ). dE1-k35/KH903 아데노바이러스의 E3 부위에 삽입된 KH903이 세포감염 시 실제 세포에서 형성되어 배지로 분비되는지 확인하고자 감염시켰던 종양세포와 배지를 모두 수거하여 KH903의 구조 중 인간 IgG의 Fc 부위를 검출하는 항체를 이용하여 웨스턴 블롯팅을 진행하였다. 실험 결과, 세포 파쇄물에서는 KH903의 생성을 확인 할 수 있을 정도의 양이 관찰되었으나, 배지에서는 많은 양의 KH903을 관찰할 수 있었다. 이를 통해 KH903은 감염된 세포 내에서 생성되어 배지로 분비되어 나오는 것을 확인 할 수 있었다(도 1c).
아데노바이러스의 초기 유전자인 E1A를 발현하는 복제 가능 아데노바이러스에 의하여 VEGF의 발현이 감소된다는 보고에 따라28, KH903 에 의한 VEGF 발현 변화를 검증하기 위하여, E1A가 소실되고 lacZ 유전자와 KH903을 동시에 발현하는 복제 불능 아데노바이러스인 dE1-k35/KH903을 제작하였다. dE1-k35/KH903을 인체 폐암 세포주들(A549, H460, HCC827, H1299, H2172, H322)에 감염시키고, 세포로부터 배지를 회수하여 ELISA를 통하여 VEGF 발현 양을 정량 하였다. 그 결과, 실험에 이용된 모든 종류의 폐암 세포주에서 dE1-k35/KH903 아데노바이러스의 감염에 의해 VEGF의 발현이 현저하게 감소되는 것을 확인할 수 있었다(도 2a).
실제 종양 세포에서 VEGF가 얼마나 생성되고 있으며, 분비되는 VEGF가 KH903 발현에 의해 감소하는 것을 검증하기 위해 배지를 수거하고 난 세포를 파쇄하여 세 포에서 VEGF 발현양을 확인하였다. 도 2b에서 보는 바와 같이, 아데노바이러스 감염 후 배지를 이용해 수행했던 VEGF ELISA의 결과와 마찬가지로 dE1-k35을 감염시킨 세포에 비해 dE1-k35/KH903을 감염시킨 세포에서 VEGF 발현양이 확연하게 감소한 것을 관찰할 수 있었다(도 2b).
2. VEGF와 특이적으로 결합하는 KH903을 발현하는 아데노바이러스에 의한 신생 혈관 형성 억제능 관찰
먼저, VEGF를 억제시키는 KH903의 발현으로 인한 VEGF 농도의 변화가 HUVEC의 VEGF-유도 증식에 대한 영향을 확인하였다. HUVEC을 마트리젤-코팅 48-웰 플레이트에 2 X 104 cells/웰로 씨딩 후 30 MOI의 dE1-k35 또는 dE1-k35/KH903 아데노바이러스로 감염시키고 72시간 후 MTT 분석을 수행하여 살아있는 세포의 생존율을 측정하였다. 그 결과, dE1-k35/KH903 을 감염시킨 그룹에서 바이러스를 처리하지 않은 그룹에 비해서 생존율이 53% 감소하였으며 양성 대조군인 dE1-k35을 감염시킨 그룹에 비해서는 30% 감소한 것을 관찰할 수 있었다(도 3).
VEGF 발현을 억제시키는 KH903으로 인한 VEGF 양의 변화가 혈관 내피 세포의 이동 능력에 미치는 영향을 검증하기 위하여, HUVEC 세포를 이용하여 이동성 분석을 시행하였다. A549, H460 세포주를 20 MOI의 dE1-k35 또는 dE1-k35/KH903 아데노바이러스로 각각 감염시키고 48시간 뒤에 수득한 배지로 HUVEC 세포를 배양하였다. 그 결과 아무 것도 처리하지 않은 세포 배양액 또는 dE1-k35 아데노바이러스를 감 염시킨 세포 배양액을 처리한 경우에는 상부 챔버에서 하부 챔버로 많은 세포가 이동한 반면, dE1-k35/KH903 아데노바이러스를 감염시킨 세포 배양액을 처리한 경우에는 HUVEC 세포들의 이동이 위의 두 그룹에 비해 잘 되지 않음을 관찰할 수 있었다(도 4).
KH903의 발현으로 인한 VEGF 양의 변화가 혈관 내피 세포의 혈관 형성 능력에 미치는 영향을 검증하기 위하여, HUVEC 세포를 이용하여 튜브 형성 분석을 시행하였다. A549, H460 세포주를 20 MOI의 dE1-k35 또는 dE1-k35/KH903 아데노바이러스로 각각 감염시키고 48시간 뒤에 수득한 배지로 HUVEC 세포를 배양하였다. 그 결과 아무 것도 처리하지 않은 세포 배양액 또는 dE1-k35 아데노바이러스를 감염시킨 세포 배양액을 처리한 경우에는 크고 굵은 튜브가 형성된 반면 dE1-k35/KH903 아데노바이러스를 감염시킨 세포 배양액을 처리한 경우에는 HUVEC 세포들의 혈관 형성이 잘 되지 않아 가늘고 부분적으로 끊어진 튜브가 형성된 것을 관찰할 수 있었다(도 5).
이상에서 확인된 신생 혈관 형성능의 차이를 엑스 비보 상에서 확인 하기 위하여, 래트의 대동맥을 이용하여 혈관 스프라우팅 분석을 수행하였다. 먼저, dE1-k35 또는 dE1-k35/KH903 아데노바이러스를 20 MOI로 처리하고 48 시간 뒤에 회수한 A549, H460 세포 배양액을 대동맥 고리에 처리하고 5일 동안 배양한 결과, 아무것도 처리하지 않은 세포 배양액이나 dE1-k35 를 감염시킨 A549 세포 배양액을 처리한 대동맥 고리와는 대조적으로, dE1-k35/KH903 아데노바이러스를 처리한 세포 배양액으로 대동맥 고리를 배양한 경우에 혈관 스프라우팅이 거의 일어나지 않은 것을 확인할 수 있었다(도 6). 이를 보다 정량적으로 비교 검증하기 위하여, 형성된 혈관들을 이중-암맹 방식으r로 양성 대조군(most positive)을 5점, 혈관이 스프라우팅 되지 않은 실험군(least positive)을 0점으로 점수를 부여하여 분석하였다. 아무 것도 처리하지 않은 세포 배양액이나 dE1-k35 를 감염시킨 A549, H460 세포 배양액을 처리한 모든 대동맥에서 혈관형성이 활발하게 일어남을 확인할 수 있었으나, dE1-k35/KH903 아데노바이러스를 감염시킨 세포의 배양액을 처리한 경우에는 혈관만이 스트라우팅 되어 대조군 바이러스인 dE1-k35 에 비해 혈관 형성이 현저하게 억제됨을 확인하였다.
3. VEGF와 특이적으로 결합하는 KH903을 발현하는 종양 선택적 살상 아데노바이러스의 세포 살상능 검증
VEGF 발현 억제로 인한 신생 혈관 형성능의 감소는 종양의 성장을 억제할 수 있기 때문에 KH903의 항암 효과를 확인해 보고자 KH903를 발현하는 종양 선택적 살상 아데노바이러스인 RdB/KH903와 대조군 종양 선택적 살상 아데노바이러스인 RdB를 각각 제작하였다. KH903의 발현으로 아데노바이러스의 복제가 저해될 수 있는지를 확인하기 위하여, 몇 종류의 암 세포주 및 정상 세포주들을 dE1-k35, dE1-k35/KH903, RdB 또는 RdB/KH903 아데노바이러스로 감염시키고 바이러스의 복제에 따른 세포 사멸 정도를 CPE 분석으로 관찰하였다. 음성 대조군인 dE1-k35 복제 불능 아데노바이러스로 감염된 세포들에서는 아데노바이러스가 복제되지 않기 때문에 세포 살상 효과가 나타나지 않았으나, 복제 가능 아데노바이러스들인 RdB 또는 RdB/KH903로 감염된 경우에는 바이러스 양이 증가함에 따라 세포 살상 효과도 증가되었다. 실험에 이용된 모든 세포주에서 KH903을 발현하는 아데노바이러스인 RdB/KH903 의 세포살상능이 대조군 바이러스인 RdB에 비해 뛰어난 것을 관찰할 수 있었다(도 7).
4. VEGF와 특이적으로 결합하는 KH903을 발현하는 종양 선택적 살상 아데노바이러스의 생체 내 항종양 효과 검증
VEGF 발현을 억제하는 KH903을 발현하는 아데노바이러스의 생체 내 항종양 효과를 검증하기 위하여, 인체 폐암 세포주인 H460 세포를 누드 생쥐의 복부 피하에 주사하고, 형성된 종양의 용적이 약 80~100 ㎣ 정도 되었을 때 1 X 1010 vp의 RdB, RdB/KH903 아데노바이러스를 음성 대조군인 PBS와 함께 이틀 간격으로 3번 종양 내에 투여한 후 종양의 성장을 관찰하였다(도 8). 음성 대조군인 PBS를 투여 받은 누드 생쥐의 경우, 바이러스 투여 후 23일경에 이미 종양의 용적이 약 2170.238 ± 455.1216 ㎣ 으로 급격하게 성장하였으나, KH903을 발현하는 종양 특이적 살상 아데노바이러스인 RdB/KH903을 투여한 경우에는 종양의 성장이 크게 지연됨을 확인하였다. 즉, RdB, RdB/KH903 아데노바이러스를 투여 받은 생쥐의 경우 1181.391 ± 985.9131 ㎣, 252.67 ± 103.8464 ㎣로, KH903의 신생 혈관 형성 억제로 인한 항종양 효과와 종양 선택적 살상 아데노바이러스의 뚜렷한 항종양 효과를 관찰 할 수 있었다.
5. VEGF 발현을 억제하는 KH903을 발현하는 종양 선택적 살상 아데노바이러스의 투여에 따른 종양 내 혈관 분포 관찰
인체 폐암 세포주인 H460을 누드 생쥐의 복부 피하에 주사한 후 종양이 형성되면 RdB와 RdB/KH903 아데노바이러스를PBS를 음성 대조군으로 하여 1 x 1010 vp 로 이틀 간격으로 3회 종양 내 주사하였다. 마지막 투여 후 하루 뒤에 종양을 적출하여 혈관 내피 세포 특이적 항원인 CD31을 조직 면역 염색법을 통해 관찰하였다. 그 결과, 음성대조군인 PBS 군에 비해 종양 선택적 살상 아데노바이러스인 RdB를 처리한 실험군에서는 종양 내 혈관수가 21% 감소하였음을 확인하였고 RdB/KH903를 투여한 경우에는 혈관수가 71% 억제된 것을 관찰할 수 있었다(도 9).
추가 논의 사항
신생혈관 형성은 기존에 존재하는 혈관으로부터 새로운 혈관이 형성되는 과정으로써 배발생과, 기관의 형성 및 조직의 재생에 중요한 역할을 한다. 또한 신생혈관 형성은 초기의 종양이 성장하기 위한 필수조건이며, 종양의 부피가 커짐에 따라 종양 세포나 침윤된 대식세포가 여러 가지 혈관형성인자를 생성하여 종양 내 미세혈관을 증식시킨다. 이렇게 증식된 혈관은 종양 세포에 영향을 공급하고 여러 가지 성장인자를 분비하여 종양을 성장시킨다. 신생혈관 형성에 참여하는 여러 성장인자 중에서 혈관 내피 세포 성장인자 (VEGF)가 종양의 성장과 전이에 중요하게 관 여하는 것으로 알려져 있다. VEGF는 두 개의 타이로신 수용체 VEGFR2 (KDR)과 결합하여 직접 혈관 내피 세포의 분열을 촉진시켜 강력한 혈관신생인자로 작용하여, 미세혈관의 투과도를 증가시켜 혈장단백이 주변 조직으로 배출되어 세포 외 기질을 변화시켜 혈관생성을 용이하게 한다. 그렇기 때문에 암의 성장을 막기 위해서는 혈관 신생인자인 VEGF의 억제가 필수적이다. 최근 30년간 항암치료의 표적은 종양 내 혈관 형성을 억제함으로써 종양의 성장을 억제하는 연구가 활발하게 진행되어 왔다. 그러나 현재까지 이러한 혈관 생성 억제제는 주로 단일 치료제로 이용되기 보다는 병합 치료에 많이 이용되고 있으며 고비용과 반복 투여로 인한 독성을 일으킬 수 있다는 단점이 있다. 본 연구에서는 이러한 한계점을 극복하고자 수용성 VEGF 특이적 데코이 수용체로 작용하는 KH903을 종양 선택적 살상 아데노바이러스에 발현시킴으로써 효과적으로 VEGF를 억제시킴과 동시에 종양 선택적 살상 아데노바이러스를 사용함으로써 총체적인 항종양효과를 향상시키고자 하였다.
KH903은 VEGFR1과 VEGFR2의 VEGF 결합 도메인을 결합시켜 제작한 VEGF 특이적 수용성 데코이 수용체로서 종양 세포에서 분비되는 VEGF를 효과적으로 억제할 수 있다. 즉, VEGF 와 VEGFR의 결합 상호작용에 직접적으로 관여하는 VEGFR1,2 의 주요 도메인을 이용하여 제작한 KH903은 VEGFR 대신에 종양세포에서 분비되는 VEGF와 결합하여 수용체-리간드 반응을 차단시킴으로써 신생혈관형성 과정을 억제시킬 수 있다29,30.
초기에 제작된 VEGF 트랩은 VEGF와 결합하는 주요 부위인 VEGFR1의 두 번째 도메인과 VEGFR2의 세 번째 도메인이 인간 IgG Fc 부위에 퓨전된 형태이다11. 본 연구에서는, VEGF-A 뿐만 아니라 VEGF-B, VEGF-C 그리고 PGF(placenta growth factor)와도 결합할 수 있기 때문에 VEGF와의 결합능이 기존의 VEGF 트랩에 비하여 2배 가량 향상된 KH903을 이용하였다. KH903이 VEGF-A를 비롯하여 모든 종류의 VEGF 패밀리와 우수한 결합능을 보이는 까닭은 기존의 VEGF 트랩 구조에 VEGF와 수용체의 강한 결합이 유지되도록 관여 하는 VEGFR2의 4번째 도메인이 추가가 되었기 때문이다. 또한, 이 도메인은 KH903이 3차 구조를 안정적으로 이룰 수 있게 해줄 뿐 아니라 다이머 형태를 이루는 효율을 높여 주어 KH903은 기존 VEGF 트랩보다 연장된 반감기를 갖는 이점을 지닐 수 있게 되었다29. 이러한 장점들을 가진 KH903의 신생 혈관 형성 억제 효과를 관찰하기 위하여 E1부위에 리포터 유전자로 β-갈락토시다아제가 삽입되어 있고 E3 부위 유전자가 소실된 아데노바이러스의 E3 부위에 KH903을 삽입하여 복제 불능 아데노바이러스 dE1-k35/KH903을 제작하였다. 혈관 형성이 왕성한 A549와 H460을 비롯하여 여러 폐암 세포주들에 다양한 MOI로 감염시키고 VEGF 발현 양을 비교 검증한 결과, 실험에 이용한 모든 세포주에서 KH903이VEGF의 발현을 억제하는 효과가 강력하게 나타남을 확인 할 수 있었다(도 2). 이렇게 KH903에 의해 종양세포에서 VEGF의 발현이 효과적으로 억제됨을 관찰한 후 감소한 VEGF 양이 실제 혈관 내피세포의 이동, 증식 그리고 혈관 형성 및 확장과 같은 신생 혈관 형성의 일련에 과정에 어떠한 영향을 미치는 지 in vitro 와 ex vivo 상에서 관찰하였다.
먼저, 혈관 내피 세포인 HUVEC에 KH903을 발현하는 복제 불능 바이러스 dE1-k35/KH903을 감염시켰을 때 VEGF 발현양의 감소에 의해 혈관 내피 세포 생존율이 감소함을 확인하였다. 이어서 KH903을 발현하는 복제 불능 바이러스와 대조군 바이러스를 각각 감염시킨 세포 그리고 비감염 세포의 배양액을 이용하여 혈관 내피 세포의 이동능력을 관찰할 수 있는 이동성 분석을 진행하였다. 성장인자가 충분히 있는 대조군 바이러스와 비감염 세포의 배양액을 이용하였을 때에는 HUVEC의 이동이 활발히 일어남을 관찰할 수 있었으나 KH903을 발현하는 바이러스를 처리한 세포로부터 얻은 배양액을 이용하였을 경우에는 VEGF 감소에 의해 HUVEC의 이동이 상당히 감소한 것을 관찰할 수 있었다. 혈관 형성능과 혈관의 스프라우팅 또한 억제됨을 튜브 형성 분석과 대동맥 스프라우팅 분석을 통하여 검증하였다. 이러한 KH903을 통한 신생 혈관 형성 억제는 항암 효과를 기대할 수 있으므로 종양 선택적 살상 아데노바이러스에 탑재하여 증대된 항종양 효과를 검증하고자 본 연구실에서 개발한 E1A의 Rb결합 부위가 변형되고 E1B 부위가 제거된 종양 선택적 살상 아데노바이러스인 RdB에 KH903을 삽입한 RdB-KH903 아데노바이러스를 제작하여 H460 이종이식 모델에서 우수한 항종양 효과를 확인하였다. 종양 선택적 살상 아데노바이러스인 RdB-KH903은 E1A 유전자 발현에 따른 VEGF 발현 억제뿐 아니라 효율적이고 지속적인 유전자 전달로 인해 KH903 에 의한 VEGF 발현 억제도 함께 유도하여, 대조군인 RdB 아데노바이러스에 비하여 생체 내 항종양 효과를 현저하게 증진시켰다. 종양 조직 내 혈관 분포를 관찰한 결과에서도 RdB/KH903의 효과를 다시 한 번 검증할 수 있었다. 종양 조직에서 PBS군에 비하여 종양 선택적 살상 아데노바이러스를 처리한 경우 혈관의 수가 감소하여 종양 선택적 살상 아데노바이러스만으로도 신생혈관 형성을 억제 할 수 있음을 확인할 수 있었다. 또한, KH903으로 인하여 더욱 확연한 신생 혈관 형성 억제 효과를 입증함으로써 KH903이 효과적으로 VEGF를 억제하였음을 알 수 있었다.
결론적으로, 본 연구에서 제작한 KH903을 발현하는 종양 선택적 살상 아데노바이러스인 RdB-KH903은 VEGF 특이적 수용성 데코이 수용체인 KH903을 통하여 얻을 수 있는 종양 내 신생 혈관 형성의 차단과 함께 아데노바이러스의 종양 특이적 살상능을 동시에 유도하여 한층 더 증대된 항종양 효과가 유도되는 것으로 판단된다.
VEGFR1과 VEGFR2의 VEGF 결합 도메인을 사람 IgG Fc 부위에 결합시켜 제작한 KH903은 효과적으로 종양세포가 분비하는 VEGF를 억제할 수 있었다. 본 연구에 이용된 KH903을 발현하는 종양 선택적 살상 아데노바이러스인 RdB-KH903는 종양 선택적 아데노바이러스의 복제에 의한 종양 선택적 살상능과 더불어 E1A 발현과 KH903에 의해 유도된 VEGF의 억제로 인해 상승된 항종양효과를 보여 암 치료에 유용하게 이용될 것으로 기대된다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
참조 문헌
1. George DY, Samuel D, Nicolas.WG, John SR, Stanley J, Wiegand et al., Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242-8.
2. Gabriele B, Rolf B, Gerald M, Thinneu HV, Takeshi I, Kazuhiko T, et al., Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Bio 2000; 2: 737-44.
3. Toren F, and Stephen EE, Gene therapy for vascular disease. FASEB J 1995; 9: 843-51.
4. Janice AN, Eliza V, Dian F, Christian S, Lowrence FB, Michael JD et al., Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J. Exp. Med 2002; 196: 1497-1506
5. Megan EB, Steven AS, Mark GA, Molecular control of lymphangiogenesis. Bioessays 2002; 24: 1030-40
6. Joyce EO, Dmitry IG, George DS, Ekaterina K, Kelly SP, Sorean N et al., VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003; 101: 4878-86
7. Joyce EO, Carbone DP, VEGF as a mediator of tumor-associated immunodeficiency. Immunol. Res 2001; 23: 263-72
8. Lee ME, Daniel JH, VEGF-targeted therapy: mechanisms of anti-tumour activity, Nat Rev Cancer 2008; 8: 579-91
9. Kerbel RS, Tumor Angiogenesis, N Engl J Med 2008; 358: 2039-49
10. Folkman J, Merler E, Abernathy C, Williams G, Isolation of a Tumor factor responsible for angiogenesis. J. Exp. Med 1971; 133-275
11. Shin-Ae L, Seok-Reyol C, Jin-Seok J, Jong-Hun L, Myung-Hwan R, Sang Ock K, Expression of VEGF, EGFR, and IL-6 in Gastric Adenomas and Adenocarcinomas by Endoscopic Submucosal Dissection, Dig Dis Sci 2009; 12:
12. Vosseler S, Mirancea N, Bohlen P, Mueller MM, Fusenig NE, Angiogenesis inhibition by vascular endothelial growth factor receptor-2 blockade reduces stromal matrix metalloproteinase expression, normalizes stromal tissue, and reverts epithelial tumor phenotype in surface heterotransplants. Cancer Res 2005; 65: 1294-305.
13. Jocelyn H, Sam D, Nick P, Susan DC, Lillian H, Michelle R et al., VEGF-Trap : a VEGF blocker with potent antitumor effects, Porc Natl Acad Sci U S A2002; 99: 11393-8
14. S. Percy Ivy, Jeannette Y. Wick and Bennett MK, An overview of small-molecule inhibitorsof VEGFR signaling, Nat. Rev. Clin. Oncol. 2009 6: 569579
15. Ke Xie, Rui-Zhen B, Yang W, Quan L, Kang L, Yu-Quan W, Anti-tumor effects of a human VEGFR-2-based DNA vaccine in mouse models, Genetic Vaccines and Therapy 2009 7:
16. Puja, Debashish B, Shaija S, Lee ME, Targeting Tumor Angiogenesis. Seminars in Oncology 2009 36: S12-S19
17. Wang Y, Fei D, Vanderlaan M, Song A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 2004; 7: 335-45.
18. Jocelyn H, Sam D, Nick P, Susan DC, Lillian H, Michelle R et al.,VEGF-Trap : a VEGF blocker with potent antitumor effects. Porc Natl Acad Sci U S A 2002; 99: 11393-8
19. Fukasawa M, Korc M.,Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clin Cancer Res 2004; 10: 3327-32.
20. Jianzhong H, Jason SF, Anna S, Angela K, Akiko Y, Kimberly WM et al., Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci U S A 2003; 100: 7785-90
21. Hu L, Hofmann J, Holash J, Yancopoulos GD, Sood AK, Jaffe RB. Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clin Cancer Res 2005; 11: 6966-71
22. Reily GJ, Miller VA, Vascular Endothelial Growth Factor Trap in Non-Small Cell Lung Cancer. Clin Cancer Res 2007; 13: 4623-4627
23. Juan F, Candelaria GM, Ramon A, Polly SYL, Timothy JM, Paraskevi M, et al., A mutant oncolytic adenovirustargeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2-12.
24. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH : ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639-645.
25. Lee H, Kim J, Lee B, Chang JW, Ahn J, Park JO et al., Oncolytic potential of E1B 55 kDa-deleted YKL-1 recombinant adenovirus: correlation with p53 functional status. Int J Cancer 2000; 88: 454-463.
26. Kim J, Cho JY, Kim JH, Jung KC, Yun CO : Evaluation of E1B gene-attenuated replicating adenoviruses for cancer gene therapy. Cancer Gene Ther 2002; 9: 725-736.
27. Sauthoff H, Heitner S, Rom WN, Hay JG : Deletion of the adenoviral E1b-19kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum Gene Ther 2000; 11: 379-388.
28. Zhou Z, Zhou RR, Guan H, Bucaba CD, Klenerman ES., E1A gene inhibits angiogenesis in Ewing’s sarcoma animal model. Mol Cancer Ther 2003: 2: 1313-1319
29. Akeo S, Mikito I, Hideharu A, Sachiko Y, Kenya S, Masabumi S., Mapping of the Sites Involved in Ligand Association and Dissociation at the Extracellular Domain of the Kinase Insert Domain-containing Receptor for Vascular Endothelial Growth Factor, THE JOURNAL OF BIOLOGICAL CHEMISTRY 1998 273: 31283-31288
30.Florence T.H. Wu, Marianne O. Stefanini, Feilim Mac Gabhann, Aleksander S. Popel, A compartment model of VEGF distrivution in humans in the presence of soluble VEGF receptor-1 acting as a ligand trap. Plos One 2009; 4: 1-36
도 1a-1b는 재조합 아데노바이러스(Ad) 벡터의 컨스트럭이다. 도 1a는 E1-결손 복제불능 아데노바이러스에 대한 것이다. dE1-k35는 CMV(cytomegalovirus) 프로모터의 조절 하에서 β-갈락토시다아제를 발현한다. dE1-k35/KH903은 E3 부위에 키메릭 데코이 수용체 KH903을 포함한다. 도 1b는 복제가능 아데노바이러스에 대한 것이다. RdB는 변이된 E1A를 포함하고, E1B 19 및 55 kDa이 결손되어 있다. RdB/KH903은 E3 부위에 키메릭 데코이 수용체 KH903을 포함한다.
도 1c는 배지로 분비된 KH903을 검출한 결과이다. Ad: adenovirus; ITR: inverted terminal repeat.
도 2a-2b는 dE1-k35/KH903에 의한 VEGF 발현의 억제를 보여주는 VEGF 레벨 정량화 결과이다. 도 2a에서, 다양한 인간 폐암세포주가 20-100 MOI dE1-k35 또는 dE1-k35/KH903로 감염되었다. 감염 48시간 후 배지 상층액의 VEGF 농도를 ELISA로 측정하였다. 도 2b는 A549 세포 파쇄물에 있는 VEGF 레벨을 측정한 결과이다.
도 3은 HUVECs의 VEGF-유도 증식에 대한 dE1-k35/KH903의 억제 실험 결과이다. HUVECs를 30 MOI dE1-k35 또는 dE1-k35/KH903으로 처리하였다. 감염 72시간 후, MTT 분석을 실시하여 총 생존세포를 측정하였다. 결과는 세 번 반복 실험의 평균으로 나타내었다.
도 4a-4b는 HUVEC 이동성에 대한 dE1-k35/KH903의 영향을 보여준다. EBM을 포함하는 24-웰 조직 배양 플레이트의 상부 챔버에 세포를 놓았다. 3.5시간 후, 통과 세포를 고정화 하고 H&E(Hematoxilyn and Eosin)로 염색하였다. 도 4a는 HUVECs 이동에 대한 대표적인 사진이다(40 배율). 도 4b에서, 고출력 필드(x 200)에 대한 이동 세포의 수로 이동 세포를 표시하였다. 8개 필드를 두 번씩 카운팅 하였다. 에러 막대는 ± s.e를 나타낸다. *P<0.05, ** P<0.001.
도 5a-5b는 HUVEC 튜브 형성에 대한 dE1-k35/KH903의 영향을 보여준다. HUVECs를 마트리젤-코팅 플레이트에 1.5 x 105 cells/well의 밀도로 플레이팅 하고, 이어 dE1-k35 or dE1-k35/KH903 감염(20 MOI) A549 또는 H460의 컨디셔닝 배지로 48시간 동안 배양하였다. 도 5a는 튜브 형성에 대한 대표적인 사진이다(40 배율). 도 5b는 튜브 형성에 대한 정량적 분석 결과이다. 튜브 네트워크에 의해 커버링 되는 넓이를 멀티 게이지로 측정하여 튜브 형성의 정량화를 실시하였다. 실험은 3회 실시하였고, 값은 이들의 평균으로 나타내었다. 에러 막대는 ± s.e를 나타낸다. *P<0.05, ** P<0.001.
도 6은 dE1-k35/KH903에 의한 혈관 스프라우팅 억제를 보여주는 그래프이다. KH903를 운반하는 복제불능 아데노바이러스는 엑스 비보에서 VEGF-유도 혈관 스프라우팅을 억제한다. 분석 결과는 0(최소 포지티브)로부터 5(최대 포지티브)까지 스코어링 하였다.
도 7은 RdB/KH903의 인 비트로 세포병변 효과를 보여주는 사진이다. 세포를 지정된 MOI의 dE1-k35, dE1-k35/KH903, RdB, 또는 RdB/KH903로 감염시켰다. 복제불능 아데노바이러스 dE1-k35를 음성대조군으로 이용하였다. 감염 4-10일째 에 플레이트에 있는 세포를 고정화 하고 크리스탈 바이올렛으로 염색하였다.
도 8은 KH903 발현-아데노바이러스의 항종양 효과를 나타내는 그래프이다. 이종이식 모델을 종양세포 H460 1 x 107 세포를 피하 주입하여 구축하고, 80-120 mm3까지 성장하도록 하였다. 종양을 갖는 누드 마우스를 3개의 실험군 (각각 5마리 마우스)으로 랜덤하게 나누었다. 각각의 실험군에 대하여 1일, 3일 및 5일째에 아데노바이러스(1 x 1010 vp of 아데노바이러스in 30 ㎕ of PBS)를 종양내 주입하였다. 종양의 단축(w) 및 장축(L)을 측정하여 종양 성장을 매일 모니터링 하였다.
도 9a-9b는 RdB/KH903로 처리된 H460 종양 조직의 혈관신생에 대한 조직학적 평가 결과이다. 도 9a에서, 미세혈관을 항-PECAM 항체(CD31)로 염색하였다. CD31 염색 조직에 대한 대표적인 사진이다. 도 9b에서, 종양 조직에서 혈관 수를 정량화한 결과이다. 데이터를 평균 (n = 3)± SE로 나타내었다.
<110> Industry-Academic Cooperation Foundation, Yonsei University
<120> Recombinant Adenovirus Having Anti-Angiogenesis Activity
<160> 8
<170> KopatentIn 1.71
<210> 1
<211> 300
<212> DNA
<213> human VEGFR1 second extracellular domain
<220>
<221> CDS
<222> (1)..(300)
<400> 1
ggt aga cct ttc gta gag atg tac agt gaa atc ccc gaa att ata cac 48
Gly Arg Pro Phe Val Glu Met Tyr Ser Glu Ile Pro Glu Ile Ile His
1 5 10 15
atg act gaa gga agg gag ctc gtc att ccc tgc cgg gtt acg tca cct 96
Met Thr Glu Gly Arg Glu Leu Val Ile Pro Cys Arg Val Thr Ser Pro
20 25 30
aac atc act gtt act tta aaa aag ttt cca ctt gac act ttg atc cct 144
Asn Ile Thr Val Thr Leu Lys Lys Phe Pro Leu Asp Thr Leu Ile Pro
35 40 45
gat gga aaa cgc ata atc tgg gac agt aga aag ggc ttc atc ata tca 192
Asp Gly Lys Arg Ile Ile Trp Asp Ser Arg Lys Gly Phe Ile Ile Ser
50 55 60
aat gca acg tac aaa gaa ata ggg ctt ctg acc tgt gaa gca aca gtc 240
Asn Ala Thr Tyr Lys Glu Ile Gly Leu Leu Thr Cys Glu Ala Thr Val
65 70 75 80
aat ggg cat ttg tat aag aca aac tat ctc aca cat cga caa acc aat 288
Asn Gly His Leu Tyr Lys Thr Asn Tyr Leu Thr His Arg Gln Thr Asn
85 90 95
aca atc ata gat 300
Thr Ile Ile Asp
100
<210> 2
<211> 100
<212> PRT
<213> human VEGFR1 second extracellular domain
<400> 2
Gly Arg Pro Phe Val Glu Met Tyr Ser Glu Ile Pro Glu Ile Ile His
1 5 10 15
Met Thr Glu Gly Arg Glu Leu Val Ile Pro Cys Arg Val Thr Ser Pro
20 25 30
Asn Ile Thr Val Thr Leu Lys Lys Phe Pro Leu Asp Thr Leu Ile Pro
35 40 45
Asp Gly Lys Arg Ile Ile Trp Asp Ser Arg Lys Gly Phe Ile Ile Ser
50 55 60
Asn Ala Thr Tyr Lys Glu Ile Gly Leu Leu Thr Cys Glu Ala Thr Val
65 70 75 80
Asn Gly His Leu Tyr Lys Thr Asn Tyr Leu Thr His Arg Gln Thr Asn
85 90 95
Thr Ile Ile Asp
100
<210> 3
<211> 210
<212> DNA
<213> human VEGFR2 third extracellular domain
<220>
<221> CDS
<222> (1)..(210)
<400> 3
gtg gtt ctg agt ccg tct cat gga att gaa cta tct gtt gga gaa aag 48
Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu Lys
1 5 10 15
ctt gtc tta aat tgt aca gca aga act gaa cta aat gtg ggg att gac 96
Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile Asp
20 25 30
ttc aac tgg gaa tac cct tct tcg aag cat cag cat aag aaa ctt gta 144
Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu Val
35 40 45
aac cga gac cta aaa acc cag tct ggg agt gag atg aag aaa ttt ttg 192
Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe Leu
50 55 60
agc acc tta act ata gat 210
Ser Thr Leu Thr Ile Asp
65 70
<210> 4
<211> 70
<212> PRT
<213> human VEGFR2 third extracellular domain
<400> 4
Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu Lys
1 5 10 15
Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile Asp
20 25 30
Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu Val
35 40 45
Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe Leu
50 55 60
Ser Thr Leu Thr Ile Asp
65 70
<210> 5
<211> 378
<212> DNA
<213> human VEGFR2 fourth extracellular domain
<220>
<221> CDS
<222> (1)..(378)
<400> 5
ggt gta acc cgg agt gac caa gga ttg tac acc tgt gca gca tcc agt 48
Gly Val Thr Arg Ser Asp Gln Gly Leu Tyr Thr Cys Ala Ala Ser Ser
1 5 10 15
ggg ctg atg acc aag aag aac agc aca ttt gtc agg gtc cat gaa aac 96
Gly Leu Met Thr Lys Lys Asn Ser Thr Phe Val Arg Val His Glu Asn
20 25 30
ctt tct gtt gct ttt gga agt ggc atg gaa tct ctg gtg gaa gcc acg 144
Leu Ser Val Ala Phe Gly Ser Gly Met Glu Ser Leu Val Glu Ala Thr
35 40 45
gtg ggg gag cgt gtc aga atc cct gcg aag tac ctt ggt tac cca ccc 192
Val Gly Glu Arg Val Arg Ile Pro Ala Lys Tyr Leu Gly Tyr Pro Pro
50 55 60
cca gaa ata aaa tgg tat aaa aat gga ata ccc ctt gag tcc aat cac 240
Pro Glu Ile Lys Trp Tyr Lys Asn Gly Ile Pro Leu Glu Ser Asn His
65 70 75 80
aca att aaa gcg ggg cat gta ctg acg att atg gaa gtg agt gaa aga 288
Thr Ile Lys Ala Gly His Val Leu Thr Ile Met Glu Val Ser Glu Arg
85 90 95
gac aca gga aat tac act gtc atc ctt acc aat ccc att tca aag gag 336
Asp Thr Gly Asn Tyr Thr Val Ile Leu Thr Asn Pro Ile Ser Lys Glu
100 105 110
aag cag agc cat gtg gtc tct ctg gtt gtg tat gtc cca ccg 378
Lys Gln Ser His Val Val Ser Leu Val Val Tyr Val Pro Pro
115 120 125
<210> 6
<211> 126
<212> PRT
<213> human VEGFR2 fourth extracellular domain
<400> 6
Gly Val Thr Arg Ser Asp Gln Gly Leu Tyr Thr Cys Ala Ala Ser Ser
1 5 10 15
Gly Leu Met Thr Lys Lys Asn Ser Thr Phe Val Arg Val His Glu Asn
20 25 30
Leu Ser Val Ala Phe Gly Ser Gly Met Glu Ser Leu Val Glu Ala Thr
35 40 45
Val Gly Glu Arg Val Arg Ile Pro Ala Lys Tyr Leu Gly Tyr Pro Pro
50 55 60
Pro Glu Ile Lys Trp Tyr Lys Asn Gly Ile Pro Leu Glu Ser Asn His
65 70 75 80
Thr Ile Lys Ala Gly His Val Leu Thr Ile Met Glu Val Ser Glu Arg
85 90 95
Asp Thr Gly Asn Tyr Thr Val Ile Leu Thr Asn Pro Ile Ser Lys Glu
100 105 110
Lys Gln Ser His Val Val Ser Leu Val Val Tyr Val Pro Pro
115 120 125
<210> 7
<211> 690
<212> DNA
<213> human immunoglubulin G Fc region
<220>
<221> CDS
<222> (1)..(690)
<400> 7
ggc ccg ggc gac aaa act cac aca tgc cca ctg tgc cca gca cct gaa 48
Gly Pro Gly Asp Lys Thr His Thr Cys Pro Leu Cys Pro Ala Pro Glu
1 5 10 15
ctc ctg ggg gga ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac 96
Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
20 25 30
acc ctc atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg gtg gac 144
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
35 40 45
gtg agc cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc 192
Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
50 55 60
gtg gag gtg cat aat gcc aag aca aag ccg cgg gag gag cag tac aac 240
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
65 70 75 80
agc acg tac cgt gtg gtc agc gtc ctc acc gtc ctg cac cag gac tgg 288
Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
85 90 95
ctg aat ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca 336
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro
100 105 110
gcc ccc atc gag aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa 384
Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
115 120 125
cca cag gtg tac acc ctg ccc cca tcc cgg gat gag ctg acc aag aac 432
Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn
130 135 140
cag gtc agc ctg acc tgc cta gtc aaa ggc ttc tat ccc agc gac atc 480
Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
145 150 155 160
gcc gtg gag tgg gag agc aat ggg cag ccg gag aac aac tac aag gcc 528
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Ala
165 170 175
acg cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc ctc tac agc aag 576
Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
180 185 190
ctc acc gtg gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc 624
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
195 200 205
tcc gtg atg cat gag gct ctg cac aac cac tac acg cag aag agc ctc 672
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
210 215 220
tcc ctg tct ccg ggt aaa 690
Ser Leu Ser Pro Gly Lys
225 230
<210> 8
<211> 230
<212> PRT
<213> human immunoglubulin G Fc region
<400> 8
Gly Pro Gly Asp Lys Thr His Thr Cys Pro Leu Cys Pro Ala Pro Glu
1 5 10 15
Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
20 25 30
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
35 40 45
Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
50 55 60
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
65 70 75 80
Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
85 90 95
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro
100 105 110
Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
115 120 125
Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn
130 135 140
Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
145 150 155 160
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Ala
165 170 175
Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
180 185 190
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
195 200 205
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
210 215 220
Ser Leu Ser Pro Gly Lys
225 230
Claims (15)
- (a) 아데노바이러스의 ITR (inverted terminal repeat) 뉴클레오타이드 서열; 및 (b) (i) VEGFR-1(Vascular Endothelial Growth Factor Receptor 1)의 세포외 도메인과 (ii) VEGFR-2(Vascular Endothelial Growth Factor Receptor 2)의 세포외 도메인을 포함하는 키메릭 데코이 수용체(chimeric decoy receptor)를 코딩하는 뉴클레오타이드 서열을 포함하는 혈관신생 억제능이 개선된 재조합 아데노바이러스.
- 제 1 항에 있어서, 상기 키메릭 데코이 수용체는 VEGFR-1의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-1의 세포외도메인과 VEGFR-2의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인을 포함하는 것을 특징으로 하는 재조합 아데노바이러스.
- 제 2 항에 있어서, 상기 키메릭 데코이 수용체는 (i) VEGFR-1의 1차 세포외 도메인과 VEGFR-2의 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인; (ii) VEGFR-1의 2차 세포외도메인과 VEGFR-2의 1차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인; (iii) VEGFR-1의 3차 세포외도메인과 VEGFR-2의 1차 세포외도메인, 2차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인; (iv) VEGFR-1의 4차 세포외도메인과 VEGFR-2의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인; 또는 (v) VEGFR-1의 5차 세포외도메인과 VEGFR-2의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-2의 세포외도메인을 포함하는 것을 특징으로 하는 재조합 아데노바이러스.
- 제 2 항에 있어서, 상기 키메릭 데코이 수용체는 (i) VEGFR-2의 1차 세포외도메인과 VEGFR-1의 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택 되는 최소 하나의 VEGFR-1의 세포외도메인; (ii) VEGFR-2의 2차 세포외도메인과 VEGFR-1의 1차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-1의 세포외도메인; (iii) VEGFR-2의 3차 세포외도메인과 VEGFR-1의 1차 세포외도메인, 2차 세포외도메인, 4차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-1의 세포외도메인; (iv) VEGFR-2의 4차 세포외도메인과 VEGFR-1의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 5차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-1의 세포외도메인; 또는 (v) VEGFR-2의 5차 세포외도메인과 VEGFR-1의 1차 세포외도메인, 2차 세포외도메인, 3차 세포외도메인, 4차 세포외도메인, 6차 세포외도메인 및 7차 세포외도메인으로 구성된 군으로부터 선택되는 최소 하나의 VEGFR-1의 세포외도메인을 포함하는 것을 특징으로 하는 재조합 아데노바이러스.
- 제 3 항에 있어서, 상기 키메릭 데코이 수용체는 2-4개의 세포외도메인을 포함하는 것을 특징으로 하는 재조합 아데노바이러스.
- 제 4 항에 있어서, 상기 키메릭 데코이 수용체는 2-4개의 세포외도메인을 포 함하는 것을 특징으로 하는 재조합 아데노바이러스.
- 제 5 항에 있어서, 상기 키메릭 데코이 수용체는 (i) VEGFR-2의 1차 세포외도메인, VEGFR-1의 2차 세포외도메인 및 VEGFR-2의 3차 세포외도메인; (ii) VEGFR-1의 2차 세포외도메인, VEGFR-2의 3차 세포외도메인 및 VEGFR-2의 4차 세포외도메인; 또는 (iii) VEGFR-1의 2차 세포외도메인, VEGFR-2의 3차 세포외도메인, VEGFR-2의 4차 세포외도메인 및 VEGFR-2의 5차 세포외도메인을 포함하는 것을 특징으로 하는 재조합 아데노바이러스.
- 제 6 항에 있어서, 상기 키메릭 데코이 수용체는 (i) VEGFR-1의 2차 세포외도메인, VEGFR-2의 3차 세포외도메인 및 VEGFR-1의 4차 세포외도메인; 또는 (ii) VEGFR-1의 2차 세포외도메인, VEGFR-2의 3차 세포외도메인, VEGFR-1의 4차 세포외도메인 및 VEGFR-1의 5차 세포외도메인을 포함하는 것을 특징으로 하는 재조합 아데노바이러스.
- 제 1 항에 있어서, 상기 키메릭 데코이 수용체는 면역글로불린의 Fc 영역이 융합되어 있는 것을 특징으로 하는 재조합 아데노바이러스.
- 제 1 항에 있어서, 상기 재조합 아데노바이러스는 E3 유전자 영역이 결실된 것이고, 상기 키메릭 데코이 수용체를 코딩하는 뉴클레오타이드 서열은 상기 E3 유전자 영역에 삽입된 것을 특징으로 하는 재조합 아데노바이러스.
- 제 1 항에 있어서, 상기 재조합 아데노바이러스는 비활성화 E1B 19 유전자, 비활성화 E1B 55 유전자 또는 비활성화 E1B 19/E1B 55 유전자를 갖는 것을 특징으로 하는 재조합 아데노바이러스.
- 제 1 항에 있어서, 상기 재조합 아데노바이러스는 활성의 E1A 유전자를 포함하는 것을 특징으로 하는 재조합 아데노바이러스.
- 제 1 항에 있어서, 상기 재조합 아데노바이러스는 ElA 유전자 서열에 위치한 Rb 결합 부위를 코딩하는 뉴클레오타이드 서열 중에서 45번째 Glu 잔기가 Gly으로 치환된 변이 및 121-127번째 아미노산 서열이 전체적으로 Gly으로 치환된 변이를 갖는 것을 특징으로 하는 재조합 아데노바이러스.
- (a) 상기 제 1 항 내지 제 13 항 중 어느 한 항의 재조합 아데노바이러스의 치료학적 유효량; 및 (b) 약제학적으로 허용되는 담체를 포함하는 항혈관신생 조성물.
- 제 14 항에 있어서, 상기 조성물은 암, 당뇨병성 망막증, 미숙아 망막증, 각막 이식 거부, 신생혈관 녹내장, 홍색증, 증식성 망막증, 건선, 혈우병성 관절, 아테롬성 동맥경화 플라크 내에서의 모세혈관 증식, 켈로이드, 상처 과립화, 혈관 접착, 류마티스 관절염, 골관절염, 자가면역 질환, 크론씨병, 재발협착증, 아테롬성 동맥경화, 장관 접착, 캣 스크래치 질환, 궤양, 간경병증, 사구체신염, 당뇨병성 신장병증, 악성 신경화증, 혈전성 미소혈관증, 기관 이식 거부, 신사구체병증, 당뇨병, 염증 또는 신경퇴행성 질환의 예방 또는 치료를 위한 조성물인 것을 특징으로 하는 조성물.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090135629A KR101248912B1 (ko) | 2009-12-31 | 2009-12-31 | 항혈관신생 활성을 가지는 재조합 아데노바이러스 |
US13/519,934 US20130101557A1 (en) | 2009-12-31 | 2010-11-09 | Recombinant Adenovirus Having Anti-Angiogenesis Activity |
CN2010800599056A CN102712934A (zh) | 2009-12-31 | 2010-11-09 | 具有抗血管新生活性的重组腺病毒 |
JP2012546984A JP2013516169A (ja) | 2009-12-31 | 2010-11-09 | 抗血管新生活性を有する組換えアデノウイルス |
PCT/KR2010/007864 WO2011081294A2 (ko) | 2009-12-31 | 2010-11-09 | 항혈관신생 활성을 가지는 재조합 아데노바이러스 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090135629A KR101248912B1 (ko) | 2009-12-31 | 2009-12-31 | 항혈관신생 활성을 가지는 재조합 아데노바이러스 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110078744A true KR20110078744A (ko) | 2011-07-07 |
KR101248912B1 KR101248912B1 (ko) | 2013-03-29 |
Family
ID=44226932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090135629A KR101248912B1 (ko) | 2009-12-31 | 2009-12-31 | 항혈관신생 활성을 가지는 재조합 아데노바이러스 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130101557A1 (ko) |
JP (1) | JP2013516169A (ko) |
KR (1) | KR101248912B1 (ko) |
CN (1) | CN102712934A (ko) |
WO (1) | WO2011081294A2 (ko) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6336459B2 (ja) | 2012-10-17 | 2018-06-06 | バスキュラー バイオジェニックス リミテッド | アデノウイルスを用いた治療方法 |
AU2014236207B2 (en) | 2013-03-14 | 2019-05-23 | Salk Institute For Biological Studies | Oncolytic adenovirus compositions |
CN104419714A (zh) * | 2013-08-26 | 2015-03-18 | 深圳先进技术研究院 | 抑制肿瘤血管新生的融合蛋白的基因及其构建方法和应用 |
CA3013639A1 (en) | 2016-02-23 | 2017-08-31 | Salk Institute For Biological Studies | Exogenous gene expression in therapeutic adenovirus for minimal impact on viral kinetics |
WO2017147265A1 (en) | 2016-02-23 | 2017-08-31 | Salk Institute For Biological Studies | High throughput assay for measuring adenovirus replication kinetics |
CA3045892A1 (en) | 2016-12-12 | 2018-06-21 | Salk Institute For Biological Studies | Tumor-targeting synthetic adenoviruses and uses thereof |
CN109576231B (zh) * | 2017-09-28 | 2022-03-25 | 北京康万达医药科技有限公司 | 分离的重组溶瘤腺病毒、药物组合物及其在治疗肿瘤和/或癌症的药物中的用途 |
CN116059318A (zh) * | 2018-01-26 | 2023-05-05 | 加利福尼亚大学董事会 | 用于使用抗vegf剂治疗血管生成病症的方法和组合物 |
BR112022010113A2 (pt) | 2019-11-25 | 2022-09-06 | Univ California | Inibidores de vegf de longa ação para neovascularização intraocular |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0928203B1 (en) * | 1996-09-24 | 2006-10-25 | Merck & Co., Inc. | Compounds for the inhibition of angiogenesis by gene therapy |
CN1397641A (zh) * | 2001-05-25 | 2003-02-19 | 钱其军 | 表达血管生成抑制因子的肿瘤细胞内增殖的病毒及其构建方法 |
CN1339604A (zh) * | 2001-09-13 | 2002-03-13 | 杨启成 | 带有腺相关病毒末端序列的基因载体及其应用 |
KR100528727B1 (ko) | 2002-04-30 | 2005-11-15 | 윤채옥 | 종양 특이적이며 세포 고사를 유발하여 개선된 종양 살상효과를 나타내는 재조합 아데노바이러스 및 이를 포함하는약제학적 항종양 조성물 |
CN1542132A (zh) * | 2003-04-30 | 2004-11-03 | 上海新霁生物科技有限公司 | 高效表达治疗肿瘤并含有人恒定区全抗体基因的重组病毒及其用途 |
KR20050088506A (ko) * | 2004-03-02 | 2005-09-07 | 삼성전자주식회사 | 다중 세정도를 지원하는 확장형 몽고메리 모듈러 곱셈기 |
WO2006001888A2 (en) * | 2004-04-16 | 2006-01-05 | Acuity Pharmaceuticals Inc | Compositions and methods for inhibiting angiogenesis |
KR100746122B1 (ko) * | 2004-05-10 | 2007-08-03 | 연세대학교 산학협력단 | Rb-결합능이 상실된 개선된 종양세포-특이 세포살상능을 나타내는 재조합 아데노바이러스 |
EP1767546B1 (en) * | 2004-06-08 | 2012-03-07 | Chengdu Kanghong Biotechnologies Co., Ltd. | Angiogenesis-inhibiting chimeric protein and the use |
CN1304427C (zh) * | 2004-06-08 | 2007-03-14 | 成都康弘生物科技有限公司 | 抑制血管新生的融合蛋白质及其用途 |
KR100563099B1 (ko) * | 2005-07-26 | 2006-03-27 | 충청북도 | VEGFR 트렁케이티드 솔루블 cDNA를 함유하는재조합 아데노-연관 바이러스(rAAV)및 이를 함유하는대장암, 방광암 및/또는 폐암 특이적 유전자 치료제 |
US8216575B2 (en) * | 2006-03-31 | 2012-07-10 | Chengdu Kanghong Biotechnologies Co., Ltd. | Inhibition of neovascularization with a soluble chimeric protein comprising VEGF FLT-1 and KDR domains |
CN100502945C (zh) * | 2006-03-31 | 2009-06-24 | 成都康弘生物科技有限公司 | Vegf受体融合蛋白在治疗眼睛疾病中的应用 |
CN100582232C (zh) * | 2006-06-22 | 2010-01-20 | 江苏舜唐生物工程有限公司 | 一种具有多重特异性抗癌机制的溶瘤腺病毒突变体 |
CN101279092B (zh) * | 2007-04-02 | 2010-10-27 | 成都康弘生物科技有限公司 | Vegf受体融合蛋白在制备治疗与血管生成有关的疾病中的应用 |
KR100911624B1 (ko) * | 2007-05-14 | 2009-08-12 | 연세대학교 산학협력단 | Il-12 및 il-23의 효율적인 공동발현 방법 |
-
2009
- 2009-12-31 KR KR1020090135629A patent/KR101248912B1/ko active IP Right Grant
-
2010
- 2010-11-09 JP JP2012546984A patent/JP2013516169A/ja active Pending
- 2010-11-09 CN CN2010800599056A patent/CN102712934A/zh active Pending
- 2010-11-09 WO PCT/KR2010/007864 patent/WO2011081294A2/ko active Application Filing
- 2010-11-09 US US13/519,934 patent/US20130101557A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2011081294A2 (ko) | 2011-07-07 |
KR101248912B1 (ko) | 2013-03-29 |
WO2011081294A3 (ko) | 2011-10-06 |
JP2013516169A (ja) | 2013-05-13 |
CN102712934A (zh) | 2012-10-03 |
US20130101557A1 (en) | 2013-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101248912B1 (ko) | 항혈관신생 활성을 가지는 재조합 아데노바이러스 | |
JP4890666B2 (ja) | がん性表現型を反転させるための、メラノーマ分化関連遺伝子(mda7)の使用 | |
US20080213220A1 (en) | Cancer-targeted viral vectors | |
US10066215B2 (en) | Hexon isolated from simian adenovirus serotype 19, hypervariable region thereof and chimeric adenovirus using the same | |
JP4225577B2 (ja) | 新形成の治療及び予防のための細胞変性ウイルス | |
KR101497035B1 (ko) | 종양 특이적 프로모터 및 이를 포함하는 종양살상 바이러스 벡터 | |
KR101860233B1 (ko) | GM-CSF 유전자;Flt3L-TRAIL 융합 유전자;TGF-β 발현을 억제하는 shRNA; 및 HSP 발현을 억제하는 shRNA를 포함하는 항종양 조성물 | |
US20040213764A1 (en) | Adenovirus replication-competent vectors expressing trail | |
Vragniau et al. | Studies on the interaction of tumor-derived HD5 alpha defensins with adenoviruses and implications for oncolytic adenovirus therapy | |
Wang et al. | Novel combination oncolytic adenoviral gene therapy armed with Dm-dNK and CD40L for breast cancer | |
RU2604187C1 (ru) | РЕКОМБИНАНТНЫЙ ШТАММ VV-GMCSF-Lact ВИРУСА ОСПОВАКЦИНЫ, ОБЛАДАЮЩИЙ ОНКОЛИТИЧЕСКОЙ АКТИВНОСТЬЮ И ПРОДУЦИРУЮЩИЙ ГРАНУЛОЦИТАРНО-МАКРОФАГАЛЬНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР ЧЕЛОВЕКА И ОНКОТОКСИЧЕСКИЙ БЕЛОК ЛАКТАПТИН | |
AU2001278096B2 (en) | Adenovirus E1B-55K single amino acid mutants and methods of use | |
US20100098668A1 (en) | Oncolytic Adenoviruses and Uses Thereof | |
Li et al. | Treatment of pancreatic carcinoma by adenoviral mediated gene transfer of vasostatin in mice | |
AU2001278096A1 (en) | Adenovirus E1B-55K single amino acid mutants and methods of use | |
US20100034775A1 (en) | RECOMBINANT ADENOVIRUS COMPRISING RECOMBINANT khp53 GENE AND THE PREPARATION METHOD AND USES THEREOF | |
KR20200118450A (ko) | 과증식성 질환을 치료하기 위한 pcbp1의 용도 | |
KR100756055B1 (ko) | 신생혈관 생성을 조절하는 재조합 아데노바이러스 | |
KR100969171B1 (ko) | 종양 특이적 발현이 개선된 유전자전달체 | |
ES2290606T3 (es) | Procedimientos y composiciones para la inhibicion del crecimiento celular neoplasico. | |
KR100746122B1 (ko) | Rb-결합능이 상실된 개선된 종양세포-특이 세포살상능을 나타내는 재조합 아데노바이러스 | |
WO2009009935A1 (fr) | Virus recombinant déficient en réplication, composition pharmaceutique le comprenant et ses utilisations | |
KR20130049083A (ko) | Hsp27 단편을 포함하는 혈관신생 억제용 약학 조성물 및 혈관신생 억제용 활성물질을 스크리닝하는 방법 | |
JP2011502111A (ja) | 非グリカン化ポリペプチドの癌治療での使用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20151214 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20161227 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180102 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190102 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20200102 Year of fee payment: 8 |