WO2015047024A1 - 이차전지용 양극활물질 코팅 용액과 이의 제조 방법 - Google Patents

이차전지용 양극활물질 코팅 용액과 이의 제조 방법 Download PDF

Info

Publication number
WO2015047024A1
WO2015047024A1 PCT/KR2014/009194 KR2014009194W WO2015047024A1 WO 2015047024 A1 WO2015047024 A1 WO 2015047024A1 KR 2014009194 W KR2014009194 W KR 2014009194W WO 2015047024 A1 WO2015047024 A1 WO 2015047024A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
coating solution
material coating
secondary battery
positive electrode
Prior art date
Application number
PCT/KR2014/009194
Other languages
English (en)
French (fr)
Inventor
이동권
조승범
노준석
장욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140130375A external-priority patent/KR101607013B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/419,508 priority Critical patent/US10026960B2/en
Priority to EP14825240.6A priority patent/EP2879210B1/en
Priority to JP2015539538A priority patent/JP6050512B2/ja
Priority to CN201480002138.3A priority patent/CN104685675B/zh
Publication of WO2015047024A1 publication Critical patent/WO2015047024A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic System
    • C07F13/005Compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic System without C-Metal linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material coating solution for a secondary battery and a method of manufacturing the same for manufacturing a cathode active material for secondary batteries having improved thermal stability and capacity characteristics.
  • a lithium secondary battery having a high energy density and a voltage, a long cycle life, and a low self discharge rate is commercially used.
  • Lithium secondary batteries can be broadly classified into positive electrode active materials, negative electrode active materials, separators, and electrolytes.
  • the negative electrode active material uses a carbon material as a main component, and in addition, studies to use lithium metal, sulfur compounds, silicon compounds, tin compounds, and the like have been actively conducted.
  • the cathode active material lithium-containing cobalt oxide (LiCoO 2 ) having a layered structure is mainly used, and in addition, a lithium metal compound having a layered crystal structure (the metal includes manganese, cobalt, nickel, etc.), and spinel crystals.
  • Lithium-containing manganese oxides (LiMnO 2 , LiMn 2 O 4 ) or lithium-containing nickel oxides (LiNiO 2 ) having a structure are commercially available.
  • LiCoO 2 which is widely used at present because of excellent life characteristics and charging and discharging efficiency among the cathode active material components, has a low structural safety, high raw material prices, environmental pollution, etc. There is a limit.
  • lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 , which are studied as alternative materials for LiCoO 2 , have excellent enthusiasm safety and low cost, but have low electrical conductivity, low capacity, and poor high temperature characteristics. Therefore, the electrode deterioration occurs quickly at high temperature, and the lithium-containing nickel oxide has a high discharge capacity of battery characteristics, but is difficult to synthesize due to simple solid phase reaction and the like, and has a disadvantage of low cycle characteristics.
  • the present invention provides a method for preparing a positive electrode active material coating solution for a secondary battery that can improve the charge and discharge efficiency on the surface of the positive electrode active material when manufacturing the positive electrode active material.
  • the present invention provides a positive electrode active material coating solution prepared by the above method.
  • It provides a method for producing a positive electrode active material coating solution for a secondary battery comprising a; heating the mixed solution secondary.
  • the present invention provides a cathode active material coating solution for a secondary battery prepared by the above method.
  • the cathode active material coating solution for a secondary battery is characterized in that the metal glycolate coating solution.
  • a positive electrode active material coating that can form a metal oxide coating layer of a uniform thickness to improve the charge and discharge efficiency on the surface of the positive electrode active material for secondary batteries Solutions can be prepared.
  • Example 1 is a Field-Emission Scanning Electron Microscope (FE-SEM) photograph of a surface of a cathode active material including a metal oxide coating layer prepared according to Example 4 of the present invention.
  • FE-SEM Field-Emission Scanning Electron Microscope
  • Figure 2 is a FE-SEM picture of the surface of the positive electrode active material including a metal oxide coating layer prepared according to Example 5 of the present invention.
  • Example 3 is a FE-SEM photograph of the surface of the positive electrode active material including a metal oxide coating layer prepared according to Example 6 of the present invention.
  • a method for manufacturing a positive electrode active material having excellent high temperature safety, low manufacturing cost, and excellent capacity and cycle characteristics has been developed.
  • Research is emerging.
  • a method of coating a metal oxide on the surface of a cathode active material using a conventional dry or wet coating method has been proposed.
  • it is difficult to coat the metal oxide with a uniform thickness by the conventional method, and the improvement degree is still insufficient.
  • the dry coating method has advantages in that the process is simple and inexpensive, while it is difficult to form a metal oxide coating layer having a uniform thickness on the surface of the positive electrode active material.
  • the wet coating method is capable of forming a metal oxide coating layer having a uniform thickness, not only anions that may deteriorate battery characteristics may remain on the surface of the metal oxide coating layer, but may have a uniform thickness to further improve charging and discharging efficiency. There is a disadvantage that it is difficult to form (coat) a metal oxide layer.
  • a positive electrode active material coating solution that can form a metal oxide coating layer of a uniform thickness to improve the charge and discharge efficiency on the surface of the positive electrode active material for secondary batteries is prepared A method and a coating solution prepared by this method are provided.
  • the coating solution prepared by the method of the present invention since it does not contain anion which is present in a general wet coating solvent to deteriorate battery characteristics, the charging and discharging efficiency of the positive electrode may be further improved.
  • It provides a method for producing a positive electrode active material coating solution for a secondary battery comprising the step of heating the mixture solution secondary.
  • the glycol solvent is a component added as a reactant to form a metal organic compound by combining (reacting) with the metal detached from the metal precursor during the heating process.
  • the glycol solvent include a solvent having a boiling point in the range of 120 to 400 ° C., for example, ethylene glycol (bp 197 ° C.), propylene glycol (bp 188 ° C.), diethylene glycol (bp 245 ° C.), and triethylene glycol ( bp 285 ° C.) and a polyethylene or a mixture of two or more selected from the group consisting of polyethylene glycol, and the like.
  • a solvent having a boiling point of less than 120 ° C. is used as the glycol-based solvent, a bonding reaction with a metal detached from the metal precursor does not occur, which makes it difficult to form a metal organic compound.
  • the metal precursor is a conventional metal, and is not particularly limited, for example, Mg, Ca, Sr, Ba, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, Acetate, hydroxide containing at least one metal selected from the group consisting of W, Mn, Fe, Co, Ir, Ni, Zn, Al, Ga, In, Si, Ge, Sn, La and Ce ( It may include a single substance or a mixture of two or more selected from the group consisting of hydroxide, nitrate, nitride, sulfate, sulfide, alkoxide and halide. . More specifically, representative examples of the metal precursors include aluminum acetate, zirconium nitride, or manganese acetate.
  • the chelating agent is a component added so that the metal can be easily detached from the metal precursor so that the coupling of the glycol solvent and the metal can be performed more easily, citric acid (citric acid) acid), EDTA (ethylenediaminetetraacetic acid), oxalic acid and gluconic acid.
  • the content ratio (part by weight) of the metal precursor: glycol solvent: chelating agent is 1: 1 to 500: 0.1 to 20, specifically, 1: 1 to 100: 0.1 to 20 It is preferable.
  • the metal free from the metal precursor may not react with the glycol solvent and may remain in the metal precursor state.
  • the content of the glycol solvent exceeds 500 parts by weight, since a large amount of glycol solvent not participating in the reaction must be evaporated and removed in the heating step after the reaction, energy and glycol solvent are consumed a lot, and the solvent evaporation process There is a disadvantage in that side reactions can occur.
  • the content of the chelating agent is less than 0.1 parts by weight, there is a problem that the chelating agent effect is not sufficiently exhibited.
  • the amount of the chelating agent is exceeded 20 parts by weight, a large amount of the chelating agent preferentially reacts with the metal precursor, By inhibiting the reaction with the metal precursor, the production yield of the desired metal organic compound may be lowered.
  • an additive may be further included when the mixed solution is prepared.
  • the additive may be included as a catalyst component for promoting the reaction of the metal desorbed from the metal precursor and the glycol-based solvent, thereby improving the production efficiency of the metal oxide.
  • the additives are all evaporated and removed in the heating step so that they do not remain in the coating layer later.
  • Representative examples of the additives include a single substance or a mixture of two or more selected from the group consisting of formaldehyde acetaldehyde, glycoic acid and the like.
  • the additive may include 0.1 to 20 parts by weight based on 1 part by weight of the metal precursor. If the content of the additive exceeds 20 parts by weight, there is a possibility that side reactions are induced to generate a large amount of by-products.
  • the first heating step is preferably carried out at a temperature below the boiling point of the glycol-based solvent which is the temperature at which the reaction is initiated.
  • the primary heating step may be performed for 1 to 48 hours, specifically 5 to 20 hours under temperature conditions of 100 to 300 °C, specifically 110 to 230 °C.
  • the first heating step may be performed by setting the time point at which all of the metals of the metal precursor react with the glycol solvent to generate the metal organic compound as the end time point.
  • the viscosity of the mixed solvent may be about 1 to 1000 CPS (Centipoise), and may specifically have a viscosity similar to a glycol solvent.
  • the secondary heating step can be performed immediately after the primary heating without the time intervals as in the cooling process.
  • the second heating step is preferably performed at a temperature near or above the boiling point of the glycol solvent.
  • the secondary heating step may be performed for 1 to 5 hours under 100 to 300 °C, specifically 170 to 250 °C temperature conditions.
  • the second heating step may be performed at a temperature of about 180 ° C. or more for 1 to 5 hours.
  • the termination point in the second heating step may be performed until the glycol-based solvent used as the reactant is sufficiently removed to form a metal glycolate solution. Therefore, the second heating step may be referred to as a "heat concentration" step.
  • the metal glycolate solution may have a viscosity of 1 to 15,000 CPS (Centipoise), specifically 200 to 5,000 CPS, more specifically 1,000 to 3,000 CPS.
  • the first and second heating step may be carried out under an inert gas atmosphere such as Ar.
  • the concentration of the coating solution can be easily adjusted when preparing the cathode active material including the metal coating layer, and thus the coating conditions according to the concentration of the coating solution. It can control the coating efficiency can be improved.
  • a mixed solution is prepared by mixing a glycol solvent (for example, ethylene glycol), a metal precursor, and a chelate (for example, citric acid), and then, while heating (concentrating) the mixed solution, as shown in the following scheme.
  • a glycol solvent for example, ethylene glycol
  • a metal precursor for example, ethylene glycol
  • a chelate for example, citric acid
  • M is a metal detached from a metal precursor, Mg, Ca, Sr, Ba, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ir, Ni, At least one metal selected from the group consisting of Zn, Al, Ga, In, Si, Ge, Sn, La, and Ce, n is an integer from 1 to 4.
  • a metal glycolate coating solution that is, a positive electrode active material coating solution containing a metal organic compound prepared by the above method. More specifically, in the present invention, a metal glycol comprising at least one metal organic compound component selected from the group consisting of a metal organic compound represented by the following Chemical Formulas 1 to 3, in which a metal detached from a metal precursor, a glycol solvent, and a chelating agent are combined.
  • a late coating solution can be provided.
  • M is a metal desorbed from the metal precursor, Mg, Ca, Sr, Ba, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ir, Ni, Zn, Al, At least one metal selected from the group consisting of Ga, In, Si, Ge, Sn, La, and Ce, n is an integer from 1 to 4.
  • the cathode active material coating solution prepared by the method of the present invention includes two or more metal organic compounds represented by Chemical Formulas 1 to 3, thereby coating two or more metal oxide layers having a uniform thickness on the surface of the cathode active material. can do. Furthermore, in the case of the positive electrode active material coating solution of the present invention, since there are no anions present in the general wet coating solvent, various metal oxide coating layers can be formed while minimizing the effect of negative ions that may deteriorate battery characteristics on the surface of the positive electrode active material. have.
  • the present invention may provide a cathode active material for a secondary battery in which a metal oxide coating layer having a uniform thickness is formed using the metal glycolate coating solution of the present invention.
  • the metal glycolate coating solution of the present invention may be diluted with an organic solvent, and then mixed with the positive electrode active material using a conventional wet mixing method.
  • the present invention provides a positive electrode for a secondary battery including a positive electrode current collector, and a positive electrode active material for a secondary battery coated on the surface of the coating solution applied on the positive electrode current collector.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the positive electrode current collector may be formed on a surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. The surface-treated with carbon, nickel, titanium, silver, etc. can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as film, sheet, foil, net, porous body, foam, and nonwoven fabric.
  • an embodiment of the present invention provides a lithium secondary battery including a positive electrode including the positive electrode active material, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
  • the negative electrode is prepared by, for example, applying a negative electrode mixture containing a negative electrode active material on a negative electrode current collector and then drying the negative electrode mixture.
  • the negative electrode mixture may include, as necessary, a conductive material, a binder, a filler, and the like. The components of may be included.
  • the negative electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m, the thickness is generally from 5 to 300 ⁇ m.
  • Such separators include, for example, olefin polymers such as polypropylene having chemical resistance and hydrophobicity; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • olefin polymers such as polypropylene having chemical resistance and hydrophobicity
  • Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • the solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the lithium salt-containing non-aqueous electrolyte solution consists of an electrolyte solution and a lithium salt, and a non-aqueous organic solvent or an organic solid electrolyte is used as the electrolyte solution.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma -Butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxolon, acetonitrile Nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane, dioxoron derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, Aprotic organic solvents such as tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be used.
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 C l1 0, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium 4-phenyl borate, imide, etc. Can be used.
  • LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 C l1 0, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium 4-phenyl borate, imide
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • ZrN zirconium nitride
  • citric acid C 6 H 8 O 7
  • the mixed solution was first heated with stirring at a temperature of 150 ° C. for 5 hours, and then heated secondly for 1 hour until the mixed solution was concentrated at about 180 ° C. (about 1000 CPS).
  • a positive electrode active material coating solution 2 containing a metal organic compound represented as a main component was prepared.
  • the element content for the portion labeled spectral 4 in the FE-SEM image was analyzed by EDS.
  • the cathode materials Ni, Mn, and Co exist in the form of oxides, and the coating material Al was analyzed to be 0.49% by weight.
  • the surface of the cathode active material is very clean in the FE-SEM image, from which the Al is very uniformly coated.
  • Ethanol 8g While adding and stirring 2 g of the positive electrode active material coating solution prepared in Example 2, 50 g of positive electrode active material (LiNi 0.6 Mn 0.2 Co 0.2 ) O 2 ) was added and stirred in a paste state. The stirred paste was dried at 180 ° C. for 2 hours, and then heat-treated in air at 500 ° C. for 1 hour to prepare cathode active material particles coated with about 0.2% by weight of zirconium oxide layer.
  • positive electrode active material LiNi 0.6 Mn 0.2 Co 0.2
  • the element content of the portion labeled spectrum 11 in the FE-SEM image was analyzed by EDS.
  • the cathode materials Ni, Mn, and Co exist in an oxide form, and Zr, which is a coating material, was analyzed at 0.72 wt%.
  • the surface of the cathode active material is very clean in the FE-SEM image, indicating that Zr is coated very uniformly.
  • Ethanol 8g While adding and stirring 2 g of the positive electrode active material coating solution prepared in Example 3, 50 g of positive electrode active material (LiNi 0.6 Mn 0.2 Co 0.2 ) O 2 ) was added and stirred in a paste state. The stirred paste was dried at 180 ° C. for 2 hours, and then heat-treated in air at 700 ° C. for 1 hour to prepare cathode active material particles coated with about 0.2 wt% of manganese oxide layer.
  • positive electrode active material LiNi 0.6 Mn 0.2 Co 0.2
  • the element content of the portion labeled spectrum 6 in the FE-SEM image was analyzed by EDS.
  • the cathode materials Ni, Mn, and Co exist in an oxide form, and Mn, which is a coating material, is 11.61% by weight, and Mn is coated by about 1% by weight of manganese coating, compared to 10.45% by weight of Co.
  • Mn which is a coating material
  • Mn is coated by about 1% by weight of manganese coating, compared to 10.45% by weight of Co.
  • the surface of the positive electrode active material is very clean in the FE-SEM image, from which the Mn is very uniformly coated.

Abstract

본 발명은 글리콜계 용매 내에 금속 전구체 및 킬레이팅제를 분산시켜 혼합 용액을 제조하는 단계; 상기 혼합 용액을 1차 가열하는 단계; 및 상기 혼합 용액을 2차 가열하는 단계를 포함하는 이차전지용 양극활물질 코팅 용액의 제조 방법과, 상기 방법에 의해 제조된 이차전지용 양극활물질 코팅 용액에 관한 것이다.

Description

이차전지용 양극활물질 코팅 용액과 이의 제조 방법
본 발명은 열 안전성 및 용량 특성이 개선된 이차전지용 양극활물질을 제조하기 위한 이차전지용 양극활물질 코팅 용액과 이의 제조 방법에 관한 것이다.
모바일 기기의 및 자동차에 대한 사용이 증가함에 따라 이들의 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있다. 이차전지로는 현재 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기 방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지는 양극활물질, 음극 활물질, 분리막 및 전해액으로 크게 구분될 수 있다. 구체적으로, 상기 음극 활물질은 주성분으로 탄소재료를 이용하고 있으며, 이 외에, 리튬 금속, 황 화합물, 규소 화합물, 주석 화합물 등을 이용하려는 연구가 활발히 진행되고 있다. 또한, 상기 양극활물질은 층상 구조의 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에도 층상 결정구조를 가지는 리튬 금속 화합물 (상기 금속은 망간, 코발트, 니켈 등을 포함함)이나, 스피넬 결정 구조를 가지는 리튬 함유 망간 산화물 (LiMnO2, LiMn2O4) 또는 리튬 함유 니켈 산화물(LiNiO2) 등이 상용화되고 있다.
한편, 상기 양극활물질 성분 중에서 수명 특성 및 충방전 효율이 우수하여 현재 가장 널리 사용되고 있는 LiCoO2의 경우, 구조적 안전성이 낮고, 원료 가격이 높고, 환경 오염 등을 유발한다는 점에서 고용량의 전기자동차 적용에 한계가 있다. 또한, 상기 LiCoO2의 대체 재료로서 연구되는 LiMnO2, LiMn2O4 등의 리튬 망간 산화물의 경우 열정 안전성이 우수하고 가격이 저렴한 반면에, 전기 전도도가 낮고, 용량이 작으며, 고온 특성이 열악하여, 고온에서 전극 퇴화가 빠르게 일어난다는 단점이 있고, 상기 리튬 함유 니켈 산화물의 경우, 높은 방전 용량의 전지 특성을 가지는 반면, 간단한 고상 반응 등으로 합성이 어렵고, 사이클 특성이 낮다는 단점이 있다.
이에, 현재 사용되고 있는 양극활물질에 비하여 고온 안전성이 우수하고, 제조 비용이 낮으며, 사이클 특성이 우수한 새로운 양극활물질의 개발이 시급한 실정이다.
상기한 문제점을 해결하기 위하여, 본 발명에서는 양극활물질 제조 시 양극활물질 표면에서 충,방전 효율을 향상시킬 수 이차전지용 양극활물질 코팅 용액의 제조 방법을 제공한다.
또한, 본 발명에서는 상기 방법에 의해 제조된 양극활물질 코팅 용액을 제공한다.
구체적으로, 본 발명에서는
글리콜계 용매 내에 금속 전구체 및 킬레이팅제를 분산시켜 혼합 용액을 제조하는 단계;
상기 혼합 용액을 1차 가열하는 단계; 및
상기 혼합 용액을 2차 가열하는 단계;를 포함하는 이차전지용 양극활물질 코팅 용액의 제조 방법을 제공한다.
또한, 본 발명에서는 상기 방법에 의해 제조된 이차전지용 양극활물질 코팅 용액을 제공한다.
상기 이차전지용 양극활물질 코팅 용액은 금속 글리콜레이트 코팅 용액인 것이 특징이다.
본 발명에서는 글리콜계 용매 존재 하에서 금속 전구체 화합물과 킬레이팅제를 혼합 가열함으로써, 이차전지용 양극활물질 표면에 충,방전 효율을 향상시킬 수 있는 균일한 두께의 금속 산화물 코팅층을 형성할 수 있는 양극활물질 코팅 용액을 제조할 수 있다.
도 1은 본 발명의 실시예 4에 따라 제조된 금속 산화물 코팅층을 포함하는 양극활물질 표면에 대한 FE-SEM (Field-Emission Scanning Electron Microscope) 사진이다.
도 2는 본 발명의 실시예 5에 따라 제조된 금속 산화물 코팅층을 포함하는 양극활물질 표면에 대한 FE-SEM 사진이다.
도 3은 본 발명의 실시예 6에 따라 제조된 금속 산화물 코팅층을 포함하는 양극활물질 표면에 대한 FE-SEM 사진이다.
이하, 본 발명을 상세히 설명하면 다음과 같다.
최근 리튬 이온 이차전지의 양극을 고전압에서 사용하려는 요구가 증대되고 있는 상황이며, 이에 따라, 고온 안전성이 우수하고, 제조 비용이 낮으며, 용량 및 사이클 특성이 우수한 양극활물질을 제조하기 위한 방법에 대한 연구가 대두되고 있다. 그 한 예로, 열 안전성 및 사이클 특성 개선하기 위하여 종래 건식 또는 습식 코팅법을 이용하여 양극활물질 표면에 금속 산화물을 코팅하려는 방법이 제안되고 있다. 하지만, 기존의 방법으로는 균일한 두께로 금속 산화물을 코팅하기 어려워, 그 개선 정도가 아직 미흡한 실정이다. 예컨대, 상기 건식 코팅법은 공정이 간단하고, 비용이 저렴하다는 장점이 있는 반면, 양극활물질 표면 상에 균일한 두께의 금속 산화물 코팅층을 형성하기 어렵다는 단점이 있다. 상기 습식 코팅법은 균일한 두께의 금속 산화물 코팅층 형성은 가능하지만, 전지 특성을 악화시킬 수 있는 음이온이 금속 산화물 코팅층 표면에 잔존할 뿐만 아니라, 충,방전 효율을 보다 향상시킬 수 있는 균일한 두께의 금속 산화물층을 형성(코팅)하기 어렵다는 단점이 있다.
이에, 본 발명에서는 기존 코팅 방법들의 단점을 개선함과 동시에, 이차전지용 양극활물질 표면상에 충,방전 효율을 향상시킬 수 있는 균일한 두께의 금속 산화물 코팅층을 형성할 수 있는 양극활물질 코팅 용액이 제조 방법과, 이러한 방법에 의해 제조된 코팅 용액을 제공하고자 한다. 특히, 본 발명의 방법에 의해 제조된 코팅 용액의 경우, 일반적인 습식 코팅 용매에 존재하여 전지 특성을 악화시키던 음이온을 포함하지 않으므로, 양극의 충,방전 효율을 보다 향상시킬 수 있다.
구체적으로, 본 발명의 일 구현예에서는
글리콜계 용매 내에 금속 전구체 및 킬레이팅제를 분산시켜 혼합 용액을 제조하는 단계;
상기 혼합 용액을 1차 가열하는 단계; 및
상기 혼합 용액을 2차 가열하는 단계를 포함하는 이차전지용 양극활물질 코팅 용액의 제조 방법을 제공한다.
우선, 본 발명의 방법에 있어서, 상기 글리콜계 용매는 가열 과정 시에 금속 전구체로부터 탈리된 금속과 결합(반응)하여 금속 유기 화합물을 형성하는 반응물 역할로 첨가되는 성분이다. 상기 글리콜계 용매의 대표적인 예로는 비등점이 120 내지 400℃ 범위인 용매, 예를 들면 에틸렌글리콜 (bp 197℃), 프로필렌글리콜(bp 188℃), 디에틸렌글리콜(bp 245℃), 트리에틸렌글리콜(bp 285℃) 및 폴리에틸렌글리콜로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 들 수 있으며, 이들로 특별히 제한되지는 않는다. 이때, 상기 글리콜계 용매로 비등점이 120℃ 미만인 용매를 사용하는 경우, 금속 전구체로부터 탈리된 금속과 결합 반응이 일어나지 않아, 금속 유기 화합물을 형성하기 어렵다는 단점이 있다.
이때, 본 발명의 방법에 있어서, 상기 금속 전구체는 통상적인 금속으로, 특별히 제한하지 않으나, 예를 들면 Mg, Ca, Sr, Ba, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ir, Ni, Zn, Al, Ga, In, Si, Ge, Sn, La 및 Ce으로 이루어진 군으로부터 선택된 금속을 적어도 하나 이상 함유하는 아세테이트 (acetate), 히드록사이드 (hydroxide), 나이트레이트 (nitrate), 나이트라이드 (nitride), 설페이트 (sulfate), 설파이드 (sulfide), 알콕사이드 (alkoxide) 및 할라이드 (halide) 로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다. 보다 구체적으로, 상기 금속 전구체의 대표적인 예로는 알루미늄 아세테이트, 지르코늄 나이트라이드, 또는 망간 아세테이트를 들 수 있다.
또한, 본 발명의 방법에 있어서, 상기 킬레이팅제는 상기 금속 전구체로부터 금속이 쉽게 탈리하여 상기 글리콜계 용매와 금속의 결합이 더욱 용이하게 수행될 수 있도록 첨가하는 성분으로서, 그 대표적인 예로 시트르산 (citric acid), EDTA (ethylenediaminetetraacetic acid), 옥살산 (oxalic acid) 및 글루콘산 (gluconic acid)으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 들 수 있다.
또한, 본 발명의 방법에 있어서, 상기 금속 전구체 : 글리콜계 용매 : 킬레이팅제의 함량비(중량부)는 1 : 1 내지 500 : 0.1 내지 20, 구체적으로 1 : 1 내지 100 : 0.1 내지 20인 것이 바람직하다.
만약, 상기 글리콜계 용매의 함량이 1 중량부 미만인 경우에는 금속 전구체로부터 유리되는 금속이 글리콜계 용매와 모두 반응하지 못하고 금속 전구체 상태로 잔존하는 문제점이 있다. 또한, 글리콜계 용매의 함량이 500 중량부를 초과하는 경우에는 반응 후 가열 단계에서 반응에 참여하지 않은 많은 양의 글리콜 용매를 증발시켜 제거해야 하기 때문에, 에너지 및 글리콜 용매의 소모가 많고, 용매 증발 과정에서 부반응이 발생할 수 있다는 단점이 있다. 또한, 상기 킬레이팅제의 함량이 0.1 중량부 미만인 경우 킬레이팅제 효과가 충분히 발휘되지 못하는 문제가 있고, 20 중량부를 초과하는 경우에는 다량의 킬레이팅제가 우선적으로 금속 전구체와 반응하면서, 글리콜 용매와 금속 전구체와의 반응을 저해하여 원하는 금속 유기 화합물의 생성 수율이 저하될 수 있다.
또한, 본 발명의 방법에 있어서, 상기 혼합 용액을 제조할 때, 첨가제를 더 포함할 수 있다.
상기 첨가제는 금속 전구체로부터 탈리된 금속과 글리콜계 용매의 반응을 촉진시키는 촉매 성분으로 포함되어, 금속 산화물의 생성 효율을 향상시킬 수 있다. 상기 첨가제는 가열 단계에서 모두 증발, 제거되어 추후 코팅층 내에 잔류하지 않는 성분이 바람직하다. 상기 첨가제의 대표적인 예로는 포름알데히드 아세트알데히드, 글리코산 등으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 들 수 있다.
상기 첨가제는 상기 금속 전구체의 전체 1중량부에 대하여 0.1 내지 20 중량부로 포함할 수 있다. 만약, 상기 첨가제의 함량이 20 중량부를 초과하는 경우, 부반응이 유발되어 부산물이 다량 생성될 가능성이 있다.
또한, 본 발명의 방법에 있어서, 상기 1차 가열 단계는 반응이 개시되는 온도인 글리콜계 용매의 비등점 이하의 온도 내지 비등점 이상의 온도에서 수행하는 것이 바람직하다. 구체적으로 상기 1차 가열 단계는 100 내지 300℃, 구체적으로 110 내지 230℃ 온도 조건 하에서 1 내지 48시간, 구체적으로 5 내지 20시간 동안 수행할 수 있다. 상기 1차 가열 단계는 금속 전구체의 금속이 모두 글리콜 용매와 반응하여 금속 유기 화합물을 생성하는 시점을 종결 시점으로 설정하여 실시할 수 있다.
상기 1차 가열 후 혼합 용매의 점도는 약 1 내지 1000 CPS (Centipoise) 정도일 수 있으며, 구체적으로 글리콜계 용매와 유사한 점도를 가질 수 있다.
또한, 본 발명의 방법에서는 상기 1차 가열 후에 냉각 공정과 같은 시간적인 간격을 두지 않고 2차 가열 단계를 곧바로 실시할 수 있다. 이때, 상기 2차 가열하는 단계 글리콜계 용매의 비점 근처 또는 이상의 온도에서 수행하는 것이 바람직하다. 구체적으로, 상기 2차 가열 단계는 100 내지 300℃, 구체적으로 170 내지 250℃ 온도 조건 하에서 1 내지 5 시간 동안 실시할 수 있다. 예컨대 상기 글리콜계 용매로 에틸렌 글리콜을 사용하는 경우 2차 가열하는 단계는 약 180℃ 이상의 온도에서 1 내지 5 시간 동안 실시할 수 있다.
상기 2차 가열 단계에서 종결 시점은 반응물로 사용된 글리콜계 용매가 충분히 제거되어 금속 글리콜레이트 용액을 형성할 때까지 실시할 수 있다. 따라서, 상기 2차 가열하는 단계는 “가열 농축”단계라 칭할 수 있다. 이때, 상기 금속 글리콜레이트 용액은 1 내지 15,000 CPS (Centipoise), 구체적으로 200 내지 5,000 CPS, 보다 구체적으로 1,000 내지 3,000 CPS의 점도를 가질 수 있다.
