KR20100099039A - 밀폐 전지의 제조 방법 및 밀폐 전지 - Google Patents

밀폐 전지의 제조 방법 및 밀폐 전지 Download PDF

Info

Publication number
KR20100099039A
KR20100099039A KR1020090130528A KR20090130528A KR20100099039A KR 20100099039 A KR20100099039 A KR 20100099039A KR 1020090130528 A KR1020090130528 A KR 1020090130528A KR 20090130528 A KR20090130528 A KR 20090130528A KR 20100099039 A KR20100099039 A KR 20100099039A
Authority
KR
South Korea
Prior art keywords
current collector
negative electrode
receiving part
welding
sealed battery
Prior art date
Application number
KR1020090130528A
Other languages
English (en)
Inventor
유스케 이토
겐지 난사카
야스히로 야마우치
도시유키 노마
Original Assignee
산요덴키가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 산요덴키가부시키가이샤 filed Critical 산요덴키가부시키가이샤
Publication of KR20100099039A publication Critical patent/KR20100099039A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49114Electric battery cell making including adhesively bonding

Abstract

과제
양단에 각각 정극심체 및 부극심체 노출부를 갖는 밀폐 전지의 전극체에서의 심체에 대해 집전체 및 집전체 받이부품을 저항용접할 때, 신뢰성이 높은 용접부가 얻어지는 밀폐 전지의 제조 방법을 제공하는 것이다.
해결 수단
본 발명의 밀폐 전지(10)의 제조 방법은 양단에 각각 복수매의 정극심체 및 부극심체 노출부(14,15)를 갖는 밀폐 전지용 전극체(11)를 형성하는 공정, 상기 복수매의 정극심체 및 부극심체 노출부(14,15)의 적어도 한쪽의 양측에 각각 반구상의 돌기부(18a 및 25a)를 갖는 집전체(18) 및 집전체 받이부품(25)을 각각의 상기 반구상의 돌기부(18a 및 25a)가 서로 상기 반구상의 돌기부(18a 및 25a) 지름의 1/2 이하만 중심축이 어긋난 위치에 서로 대향하도록 당접하는 공정, 상기 집전체(18) 및 집전체 받이부품(25) 사이에 압력을 가하면서 전류를 흘려 저항용접하는 공정을 포함하는 것을 특징으로 한다.

Description

밀폐 전지의 제조 방법 및 밀폐 전지{METHOD OF MANUFACTURING SEALED BATTERY AND SEALED BATTERY}
본 발명은 밀폐 전지의 제조 방법 및 밀폐 전지에 관한 것으로서, 특히 양단에 각각 복수매의 정극심체 및 부극심체의 노출부를 갖는 전극체의 적어도 한쪽의 복수매의 심체를 끼우도록 하고, 각각 반구상의 돌기(프로젝션)부를 구비한 집전체 및 집전체 받이부품을 저항용접했을 때 용접 불량이 생기기 어렵고, 신뢰성이 높은 밀폐 전지를 제조할 수 있는 밀폐 전지의 제조 방법 및 그 제조 방법에 의해 제작된 밀폐 전지에 관한 것이다.
환경보호 운동의 고조를 배경으로 이산화탄소 가스 등의 배출 규제가 강화되고 있어, 자동차 업계에서는 가솔린, 디젤유, 천연가스 등의 화석연료를 사용하는 자동차뿐만 아니라 전기자동차(EV)나 하이브리드 전기자동차(HEV)의 개발이 활발하게 수행되고 있다. 이에 더하여, 근래의 화석연료 가격의 급격한 상승은 이러한 EV나 HEV의 개발을 추진하는 순풍이 되고 있다.
이러한 EV, HEV용 전지로는 일반적으로 니켈-수소 2차 전지나 리튬 이온 2차 전지가 사용되고 있지만, 환경 대응뿐만 아니라 자동차로서의 기본 성능, 즉 주행 능력의 고도화도 요구되어 오고 있다. 그 때문에, 단지 전지 용량을 크게 하는 것뿐만 아니라 자동차의 가속 성능이나 등판(登板) 성능에 큰 영향을 미치기 위하여 전지 출력을 크게 하는 것도 필요하다. 그런데, 고출력의 방전을 수행하면 전지에 대전류가 흐르기 때문에 발전 요소의 심체와 집전체 사이의 접촉 저항에 의한 발열이 커진다. 따라서, EV, HEV용 전지는 대형이고 대용량일 뿐만 아니라, 대전류를 꺼낼 수 있는 것이 필요하기 때문에, 전지 내부의 전력 손실을 방지해 발열을 저하시키기 위하여 이러한 발전 요소의 심체와 집전체 사이의 용접 불량을 방지해 내부 저항을 저하시키는 것에 대해서도 여러 가지 개량이 수행되어 오고 있다.
발전 요소의 심체와 집전체를 전기적으로 접합하는 방법으로는 기계적인 코킹, 용접 등의 방법이 있지만, 고출력이 요구되는 전지에서의 접합 방법으로는 융접(融接)인 용접이 적합하다. 또, 리튬 이온 2차 전지의 부극측 전극체 재료로는 저저항화를 실현하기 위해 구리 내지 구리합금이 사용되지만, 구리 내지 구리합금은 그 특성으로 전기 저항이 작고 열전도율이 크기 때문에, 용접하기 위해서는 매우 큰 에너지가 필요하게 된다.
이러한 발전 요소의 심체와 집전체 사이의 용접 방법으로는 종래부터 이하의 방법이 알려져 있다.
(1) 레이저용접법(하기 특허문헌 1 참조)
(2) 초음파용접법(하기 특허문헌 2, 3 참조)
(3) 저항용접법(하기 특허문헌 4, 5 참조)
레이저용접법에 있어서는, 피용접 재료인 구리 내지 구리합금은 금속 용접용으로 널리 사용되고 있는 YAG(이트륨-알루미늄-가넷) 레이저광에 대한 반사율이 약 90%로 높기 때문에 고에너지의 레이저광이 필요하다. 또, 구리 내지 구리합금을 레이저용접하면 표면 상태의 영향에 의해 용접성이 크게 변화하는 것 및 타재질의 레이저용접의 경우와 마찬가지로 스퍼터의 발생이 불가피하다고 하는 문제점이 존재한다.
또, 초음파용접에 있어서도 피용접 재료인 구리 내지 구리합금의 열전도율이 크기 때문에, 큰 에너지가 필요하게 되는 것 외에 용접시의 초음파 진동에 의해 활물질입자의 탈락이 생긴다고 하는 문제점이 존재하고 있다. 또한, 저항용접에 있어서는 피용접 재료인 구리 내지 구리합금의 전기 저항이 작고 열전도율이 크기 때문에 단시간에 대전류의 투입이 필요한 점, 용접시에 전극봉과 집전체의 융접이 발생하는 경우가 있다는 점, 용접부 이외에서의 융해나 스파크의 발생이 생긴다고 하는 문제점이 존재하고 있다.
선행 기술 문헌
특허문헌 1: 일본 특개2001-160387호 공보
특허문헌 2: 일본 특개2003-197174호 공보
특허문헌 3: 일본 특개2002-008708호 공보
특허문헌 4: 일본 특개2006-310254호 공보
특허문헌 5: 일본 실개소59-098571호 공보
상술한 바와 같이 3 종류의 용접 방법에는 일장일단이 있지만, 생산성 및 경제성을 고려하면 종래부터 금속간의 용접법으로 널리 사용되고 있는 저항용접법을 채용하는 것이 바람직하다. 그렇지만, 특히 양단에 각각 복수매의 정극심체 및 부극심체의 노출부를 갖는 EV, HEV용의 밀폐 전지의 전극체(상기 특허문헌 4 참조)에서의 구리 내지 구리합금으로 이루어지는 심체에 대해 구리제의 집전체 및 집전체 받이부품을 저항용접하려면, 집전체와 집전체 받이부품 사이에 존재하는 심체의 매수가 많기 때문에 확실히 용접시키기 위해서는 매우 많은 용접 에너지를 필요로 한다.
한편, 저항용접에 즈음해서는 용접 전류를 집중시켜 무효 전류를 감소시키기 위하여, 용접하는 부재에 프로젝션이라고 칭해지고 있는 거의 반구상의 돌기를 형성하는 것이 수행되고 있다. 이러한 반구상의 돌기가 형성되어 있는 집전체 및 집전체 받이부품은 각각의 돌기의 중심축이 일치해 대향하도록 복수매의 심체를 끼우도록 하여 배치하고, 집전체와 집전체 받이부품 사이에 압력을 가하여 저항용접을 수행한다.
그렇지만, 복수매의 심체는 서로 적층되어 있을 뿐이기 때문에, 집전체와 집전체 받이부품 사이에 압력을 가했을 때에 집전체 및 집전체 받이부품에 형성되어 있는 돌기의 위치가 어긋나는 동시에 복수매의 심체의 일부도 어긋나 버리고 말아 안정된 용접을 수행할 수 없다고 하는 문제점이 존재하고 있다. 이 현상을 도 4를 이용해 설명한다. 또한, 도 4A는 용접전의 전극체 및 용접 장치의 전극 배치를 용접 부분의 모식 부분 단면도이고, 도 4B는 가압시에 용접 부분에 어긋남이 생긴 경우의 모식 부분 단면도이다.
전극체(50)는 양단에 각각 정극심체마다 및 부극심체마다 복수매의 심체가 묶여진 심체 노출부(51)가 형성되어 있고, 도 4A에는 그 한쪽 측만 나타나 있다. 심체 노출부(51)에는 그 아래면에 집전체(52)의 반구상의 돌기(53)가 당접하도록, 또 윗면에 집전체 받이부품(54)의 돌기(55)가 당접하도록, 또한 양쪽 반구상의 돌기(53 및 55)의 중심축(C)이 일치하도록 배치된다. 그 다음에, 집전체(52) 및 집전체 받이부품(54)을 끼우도록 상하로부터 저항용접 장치(도시하지 않음)의 구리제의 전극봉(56 및 57)을 당접시킨다. 도 4A는 이때의 상태를 나타내고 있다.
또한, 양쪽 전극봉(56 및 57)을 서로 압압하여 약간 단락한 상태로 하고, 양 전극봉(56 및 57) 사이에 단시간 미리 실험적으로 정한 최적 용접 전류(예를 들면 피크 전류 15 kA)를 흘려 저항용접을 수행한다. 이 때, 양쪽 전극봉(56 및 57)을 서로 압압했을 때에 양쪽 반구상의 돌기(53 및 55)의 중심축(C)이 어긋나 있지 않으면, 용접에 사용되지 않는 무효 전류가 감소해 양호한 용접 비드(용접자국)가 생겨서 집전체(52) 및 집전체 받이부품(54)은 강고하게 심체 노출부(51)에 용접된다.
그렇지만, 저항용접시의 집전체(52), 집전체 받이부품(54), 양쪽 전극봉(56 및 57)의 배치가 이러한 어긋남이 없는 상태로 최적화되어 있는 경우, 양쪽 반구상의 돌기(53 및 55)의 중심축이 조금이라도 어긋나면, 도 4B에 나타낸 바와 같이, 양쪽 전극봉(56 및 57)을 서로 압압했을 때에 양쪽 반구상의 돌기(53 및 55)의 중 심축이 추가적으로 어긋나거나 집전체(52) 및 집전체 받이부품(54)의 적어도 한쪽이 기운 상태가 되거나 하는 경우가 있다. 이 상태로 저항용접을 수행하면, 용접 전류가 반구상의 돌기 부분에 집중하지 않기 때문에 용접 불량이 생기거나 용접용 전극봉(56,57)과 집전체(52) 내지 집전체 받이부품(54) 사이의 접촉 면적이 감소하거나 하기 때문에 폭발적 발화가 생기는 경우가 있다.
본 발명은 상술과 같은 종래 기술의 문제점을 해결하기 위해 개발된 것이다. 즉, 본 발명의 목적은 복수매의 심체가 묶여진 심체 노출부에 대해 각각 서로 반구상의 돌기부를 갖는 집전체 및 집전체 받이부품을 저항용접 할 때에, 집전체 내지 집전체 받이부품이 기울거나 하는 것이 억제되어 신뢰성이 높은 밀폐 전지를 제조할 수 있는 밀폐 전지의 제조 방법 및 그 제조 방법에 따라 제조된 밀폐 전지를 제공하는 것에 있다.
또한, 상기 특허문헌 5에는 극판의 무지부(無地部)에 한쌍의 극판귀를 일체로 점용접할 때에, 한쌍의 극판귀에 각각 극판에 파고드는 표면이 요철 형상으로 된 프로젝션을 서로 대향하지 않는 위치에 설치한 예가 나타나 있지만, 프로젝션을 반구상으로 하는 것 및 이러한 반구상의 프로젝션을 이용했을 때의 문제점을 지적하는 기재는 없다.
상기 목적을 달성하기 위하여, 본 발명의 밀폐 전지의 제조 방법은 이하의 (1)∼(3)의 공정을 포함하는 것을 특징으로 한다.
(1) 양단에 각각 복수매의 정극심체 및 부극심체 노출부를 갖는 밀폐 전지용의 전극체를 형성하는 공정,
(2) 상기 복수매의 정극심체 및 부극심체 노출부의 적어도 한쪽의 양측에 각각 반구상의 돌기부를 갖는 집전체 및 집전체 받이부품을, 상기 반구상의 돌기부의 중심축의 어긋남을 L, 상기 반구상의 돌기부의 기부(基部)의 지름을 W로 했을 때 0<L≤W/2의 관계를 만족하도록 서로 대향하도록 당접하는 공정,
(3) 상기 집전체 및 집전체 받이부품 사이에 압력을 인가하면서 전류를 흘려 저항용접하는 공정.
양단에 각각 복수매의 정극심체 및 부극심체 노출부를 갖는 밀폐 전지용의 전극체는 대전류에서의 충방전이 요구되는 EV, HEV용으로 이용되고 있다. 그리고, 본 발명의 밀폐 전지의 제조 방법은 복수매의 정극심체 및 부극심체 노출부의 적어도 한쪽의 양측에 각각 반구상의 돌기부를 갖는 집전체 및 집전체 받이부품을 용접할 때에, 각각의 반구상의 돌기부의 중심축의 어긋남을 L, 상기 반구상의 돌기부의 기부의 지름을 W로 했을 때, 0<L≤W/2의 관계를 만족하도록 서로 대향하도록 당접하는 공정을 갖고 있다. 또한, 이 반구상의 돌기부는 일반적으로는 「프로젝션」이라고도 칭해지고 있는 것으로, 저항용접시에 용접 전류를 집중시켜 무효 전류를 감소시키기 위해 널리 이용되고 있는 것이다.
집전체 및 집전체 받이부품의 각각의 반구상의 돌기부의 중심축의 어긋남이 전혀 없는 상태이면, 본래는 가장 양호하게 저항용접을 수행할 수 있는 것이다. 그렇지만, 실제 밀폐 전지의 제조 공정에서는 어긋남이 전혀 없는 상태(L=0 ㎜)로 최적화되어 있어도, 다층의 박(箔)으로 이루어지는 정극심체 노출부 내지 부극심체 노출부를 끼워 넣어 용접하는 것이나, 이러한 다층의 정극심체 노출부 내지 부극심체 노출부를 전극봉으로 압압함으로써 완전히 어긋남이 없는 상태로 하는 것은 곤란하다.
그에 대조적으로, 본 발명의 밀폐 전지의 제조 방법에 의하면, 저항용접시의 집전체, 집전체 받이부품 및 한쌍의 저항용접용 전극봉의 배치가 집전체 및 집전체 받이부품 각각의 반구상의 돌기부의 중심축의 어긋남 L이 서로 반구상의 돌기부의 기부의 지름 W에 대해 0<L≤W/2의 관계를 만족하는 위치가 되도록 배치되어 있기 때문에, 한쌍의 저항용접봉을 서로 압압해도 집전체 내지 집전체 받이부품이 기우는 것이 억제된다. 그 때문에, 본 발명의 밀폐 전지의 제조 방법에 의하면, 전류가 반구상의 돌기 부분에 집중하기 때문에 용접 불량이 생기기 어려워지고, 아울러 용접용 전극봉과 집전체 내지 집전체 받이부품 사이의 접촉 면적이 변화하기 어려워지므로 폭발적 발화가 생기는 것이 억제되어 용접부의 신뢰성이 높은 밀폐 전지를 얻을 수 있게 된다.
또한, 집전체 및 집전체 받이부품의 각각의 반구상의 돌기부의 중심축의 어긋남은, 너무 커지면 용접 전류가 반구상의 돌기부에 집중하지 않게 되기 때문에 무효 전류가 커져 양호한 용접자국을 얻을 수 없게 된다. 또, 이 어긋남이 너무 작으면 상술한 바와 같이 중심축이 더욱 어긋나거나 집전체 및 집전체 받이부품의 적어도 한쪽이 기운 상태가 되거나 하기 때문에, 안정된 품질의 용접부를 얻을 수 없게 된다. 보다 바람직한 집전체 및 집전체 받이부품의 각각의 반구상의 돌기부 의 중심축의 어긋남 L은 반구상의 돌기부의 기부의 지름 W에 대해 W/10≤L≤W/2이고, 더욱 바람직하게는 W/3≤L≤W/2이다.
또한, 집전체 및 집전체 받이부품에 형성하는 돌기는 집전체의 크기에 맞추어 1개소이거나 복수개라도 되고, 필요로 하는 저항용접 개소에 따라 적당히 선택하면 된다. 집전체에 형성하는 돌기를 용접 개소에 대응하여 1∼5개소로 하고, 집전체 받이부품에 형성하는 돌기를 1개로 하여 용접 개소에 대응한 수의 집전체 받이부품을 이용하면 된다. 또, 기부의 지름 W는 W=1∼5 ㎜ 정도가 바람직하고, 보다 바람직하게는 W=2∼4 ㎜이다.
또한, 본 발명의 밀폐 전지의 제조 방법은 심체, 집전체 및 집전체 받이부품이 각각 동일한 금속으로 이루어져 있어도 다른 금속으로 이루어져 있어도 적용 가능하고, 또 정극심체에 대해서도 부극심체에 대해서도 동일하게 적용할 수 있다. 또, 본 발명의 밀폐 전지의 제조 방법은 양단에 각각 정극심체 및 부극심체가 노출한 밀폐 전지용 전극체와, 적어도 한쪽의 상기 심체에 대해 양측에서 대향 배치한 집전체 및 집전체 받이부품을 구비하고 있는 것이면, 전극체가 권회형(卷回形)인 것이거나 적층형인 것이라도 적용할 수 있고, 또한 비수전해질 2차 전지거나 수성전해질 2차 전지라도 적용할 수 있다.
또, 본 발명의 밀폐 전지의 제조 방법에 있어서는 상기 (2)의 공정에 있어서 각각의 상기 반구상의 돌기부의 주위에 환상의 열용착성 수지로 이루어지는 테이프 또는 접착재 부착 절연 테이프를 배치하는 것이 바람직하다.
양단에 각각 정극심체 및 부극심체의 노출부를 갖는 복수매의 정극심체 및 부극심체에 대해 확실히 저항용접하려면 막대한 용접 에너지를 필요로 한다. 아울러, 저항용접에 즈음하여 용접 에너지를 크게 하면, 스퍼터된 티끌의 발생이 증가하고, 이 스퍼터 티끌이 전극체 내부로 이동함으로써 내부 단락의 원인이 될 가능성이 증가한다. 본 발명의 밀폐 전지의 제조 방법에 있어서는, 상기 (2)의 공정에 있어서 각각의 상기 반구상의 돌기부의 주위에 환상의 열용착성 수지로 이루어지는 테이프 또는 접착재 부착 절연 테이프를 배치하고 있기 때문에, 스퍼터된 티끌은 환상의 열용착성 수지로 이루어지는 테이프 또는 접착재 부착 절연 테이프내에 포획되어 외부에 비산하는 일이 없다. 그 때문에, 본 발명의 밀폐 전지의 제조 방법에 의하면, 용접부의 신뢰성이 높은 밀폐 전지를 얻어지는 효과에 더하여 내부 단락의 발생이 적고, 보다 신뢰성이 높은 밀폐 전지를 얻을 수 있다고 하는 효과도 나타낼 수 있다.
또한, 열용착성 수지는 용착 온도가 70∼150℃ 정도이고, 용해 온도는 200℃ 이상인 것이 바람직하며, 나아가서는 전해질 등에 대한 내약품성을 구비하고 있는 것이 바람직하다. 열용착성 수지로는 고무계 실(seal)재, 산변성 폴리프로필렌, 폴리올레핀계 열용착성 수지 등을 사용할 수 있다. 또한, 접착재 부착 절연 테이프로는 폴리이미드 테이프, 폴리프로필렌 테이프, 폴리페닐렌설파이드 테이프등을 사용할 수 있고, 또 절연성 열용착제 수지층을 갖는 복층 구조의 것이라도 된다.
또, 본 발명의 밀폐 전지의 제조 방법에 있어서는, 상기 복수매의 심체, 상기 집전체 및 집전체 받이부품으로 구리 또는 구리합금 혹은 알루미늄 또는 알루미늄 합금으로 이루어지는 것을 이용한 것에 대해서도 적용할 수 있다.
구리 또는 구리합금 혹은 알루미늄 또는 알루미늄 합금은 상용되고 있는 도전성 금속 중 전기 저항이 낮고 또한 열전도율이 높은 것이므로, 저항용접시에는 대전류를 흘릴 필요가 있다. 그 때문에, 상기 복수매의 심체, 상기 집전체 및 집전체 받이부품으로 구리 또는 구리합금 혹은 알루미늄 또는 알루미늄 합금으로 이루어지는 것에 대해 본 발명을 적용하면 본 발명의 효과가 특히 현저하게 나타난다.
또한, 상기 목적을 달성하기 위하여, 본 발명의 밀폐 전지는 양단에 각각 복수매의 정극심체 및 부극심체가 노출한 전극체와, 적어도 한쪽의 상기 복수매의 심체를 끼우도록 저항용접된 집전체 및 집전체 받이부품을 구비하는 밀폐 전지에 있어서, 상기 집전체 및 집전체 받이부품 사이의 상기 복수매의 심체에는 저항용접자국이 기울어져 형성되어 있는 것을 특징으로 한다.
또한, 본 발명의 밀폐 전지에 있어서는, 상기 저항용접 부분 주위의 상기 심체와 상기 집전체 및 집전체 받이부품 사이에는 각각 열용착성 수지로 이루어지는 테이프 또는 접착재 부착 절연 테이프가 배치되어 있는 것이 바람직하고, 나아가서는 상기 복수매의 심체, 상기 집전체 및 집전체 받이부품은 구리 또는 구리합금 혹은 알루미늄 또는 알루미늄 합금으로 이루어지는 것이 바람직하다.
집전체 및 집전체 받이부품 사이의 복수매의 심체에 저항용접자국이 기울어져 형성되어 있는 밀폐 전지는 상기 본 발명의 밀폐 전지의 제조 방법에 따라 형성할 수 있다. 그 때문에, 본 발명의 밀폐 전지에 의하면, 상기 본 발명의 밀폐 전지의 제조 방법에 대해 상세히 설명한 바와 같이, 집전체 및 집전체 받이부품의 각 각의 반구상의 돌기부의 중심축이 어긋난 위치에서 최적화되어 있기 때문에, 저항용접시에 집전체 내지 집전체 받이부품이 기울어지는 것이 억제되고 있기 때문에, 용접 불량이 적고, 용접부의 신뢰성이 높은 밀폐 전지가 된다.
발명을 실시하기 위한 형태
이하, 각 실시예 및 비교예와 함께 도면을 참조하여 본 발명의 밀폐 전지의 제조 방법을 설명한다. 단, 이하에 나타내는 각 실시예는 본 발명의 기술 사상을 구체화하기 위한 밀폐 전지로서의 각형 비수전해질 2차 전지의 제조 방법을 예시하는 것으로서, 본 발명을 이 각형 비수전해질 2차 전지의 제조 방법에 특정하는 것을 의도하는 것은 아니며, 특허청구범위에 포함되는 그 외의 실시형태의 것도 동일하게 적응할 수 있는 것이다.
최초에 각 실시예 및 비교예에 공통되는 밀폐 전지로서의 각형 비수전해질 2차 전지를 도 1A 및 도 1B를 이용해 설명한다. 이 각형 비수전해질 2차 전지(10)는 정극 극판 및 부극 극판이 격리판(separator)(모두 도시 생략)을 통해 권회된 편평상의 권회전극체(11)를 각형의 전지 외장캔(12)의 내부에 수용하고, 봉구판(13)에 의해 전지 외장캔(12)을 밀폐한 것이다. 이 편평상의 권회전극체(11)는 권회축 방향의 양단부에 정극합제 내지 부극합제를 도포하지 않는 정극심체 노출부(14), 부극심체 노출부(15)를 구비하고 있다. 정극심체 노출부(14)는 정극집전체(16)에 의해 정극 단자(17)에 접속되고, 부극심체 노출부(15)는 부극집전체(18) 에 의해 부극 단자(19)에 접속되어 있다. 정극 단자(17) 및 부극 단자(19)는 각각 절연판, 개스킷 등으로 이루어지는 절연부재(20,21)를 통해 봉구판(13)에 코킹 접합되어 있다.
이 각형의 비수전해질 2차 전지는 편평상의 권회전극체(11)를 전지 외장캔(12) 내에 삽입한 후, 봉구판(13)을 전지 외장캔(12)의 개구부에 레이저용접하고, 그 후 전해액 주액공(도시 생략)으로부터 비수전해액을 주액하고, 이 전해액 주액공을 밀폐함으로써 제작된다. 또한, 전해액으로는 예를 들면 에틸렌카보네이트와 디에틸카보네이트를 부피비로 3:7이 되도록 혼합한 용매에 대해 LiPF6을 1 몰/L가 되도록 용해한 비수전해액을 사용할 수 있다.
다음에, 각 실시예 및 비교예에 공통되는 편평상의 권회전극체(11)의 구체적 제조 방법에 대해 설명한다.
[정극 극판의 제작]
정극 극판은 다음과 같이 하여 제작하였다. 우선, 정극 활물질로서의 코발트산리튬(LiCoO2) 분말 94 중량%와, 도전제로서의 아세틸렌블랙 혹은 그래파이트 등의 탄소계 분말 3 중량%와, 폴리비닐리덴플루오라이드(PVdF)로 이루어지는 결착제 3 중량%를 혼합하고, 얻어진 혼합물에 N-메틸-2-피롤리돈(NMP)으로 이루어지는 유기용제를 첨가해 혼련하여 정극 활물질 합제 슬러리 합제를 조제하였다. 그 다음에, 두께가 20 ㎛인 알루미늄박으로 이루어지는 정극심체를 준비하고, 상술한 바와 같이 하여 제작한 정극 활물질 합제 슬러리를 정극심체의 양면에 균일하게 도포하 여 정극 활물질 합제층을 도포하였다. 이 때, 정극심체의 폭방향 일방측의 단테두리에는 정극 활물질 합제 슬러리가 도포되어 있지 않은 소정폭(여기에서는 9 ㎜로 하였음)의 정극심체 노출부가 형성되도록 도포하였다. 이 후, 정극 활물질 합제층을 형성한 정극심체를 건조기 중을 통과시켜, 슬러리 제작시에 필요했던 NMP를 건조해 제거하였다. 건조 후에, 롤 프레스기에 의해 두께가 0.06 ㎜가 될 때까지 압연해 정극 극판을 제작하였다. 이와 같이 하여 제작한 정극 극판을 폭이 55.5 ㎜인 직사각형 형상으로 잘라내고, 폭방향의 일방 단측에 폭이 9 ㎜인 띠형상의 알루미늄으로 이루어지는 정극심체 노출부를 설치한 정극 극판을 얻었다.
[부극 극판의 제작]
부극 극판은 다음과 같이 하여 제작하였다. 우선, 부극 활물질로서의 천연 흑연 분말 98 중량%와, 결착제로서의 카르복시메틸셀룰로오스(CMC) 및 스티렌-부타디엔 고무(SBR)를 각각 1 중량%씩 혼합하고, 물을 첨가해 혼련하여 부극 활물질 합제 슬러리를 조제하였다. 그 다음에, 두께가 12 ㎛인 구리박으로 이루어지는 부극심체를 준비하고, 상술한 바와 같이 하여 제작한 부극 활물질 합제 슬러리를 부극심체의 양면에 균일하게 도포하여 부극 활물질 합제층을 형성하였다. 이 경우, 부극 활물질 합제층의 폭방향 일방측의 단테두리에는 부극 활물질 합제 슬러리가 도포되어 있지 않은 소정폭(여기에서는 9 ㎜로 하였음)의 부극심체 노출부가 형성되도록 도포하였다. 이 후, 부극 활물질 합제층을 형성한 부극심체를 건조기 중을 통과시켜 건조시켰다. 건조 후에, 롤 프레스기에 의해 두께가 0.05 ㎜가 될 때까지 압연해 부극 극판을 제작하였다. 이와 같이 하여 제작한 부극 극판을 폭이 55.5 ㎜인 직사각형 형상으로 잘라내고, 폭방향의 일방 단측에 9 ㎜인 띠형상의 구리박으로 이루어지는 부극심체 노출부를 설치한 부극 극판을 얻었다.
[두루마리 전극체의 제작]
상술한 바와 같이 하여 얻어진 정극 극판의 정극심체 노출부와 부극 극판의 부극심체 노출부가 각각 대향하는 전극의 활물질 합제층과 겹치지 않도록 어긋나게 하여 두께 0.22 ㎜의 폴리에틸렌제 다공질 격리판을 통해 권회하고, 양측에 각각 복수의 알루미늄박으로 이루어지는 정극심체 노출부(14)와 복수의 구리박으로 이루어지는 부극심체 노출부(15)가 형성된 각 실시예에서 사용하는 편평상의 권회전극체(11)를 제작하였다.
[집전체의 저항용접]
이와 같이 하여 제작된 각 실시예 및 비교예의 편평상의 권회전극체(11)의 정극심체 노출부(14)에 알루미늄제의 정극집전체(16)및 정극집전체 받이부품(도시 생략)을 저항용접에 의해 장착하고, 마찬가지로 부극심체 노출부(15)에 구리제의 부극집전체(18)및 부극집전체 받이부품(25)을 저항용접에 의해 장착하지만, 이하에 있어서는 부극심체 노출부(15)에 구리제의 부극집전체(18) 및 부극집전체 받이부품(25)을 저항용접에 의해 장착하는 경우에 대해 설명한다.
실시예 1 및 2, 비교예 1 및 2
각형 비수전해질 2차 전지(10)에 있어서는, 부극집전체(18)로서 중앙부에 프로젝션으로 작용하는 돌기(높이 1.0 ㎜, 기부의 지름 W=3.0 ㎜)(18a)(도 2A 참조) 가 형성된 구리제의 것을 이용하고, 부극집전체 받이부품(25)으로는 중앙부에 프로젝션으로 작용하는 돌기(높이 1.0 ㎜, 기부의 지름 W=3.0 ㎜)(25a)가 형성된 구리제의 것을 이용하였다. 우선, 구리제의 부극심체 노출부(15)를 묶고, 그 아래쪽으로부터 구리제의 부극집전체(18)의 돌기(18a)가 위쪽이 되도록 배치하고, 마찬가지로 위쪽으로부터 부극집전체 받이부품(25)의 돌기(25a)가 아래쪽이 되도록 배치하였다. 또한, 부극집전체(18)의 돌기(18a)의 수는 2개로 하고, 1개의 돌기(25a)가 형성된 부극집전체 받이부품(25)을 2개 이용하였다. 저항용접은 부극집전체(18) 및 부극집전체 받이부품(25)을 끼우도록 상하로부터 저항용접 장치(도시 생략)의 구리제의 전극봉(26 및 27)을 당접하고, 양쪽 전극봉(26 및 27)을 서로 압압하여 약간 단락한 상태로 하고나서, 양 전극봉(26 및 27) 사이에 단시간 미리 실험적으로 정한 최적 용접 전류(피크 전류 15 kA)를 흘려 저항용접을 수행하였다.
그리고, 이 저항용접시 부극집전체(18)의 돌기(18a)의 중심축과 부극집전체 받이부품(25)의 돌기(25a)의 중심축의 어긋남 L을 0 ㎜(비교예 1), 1.0 ㎜(실시예 1), 1.5 ㎜(실시예 2) 및 2 ㎜(비교예 2)로 변화시키고, 각각의 경우에 있어서 50개씩 저항용접을 수행하여 불량품의 발생률을 구하였다. 또한, 어긋남 방향은 모두 편평상의 권회전극체(11)의 권회축에 평행한 방향(도 2A에서의 좌우 방향)이다. 또, 도 2A에서의 점선 부분은 예상 전류 통로이다. 불량품의 판정은 부극심체 노출부와 부극집전체 사이의 저항값을 측정하고, 저항값이 일정값 이상인 것을 불량품으로 판정하였다. 결과를 모아 표 1에 나타냈다.
비교예 1 실시예 1 실시예 2 실시예 3
중심축의 어긋남 L 0 ㎜ 1.0 ㎜ 1.5 ㎜ 2.0 ㎜
L/W 0 1/3 1/2 2/3
불량률 30% 0% 0% 70%
W=3.0 ㎜
표 1에 나타낸 결과로부터, 이하의 것을 알 수 있다. 부극집전체(18)의 돌기(18a)의 중심축과 부극집전체 받이부품(25)의 돌기(25a)의 중심축의 어긋남량 L=0 ㎜인 비교예 1의 경우에는 불량율이 30%까지도 되어 있지만, 이 어긋남량 L=1.0 ㎜인 실시예 1 및 L=1.5 ㎜인 실시예 2의 경우에는 불량율이 0%, 즉 모두 우량품이 얻어졌다. 본래, 부극집전체(18)의 돌기(18a)의 중심축과 부극집전체 받이부품(25)의 돌기(25a)의 중심축이 정확하게 일치하고 있으면 가장 양호하게 저항용접이 수행되어 있지 않으면 안 될 것이지만, 이 표 1에 나타낸 것과 같은 결과는 부극집전체(18), 집전체 받이부품(25) 및 저항용접 장치의 전극봉(26,27)의 배치는 전술한 어긋남이 없는 경우에 최적화되어 있기 때문에, 제조 장치의 오차때문에 부극집전체(18)의 돌기(18a)의 중심축과 부극집전체 받이부품(25)의 돌기(25a)의 중심축에 약간이라도 어긋남이 생겼을 때에, 도 4B에 나타낸 바와 같이, 부극집전체(18) 내지 집전체 받이부품(25)의 적어도 한쪽이 기울어 버리는 경우가 있기 때문에 생기는 것이라고 추정된다.
따라서, 부극집전체(18), 집전체 받이부품(25) 및 저항용접 장치의 전극봉(26,27)의 배치를 전술한 어긋남 L이 있는 경우(L>0 ㎜)로 최적화해 두면, 부극집전체(18) 내지 집전체 받이부품(25)이 기우는 일이 없어져, 일단 양호한 저항용접이 수행되는 것으로 된다. 이 경우, L의 하한값은 돌기부의 기부의 지름 W(=3.0 ㎜)에 대해, 비교예 1과 실시예 1의 내삽값으로 하면 W/10≤L 정도가 바람직하고, 보다 바람직하게는 실시예 1에 대응하는 W/3≤L인 것을 알 수 있다. 또한, 비교예 2로서 나타낸 바와 같이, 전술한 어긋남량 L이 2 ㎜보다 더 커지면, 불량율은 70%가 되어 비교예 1의 경우보다 커지고 있다. 이 때의 돌기(18a)의 기부의 지름 W에 대한 어긋남량 L의 비율은 2W/3이다. 따라서, 바람직한 돌기(18a)의 기부의 지름 W에 대한 전술한 어긋남량 L의 비율의 상한값은 실시예 2에 대응하는 L≤W/2인 것으로 인정된다. 이상을 정리하면, 보다 바람직한 집전체 및 집전체 받이부품의 각각의 반구상의 돌기부의 중심축의 어긋남 L은 돌기부의 기부의 지름 W에 대해 W/10≤L≤W/2이고, 더욱 바람직하게는 W/3≤L≤W/2가 되는 것을 알 수 있다.
또한, 실시예 1에서 얻어진 밀폐 전지로서의 각형 비수전해질 2차 전지(10)의 저항용접부를 어긋남 방향으로 평행하게 절단한 모식 단면도를 도 2B에 나타낸다. 이 도 2B에 나타낸 바와 같이, 본 발명의 밀폐 전지로서의 각형 비수전해질 2차 전지(10)에서는 부극집전체(18)의 돌기(18a)의 중심축과 부극집전체 받이부품(25)의 돌기(25a)의 중심축이 어긋나도록 하여 저항용접하고 있기 때문에, 부극집전체(18)의 돌기(18a) 및 부극집전체 받이부품(25)의 돌기(25a)는 소실하고 있음과 동시에, 이 때 생긴 저항용접자국(28)은 전술한 어긋남 방향으로 기울어 뻗어 있도록 형성된다. 그에 대해, 전술한 어긋남량을 0 ㎜로 하여 저항용접을 수행했을 때에 얻어진 우량품의 저항용접자국은 부극집전체(18) 및 부극집전체 받이부품(25)에 대해 수직으로 뻗어 있도록 형성되어 있기 때문에, 이러한 저항용접자국의 단면 형상에 의해 본 발명의 밀폐 전지와 종래 예의 밀폐 전지를 구별할 수 있다.
실시예 3
실시예 1 및 2에서는 부극집전체(18)에 돌기(18a)를, 집전체 받이부품(25)에 돌기(25a)만을 형성한 것을 이용한 예를 나타내었다. 그렇지만, 저항용접 전류가 피크 전류 15 kA 정도로 매우 크기 때문에, 저항용접시에 스퍼터가 생기고, 이 때 생긴 스퍼터 티끌이 외부에 비산하는 일이 있다. 따라서, 실시예 3의 밀폐 전지의 제조 방법에서는 이러한 스퍼터 티끌이 용접 개소에서 외부에 뛰쳐 나오는 것을 억제하는 수단을 형성하고 있다. 이 실시예 3의 밀폐 전지로서의 각형 비수전해질 2차 전지(10)의 제조 방법을 도 3을 이용해 설명한다.
실시예 3의 각형 비수전해질 2차 전지(10)에 있어서는, 실시예 1에서 이용한 것과 동일한 부극집전체(18) 및 부극집전체 받이부품(25)을 이용하여, 도 3A에 나타낸 바와 같이, 부극집전체(18)의 돌기(18a) 주위에 환상으로 열용착성 수지로 이루어지는 테이프(30)를 배치하는 동시에, 집전체 받이부품(25)의 돌기(25a) 주위에 환상으로 열용착성 수지로 이루어지는 테이프(31)를 배치하였다. 그리고, 구리제의 부극심체 노출부(15)를 묶고, 그 아래쪽으로부터 구리제의 부극집전체(18)의 돌기(18a)가 위쪽이 되도록 배치하고, 마찬가지로 위쪽으로부터 부극집전체 받이부품(25)의 돌기(25a)가 아래쪽이 되도록 배치하였다. 그리고, 부극집전체(18)의 돌기(18a)의 중심축과 부극집전체 받이부품(25)의 돌기(25a)의 중심축의 어긋남량 L을 1 ㎜로 하였다. 또한, 어긋남 방향은 편평상의 권회전극체(11)의 권회축에 평행한 방향(도 3A에서의 좌우 방향)이다.
이 상태로, 부극집전체(18) 및 부극집전체 받이부품(25)을 끼우도록 상하로부터 저항용접 장치(도시 생략)의 구리제의 전극봉(26 및 27)을 당접하고, 양쪽 전극봉(26 및 27)을 서로 압압하여 약간 단락한 상태로 하고 나서, 양전극봉(26 및 27) 사이에 단시간 미리 실험적으로 정한 최적 용접 전류(피크 전류 15 kA)를 흘려 저항용접을 수행하였다.
실시예 3에서 얻어진 밀폐 전지로서의 각형 비수전해질 2차 전지(10)에서는 저항용접부의 불량품의 발생은 볼 수 없었다. 또, 이와 같이 하여 저항용접을 수행한 후, 저항용접부를 어긋남 방향으로 평행하게 절단한 모식 단면도를 도 3B에 나타낸다. 도 3B에 나타낸 바와 같이, 실시예 3에서 제작된 밀폐 전지로서의 각형 비수전해질 2차 전지(10)의 저항용접자국도 전술한 어긋남 방향으로 기울어 뻗어 있도록 형성되고, 또한 열용착성 수지로 이루어지는 테이프(30 및 31)는 저항용접시의 열에 의해 용융한 후에 고체화되어 있지만, 내부에는 스퍼터 티끌(32)이 포획되어 있는 것이 확인되었다.
이와 같이, 부극집전체(18)에 돌기(18a)의 주위에 환상으로 열용착성 수지로 이루어지는 테이프(30)를 배치하는 동시에, 집전체 받이부품(25)의 돌기(25a) 주위에 환상으로 열용착성 수지로 이루어지는 테이프(31)를 배치하면, 저항용접시에 발생한 스퍼터 티끌(32)이 외부에 뛰쳐 나오지 않게 할 수 있기 때문에, 스퍼터 티끌(32)에 기인하는 편평상의 권회전극체(11)의 내부 단락을 억제할 수 있다고 하는 효과도 생기게 된다.
또한, 열용착성 수지제 테이프(30,31)로는 열용착성 수지의 용착온도가 70∼150℃ 정도이고, 용해 온도는 200℃ 이상인 것이면 적당히 선택해 사용할 수 있지만, 추가로 비수전해질 등에 대한 내약품성을 구비하고 있는 것이 바람직하다. 열용착성 수지로는 고무계 실재, 산변성 폴리프로필렌, 폴리올레핀계 열용착성 수지 등을 사용할 수 있다.
또, 실시예 3에서는 열용착성 수지로 이루어지는 테이프(30,31)를 사용한 예를 나타냈지만, 접착재 부착 절연 테이프도 사용할 수 있다. 이러한 접착재 부착 절연 테이프의 예로는 폴리이미드 테이프, 폴리프로필렌 테이프, 폴리페닐렌설파이드 테이프 등을 들 수 있다. 또, 이러한 테이프는 소정의 두께로 하기 위하여, 복층 구조의 것이어도 된다.
또, 상기 실시예 1∼3에서는 구리로 이루어지는 부극심체, 부극집전체 및 부극집전체 받이부품을 이용한 경우에 대해 설명했지만, 이들이 구리합금으로 이루어지는 경우라도, 나아가서는 알루미늄 내지 알루미늄 합금으로 이루어지는 정극심체, 정극집전체 및 정극집전체 받이부품의 경우라도 동일하게 적용할 수 있다. 또, 상기 실시예 1∼3에서는 권회전극체의 경우에 적용한 예를 나타냈지만, 복수매의 정극 극판과 부극 극판을 각각 격리판을 끼워서 서로 적층한 적층 전극체의 경우에 대해서도 동일하게 적용할 수 있다.
도 1: 도 1A는 실시예 및 비교예에 공통되는 밀폐 전지로서의 각형 비수전해질 2차 전지의 내부 구조를 나타내는 정면도이며, 도 1B는 도 1A의 IB-IB선에 따른 단면도이다.
도 2: 도 2A는 용접 전의 실시예 1 및 2의 전극체 및 용접 장치의 전극 배치를 나타내는 모식 단면도이고, 도 2B는 용접 후의 용접 부분의 모식 단면도이다.
도 3: 도 3A는 용접 전의 실시예 3의 전극체 및 용접 장치의 전극 배치를 나타내는 모식 단면도이고, 도 3B는 용접 후의 용접 부분의 모식 단면도이다.
도 4: 도 4A는 용접전의 종래 예의 전극체 및 용접 장치의 전극 배치를 나타내는 모식 부분 단면도이고, 도 4B는 가압시에 용접 부분에 어긋남이 생긴 경우의 모식 부분 단면도이다.
부호의 설명
10…각형 비수전해질 2차 전지, 11…권회전극체, 12…전지 외장캔, 13…봉구판, 14…정극심체 노출부, 15…부극심체 노출부, 16…정극집전체, 17…정극 단자, 18…부극집전체, 18a…돌기, 19…부극 단자, 20,21…절연부재, 25…부극집전체 받이부품, 25a…돌기, 26,27…전극봉, 28…저항용접자국, 30,31…테이프, 32…스퍼터 티끌

Claims (6)

  1. 이하의 (1)∼(3)의 공정을 포함하는 것을 특징으로 하는 밀폐 전지의 제조 방법:
    (1) 양단에 각각 복수매의 정극심체 및 부극심체의 노출부를 갖는 밀폐 전지용 전극체를 형성하는 공정,
    (2) 상기 복수매의 정극심체 및 부극심체의 노출부의 적어도 한쪽의 양측에 각각 반구상의 돌기부를 갖는 집전체 및 집전체 받이부품을 상기 반구상의 돌기부의 중심축의 어긋남을 L, 상기 반구상의 돌기부의 기부의 지름을 W로 했을 때, 0<L≤W/2의 관계를 만족하도록 서로 대향하도록 당접하는 공정,
    (3) 상기 집전체 및 집전체 받이부품 사이에 압력을 인가하면서 전류를 흘려 저항용접하는 공정.
  2. 청구항 1에 있어서,
    상기 (2)의 공정에 있어서, 각각의 상기 반구상의 돌기부 주위에 환상의 열용착성 수지로 이루어지는 테이프 또는 접착재 부착 절연 테이프를 배치한 것을 특징으로 하는 밀폐 전지의 제조 방법.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 복수매의 심체, 상기 집전체 및 집전체 받이부품으로 구리 또는 구리합 금 혹은 알루미늄 또는 알루미늄 합금으로 이루어지는 것을 이용한 것을 특징으로 하는 밀폐 전지의 제조 방법.
  4. 양단에 각각 복수매의 정극심체 및 부극심체가 노출한 전극체와, 적어도 한쪽의 상기 복수매의 심체를 끼우도록 저항용접된 집전체 및 집전체 받이부품을 구비하는 밀폐 전지로서,
    상기 집전체 및 집전체 받이부품 사이의 상기 복수매의 심체에는 저항용접자국이 기울어져 형성되어 있는 것을 특징으로 하는 밀폐 전지.
  5. 청구항 4에 있어서,
    상기 저항용접 부분 주위의 상기 심체와 상기 집전체 및 집전체 받이부품 사이에는 각각 열용착성 수지로 이루어지는 테이프 또는 접착재 부착 절연 테이프가 배치되어 있는 것을 특징으로 하는 밀폐 전지.
  6. 청구항 4 또는 청구항 5에 있어서,
    상기 복수매의 심체, 상기 집전체 및 집전체 받이부품은 구리 또는 구리합금 혹은 알루미늄 또는 알루미늄 합금으로 이루어지는 것을 특징으로 하는 밀폐 전지.
KR1020090130528A 2009-03-02 2009-12-24 밀폐 전지의 제조 방법 및 밀폐 전지 KR20100099039A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2009-047609 2009-03-02
JP2009047609A JP2010205469A (ja) 2009-03-02 2009-03-02 密閉電池の製造方法及び密閉電池

Publications (1)

Publication Number Publication Date
KR20100099039A true KR20100099039A (ko) 2010-09-10

Family

ID=42667281

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090130528A KR20100099039A (ko) 2009-03-02 2009-12-24 밀폐 전지의 제조 방법 및 밀폐 전지

Country Status (3)

Country Link
US (1) US20100221602A1 (ko)
JP (1) JP2010205469A (ko)
KR (1) KR20100099039A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106413972A (zh) * 2013-11-21 2017-02-15 美敦力公司 对具有顶端板和底端板的多个薄金属箔层的堆进行焊接的方法
KR20170073130A (ko) * 2015-12-18 2017-06-28 주식회사 성우하이텍 서브 프레임용 마운팅 볼트

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746913B1 (ko) * 2012-06-28 2017-06-14 도요타지도샤가부시키가이샤 전지의 제조 방법 및 전지
JP5935580B2 (ja) * 2012-08-02 2016-06-15 株式会社豊田自動織機 蓄電装置の製造方法及び二次電池の製造方法
JP6079338B2 (ja) * 2013-03-18 2017-02-15 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法
JP6375610B2 (ja) * 2013-11-13 2018-08-22 株式会社Gsユアサ 蓄電素子及びその製造方法
JP6360305B2 (ja) * 2013-12-27 2018-07-18 日立オートモティブシステムズ株式会社 角形二次電池
CN110178248B (zh) * 2017-01-17 2022-08-19 大日本印刷株式会社 保护膜、电池和电池的制造方法
JP7075332B2 (ja) * 2018-11-30 2022-05-25 三洋電機株式会社 二次電池及びその製造方法
JP7413784B2 (ja) 2020-01-10 2024-01-16 株式会社Gsユアサ 蓄電素子
KR20210143595A (ko) * 2020-05-20 2021-11-29 주식회사 엘지에너지솔루션 이차전지 및 그의 제조방법
CN113300031A (zh) * 2021-05-21 2021-08-24 东莞塔菲尔新能源科技有限公司 一种动力电池及动力电池的焊接方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626085B2 (ja) * 2000-09-26 2005-03-02 オリジン電気株式会社 プロジェクション同士突き合わせ拡散接合方法及び溶接物品
JP5004452B2 (ja) * 2005-03-31 2012-08-22 三洋電機株式会社 電池の製造方法
JP4986441B2 (ja) * 2005-11-24 2012-07-25 三洋電機株式会社 角形電池
JP4550086B2 (ja) * 2006-10-06 2010-09-22 オリジン電気株式会社 高導電性被溶接物のプロジェクション溶接方法
KR20080114504A (ko) * 2007-06-27 2008-12-31 산요덴키가부시키가이샤 밀폐 전지 및 그 제조 방법
JP5100281B2 (ja) * 2007-06-27 2012-12-19 三洋電機株式会社 密閉電池及びその製造方法
JP5355929B2 (ja) * 2007-06-29 2013-11-27 三洋電機株式会社 密閉型電池及びその製造方法
JP5137516B2 (ja) * 2007-09-28 2013-02-06 三洋電機株式会社 密閉電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106413972A (zh) * 2013-11-21 2017-02-15 美敦力公司 对具有顶端板和底端板的多个薄金属箔层的堆进行焊接的方法
KR20170073130A (ko) * 2015-12-18 2017-06-28 주식회사 성우하이텍 서브 프레임용 마운팅 볼트

Also Published As

Publication number Publication date
JP2010205469A (ja) 2010-09-16
US20100221602A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5668735B2 (ja) 二次電池
US7819929B2 (en) Sealed battery and manufacturing method therefor
KR20100099039A (ko) 밀폐 전지의 제조 방법 및 밀폐 전지
JP5355929B2 (ja) 密閉型電池及びその製造方法
US9406921B2 (en) Prismatic secondary battery
JP4986441B2 (ja) 角形電池
JP4927064B2 (ja) 二次電池
JP2009032670A5 (ko)
US8722252B2 (en) Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block
US8563162B2 (en) Sealed battery
US20090239139A1 (en) Secondary battery and method for manufacturing secondary battery
JP2009110751A (ja) 二次電池
US7943253B2 (en) Sealed battery and manufacturing method therefor
US20120028088A1 (en) Prismatic sealed secondary battery
KR20120022071A (ko) 각형 밀폐 2차전지
JP2010086780A (ja) 角形二次電池
JP5384071B2 (ja) 密閉電池
WO2009153914A1 (ja) 電池およびその製造方法
JP7394051B2 (ja) 電池及びその製造方法
CN104681877A (zh) 一种动力电池极芯、动力电池及其制备方法
JP2001283824A (ja) リチウム二次電池
JP7329538B2 (ja) 二次電池及びその製造方法
JP2023135233A (ja) 蓄電素子
CN116666915A (zh) 单电池及其制造方法

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid