KR20090093165A - 양극 활물질 및 이를 채용한 양극과 리튬 전지 - Google Patents

양극 활물질 및 이를 채용한 양극과 리튬 전지

Info

Publication number
KR20090093165A
KR20090093165A KR1020080018533A KR20080018533A KR20090093165A KR 20090093165 A KR20090093165 A KR 20090093165A KR 1020080018533 A KR1020080018533 A KR 1020080018533A KR 20080018533 A KR20080018533 A KR 20080018533A KR 20090093165 A KR20090093165 A KR 20090093165A
Authority
KR
South Korea
Prior art keywords
active material
lithium
positive electrode
cathode active
metal
Prior art date
Application number
KR1020080018533A
Other languages
English (en)
Other versions
KR101473322B1 (ko
Inventor
윤재구
박규성
임동민
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020080018533A priority Critical patent/KR101473322B1/ko
Priority to US12/273,847 priority patent/US8758942B2/en
Priority to EP09153701.9A priority patent/EP2096692B1/en
Priority to JP2009046471A priority patent/JP5808073B2/ja
Publication of KR20090093165A publication Critical patent/KR20090093165A/ko
Application granted granted Critical
Publication of KR101473322B1 publication Critical patent/KR101473322B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 하기 화학식 1의 리튬금속산화물을 포함하는 양극 활물질을 개시한다:
<화학식 1>
Li[LixMeyMz]O2+d
상기 식에서, x+y+z=1; 0<x<0.33, 0<z<0.1; 0≤d≤0.1이며,상기 Me가 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, Zr 및 B로 이루어진 군에서 선택된 하나 이상의 금속이며,
상기 M이 Mo, W, Ir, Ni 및 Mg로 이루어진 군에서 선택된 하나 이상의 금속이다.

Description

양극 활물질 및 이를 채용한 양극과 리튬 전지{Cathode active material and cathode and lithium battery containing the material}
본 발명은 양극 활물질 및 이를 채용한 양극과 리튬 전지에 관한 것으로서, 더욱 상세하게는 금속이 도핑된 양극 활물질 및 이를 포함하는 양극과 리튬 전지에 관한 것이다.
리튬 전지용 양극 활물질로서 LiNiO2, LiCoO2, LiMn2O4, LiFePO4, LiNixCo1 -xO2(0≤x≤1), LiNi1 -x- yCoxMnyO2(0≤x≤0.5, 0≤y≤0.5) 등의 전이금속 화합물 또는 이들과 리튬의 산화물이 사용된다.대표적인 양극 활물질은 LiCoO2 이나, 상기 LiCoO2 는 비교적 고가이고, 실질적인 전기 용량이 약 140mAh/g으로서 제한적인 전기 용량을 가진다. 그리고, 상기 LiCoO2 는 충전에 의해 리튬이 50% 이상 제거되면 전지 내에서 Li1-xCoO2 (x>0.5)형태로 존재한다. 상기 Li1-xCoO2 (x>0.5)형태의 산화물은 불안정하고 불안전하다.
구체적으로, LiCoO2는 구조적 불안정성으로 인하여 이론 용량의 50% 정도만이 사용된다. Li1-xCoO2에 Li이 0.5 이상 남아있고(x<0.5) 충전 전압이 Li 금속 대비 4.2V일 때 약 140mAh/g만을 사용한다. LiCoO2의 이론 용량을 50% 이상으로 활용하기 위해서는 충전 전압을 4.2V 이상으로 증가시키면, Li1-xCoO2에서 Li이 0.5 미만이 되면서 Li1-xCoO2의 결정구조가 헥사고날상(hexagonal phase)에서 모노클리닉상(monoclinic phase)으로 상전이가 발생하여 구조적으로 불안정지고, 사이클이 진행됨에 따라 전기용량이 급격히 감소한다.상기 LiCoO2 의 단점을 해결하기 위해 LiNixCo1-xO2(x=1, 2) 또는 LiNi1-x-yCoxMnyO2(0≤x≤0.5, 0≤y≤0.5) 와 같은 양극 활물질이 시도되었으나 이러한 양극 활물질은 고온에서 스웰링 억제 특성이 좋지 않다.
Li[LixM 1-x]O2 (x>0, M 는 복수의 전이금속)형태의 리튬금속산화물은 전기 용량이 250~280mAh/g으로서 증가된 전기용량을 제공한다. 그러나, 상기 과량의 리튬이 포함된 리튬금속산화물은 전기 전도성이 낮아 고율 특성이 저하되며 사이클특성이 부진하다.
하기 화학식 1의 리튬금속산화물을 포함하는 양극 활물질이 제공된다:
<화학식 1>
Li[LixMeyMz]O2+d
상기 식에서, x+y+z=1; 0<x<0.33, 0<z<0.1; 0≤d≤0.1이며,
상기 Me가 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, Zr 및 B로 이루어진 군에서 선택된 하나 이상의 금속이며,
상기 M이 Mo, W, Ir, Ni 및 Mg로 이루어진 군에서 선택된 하나 이상의 금속이다.
상기에 따른 양극 활물질을 포함하는 양극 및 리튬 전지가 제공된다.
도 1은 본 발명의 실시예 4 내지 6 및 비교예 2에서 제조된 리튬 전지에 대한 충방전 시험 결과이다.
도 2a는 본 발명의 비교예 2에서 제조된 리튬 전지의 1, 5, 10, 15 및 20번째 사이클에서의 충방전 곡선을 전압(V)과 전기 용량의 전압에 대한 미분값(dQ/dV)으로 나타낸 그래프이다.
도 2b는 본 발명의 실시예 4에서 제조된 리튬 전지의 1, 5, 10, 15 및 20번째 사이클에서의 충방전 곡선을 전압(V)과 전기 용량의 전압에 대한 미분값(dQ/dV)으로 나타낸 그래프이다.
도 3a는 본 발명의 실시예 6의 초기 전극 XRD와 50사이클 후 충방전 전압별 XRD 분석결과이다.
도 3b는 본 발명의 비교예 2의 초기 전극 XRD와 50사이클 후 충방전 전압별 XRD 분석결과이다
이하에서 본 발명의 바람직한 구현예에 따른 양극 활물질에 관하여 더욱 상세히 설명한다.
본 발명의 일 구현예에 따른 양극 활물질은 하기 화학식 1의 리튬금속산화물을 포함한다:
<화학식 1>
Li[LixMeyMz]O2+d
상기 식에서, x+y+z=1; 0<x<0.33, 0<z<0.1; 0≤d≤0.1이며,
상기 Me가 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, Zr 및 B로 이루어진 군에서 선택된 하나 이상의 금속이며, 상기 M이 Mo, W, Ir, Ni 및 Mg로 이루어진 군에서 선택된 하나 이상의 금속이다.
상기 리튬금속산화물은 과량의 리튬(overlithiated) 과 금속(Me)을 포함한 리튬금속산화물에 새로운 금속(M)을 추가적으로 도핑함에 의하여 얻어지며, 상기 리튬금속산화물이 사용된 전지의 사이클 특성 및 고율 특성이 향상된다. 상기 새로운 금속(M)의 도핑함량은 전이금속 총 몰수의 10몰% 미만 정도가 바람직하다. 이것은 상기 화학식 1에서 z는 0<z<0.1 범위의 값으로 주어진다. 상기 함량 범위가 전지의 사이클 특성이 향상되기에 적합하다. z 값이 상기 범위를 초과할 경우 전지의 용량 감소가 현저할 수 있다. 상기 금속(Me)은 복수개의 금속을 포함하는 것이 바람직하다.
본 발명의 다른 구현예에 의하면, 상기 z는 0<z<0.05 범위의 값을 가지는 것이 바람직하다. z값이 0<z<0.05 범위에서 본 발명의 목적 달성에 보다 적합하다.
본 발명의 다른 구현예에 의하면, 상기 리튬금속산화물은 하기 화학식 2로 표시될 수 있다:
<화학식 2>
Li[LixMeyMoz]O2+d
상기 식에서, x+y+z=1; 0<x<0.33, 0<z<0.1; 0≤d≤0.1이며,상기 Me는 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, Zr 및 B로 이루어진 군에서 선택된 하나 이상의 금속이다. 특히, 상기 z는 0<z<0.05 범위인 것이 바람직하다. z값이 0<z<0.05 범위에서 본 발명의 목적 달성에 보다 적합하다.
본 발명의 다른 구현예에 의하면, 상기 리튬금속화합물은 하기 화학식 3으로 표시될 수 있다:
<화학식 3>
Li[LixNiaCobMncMz]O2+d
상기 식에서, x+a+b+c+z=1; 0<x<0.33, 0<z<0.1, 0<a<0.2, 0<b<0.2, 0<c<0.6; 0≤d≤0.1이며, 상기 M이 Mo, W, Ir, Ni 및 Mg로 이루어진 군에서 선택된 하나 이상의 금속이다. 특히, 상기 z는 0<z<0.05 범위인 것이 바람직하다. z값이 0<z<0.05 범위에서 본 발명의 목적 달성에 보다 적합하다.
본 발명의 다른 구현예에 의하면, 상기 리튬금속화합물은 하기 화학식 4로 표시될 수 있다:
<화학식 4>
Li[LixNiaCobMncMoz]O2+d
상기 식에서, x+a+b+c+z=1; 0<x<0.33, 0<z<0.1, 0<a<0.2, 0<b<0.2, 0<c<0.6; 0≤d≤0.1이다. 특히, 상기 z는 0<z<0.05 범위인 것이 바람직하다. . z값이 0<z<0.05 범위에서 본 발명의 목적 달성에 보다 적합하다.
특히, 상기 리튬금속산화물은 Li[Li0.2Ni0.16Co0.08Mn0.54Mo0.02]O2, Li[Li0.2Ni0.16Co0.08Mn0.52Mo0.04]O2, Li[Li0.2Ni0..2Co0.08Mn0.48Mo0.04]O2 등이 바람직하다.본 발명의 다른 구현예에 따르면, 상기 리튬금속산화물의 제조 방법은 금속전구체, 묽은 질산, 구연산 수용액 및 에틸렌글리콜을 혼합하여 졸(sol)을 제조하는 단계; 상기 졸을 가열하여 겔(gel)을 형성하고 상기 겔을 열분해시키는 단계; 및 상기 열분해된 겔을 열처리하는 단계;를 포함한다.
상기 금속전구체는 리튬금속산화물을 구성하는 리튬의 전구체 및 기타 금속들의 전구체이다. 상기 전구체의 형태는 한정되지 않으나 금속을 포함하는 염, 상기 금속에 유기 리간드가 배위된 착물 등의 형태가 일반적이다.
상기 금속전구체를 구성하는 금속의 종류에 따른 개별적인 금속전구체의 함량은 의도하는 리튬금속산화물의 조성을 고려하여 적절히 선택될 수 있다. 상기 금속전구체는 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, Zr, 및 B로 이루어지는 군에서 선택되는 하나 이상의 금속을 포함하는 제 1 금속전구체; Mo, W, Ir, Ni 및 Mg로 이루어지는 군에서 선택되는 하나 이상의 금속을 포함하는 제 2 금속전구체; 및 리튬금속전구체;를 포함하는 것이 바람직하다. 예를 들어, 상기 제 1 금속전구체는 니켈 아세테이트, 코발트 아세테이트, 망간 아세테이트 등이며, 상기 제 2 금속전구체는 암모늄 헵타몰리브데이트(ammonium heptamolybdate) 등이며, 상기 리튬금속전구체는 리튬 카보네이트 등이다.
상기 구연산은 킬레이팅제(chelating agent) 역할을 한다. 상기 에틸렌글리콜은 겔화되어 매트릭스(matrix) 역할을 한다. 상기 묽은 질산의 농도는 0.01wt% 내지 10wt%가 바람직하다.
상기 금속 전구체, 구연산 및 에틸렌글리콜이 혼합되는 비율은 본 발명의 목적을 달성하는 범위 내에서 필요에 따라 적절히 선택될 수 있다.
상기 졸을 가열하여 겔을 형성한 다음 상기 겔을 열분해시키는 단계는 상기 졸이 들어있는 반응용기를 지속적으로 가열할 경우에 발생하는 성상의 변화이다. 즉, 상기 졸이 들어있는 반응용기를 가열하면 졸이 겔로 변화한 다음 물이 모두 증발하면 잔류물이 열분해된다. 상기 졸이 열분해되는 단계에서 상기 가열은 300 내지 500℃에서 1시간 내지 5시간 동안 수행되는 것이 바람직하나 필요에 따라 적절히 선택될 수 있다. 상기 열분해된 젤을 열처리 단계는 850 내지 1100℃에서 3시간 내지 12시간 동안 건조된 공기를 흘려주면서 수행되는 것이 바람직하나, 필요에 따라 적절히 선택될 수 있다. 상기 열처리된 리튬금속산화물은 노(furnace)에서 건조 냉각시키는 것이 바람직하다.
본 발명의 다른 구현예에 의하면, 상기 리튬금속산화물의 제조 방법은 제 1금속전구체가 포함된 제 1수용액을 제조하는 단계; 리튬금속전구체와 아세트산이 포함된 제 2수용액을 제조하는 단계; 제 2금속전구체와 구연산을 상기 제 2 수용액에 첨가하여 제 3수용액을 제조하는 단계; 상기 제 1 및 제 3수용액의 혼합 용액에 옥살산 수용액을 첨가하여 침전물을 얻는 단계; 상기 침전물로부터 수분을 제거하고 열분해시키는 단계; 및 상기 열분해된 침전물을 열처리하는 단계;를 포함한다.
상기 제 1금속전구체는 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, Zr, 및 B로 이루어지는 군에서 선택되는 하나 이상의 전이금속을 포함하는 전구체인 것이 바람직하다. 리튬 금속 전구체가 바람직하다. 상기 제 2금속 전구체는 Mo, W, Ir, Ni 및 Mg로 이루어지는 군에서 선택되는 하나 이상의 전이금속을 포함하는 것이 바람직하다.
예를 들어, 상기 제 1 금속 전구체는 니켈 아세테이트, 코발트 아세테이트, 망간 아세테이트 등이며, 상기 제 2 금속 전구체는 암모늄 헵타몰리브데이트(ammonium heptamolybdate) 등이며, 상기 리튬금속 전구체는 리튬 카보네이트 등이다.
상기 아세트산은 금속 전구체를 균일하게 용해시키는 역할을 한다. 상기 옥살산은 침전제 역할을 한다. 상기 구연산은 킬레이팅제 역할을 한다.
상기 각 수용액에서 금속 전구체와 아세트산 또는 구연산의 혼합 비율은 본 발명의 목적을 달성하는 범위 내에서 적절히 선택될 수 있다. 옥살산 수용액의 농도도 본 발명의 목적을 달성하는 범위 내에서 적절히 선택될 수 있다. 또한, 상기 3가지 수용액의 혼합비도 본 발명의 목적을 달성하는 범위 내에서 적절히 선택될 수 있다.
상기 침전물이 열분해되는 단계는 300 내지 500℃에서 1시간 내지 5시간 동안 수행되는 것이 바람직하나 필요에 따라 적절히 선택될 수 있다. 상기 열분해된 젤을 열처리 단계는 850 내지 1100℃에서 3시간 내지 12시간 동안 건조된 공기를 흘려주면서 수행되는 것이 바람직하나, 필요에 따라 적절히 선택될 수 있다. 상기 열처리된 리튬금속산화물은 노(furnace)에서 건조 냉각시키는 것이 바람직하다.
본 발명의 다른 구현예에 따르는 양극은 상기 양극 활물질을 포함한다. 상기 양극은 예를 들어 상기 양극 활물질 및 결착제 등을 포함하는 양극 혼합 재료가 일정한 형상으로 성형되거나, 상기 양극 혼합 재료가 동박(copper foil), 알루미늄박 등의 집전체에 도포되는 방법으로 제조될 수 있다.
구체적으로, 양극 활물질, 도전재, 결합제 및 용매를 혼합한 양극 혼합 재료가 제조된다. 상기 양극 혼합 재료가 알루미늄박 집전체 위에 직접 코팅되어 양극 극판이 얻어지거나, 상기 양극 혼합 재료가 별도의 지지체 상에 캐스팅되고 상기 지지체로부터 박리시킨 양극 활물질 필름이 알루미늄박 집전체에 라미네이션되어 양극 극판이 얻어질 수 있다. 상기 양극은 상기에서 열거한 형태에 한정되는 것은 아니고 상기 형태 이외의 형태일 수 있다.
상기 도전재로는 카본블랙, 흑연미립자 등이 사용될 수 있으며, 결합제로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 및 그 혼합물 또는 스티렌 부타디엔 고무계 폴리머 등이 사용될 수 있으며, 용매로는 N-메틸피롤리돈, 아세톤 또는 물 등이 사용될 수 있다. 상기, 양극 활물질, 도전재, 결합제 및 용매의 함량은 리튬 전지에서 통상적으로 사용되는 수준이다.
본 발명의 다른 구현예에 따르는 리튬 전지는 상기의 양극 활물질을 포함하는 양극을 채용한다. 상기 리튬 전지는 다음과 같은 방법으로 제조될 수 있다.
먼저, 상기의 양극 제조 방법에 따라 양극이 제조된다.
다음으로, 음극 활물질, 도전재, 결합제 및 용매를 혼합하여 음극 혼합 재료를 제조한다. 상기 음극 혼합 재료를 구리 집전체에 직접 코팅하여 음극 극판을 얻거나, 상기 음극 혼합 재료를 별도의 지지체상에 캐스팅하고 이 지지체로부터 박리시킨 음극 활물질 필름을 구리 집전체에 라미네이션하여 음극 극판을 얻는다. 이 때 음극 활물질, 도전재, 결합제 및 용매의 함량은 리튬 전지에서 통상적으로 사용하는 수준이다.
상기 음극 활물질로는 리튬 금속, 리튬 합금, 탄소재 또는 그래파이트 등을 사용할 수 있다. 음극 혼합 재료에서 도전재, 결합제 및 용매는 상기 양극의 경우와 동일한 것을 사용할 수 있다. 경우에 따라서는 상기 양극 혼합 재료 및 음극 혼합 재료에 가소제를 더 부가하여 전극판 내부에 기공을 형성하는 것도 가능하다.
상기 양극과 음극은 세퍼레이터에 의해 분리될 수 있으며, 상기 세퍼레이터로는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용 가능하다. 특히, 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다. 구체적으로, 리튬 이온 전지에는 폴리에틸렌, 폴리프로필렌 등과 같은 권취 가능한 세퍼레이터가 사용되며, 리튬 이온 폴리머 전지의 경우에는 유기전해액 함침 능력이 우수한 세퍼레이터가 사용되는데, 이러한 세퍼레이터는 하기 방법에 따라 제조될 수 있다.
고분자 수지, 충진제 및 용매를 혼합하여 세퍼레이터 조성물이 준비된 다음, 상기 세퍼레이터 조성물이 전극 상부에 직접 코팅 및 건조되어 세퍼레이터 필름이 형성될 수 있다. 다르게는, 상기 세퍼레이터 조성물이 지지체상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리시킨 세퍼레이터 필름이 전극 상부에 라미네이션될 수 있다.
상기 고분자 수지는 특별히 한정되지는 않으며, 전극판의 결합재에 사용되는 물질들이 모두 사용 가능하다. 예를 들어 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 또는 이들의 혼합물 등이 사용될 수 있다.
전해액으로는 프로필렌카보네이트, 에틸렌카보네이트, 플루오로에틸렌카보네이트, 부틸렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 메틸에틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트, 메틸이소프로필카보네이트, 디프로필카보네이트, 디부틸카보네이트, 벤조니트릴, 아세토니트릴, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, γ-부티로락톤, 디옥소란, 4-메틸디옥소란, N,N-디메틸포름아미드, 디메틸아세트아미드, 디메틸설폭사이드, 디옥산, 1,2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디에틸렌글리콜, 디메틸에테르 또는 이들의 혼합물 등의 용매에 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(단 x,y는 자연수), LiCl, LiI 또는 이들의 혼합물 등의 리튬 염이 용해되어 사용될 수 있다.상술한 양극 극판과 음극 극판 사이에 세퍼레이터가 배치되어 전지 구조체가 형성된다. 이러한 전지 구조체가 와인딩되거나 접혀서 원통형 전지 케이스나 또는 각형 전지 케이스에 수용된 다음, 상기 유기 전해액이 주입되면 리튬 이온 전지가 완성된다. 상기 전지 구조체가 바이셀 구조로 적층된 다음, 유기 전해액에 함침되고, 얻어진 결과물이 파우치에 수용되어 밀봉되면 리튬 이온 폴리머 전지가 완성된다.
이하의 실시예 및 비교예를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것이 아니다.
(양극 활물질의 제조)
실시예 1 : Li[Li 0.2 Ni 0.16 Co 0.08 Mn 0.54 Mo 0.02 ]O 2 의 제조
출발 물질로서 리튬 카보네이트(Lithium carbonate), 니켈 아세테이트(Nickel acetate), 코발트 아세테이트(Cobalt acetate), 망간 아세테이트(Manganese acetate) 및 암모늄 헵타몰리브테이트 (Ammonium heptamolybdate)를 선정하였다. Li[Li0.2Ni0.16Co0.08Mn0.54Mo0.02]O2 0.04mol을 제조하기 위해 Li, Ni, Co, Mn 및 Mo 사이의 몰비를 계산하여 상기 출발물질들을 준비하였다.
상기 출발물질들을 질산(60중량%) 5g와 증류수 50ml가 혼합된 묽은 질산 수용액 50ml에 녹인 후, 상기 용액에 구연산 수용액(2M) 50ml 및 에틸렌 글리콜 30ml를 첨가하여 졸(sol)을 제조하였다.
상기 졸을 가열하여 물을 증발시켜 젤(gel)을 형성하고, 상기 젤을 계속 가열하여 열분해시켰다. 상기 열분해된 젤을 노(furnace)에 넣고 건조 공기를 흘려주면서 1000℃에서 5시간 동안 열처리하여 양극 활물질을 제조하였다. 상기 양극활물질을 노에서 그대로 냉각시켰다.
실시예 2 : Li[Li 0.2 Ni 0.16 Co 0.08 Mn 0.52 Mo 0.04 ]O 2 의 제조
Li[Li0.2Ni0.16Co0.08Mn0.54Mo0.02]O2 0.04mol을 제조하기 위해 Li, Ni, Co, Mn 및 Mo 사이의 몰비를 수정하여 상기 출발물질들을 준비한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
실시예 3 : Li[Li 0.2 Ni 0.2 Co 0.08 Mn 0.48 Mo 0.04 ]O 2 의 제조
출발 물질로서 리튬 카보네이트(Lithium carbonate), 니켈 아세테이트(Nickel acetate), 코발트 아세테이트(Cobalt acetate), 망간 아세테이트(Manganese acetate) 및 암모늄 헵타몰리브테이트 (Ammonium heptamolybdate)를 선정하였다. Li[Li0.2Ni0.2Co0.08Mn0.48Mo0.04]O2 0.04mol을 제조하기 위해 Li, Ni, Co, Mn 및 Mo 사이의 몰비를 계산하여 상기 출발물질들을 준비하였다.
증류수 100ml에 리튬 카보네이트 1.8266g 및 아세트산 3.5ml를 첨가하여 수용액을 제조하였다. 상기 수용액에 암모늄 헵타몰리브데이트 0.2825g 및 구연산 4g을 첨가하고 교반하여 Li/Mo 수용액을 제조하였다. 증류수 100ml에 니켈 아세테이트 1.9909g, 코발트 아세테이트 0.7971g 및 망간 아세테이트 4.7057g을 첨가하여 Ni/Co/Mn 수용액을 제조하였다. 증류수 100ml에 옥살산 7.5642g을 첨가하여 옥살산 수용액을 제조하였다.
상기 Ni/Co/Mn 수용액과 Li/Mo 수용액의 혼합액에 상기 옥살산 수용액을 투입하여 상기 금속이온들을 옥살산의 금속염 형태로 침전시켰다.
상기 침전물이 들어있는 용액을 100℃에서 가열하여 수분을 건조시키고, 상기 건조된 침전물을 500℃에서 3시간 동안 추가 가열하여 열분해시켰다.상기 열분해된 침전물을 노(furnace)에 넣고 건조 공기를 흘려주면서 1000℃에서 5시간 동안 열처리하여 양극 활물질을 제조하였다. 상기 양극활물질을 노에서 그대로 냉각시켰다.
비교예 1 : Li[Li 0.2 Ni 0.16 Co 0.08 Mn 0.56 ]O 2 의 제조
출발 물질로서 리튬 카보네이트(Lithium carbonate), 니켈 아세테이트(Nickel acetate), 코발트 아세테이트(Cobalt acetate) 및 망간 아세테이트(Manganese acetate)를 선정하고, Li[Li0.2Ni0.16Co0.08Mn0.56]O2 0.04mol을 제조하기 위해 Li, Ni, Co 및 Mn 사이의 몰비를 계산하여 상기 출발물질들을 준비한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
(양극 및 리튬 전지의 제조)
실시예 4
실시예 1에서 합성된 양극 활물질 분말과 탄소도전재(Ketjen Black; EC-600JD)를 93:3의 무게비로 균일하게 혼합한 후 PVDF(polyvinylidene fluoride) 바인더 용액을 첨가하여 활물질:탄소도전제:바인더=93:3:4의 무게비가 되도록 슬러리를 제조하였다.
15㎛ 두께의 알루미늄 호일 위에 상기 활물질 슬러리를 코팅한 후 건조하여 양극 극판을 만들고, 추가로 진공건조시켜 지름 12mm의 코인셀(CR2016 type)을 제조하였다.
셀 제조시 대극(counter electrode)로는 금속 리튬을 사용하였으며, 전해질로는 EC(에틸렌카보네이트):DEC(디에틸카보네이트)(3:7부피비) 혼합 용매에 1.3M LiPF6이 용해된 것을 사용하였다.
실시예 5
실시예 2에서 합성된 양극 활물질을 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 리튬 전지를 제조하였다.
실시예 6
실시예 3에서 합성된 양극 활물질을 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 리튬 전지를 제조하였다.
비교예 2
비교예 1에서 합성된 양극 활물질을 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 리튬 전지를 제조하였다.
평가예 1 : 충방전 실험
상기 실시예 4 내지 6 및 비교예 2에서 제조된 상기 코인셀을 전압이 리튬 금속 대비 4.6V에 도달할 때까지 125mA/g의 정전류로 충전하였다. 상기 4.6V 전압에 도달한 후, 상기 정전류의 값이 1/10로 감소할 때까지 4.6V의 정전압으로 충전하였다. 상기 충전 후, 상기 코인셀을 50mA/g 정전류로 각각 방전하여 전압이 2V(vs. Li)에 도달할 때까지 방전시켜 방전 용량을 측정하였다. 측정 결과를 하기 표 1에 나타내었다.
상기 실시예 4 내지 6 및 비교예 2에서 제조된 상기 코인셀을 전압이 리튬 금속 대비 4.6V에 도달할 때까지 125mA/g의 정전류로 충전하였다. 상기 4.6V 전압에 도달한 후, 상기 정전류의 값이 1/10로 감소할 때까지 4.6V의 정전압으로 충전하였다. 상기 충전 후, 상기 코인셀을 250mA/g(1C rate) 및 25mA/g(0.1C rate)의 정전류로 각각 방전하여 전압이 2V(vs. Li)에 도달할 때까지 방전시켜 고율 방전 특성을 평가하였다. 측정 결과를 하기 표 1에 나타내었다. 고율 방전 특성은 하기 수학식 1의 방전 용량비(rate capability)로 표시된다.
<수학식 1>
방전 용량비[%] = [1C rate에서의 방전 용량/0.1C rate에서의 방전 용량]ㅧ100
상기 실시예 4 내지 6 및 비교예 2에서 제조된 상기 코인셀을 전압이 리튬 금속 대비 .4.6V에 도달할 때까지 125mAh/g의 정전류로 충전하였다. 상기 4.6V 전압에 도달한 후, 상기 정전류의 값이 1/10로 감소할 때까지 4.6V의 정전압으로 충전하였다. 상기 충전 후, 상기 코인셀을 125mAh/g의 정전류로 전압이 2V(vs. Li)에 도달할 때까지 방전하였다. 상기 충방전 사이클을 20회 반복하여 그 결과를 도 1 및 하기 표 1에 나타내었다. 하기 표 1에서 용량 유지율은 하기 수학식 2로 표시된다.
<수학식 2>
용량 유지율[%] = [20th 사이클에서의 방전용량/1st 사이클에서의 방전용량]ㅧ100
또한, 상기 실시예 4 및 비교예 2에서 제조된 상기 코인셀의 1, 5, 10, 15 및 20번째 사이클에서 전압(V)에 대한 dQ/dV의 그래프를 도 2a 및 2b에 각각 나타내었다.
<표 1>
방전 용량[mAh/g] 방전 용량비[%] 용량 유지율[%]
실시예 4 246 81 92
실시예 5 216 79 94
실시예 6 268 87 94
비교예 2 261 77 73
도 1 및 상기 표 1에 보여지는 바와 같이, 본 발명의 양극 활물질을 채용한 실시예 4내지 6은 비교예 2에 비해 향상된 사이클 특성(용량 유지율)을 보여주었다.
도 2a에 보여지는 바와 같이, 비교예 2의 경우 사이클이 증가함에 따라 과전압(overpotential)이 증가하여 미분값이 감소하는 경향을 보였으나 도 2b에 보여지는 바와 같이 실시예 4의 경우에는 과전압의 증가가 억제되어 미분값의 변화가 감소하였다.
또한, 실시예 4 내지 6은 비교예 2에 비해 고율 방전 특성(방전 용량비)도 향상되었다.
평가예 2 : 충방전 전후의 XRD 측정
상기 실시예 6 및 비교예 2에서 제조된 상기 코인셀을 각각 7개씩 준비하였다. 먼저, 충방전 하지 않은 1개의 실시예 6에서 제조된 코인셀을 분해하여 양극 활물질에 대해 XRD(X-ray diffraction)측정을 하였다. 다음으로, 나머지 6개의 실시예 6에서 제조된 코인셀들을 다음과 같이 충방전시켰다. 코인셀의 전압이 리튬 금속 대비 .4.6V에 도달할 때까지 125mAh/g의 정전류로 충전하였다. 상기 4.6V 전압에 도달한 후, 상기 정전류의 값이 1/10로 감소할 때까지 4.6V의 정전압으로 충전하였다. 상기 충전 후, 상기 코인셀을 125mAh/g의 정전류로 전압이 2V(vs. Li)에 도달할 때까지 방전하였다. 상기 충방전을 50회 수행하였다.
이어서, 코인셀들 중 4개를 각각 4V, 4.1V, 4.47V 및 4.6V까지 충전한 다음 분해하여 XRD를 측정하였고, 나머지 2개는 4.6V 까지 충전한 다음 다시 3.7V 및 2.5V 까지 방전한 후 분해하여 XRD를 측정하였다. 그 결과를 도 3a에 나타내었다.
비교예 2에서 제조된 7개의 코인셀에 대하여도 동일한 방식으로 양극 활물질에 대해 XRD를 측정하여 그 결과를 도 3b에 나타내었다.
도 3a는 실시예 6의 초기 전극 XRD와 50사이클 후 충방전 전압별 XRD 분석결과이며 도 3b는 비교예 2의 초기 전극 XRD와 50사이클 후 충방전 전압별 XRD 분석결과이다. 실시예 6의 양극 활물질이 비교예 2에 비해 50사이클 후에도 양극의 결정 상태가 잘 유지됨을 보여준다. 이것은 실시예 6에서 제조된 전극의 사이클 특성이 비교예 2에 비해 향상됨을 보여주는 결과이다.

Claims (10)

  1. 하기 화학식 1의 리튬금속산화물을 포함하는 양극 활물질:
    <화학식 1>
    Li[LixMeyMz]O2+d
    상기 식에서, x+y+z=1; 0<x<0.33, 0<z<0.1; 0≤d≤0.1이며,
    상기 Me가 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, Zr 및 B로 이루어진 군에서 선택된 하나 이상의 금속이며,
    상기 M이 Mo, W, Ir, Ni 및 Mg로 이루어진 군에서 선택된 하나 이상의 금속이다.
  2. 제 1 항에 있어서, 상기 z가 0<z<0.05 범위인 것을 특징으로 하는 양극 활물질.
  3. 제 1 항에 있어서, 상기 리튬금속산화물이 하기 화학식 2로 표시되는 것을 특징으로 하는 양극 활물질:
    <화학식 2>
    Li[LixMeyMoz]O2+d상기 식에서, x+y+z=1; 0<x<0.33, 0<z<0.1; 0≤d≤0.1이며,
    상기 Me가 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, Zr 및 B로 이루어진 군에서 선택된 하나 이상의 금속이다.
  4. 제 3 항에 있어서, 상기 z가 0<z<0.05 범위인 것을 특징으로 하는 양극 활물질.
  5. 제 1 항에 있어서, 상기 리튬금속화합물이 하기 화학식 3으로 표시되는 것을 특징으로 하는 양극 활물질:
    <화학식 3>
    Li[LixNiaCobMncMz]O2+d
    상기 식에서, x+a+b+c+z=1; 0<x<0.33, 0<z<0.1, 0<a<0.2, 0<b<0.2, 0<c<0.6; 0≤d≤0.1이며,
    상기 M이 Mo, W, Ir, Ni 및 Mg로 이루어진 군에서 선택된 하나 이상의 금속이다.
  6. 제 5 항에 있어서, 상기 z가 0<z<0.05 범위인 것을 특징으로 하는 양극 활물질.
  7. 제 1 항에 있어서, 상기 리튬금속화합물이 하기 화학식 4로 표시되는 것을 특징으로 하는 양극 활물질:
    <화학식 4>
    Li[LixNiaCobMncMoz]O2+d
    상기 식에서, x+a+b+c+z=1; 0<x<0.33, 0<z<0.1, 0<a<0.2, 0<b<0.2, 0<c<0.6; 0≤d≤0.1이다.
  8. 제 7 항에 있어서, 상기 z가 0<z<0.05 범위인 것을 특징으로 하는 양극 활물질.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 따른 양극 활물질을 포함하는 것을 특징으로 하는 음극.
  10. 제 9 항에 따른 양극을 채용한 것을 특징으로 하는 리튬 전지.
KR1020080018533A 2008-02-28 2008-02-28 양극 활물질 및 이를 채용한 양극과 리튬 전지 KR101473322B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020080018533A KR101473322B1 (ko) 2008-02-28 2008-02-28 양극 활물질 및 이를 채용한 양극과 리튬 전지
US12/273,847 US8758942B2 (en) 2008-02-28 2008-11-19 Cathode active material, and cathode and lithium including the same
EP09153701.9A EP2096692B1 (en) 2008-02-28 2009-02-26 Cathode active material, and cathode and lithium battery including the same
JP2009046471A JP5808073B2 (ja) 2008-02-28 2009-02-27 正極活物質及びこれを採用した正極とリチウム電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080018533A KR101473322B1 (ko) 2008-02-28 2008-02-28 양극 활물질 및 이를 채용한 양극과 리튬 전지

Publications (2)

Publication Number Publication Date
KR20090093165A true KR20090093165A (ko) 2009-09-02
KR101473322B1 KR101473322B1 (ko) 2014-12-24

Family

ID=40740124

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080018533A KR101473322B1 (ko) 2008-02-28 2008-02-28 양극 활물질 및 이를 채용한 양극과 리튬 전지

Country Status (4)

Country Link
US (1) US8758942B2 (ko)
EP (1) EP2096692B1 (ko)
JP (1) JP5808073B2 (ko)
KR (1) KR101473322B1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722250B2 (en) 2009-08-20 2014-05-13 Samsung Sdi Co., Ltd. Cathode active material, cathode including the cathode active material, lithium battery employing the cathode, and method of preparing the same
US8734994B2 (en) 2010-03-19 2014-05-27 Samsung Electronics Co., Ltd. Cathode active material, cathode including the same, and lithium battery including cathode
WO2015047024A1 (ko) * 2013-09-30 2015-04-02 주식회사 엘지화학 이차전지용 양극활물질 코팅 용액과 이의 제조 방법
US9583790B2 (en) 2013-11-22 2017-02-28 Samsung Electronics Co., Ltd. Electrolyte for lithium battery and lithium battery including the same
US9941508B2 (en) 2013-09-30 2018-04-10 Lg Chem, Ltd. Cathode active material for secondary battery, method of manufacturing the same, and cathode for lithium secondary battery including the cathode active material
US10026960B2 (en) 2013-09-30 2018-07-17 Lg Chem, Ltd. Cathode active material coating solution for secondary battery and method of manufacturing the same
US10756338B2 (en) 2013-09-30 2020-08-25 Lg Chem, Ltd. Cathode active material for secondary battery and method of manufacturing the same
US10862106B2 (en) 2015-10-28 2020-12-08 Samsung Electronics Co., Ltd. Composite positive electrode active material, positive electrode including the same, and lithium battery including the positive electrode
US11011746B2 (en) 2015-07-13 2021-05-18 Samsung Electronics Co., Ltd. Composite cathode active material for lithium battery, cathode for lithium battery including the same, and lithium battery including the cathode

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142155A (ja) 2010-12-28 2012-07-26 Sony Corp リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP2012142154A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、電動工具、電動車両および電力貯蔵システム
CN104081562B (zh) * 2011-12-06 2016-09-14 Sk新技术株式会社 锂二次电池用阴极活性物质的制备方法
JP2013175401A (ja) * 2012-02-27 2013-09-05 Hitachi Ltd 正極材料
EP2634148B1 (en) * 2012-03-01 2015-04-01 GS Yuasa International Ltd. Active material for non-aqueous electrolyte secondary battery, method for production of the active material, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5921930B2 (ja) * 2012-03-28 2016-05-24 日本ケミコン株式会社 二次電池用電極材料の製造方法
WO2014081237A1 (ko) * 2012-11-22 2014-05-30 주식회사 엘지화학 리튬 이차전지
US10128540B2 (en) 2012-11-22 2018-11-13 Lg Chem, Ltd. Lithium secondary battery
KR102007411B1 (ko) 2013-01-07 2019-10-01 삼성에스디아이 주식회사 양극 활물질, 이를 포함하는 양극과 리튬 전지, 및 상기 양극 활물질의 제조방법
KR102100925B1 (ko) 2013-03-22 2020-04-14 삼성전자주식회사 기판 구조체, 상기 기판 구조체를 형성하는 방법, 및 이를 구비하는 전기소자
EP2879213B1 (en) * 2013-09-30 2018-12-26 LG Chem, Ltd. Cathode active material for secondary battery and method for preparing same
US11569494B2 (en) * 2013-10-23 2023-01-31 Cps Technology Holdings Llc Aqueous cathode slurry
JP5732122B2 (ja) * 2013-11-11 2015-06-10 株式会社日立製作所 正極活物質、正極、およびリチウムイオン二次電池
JP6065874B2 (ja) * 2014-05-27 2017-01-25 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
KR102468733B1 (ko) * 2016-09-21 2022-11-18 바스프 토다 배터리 머티리얼스 엘엘씨 양극 활물질 및 그 제조 방법, 및 비수전해질 이차 전지
KR102447292B1 (ko) * 2016-09-21 2022-09-26 바스프 토다 배터리 머티리얼스 엘엘씨 양극 활물질 및 그 제조 방법, 및 비수전해질 이차 전지
JP6329311B2 (ja) * 2016-09-21 2018-05-23 Basf戸田バッテリーマテリアルズ合同会社 正極活物質及びその製造方法、並びに非水電解質二次電池
KR102488677B1 (ko) * 2017-05-12 2023-01-16 주식회사 엘지에너지솔루션 리튬 이차전지의 제조방법
CL2017002221A1 (es) * 2017-09-01 2018-01-19 Univ Antofagasta Espinela de manganeso dopada con magnesio, material catódico que la comprende, método de preparación, y batería de ion litio que la comprende
CZ2019500A3 (cs) * 2019-08-01 2020-04-22 Univerzita Tomáše Bati ve Zlíně Způsob přípravy materiálu katody pro lithium-sírovou baterii
CN111276686B (zh) * 2020-02-16 2022-09-16 四川新锂想能源科技有限责任公司 一种高镍四元锂离子电池材料Li-Ni-Co-Mn-Mo-O及其制备方法
CN111916729B (zh) * 2020-08-06 2021-09-14 合肥工业大学 一种三元镍钴锰酸锂材料及制备方法和应用

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US122703A (en) * 1872-01-16 Improvement in weather-strips
US292763A (en) * 1884-01-29 Combined letter-scale and coin-tester
JPH10321228A (ja) 1997-05-16 1998-12-04 Nippon Telegr & Teleph Corp <Ntt> リチウム電池用正極活物質とその製造方法、及びそれを用いるリチウム電池
US6517974B1 (en) * 1998-01-30 2003-02-11 Canon Kabushiki Kaisha Lithium secondary battery and method of manufacturing the lithium secondary battery
JP4101435B2 (ja) * 1999-05-25 2008-06-18 三星エスディアイ株式会社 リチウム二次電池用正極活物質組成物及びそれを用いた正極の製造方法
US6677082B2 (en) * 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6680143B2 (en) * 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6811925B2 (en) * 2000-11-20 2004-11-02 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and a tungsten or molybdenum substituted lithium positive electrode active material
TW560099B (en) * 2001-04-20 2003-11-01 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP4639573B2 (ja) 2002-03-25 2011-02-23 住友化学株式会社 非水二次電池用正極活物質の製造方法
KR100557241B1 (ko) 2003-04-25 2006-03-15 학교법인 한양학원 초음파 분무 열분해를 이용한 5v급 스피넬 복합고용체산화물과 그 산화물을 이용한 전지 및 그 제조방법
EP1629553A2 (en) 2003-05-28 2006-03-01 National Research Council Of Canada Lithium metal oxide electrodes for lithium cells and batteries
JP4539816B2 (ja) * 2004-02-20 2010-09-08 日本電気株式会社 リチウム二次電池用正極及びリチウム二次電池
JP4968503B2 (ja) 2005-04-26 2012-07-04 ソニー株式会社 リチウム二次電池
JP4993891B2 (ja) * 2005-09-22 2012-08-08 三洋電機株式会社 非水電解質二次電池
JP4785482B2 (ja) 2005-09-28 2011-10-05 三洋電機株式会社 非水電解質二次電池
CN101146746A (zh) * 2005-09-28 2008-03-19 Agc清美化学股份有限公司 含锂复合氧化物的制造方法
JP5173145B2 (ja) * 2006-02-08 2013-03-27 三洋電機株式会社 非水電解質二次電池
JP5315591B2 (ja) * 2006-02-20 2013-10-16 ソニー株式会社 正極活物質および電池
US8492030B2 (en) 2006-06-19 2013-07-23 Uchicago Argonne Llc Cathode material for lithium batteries
KR101206037B1 (ko) * 2006-12-13 2012-11-28 삼성에스디아이 주식회사 리튬 전지용 캐소드 활물질, 이를 포함하는 캐소드 및 이를채용한 리튬 전지

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722250B2 (en) 2009-08-20 2014-05-13 Samsung Sdi Co., Ltd. Cathode active material, cathode including the cathode active material, lithium battery employing the cathode, and method of preparing the same
US8734994B2 (en) 2010-03-19 2014-05-27 Samsung Electronics Co., Ltd. Cathode active material, cathode including the same, and lithium battery including cathode
WO2015047024A1 (ko) * 2013-09-30 2015-04-02 주식회사 엘지화학 이차전지용 양극활물질 코팅 용액과 이의 제조 방법
US9941508B2 (en) 2013-09-30 2018-04-10 Lg Chem, Ltd. Cathode active material for secondary battery, method of manufacturing the same, and cathode for lithium secondary battery including the cathode active material
US10026960B2 (en) 2013-09-30 2018-07-17 Lg Chem, Ltd. Cathode active material coating solution for secondary battery and method of manufacturing the same
US10756338B2 (en) 2013-09-30 2020-08-25 Lg Chem, Ltd. Cathode active material for secondary battery and method of manufacturing the same
US9583790B2 (en) 2013-11-22 2017-02-28 Samsung Electronics Co., Ltd. Electrolyte for lithium battery and lithium battery including the same
US11011746B2 (en) 2015-07-13 2021-05-18 Samsung Electronics Co., Ltd. Composite cathode active material for lithium battery, cathode for lithium battery including the same, and lithium battery including the cathode
US10862106B2 (en) 2015-10-28 2020-12-08 Samsung Electronics Co., Ltd. Composite positive electrode active material, positive electrode including the same, and lithium battery including the positive electrode
US11764352B2 (en) 2015-10-28 2023-09-19 Samsung Electronics Co., Ltd. Composite positive electrode active material, positive electrode including the same, and lithium battery including the positive electrode

Also Published As

Publication number Publication date
JP5808073B2 (ja) 2015-11-10
EP2096692B1 (en) 2013-10-02
EP2096692A1 (en) 2009-09-02
KR101473322B1 (ko) 2014-12-24
JP2009206100A (ja) 2009-09-10
US8758942B2 (en) 2014-06-24
US20090220859A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
KR101473322B1 (ko) 양극 활물질 및 이를 채용한 양극과 리튬 전지
KR101705250B1 (ko) 양극활물질, 및 이를 채용한 양극과 리튬전지
JP5435934B2 (ja) カソード及びこれを採用したリチウム電池
JP5972513B2 (ja) カソード及びこれを採用したリチウム電池
KR101463114B1 (ko) 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
KR101397021B1 (ko) 양극 활물질, 그 제조 방법 및 이를 채용한 양극과 리튬전지
KR20110019574A (ko) 양극활물질, 이를 채용한 양극과 리튬 전지 및 이의 제조방법
KR20080031616A (ko) 양극 활물질 및 이를 채용한 리튬 전지
KR20130003069A (ko) 복합양극활물질, 이를 포함하는 양극 및 리튬전지, 및 이의 제조방법
US20200140339A1 (en) Doped titanium niobate and battery
KR20120069398A (ko) 양극 활물질, 이의 제조방법 및 이를 채용한 리튬 전지
KR101115416B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20130085323A (ko) 복합음극활물질, 그 제조방법, 이를 포함하는 음극 및 리튬전지
KR101666796B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR101613498B1 (ko) 양극 활물질, 이를 채용한 양극과 리튬 전지 및 이의 제조방법
KR101646994B1 (ko) 리튬 이차전지용 양극 활물질, 이들의 제조방법, 및 이를 포함하는 리튬 이차전지
KR101835586B1 (ko) 복합양극활물질, 이를 채용한 양극 및 리튬 전지
KR20120117234A (ko) 양극활물질, 그 제조방법 및 이를 채용한 양극 및 리튬전지
KR20180071714A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR101607233B1 (ko) 양극 활물질, 이를 포함하는 양극 및 상기 양극을 채용한 리튬 전지
KR101553389B1 (ko) 리튬 이차 전지용 양극 활물질, 양극 활물질 코팅 물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20150008006A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101895902B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101602419B1 (ko) 양극활물질, 이를 포함하는 양극 및 상기 양극을 채용한 리튬전지
KR101701415B1 (ko) 음극활물질, 그 제조방법 및 이를 채용한 음극과 리튬전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171121

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191203

Year of fee payment: 6