본 발명의 방법에 있어서, 상기 1차 및 2차 가열 단계는 Ar 등의 비활성 가스 분위기 하에서 실시할 수 있다.
이와 같이, 본 발명의 2차 가열 단계에 의해 금속 글리콜레이트 용액을 제조하는 경우, 금속 코팅층을 포함하는 양극활물질 제조 시 코팅 용액의 농도를 용이하게 조절할 수 있고, 따라서 코팅 용액의 농도에 따라 코팅 조건을 제어하여 코팅 효능을 향상시킬 수 있다.
즉, 본 발명에서는 글리콜계 용매 (예를 들면 에틸렌 글리콜)와 금속 전구체 및 킬레이트 (예를 들어 시트르산)을 혼합하여 혼합 용액을 제조한 다음, 이 혼합 용액을 가열 (농축)하는 동안 하기 반응식과 같이 글리콜계 용매 및 킬레이트제의 수소가 탈리되면서 글리콜계 용매 및 킬레이트제의 산소가 금속 전구체로부터 탈리된 금속 이온과 서로 배위 결합을 형성하게 된다. 그 결과, 금속 전구체로부터 탈리된 금속과 글리콜계 용매 및 킬레이트제가 서로 결합하면서 하기 화학식 1 내지 3으로 표시되는 금속 유기 화합물 (metal organo-compound)을 주성분으로 포함하는 금속 글리콜레이트 코팅 용액이 얻어진다.
[반응식]
2Mn+ + n(C2H5O2)- + (C6H(8-n)O7)n- → M(C2H5O2)n + M(C6H(8-n)O7)
[화학식 1]
M(C2H5O2)n
[화학식 2]
M(C6H(8-n)O7)
[화학식 3]
M(C6H(8-n)O7)(C2H5O2)
(상기 식에서, M은 금속 전구체로부터 탈리된 금속으로서, Mg, Ca, Sr, Ba, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ir, Ni, Zn, Al, Ga, In, Si, Ge, Sn, La 및 Ce으로 이루어진 군으로부터 선택된 적어도 하나의 금속이며, n은 1 내지 4의 정수이다.)
또한, 본 발명의 또 다른 일 구현예에서는 상기 방법에 의해 제조된 금속 유기 화합물을 포함하는 금속 글리콜레이트 코팅 용액, 즉 양극활물질 코팅 용액을 제공한다. 보다 구체적으로, 본 발명에서는 금속 전구체로부터 탈리된 금속과 글리콜계 용매 및 킬레이트제가 결합된 하기 화학식 1 내지 3으로 표시되는 금속 유기 화합물로 이루어진 군으로부터 선택된 적어도 하나의 금속 유기 화합물 성분을 포함하는 금속 글리콜레이트 코팅 용액을 제공할 수 있다.
[화학식 1]
M(C2H5O2)n
[화학식 2]
M(C6H(8-n)O7)
[화학식 3]
M(C6H(8-n)O7)(C2H5O2)
(상기 식에서,
M은 금속 전구체로부터 탈리된 금속으로서, Mg, Ca, Sr, Ba, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ir, Ni, Zn, Al, Ga, In, Si, Ge, Sn, La 및 Ce으로 이루어진 군으로부터 선택된 적어도 하나의 금속이며, n은 1 내지 4의 정수이다.)
이와 같이, 본 발명의 방법에 의해 제조된 양극활물질 코팅 용액은 상기 화학식 1 내지 3으로 표시되는 2종 이상의 금속 유기 화합물을 포함함으로써, 양극활물질 표면에 균일한 두께의 2종 이상의 금속 산화물층을 도포할 수 있다. 더욱이, 본 발명의 양극활물질 코팅 용액의 경우, 일반적인 습식 코팅 용매에 존재하는 음이온이 존재하지 않으므로 양극활물질 표면에서 전지 특성을 악화시킬 수 있는 음이온의 영향을 최소화하면서, 다양한 금속 산화물 코팅층을 형성할 수 있다.
또한, 본 발명에서는 상기 본 발명의 금속 글리콜레이트 코팅 용액을 이용하여 균일한 두께의 금속 산화물 코팅층이 형성된 이차전지용 양극활물질을 제공할 수 있다.
이때, 상기 금속 산화물 코팅층의 경우, 본 발명의 금속 글리콜레이트 코팅 용액을 유기 용매에 희석시킨 다음과, 통상적인 습식 믹싱법을 이용하여 양극활물질과 혼합하여 형성할 수 있다.
이때, 상기 양극활물질은 통상적인 리튬 이차전지에 사용 가능한 것이라며 특별히 제한하지 않으며, 예를 들면 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2 (0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1-yMnyO2, LiNi1-yMnyO2 (0≤y≤1), Li(NiaMnbCoc)O4 (0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4 (0<z<2), LiCoPO4 및 LiFePO4로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상이 혼합물을 사용할 수 있다. 또한, 이러한 산화물 외에 황화물 (sulfide), 셀렌화물 (selenide) 및 할로겐화물 (halide) 등도 사용될 수 있다.
또한, 본 발명에서는 양극 집전체, 및 상기 양극 집전체 상에 도포된 상기 코팅 용액이 표면에 코팅된 이차전지용 양극활물질을 포함하는 이차전지용 양극을 제공한다.
상기 양극 집전체는 일반적으로 3 내지 500㎛의 두께로 만들어진다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들면, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
또한, 본 발명의 일 실시예에서는 상기 양극활물질을 포함하는 양극과, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성된 리튬 이차전지를 제공한다.
상기 음극은, 예를 들어, 음극 집전체 상에 음극 활물질을 포함하고 있는 음극 합제를 도포한 후 건조하여 제조되며, 상기 음극 합제에는, 필요에 따라, 앞서 설명한 바와 같은 도전재, 바인더, 충진제 등의 성분들이 포함될 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께로 만든다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 내지 10㎛이고, 두께는 일반적으로 5 내지 300㎛이다.
이러한 분리막으로는 예를 들면 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매 또는 유기 고체 전해질 등이 사용된다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부티로락톤, 1,2-디메톡시에탄, 테트라히드록시푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐붕산리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
(실시예 1. 양극활물질 코팅 용액 제조)
200g의 에틸렌 글리콜 (C2H6O2) 용액 내에 20g의 알루미늄 아세테이트 (Al(C2H3O2)3)와 20g의 시트르산 (C6H8O7)을 분산한 다음, 교반하여 혼합 용액을 제조하였다. 상기 혼합 용액을 교반하면서 141℃ 온도에서 5 시간 동안 1차 가열한 다음, 180℃ 온도에서 혼합 용액이 농축 (약 1000 CPS) 될 때까지 1시간 동안 2차 가열하여 하기 식 1a 및 2a와 같이 표시되는 금속 유기 화합물을 주 성분으로 포함하는 양극활물질 코팅액(1)을 제조하였다.
[화학식 1a]
Al(C2H5O2)3
[화학식 2a]
Al(C6H5O7)
(실시예 2. 양극활물질 코팅 용액 제조)
200g의 에틸렌 글리콜(C2H6O2) 용액 내에 40g의 지르코늄 나이트라이드 (ZrN)와 10g의 시트르산(C6H8O7)을 분산한 다음, 교반하여 혼합 용액을 제조하였다. 상기 혼합 용액을 교반하면서 150℃의 온도에서 5 시간 동안 1차 가열한 다음으로, 180℃ 온도에서 혼합 용액이 농축 (약 1000 CPS) 될 때까지 1시간 동안 2차 가열하여 하기 식 1b 및 3a와 같이 표시되는 금속 유기 화합물을 주 성분으로 포함하는 양극활물질 코팅액(2)을 제조하였다.
[화학식 1b]
Zr(C2H5O2)4
[화학식 3a]
Zr(C6H5O7)(C2H5O2)
(실시예 3. 양극활물질 코팅 용액 제조)
400g의 에틸렌 글리콜(C2H6O2) 용액 내에 70g의 망간 아세테이트 (Mn(CH3O2)2)와 20g의 시트르산(C6H8O7)과 5g의 포름알데히드를 분산한 다음, 교반하여 혼합 용액을 제조하였다. 상기 혼합 용액을 교반하면서 140℃ 온도에서 4 시간 동안 1차 가열한 다음, 180℃ 온도에서 혼합 용액이 농축 (약 1000 CPS) 될 때까지 1시간 동안 2차 가열하여 하기 식 1c 및 2c 와 같이 표시되는 금속 유기 화합물을 주 성분으로 포함하는 양극활물질 코팅액(3)을 제조하였다.
[화학식 1c]
Mn(C2H5O2)m
[화학식 2c]
Mn(C6H5O7)
(상기 식에서, m은 1 내지 3의 정수이다.)
(실시예 4. 금속 산화물 코팅층을 포함하는 양극활물질 제조)
에탄올 8g에 상기 실시예 1에서 제조한 화학식 1의 양극활물질 코팅 용액 2g을 첨가하여 교반하면서, 양극활물질(LiNi0.6Mn0.2Co0.2)O2) 50g를 첨가하여 페이스트 상태로 교반하였다. 교반된 페이스트를 180℃에서 2 시간 건조한 다음, 800℃의 공기 중에서 1 시간 열처리하여 약 0.2 중량%의 알루미늄 옥사이드층이 피복된 양극활물질 입자를 제조하였다.
제조된 양극활물질 표면에 대한 FE-SEM (Field-Emission Scanning Electron Microscope) 및 EDS (Energy Dispersive Spectrometer) 분석 결과를 하기 표 1에 나타내었다 (도 1 참조)
표 1
원소 중량%
Al 0.49
Ni 28.6
Mn 9.92
Co 9.84
O 51.15
합계 100
도 1을 살펴보면, FE-SEM 이미지에서 스펙트럼 4라고 표기한 부분에 대한 원소 함량을 EDS로 분석하였다. 그 결과, 양극재 Ni, Mn, Co가 산화물 형태로 존재함을 알 수 있으며, 코팅 물질인 Al이 0.49 중량%로 분석되었다. 더욱이, FE-SEM 이미지에서 양극활물질 표면이 매우 깨끗함을 확인할 수 있는데, 이로부터 Al이 매우 균일하게 코팅되어 있음을 알 수 있다.
(실시예 5. 금속 산화물 코팅층을 포함하는 양극활물질 제조)
에탄올 8g 상기 실시예 2에서 제조한 양극활물질 코팅 용액 2g을 첨가하여 교반하면서, 양극활물질(LiNi0.6Mn0.2Co0.2)O2) 50g를 첨가하여 페이스트 상태로 교반하였다. 교반된 페이스트를 180℃에서 2 시간 건조한 다음, 500℃의 공기 중에서 1 시간 열처리하여 약 0.2 중량%의 지르코늄 옥사이드층이 피복된 양극활물질 입자를 제조하였다.
제조된 양극재 표면에 대한 FE-SEM 및 EDS 분석 결과를 하기 표 2에 나타내었다 (도 2 참조)
표 2
원소 중량%
Zr 0.72
Ni 32.5
Mn 10.82
Co 10.99
O 44.97
합계 100
도 2를 살펴보면, FE-SEM 이미지에서 스펙트럼 11이라고 표기한 부분에 대한 원소 함량을 EDS로 분석하였다. 그 결과, 양극재 Ni, Mn, Co가 산화물 형태로 존재함을 알 수 있으며, 코팅 물질인 Zr이 0.72 중량%로 분석되었다. 더욱이, FE-SEM 이미지에서 양극활물질 표면이 매우 깨끗함을 확인할 수 있는데, 이로부터 Zr이 매우 균일하게 코팅되어 있음을 알 수 있다.
(실시예 6. 금속 산화물 코팅층을 포함하는 양극활물질 제조)
에탄올 8g 상기 실시예 3에서 제조한 양극활물질 코팅 용액 2g을 첨가하여 교반하면서, 양극활물질(LiNi0.6Mn0.2Co0.2)O2) 50g를 첨가하여 페이스트 상태로 교반하였다. 교반된 페이스트를 180℃에서 2 시간 건조한 다음, 700℃의 공기 중에서 1 시간 열처리하여 약 0.2 중량%의 망간 옥사이드층이 피복된 양극활물질 입자를 제조하였다.
제조된 양극재 표면에 대한 FE-SEM 및 EDS 분석 결과를 하기 표 3에 나타내었다 (도 3 참조).
표 3
원소 중량%
Ni 46.51
Mn 11.61
Co 10.46
O 31.42
합계 100
도 3을 살펴보면, FE-SEM 이미지에서 스펙트럼 6이라고 표기한 부분에 대한 원소 함량을 EDS로 분석하였다. 그 결과, 양극재 Ni, Mn, Co가 산화물 형태로 존재함을 알 수 있으며, 코팅 물질인 Mn이 11.61 중량%로 Co 10.45 중량%와 비교하면 망간 코팅에 의해서 약 1 중량%로 Mn이 코팅되었음을 알 수 있었다. 더욱이, FE-SEM 이미지에서 양극활물질 표면이 매우 깨끗함을 확인할 수 있는데, 이로부터 Mn이 매우 균일하게 코팅되어 있음을 알 수 있다.

Claims (16)

  1. 글리콜계 용매 내에 금속 전구체 및 킬레이팅제를 분산시켜 혼합 용액을 제조하는 단계;
    상기 혼합 용액을 1차 가열하는 단계; 및
    상기 혼합 용액을 2차 가열하는 단계를 포함하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  2. 청구항 1에 있어서,
    상기 글리콜계 용매는 에틸렌 글리콜, 프로필렌 글리콜, 디에틸렌 글리콜, 트리에틸렌 글리콜 및 폴리에틸렌 글리콜로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  3. 청구항 1에 있어서,
    상기 금속 전구체는 Mg, Ca, Sr, Ba, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ir, Ni, Zn, Al, Ga, In, Si, Ge, Sn, La 및 Ce으로 이루어진 군으로부터 선택된 금속을 적어도 하나 이상 함유하는 아세테이트, 히드록사이드, 나이트레이트, 나이트라이드, 설페이트, 설파이드, 알콕사이드 및 할라이드로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  4. 청구항 3에 있어서,
    상기 금속 전구체는 알루미늄 아세테이트, 지르코늄 나이트라이드, 또는 망간 아세테이트인 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  5. 청구항 1에 있어서,
    상기 킬레이팅제는 시트르산, EDTA (ethylenediaminetetraacetic acid), 옥살산 및 글루콘산으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상이 혼합물을 포함하는 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  6. 청구항 1에 있어서,
    상기 금속 전구체 : 글리콜계 용매 : 킬레이팅제의 함량비(중량부)는 1 : 1 내지 500 : 0.1 내지 20인 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  7. 청구항 1에 있어서,
    상기 혼합 용액 제조 시에 첨가제를 더 포함하는 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  8. 청구항 7에 있어서,
    상기 첨가제는 포름알데히드 아세트알데히드 및 글리코산으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  9. 청구항 7에 있어서,
    상기 첨가제는 상기 금속 전구체의 전체 1 중량부에 대하여 0.1 내지 20 중량부로 포함하는 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  10. 청구항 1에 있어서,
    상기 1차 가열 단계는 150 내지 300℃ 온도 조건 하에서 1 내지 48시간 동안 실시하는 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  11. 청구항 10에 있어서,
    상기 1차 가열 단계는 110 내지 230℃ 온도 조건 하에서 5 내지 20시간 동안 실시하는 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  12. 청구항 1에 있어서,
    상기 2차 가열 단계는 150 내지 300℃ 온도에서 1 내지 5 시간 동안 실시하는 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  13. 청구항 12에 있어서,
    상기 2차 가열 단계는 170 내지 250℃ 온도에서 1 내지 5 시간 동안 실시하는 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  14. 청구항 1에 있어서,
    상기 1차 및 2차 가열 단계는 비활성 가스 분위기 하에서 실시하는 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액의 제조 방법.
  15. 청구항 1에 기재된 방법에 의해 제조된 이차전지용 양극활물질 코팅 용액.
  16. 청구항 15에 있어서,
    상기 코팅 용액은 금속 전구체로부터 탈리된 금속과 글리콜계 용매 및 킬레이트제가 결합된 하기 화학식 1 내지 3으로 표시되는 화합물로 이루어진 군으로부터 선택된 적어도 하나의 금속 유기 화합물을 포함하는 금속 글리콜레이트 용액인 것을 특징으로 하는 이차전지용 양극활물질 코팅 용액.
    [화학식 1]
    M(C2H5O2)n
    [화학식 2]
    M(C6H(8-n)O7)
    [화학식 3]
    M(C6H(8-n)O7)(C2H5O2)
    (상기 식에서,
    M은 금속 전구체로부터 탈리된 금속으로서, Mg, Ca, Sr, Ba, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ir, Ni, Zn, Al, Ga, In, Si, Ge, Sn, La 및 Ce으로 이루어진 군으로부터 선택된 적어도 하나의 금속이며, n은 1 내지 4의 정수이다.)
PCT/KR2014/009194 2013-09-30 2014-09-30 이차전지용 양극활물질 코팅 용액과 이의 제조 방법 WO2015047024A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/419,508 US10026960B2 (en) 2013-09-30 2014-09-30 Cathode active material coating solution for secondary battery and method of manufacturing the same
EP14825240.6A EP2879210B1 (en) 2013-09-30 2014-09-30 Cathode active material coating solution for secondary battery and method for preparing same
JP2015539538A JP6050512B2 (ja) 2013-09-30 2014-09-30 二次電池用正極活物質コーティング溶液とこの製造方法
CN201480002138.3A CN104685675B (zh) 2013-09-30 2014-09-30 二次电池用正极活性物质涂敷溶液及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130117032 2013-09-30
KR10-2013-0117032 2013-09-30
KR10-2014-0130375 2014-09-29
KR1020140130375A KR101607013B1 (ko) 2013-09-30 2014-09-29 이차전지용 양극활물질 코팅 용액과 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2015047024A1 true WO2015047024A1 (ko) 2015-04-02

Family

ID=52744024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009194 WO2015047024A1 (ko) 2013-09-30 2014-09-30 이차전지용 양극활물질 코팅 용액과 이의 제조 방법

Country Status (2)

Country Link
EP (1) EP2879210B1 (ko)
WO (1) WO2015047024A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190141641A (ko) * 2016-11-18 2019-12-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
WO2023121390A1 (ko) * 2021-12-24 2023-06-29 주식회사 엘지에너지솔루션 양극 활물질, 이를 포함하는 양극 및 리튬 이차 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990073753A (ko) * 1998-03-03 1999-10-05 손욱 리튬 계열 이차 전지용 양극 활물질의 제조 방법
KR20080099131A (ko) * 2007-05-07 2008-11-12 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질의 제조방법, 이 방법으로제조된 리튬 이차 전지용 양극 활물질 및 이를 포함하는리튬 이차 전지
KR20090093165A (ko) * 2008-02-28 2009-09-02 삼성에스디아이 주식회사 양극 활물질 및 이를 채용한 양극과 리튬 전지
KR20110017253A (ko) * 2009-08-13 2011-02-21 한국세라믹기술원 양극 활물질과 이를 포함하는 리튬 이차전지, 양극 활물질의 제조방법과 이를 포함하는 리튬 이차전지의 제조방법
KR20120021674A (ko) * 2010-08-12 2012-03-09 재단법인 포항산업과학연구원 리튬 2차전지 양극재의 제조 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110442A (en) * 1997-05-30 2000-08-29 Hughes Electronics Corporation Method of preparing Lix Mn2 O4 for lithium-ion batteries
KR100366058B1 (ko) * 1999-09-15 2002-12-26 동아전기부품 주식회사 리튬이차전지의 정극재료 제조방법
US20090004563A1 (en) * 2007-06-28 2009-01-01 Zhimin Zhong Substituted lithium titanate spinel compound with improved electron conductivity and methods of making the same
KR101353337B1 (ko) * 2010-08-12 2014-01-22 재단법인 포항산업과학연구원 리튬 2차전지용 올리빈계 양극재의 제조 방법
KR20130139941A (ko) * 2010-10-29 2013-12-23 아사히 가라스 가부시키가이샤 리튬 이온 이차 전지용 정극 활물질, 정극, 전지 및 제조 방법
KR101260685B1 (ko) * 2011-06-24 2013-05-10 한국과학기술연구원 리튬이온 이차전지용 전극 활물질 제조 방법 및 이를 이용한 리튬이온 이차전지
FR2982084B1 (fr) * 2011-11-02 2013-11-22 Fabien Gaben Procede de fabrication d'electrodes de batteries entierement solides
KR20130067139A (ko) * 2011-12-13 2013-06-21 삼성전자주식회사 보호음극, 이를 포함하는 리튬공기전지 및 이를 포함하는 전고체 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990073753A (ko) * 1998-03-03 1999-10-05 손욱 리튬 계열 이차 전지용 양극 활물질의 제조 방법
KR20080099131A (ko) * 2007-05-07 2008-11-12 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질의 제조방법, 이 방법으로제조된 리튬 이차 전지용 양극 활물질 및 이를 포함하는리튬 이차 전지
KR20090093165A (ko) * 2008-02-28 2009-09-02 삼성에스디아이 주식회사 양극 활물질 및 이를 채용한 양극과 리튬 전지
KR20110017253A (ko) * 2009-08-13 2011-02-21 한국세라믹기술원 양극 활물질과 이를 포함하는 리튬 이차전지, 양극 활물질의 제조방법과 이를 포함하는 리튬 이차전지의 제조방법
KR20120021674A (ko) * 2010-08-12 2012-03-09 재단법인 포항산업과학연구원 리튬 2차전지 양극재의 제조 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190141641A (ko) * 2016-11-18 2019-12-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR102331689B1 (ko) 2016-11-18 2021-11-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
WO2023121390A1 (ko) * 2021-12-24 2023-06-29 주식회사 엘지에너지솔루션 양극 활물질, 이를 포함하는 양극 및 리튬 이차 전지

Also Published As

Publication number Publication date
EP2879210A1 (en) 2015-06-03
EP2879210B1 (en) 2020-01-15
EP2879210A4 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2017069405A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2014021626A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2011105832A2 (ko) 고용량의 양극활물질 및 이를 포함하는 리튬 이차전지
WO2011081422A9 (ko) 리튬 복합 산화물 및 그 제조 방법.
WO2017069410A1 (ko) 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
WO2010047524A2 (ko) 올리빈 구조의 리튬 철인산화물 및 이의 제조방법
WO2010047525A2 (ko) 올리빈 구조의 리튬 철인산화물 및 이의 분석 방법
WO2016108384A1 (ko) 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지
WO2012011785A2 (ko) 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
WO2014109581A1 (ko) 탄소 코팅 리튬 인산철 나노분말 제조방법
WO2017069407A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2015026080A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
WO2013089426A1 (en) Positive active material for rechargeable lithium battery
WO2009145471A1 (ko) 리튬 복합 전이금속 산화물 제조용 신규 전구체
KR101665766B1 (ko) 이차전지용 양극활물질 및 이의 제조 방법
WO2011132959A2 (ko) 탄소가 코팅된 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2013165150A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
JP2017063053A (ja) 二次電池用正極活物質、この製造方法及びこれを含むリチウム二次電池用正極
WO2011132961A2 (ko) 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2010047552A2 (ko) 전극 효율 및 에너지 밀도 특성이 개선된 양극 활물질
WO2013137577A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
WO2014010862A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2014196816A1 (ko) 신규한 이차전지
WO2013109038A1 (ko) 양극 활물질 및 이를 포함하고 불순물 혹은 스웰링 제어를 위한 리튬 이차전지와 생산성이 향상된 양극 활물질의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014825240

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14419508

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015539538

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE