WO2014010862A1 - 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물 - Google Patents

리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물 Download PDF

Info

Publication number
WO2014010862A1
WO2014010862A1 PCT/KR2013/005903 KR2013005903W WO2014010862A1 WO 2014010862 A1 WO2014010862 A1 WO 2014010862A1 KR 2013005903 W KR2013005903 W KR 2013005903W WO 2014010862 A1 WO2014010862 A1 WO 2014010862A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
precursor
metal precursor
lithium composite
metal oxide
Prior art date
Application number
PCT/KR2013/005903
Other languages
English (en)
French (fr)
Inventor
박병천
강성훈
강민석
정왕모
신호석
박상민
민근기
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to BR112014031358A priority Critical patent/BR112014031358B8/pt
Priority to EP13816829.9A priority patent/EP2871161B1/en
Priority to CN201380031477.XA priority patent/CN104364201B/zh
Priority to IN10250DEN2014 priority patent/IN2014DN10250A/en
Priority to PL13816829T priority patent/PL2871161T3/pl
Priority to JP2015515958A priority patent/JP6072235B2/ja
Publication of WO2014010862A1 publication Critical patent/WO2014010862A1/ko
Priority to US14/559,155 priority patent/US9966600B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a precursor for producing a lithium composite transition metal oxide, a method for producing the same, and a lithium composite transition metal oxide.
  • lithium secondary batteries As the development and demand for mobile devices increases, the demand for secondary batteries as energy sources is increasing rapidly. Among them, many researches have been conducted on lithium secondary batteries with high energy density and discharge voltage. It is widely used. Among them, lithium secondary batteries are the most used batteries due to their excellent electrode life and high fast charge and discharge efficiency.
  • lithium secondary batteries include lithium-containing cobalt oxide (LiCoO 2 ) as a positive electrode active material.
  • lithium-containing manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, and lithium containing
  • nickel oxide LiNiO 2
  • LiCoO 2 is widely used because of its excellent physical properties such as excellent cycle characteristics, but has low safety and high cost due to resource limitations of cobalt as a raw material.
  • LiNiO2 oxides such as LiNiO 2 have a lower discharge capacity than LiCoO 2 and have a high discharge capacity when charged to 4.25 V, but have high production cost, swelling due to gas generation in the battery, low chemical stability, and high pH. Have problems such as;
  • lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have the advantage of using a resource-rich and environmentally friendly manganese as a raw material, attracting a lot of attention as a cathode active material that can replace LiCoO 2 , in particular
  • LiMn 2 O 4 has advantages such as relatively low price and high power, but has a disadvantage in that energy density is lower than that of LiCoO 2 and a ternary active material.
  • LiMn 2 O 4 replaces a part of Mn with Ni, it has a high potential (about 4.7V) compared to the original operating potential (about 4V).
  • Spinel materials having a composition of Li 1 + a Ni x Mn 2-x O 4-z (0 ⁇ a ⁇ 0.1, 0.4 ⁇ x ⁇ 0.5, 0 ⁇ z ⁇ 0.1) with high potential have high energy and high power performance. This material is highly likely to be used as a positive electrode active material of medium and large-sized lithium ion batteries including EV.
  • a lithium transition metal active material containing two or more materials such as Ni and Mn synthesis is not easy due to a simple solid phase reaction.
  • a precursor for preparing the same a transition prepared using a coprecipitation method or the like is used. Techniques for using metal precursors are known.
  • the spinel material has a problem in that it is easily oxidized by dissolved oxygen in the transition metal aqueous solution when synthesizing the transition metal precursor by coprecipitation due to the high Mn content.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application have a specific composition, and when a complex transition metal compound having a Mn content of 60 to 85 mol% is prepared by coprecipitation with a reducing agent, It was confirmed that the oxidation prevention, the sphericity of the composite transition metal compound is increased, and the synthesis of a precursor having a more uniform particle size is possible, and the secondary battery including the lithium composite transition metal oxide based thereon as a cathode active material is It was confirmed that the initial discharge capacity and the efficiency were increased, the output characteristics and the life characteristics were improved, and the present invention was completed.
  • a precursor for preparing a lithium composite transition metal oxide according to the present invention has a composition represented by the following Chemical Formula 1 and is characterized in that it comprises a composite transition metal compound having a Mn content of 60 to 85 mol%.
  • M is at least one selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and two-cycle transition metals;
  • M may be Ti or Al.
  • a may be 0.2 or more and 0.25 or less
  • x may be, in detail, 0.2 or more and less than 0.5, and more specifically, 0.3 or more and less than 0.5.
  • the complex transition metal compound of Formula 1 is a complex transition metal compound of a spinel compound having a high content of Mn and partly substituted with Ni or a form further including Ti or Al thereto, the precursor including the same has excellent fast charging It may be particularly preferably used to prepare a positive electrode active material of a lithium secondary battery having characteristics.
  • the Mn content of the complex transition metal compound may be 70 to 80 mol% in detail.
  • the transition metal precursor according to the present invention includes the composite transition metal compound in an amount of 30 wt% or more, more specifically 50 wt% or more based on the total amount of the transition metal precursor. It may consist of.
  • the complex transition metal compound represented by Chemical Formula 1 may be prepared by coprecipitation in a state in which a reducing agent for preventing oxidation of a basic substance and Mn is added to an aqueous transition metal solution in which a transition metal-containing salt is mixed. .
  • the coprecipitation method is a method for preparing two or more transition metal elements simultaneously by using a precipitation reaction in an aqueous solution.
  • a complex transition metal compound including two or more transition metals may be prepared by mixing transition metal-containing salts in a desired molar ratio in consideration of the content of the transition metal to prepare an aqueous solution, followed by a strong base such as sodium hydroxide.
  • additives such as an ammonia source may be added, and co-precipitation may be prepared while maintaining a basic pH.
  • the pH range is 9 to 13, preferably 9 to 12, and in some cases, the reaction may be carried out in multiple stages.
  • the average particle diameter of the complex transition metal compound may be 4 micrometers to 20 micrometers, in detail, may be 4 micrometers to 15 micrometers, the tap density is 0.8 g / cm 3 to 2.5 g / cm 3 , specifically 1.2 g / cm 3 to 2.5 g / cm 3 .
  • the average particle diameter of the composite transition metal compound is larger than 20 micrometers out of the above range, it is difficult to realize electrochemical performance due to poor reactivity with lithium, and there is a problem that the productivity increases due to a remarkable increase in reaction time. If smaller than the meter, the particles are difficult to handle and there is a limit in producing an active material of a desired size, which is not preferable.
  • the composite transition metal compound has the above tap density, it is preferable because the side reaction with the electrolyte can be reduced while increasing the capacity per volume.
  • the inventors of the present application newly recognize these problems, and after extensive research based on numerous experiments, the oxidation of Mn is reduced when a reducing agent is added to prepare a complex transition metal compound containing a high amount of manganese. It was confirmed that the spherical degree of the composite transition metal compound is increased, and that precursors having a more uniform particle size can be synthesized. When the lithium composite transition metal oxide is prepared based on this, the initial discharge capacity and the efficiency are excellent. In addition, it has been newly discovered that the output characteristics and the life characteristics are improved.
  • the reducing agent may be included in 0.01 to 10 mol% relative to the molar amount of the aqueous solution of the transition metal, in detail, may be included in 0.05 to 3 mol%, if less than 0.01 mol% because the amount is too small It is hard to exert the effect, and when it exceeds 10 mol%, since the amount is too large, the transition metal content of the precursor can be reduced, which can lead to deterioration of electrochemical properties after firing, which is not preferable.
  • the reducing agent may be at least one selected from the group consisting of hydrazine, oxalic acid, ascorbic acid, other saccharide substances, and in detail, may be a saccharide substance.
  • the saccharide substance may include, for example, fructose, sucrose, glucose, galactose, lactose, maltose, starch, and dextrin (for example, fructose).
  • dextrin may be one or more selected from the group consisting of, in detail, may be sucrose (sucrose).
  • the saccharide substance may be present in detail in the inside and / or the surface of the transition metal precursor, and more specifically, a closed pore is present in the transition metal precursor.
  • at least a portion of the sugar substance may be included in the discard hole.
  • the reducing agent trapped in the closed pores inside the transition metal precursor particles may be partially carbonized and thus exhibit a carbon surface treatment effect of the transition metal precursor.
  • the transition metal precursor according to the present invention has an increased sphericity. In addition, it can have a more uniform particle size and also improve the electrochemical properties after firing.
  • the transition metal-containing salt may be sulfate or nitrate, as it is preferable to have an anion that is easily decomposed and volatilized upon firing.
  • nickel sulfate, titanium sulfate, manganese sulfate, nickel nitrate, titanium nitrate, manganese nitrate, and the like but are not limited thereto.
  • the basic material may include sodium hydroxide, potassium hydroxide, lithium hydroxide, and the like, and preferably sodium hydroxide, but is not limited thereto.
  • the present invention also provides a method for preparing the complex transition metal compound.
  • the transition metal precursor according to the present invention comprises the steps of (i) preparing a transition metal aqueous solution by mixing the transition metal-containing salts for precursor preparation; (ii) adding and mixing 0.01 to 10 mol% of a reducing agent with respect to the mole of the aqueous transition metal solution to the aqueous transition metal solution; And (iii) co-precipitation by adding a strong base after mixing of step (ii).
  • an additive and / or alkali carbonate which may form a complex with a transition metal in the coprecipitation process may be further added.
  • an ammonium ion source for example, an ethylene diamine compound, a citric acid compound, or the like can be used.
  • the ammonium ion source include aqueous ammonia, aqueous ammonium sulfate solution and aqueous ammonium nitrate salt.
  • the alkali carbonate may be selected from the group consisting of ammonium carbonate, sodium carbonate, potassium carbonate and lithium carbonate. In some cases, these may be used by mixing two or more thereof.
  • the addition amount of the additive and alkali carbonate can be appropriately determined in consideration of the amount of transition metal-containing salt, pH, and the like.
  • the present invention also provides a lithium composite transition metal oxide, which may be prepared from the transition metal precursor in one embodiment. Specifically, the transition metal precursor and the lithium precursor may be mixed and calcined in an oxidizing atmosphere to prepare a lithium composite transition metal oxide which is a cathode active material for a lithium secondary battery.
  • the lithium composite transition metal oxide may be surface treated with carbon because the composite transition metal compound prepared by using a reducing agent is used as a precursor.
  • the reducing agent of the saccharide material trapped in the closed pores inside the transition metal precursor particles is carbonized to remain in the transition metal precursor, and thus prepared using the same.
  • Lithium composite transition metal oxide can exhibit a carbon treatment effect.
  • the carbon may be derived from a reducing agent of the saccharide material.
  • the lithium precursor is not particularly limited, and examples thereof include lithium hydroxide, lithium carbonate, lithium oxide, and the like, and preferably lithium carbonate (Li 2 CO 3 ) and / or lithium hydroxide (LiOH).
  • the present invention provides a lithium composite transition metal oxide having a composition represented by the following formula (2), Mn content of 60 to 85 mol%.
  • M is at least one selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr and bicycle transition metals;
  • A is -1 or -divalent one or more anions
  • a part of Mn provides a lithium composite transition metal oxide in which Ni and M are substituted in a predetermined amount in a predetermined amount.
  • the lithium composite transition metal oxide may be surface treated with carbon in one specific example.
  • the lithium composite transition metal oxide may be preferably used as an electrode active material for a lithium secondary battery, and these may be used alone or in combination with another known electrode active material for a lithium secondary battery.
  • the lithium composite transition metal oxide when used as an electrode active material of a lithium secondary battery, not only high fast charging performance but also excellent initial discharge capacity and efficiency, output characteristics and life characteristics It has the advantage of being improved.
  • the present invention provides a cathode including the lithium composite transition metal oxide as a cathode active material and a lithium secondary battery including the same.
  • the positive electrode is prepared by, for example, applying a mixture of the positive electrode active material, the conductive material, and the binder according to the present invention onto a positive electrode current collector, followed by drying, and, if necessary, further adding a filler to the mixture.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 20 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 20 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the lithium secondary battery is generally composed of the positive electrode, the negative electrode, the separator and the lithium salt-containing nonaqueous electrolyte, other components of the lithium secondary battery according to the present invention will be described below.
  • the negative electrode is manufactured by applying and drying a negative electrode material on the negative electrode current collector, and if necessary, the components as described above may be further included.
  • the negative electrode material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ;
  • the negative electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the lithium-containing non-aqueous electrolyte consists of a nonaqueous electrolyte and lithium.
  • a nonaqueous electrolyte a nonaqueous electrolyte, a solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, etc.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the present invention also provides a battery module including the lithium secondary battery as a unit cell, and provides a battery pack including the battery module.
  • the battery pack may be used as a power source for medium and large devices requiring high temperature stability, long cycle characteristics, high rate characteristics, and the like.
  • the medium-to-large device include a power tool driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Example 1 is a photograph taken with the FE-SEM (Hitachi S-4800 model) of the SEM image of the precursor prepared in Example 1;
  • Nickel sulphate, titanium sulphate and manganese sulphate were mixed in a ratio (molar ratio) of 0.25: 0.04: 0.71 to prepare an aqueous solution of a transition metal at a concentration of 2M, and 0.2 mol% of sucrose was mixed together.
  • 4M sodium hydroxide aqueous solution was prepared.
  • the transition metal aqueous solution was continuously pumped with a metering pump to the tank for the wet reactor at 0.18 L / hr.
  • the aqueous sodium hydroxide solution was pumped in conjunction with the control equipment to adjust the pH of the distilled water in the tank, so that the distilled water in the wet reactor tank pH 11.0 ⁇ 11.5.
  • a 30% concentration of ammonia solution as an additive was continuously pumped together into the reactor at a rate of 0.035 L to 0.04 L / hr.
  • the average residence time of the solution in the wet reactor tank was about 5 to 6 hours, and after the reaction in the tank reached a steady state, Given time, more complex composite transition metal precursors were synthesized.
  • a nickel-titanium-manganese composite transition metal precursor prepared by continuously reacting the transition metal ion of the transition metal aqueous solution, the hydroxide hydroxide ion of sodium hydroxide, and the ammonia ion of the ammonia solution for 20 hours, Obtained continuously through overflow pipes installed on the
  • the composite transition metal precursor thus obtained was washed several times with distilled water and dried for 24 hours in a constant temperature dryer at 120 ° C., having an average particle diameter of 7 micrometers and a tap density of 2.0 g / cm 3 , Ni 0.25 Ti 0.04 Mn 0.71 (OH 1 -x ) 2 nickel-titanium-manganese composite transition metal precursor was obtained.
  • a nickel-titanium-manganese composite transition metal precursor of Ni 0.25 Ti 0.04 Mn 0.71 (OH 1-x ) 2 was prepared in the same manner as in Example 1 except that sucrose was not mixed with the aqueous transition metal solution.
  • the average particle diameter of the prepared nickel-titanium-manganese composite transition metal precursor was 8 micrometers, and the tap density was 0.6 g / cm 3 .
  • a nickel-titanium-manganese composite transition metal precursor of Ni 0.25 Ti 0.04 Mn 0.71 (OH 1-x ) 2 was prepared in the same manner as in Example 1, except that 20 mol% of sucrose was mixed with the aqueous transition metal solution. It was.
  • the average particle diameter of the prepared nickel-titanium-manganese composite transition metal precursor was 28 micrometers, and the tap density was 0.75 g / cm 3 .
  • Example 1 the precursor of Example 1 using 0.2 mol% sucrose, the cohesion of the primary particles is better than the precursor of Comparative Example 1 without sucrose (Sucrose), the particles It can be seen that the shape of is more spherical.
  • prepared slurry was prepared by mixing Denka as a conductive material and KF1100 as a binder in a weight ratio of 95: 2.5: 2.5 to a cathode active material powder, and uniformly coated on an aluminum foil having a thickness of 20 ⁇ m. This was dried to 130 °C to prepare a positive electrode for a lithium secondary battery.
  • a 2016 coin battery was manufactured using a liquid electrolyte in which LiPF 6 was dissolved in 1 M in a solvent mixed with 1.
  • the nickel-titanium-manganese composite transition metal precursors prepared in Example 1 were mixed with 110 mol% of Li 2 CO 3 and 5 mol% of NH 4 F relative to the precursor to suit the molar ratio of each composition, followed by an elevated temperature of 5 ° C./min. It was heated at a rate and baked at 950 ° C. for 10 hours to prepare a cathode active material powder of Li 1.1 [Ni 0.25 Ti 0.04 Mn 0.71 ] 2 O 3.95 F 0.05 .
  • prepared slurry was prepared by mixing Denka as a conductive material and KF1100 as a binder in a weight ratio of 95: 2.5: 2.5 to a cathode active material powder, and uniformly coated on an aluminum foil having a thickness of 20 ⁇ m. This was dried to 130 °C to prepare a positive electrode for a lithium secondary battery.
  • a 2016 coin battery was manufactured using a liquid electrolyte in which LiPF 6 was dissolved in 1 M in a solvent mixed with 1.
  • the battery evaluation was performed by measuring the charge and discharge capacity in the applied current of 0.1C and the voltage range of 3.5 to 4.9 V and the discharge capacity and the charge and discharge efficiency results are shown in Table 1 below.
  • the transition metal precursor for producing a lithium composite transition metal oxide according to the present invention is prepared by a coprecipitation method in the state of adding a reducing agent to prevent oxidation of Mn, the degree of sphericity is increased and a more uniform particle size is achieved. It is possible to synthesize complex transition metal compounds having a content of 60 to 85 mol% of Mn in a specific composition.
  • the reducing agent of the saccharide substance it may remain in the pores of the transition metal precursor to have the effect of carbon surface treatment, thereby improving the electrochemical properties of the cathode active material after firing.
  • the secondary battery when manufacturing a lithium composite transition metal oxide based on this, the secondary battery comprising the same can exhibit excellent initial discharge capacity and efficiency, improved output characteristics and life characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물에 관한 것으로, 상세하게는, 하기 화학식 1로 표현되는 조성을 가지며, Mn의 함량이 60 내지 85 몰%인 복합 전이금속 화합물을 포함하는 것을 특징으로 하는 전이금속 전구체 및 그 제조방법을 제공한다.: NiaMbMn1-(a+b)(OH1-x)2 (1) 상기 식에서, M은 Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이고; 0.15≤a≤0.3; 0≤b≤0.1; 0<x<0.5이다.

Description

리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물
본 발명은 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해졌고, 또한 상용화되어 널리 사용되고 있다. 그 중, 리튬 이차전지는 우수한 전극 수명과 높은 고속 충방전 효율로 인해 가장 많이 사용되고 있는 전지이다.
일반적으로 리튬 이차전지는 양극 활물질로는 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.
상기 양극 활물질들 중 LiCoO2은 우수한 사이클 특성 등 제반 물성이 우수하여 현재 많이 사용되고 있지만, 안전성이 낮으며, 원료로서 코발트의 자원적 한계로 인해 고가라는 문제가 있다. LiNiO2 등의 리튬 니켈계 산화물은 상기 LiCoO2보다 비용이 저렴하면서도 4.25 V로 충전되었을 때, 높은 방전 용량을 나타내지만 높은 생산비용, 전지에서의 가스발생에 의한 스웰링, 낮은 화학적 안정성, 높은 pH 등의 문제들을 가지고 있다.
또한, LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료로서 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점을 가지고 있으므로, LiCoO2를 대체할 수 있는 양극 활물질로서 많은 관심을 모으고 있고, 특히, 그 중에서도 LiMn2O4는 상대적으로 저렴한 가격 및 고출력 등의 장점을 가지고 있지만, 에너지밀도가 LiCoO2 및 삼성분계 활물질에 비해 낮은 단점이 있다.
이러한 단점을 극복하기 위하여 LiMn2O4에서 Mn의 일부를 Ni로 치환하게 되면 원래 가지던 작동전위(약 4V)에 비하여 높은 전위(약 4.7V)를 가지게 된다. 높은 전위를 가지게 됨에 따라 Li1+aNixMn2-xO4-z(0≤a≤0.1, 0.4≤x≤0.5, 0≤z≤0.1)의 조성을 가지는 스피넬 물질은 고에너지 및 고출력 성능이 요구되는 EV를 비롯한 중대형용 리튬 이온 전지의 양극 활물질로 이용될 가능성이 높은 재료이다.
한편, 상기와 같은 Ni, Mn 등 2 가지 이상의 물질을 함유하는 리튬 전이금속 활물질의 경우, 단순한 고상반응으로는 합성이 용이하지 않은 바, 이를 제조하기 위한 전구체로서 공침법 등을 이용하여 제조된 전이금속 전구체를 사용하는 기술이 알려져 있다.
그러나, 상기 스피넬 물질은 높은 Mn의 함량으로 인해 공침법에 의한 전이금속 전구체 합성시 전이금속 수용액 내부의 용존 산소에 의해 산화가 쉽게 일어나 합성이 용이하지 않은 문제가 있다
이처럼, 만족스러운 성능의 리튬 복합 전이금속 산화물 제조용 전구체 및 리튬 복합 전이금속 산화물은 아직 개발되지 못하고 있는 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 특정한 조성을 가지고, Mn의 함량이 60 내지 85 몰%인 복합 전이금속 화합물이 환원제를 첨가한 상태에서 공침법으로 제조되는 경우, Mn의 산화를 방지하고, 상기 복합 전이금속 화합물의 구형화도가 증가하며, 보다 균일한 입도를 갖는 전구체의 합성이 가능함을 확인하였고, 이를 기반으로 하는 리튬 복합 전이금속 산화물을 양극 활물질로서 포함하는 이차전지는 초기 방전용량 및 효율이 증대되고, 출력 특성 및 수명 특성이 향상되는 것을 확인하고, 본 발명을 완성하기에 이르렀다.
이러한 목적을 달성하기 위한 본 발명에 따른 리튬 복합 전이금속 산화물 제조용 전구체는 하기 화학식 1로 표현되는 조성을 가지며, Mn의 함량이 60 내지 85 몰%인 복합 전이금속 화합물을 포함하는 것을 특징으로 한다.
NiaMbMn1-(a+b)(OH1-x)2 (1)
상기 식에서,
M은 Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이고;
0.15≤a≤0.3, 0≤b≤0.1, 0<x<0.5 이다.
하나의 구체적인 예에서, 상기 M은 Ti 또는 Al 일 수 있다.
하나의 구체적인 예에서, 상기 a는 0.2 이상 내지 0.25 이하일 수 있고, x는 상세하게는, 0.2 이상 내지 0.5 미만일 수 있으며, 더욱 상세하게는, 0.3 이상 내지 0.5 미만일 수 있다.
상기 화학식 1의 복합 전이금속 화합물은 Mn을 고함량으로 포함하고 일부를 Ni로 치환한 형태 또는 여기에 Ti 또는 Al을 더 포함한 형태의 스피넬의 복합 전이금속 화합물이므로, 이를 포함하는 전구체는 우수한 고속충전 특성을 갖는 리튬 이차전지의 양극 활물질을 제조하는데 특히 바람직하게 사용될 수 있다.
따라서, 하나의 구체적인 예에서, 상기 복합 전이금속 화합물의 Mn의 함량은 상세하게는, 70 내지 80 몰%일 수 있다.
하나의 구체적인 예에서, 본 발명에 따른 전이금속 전구체는 상기 복합 전이금속 화합물이 상기 전이금속 전구체의 전체량을 기준으로 상세하게는, 30 중량%이상, 더욱 상세하게는 50 중량% 이상의 함량으로 포함되는 것으로 구성될 수 있다.
한편, 상기 화학식 1로 표현되는 복합 전이금속 화합물은 구체적으로, 전이금속 함유 염이 혼합된 전이금속 수용액에 염기성 물질 및 Mn의 산화를 방지하기 위한 환원제를 첨가한 상태에서 공침법으로 제조될 수 있다.
본 발명에 따른 전이금속 전구체를 제조하는 방법으로써, 상기 공침법은 수용액 중에서 침전 반응을 이용하여 2종 이상의 전이금속 원소를 동시에 침전시켜 제조하는 방법이다. 구체적인 예에서, 2종 이상의 전이금속을 포함하는 복합 전이금속 화합물은, 전이금속의 함량을 고려하여 전이금속 함유 염들을 소망하는 몰비로 혼합하여 수용액을 제조한 뒤, 수산화나트륨 등의 강염기와, 경우에 따라서는 암모니아 공급원 등의 첨가제 등을 부가하여, pH를 염기성으로 유지하면서 공침하여 제조될 수 있다.
이 때, 온도, pH, 반응 시간, 슬러리의 농도, 이온 농도 등을 적절히 제어함으로써, 소망하는 평균 입자 지름, 입자지름 분포, 입자 밀도를 조절할 수 있다. pH 범위는 9 내지 13이고 바람직하게는 9 내지 12이며, 경우에 따라서는, 반응은 다단으로 수행될 수도 있다.
하나의 구체적인 예에서, 상기 복합 전이금속 화합물의 평균 입경은 4 마이크로미터 내지 20 마이크로미터일 수 있고, 상세하게는 4 마이크로미터 내지 15 마이크로미터일 수 있으며, 탭밀도는 0.8 g/cm3 내지 2.5 g/cm3일 수 있고, 상세하게는 1.2 g/cm3 내지 2.5 g/cm3일 수 있다.
복합 전이금속 화합물의 평균 입경이 상기 범위를 벗어나 20 마이크로미터 보다 큰 경우에는, 리튬과의 반응성이 떨어져 전기화학 성능을 구현하기 어렵고 반응시간이 현저하게 증가하여 생산력이 저하되는 문제가 있고, 4 마이크로미터보다 작은 경우에는, 입자를 다루기가 어렵고 소망하는 크기의 활물질을 제조하는데 한계가 있어 바람직하지 않다.
한편, 복합 전이금속 화합물이 상기의 탭밀도를 가지는 경우, 전해액과의 부반응은 줄어들면서도, 부피당 용량을 증가시킬 수 있어 바람직하다.
다만, 상기와 같이 복합 전이금속 화합물을 제조하는 경우, 상기 전이금속 함유 염 중 Mn의 함량이 전이금속 전체를 기준으로 본 발명과 같이 과량으로 포함되게 되면 전구체 제조 과정에서 전이금속 수용액 내부의 용존 산소에 의해 산화가 쉽게 일어나 전이금속 원소의 균일한 침전이 어렵다는 문제점이 있다.
이에 본 출원의 발명자들은 이러한 문제점들을 새롭게 인식하고, 수많은 실험들을 바탕으로 심도 있는 연구를 거듭한 끝에, 고함량의 망간을 함유하는 복합 전이금속 화합물을 제조시 환원제를 첨가하는 경우, Mn의 산화를 방지하고, 상기 복합 전이금속 화합물의 구형화도가 증가하며, 보다 균일한 입도를 갖는 전구체의 합성이 가능함을 확인하였으며, 이를 기반으로 리튬 복합 전이금속 산화물을 제조할 경우, 초기 방전용량 및 효율이 우수하고, 출력 특성 및 수명 특성이 향상된다는 것을 새롭게 발견하였다.
하나의 구체적인 예에서, 상기 환원제는 상기 전이금속 수용액의 몰량 대비 0.01 내지 10 몰%로 포함될 수 있고, 상세하게는, 0.05 내지 3 몰%으로 포함될 수 있으며, 0.01 몰% 미만일 경우 지나치게 양이 적으므로 그 효과를 발휘하기 어렵고, 10 몰% 초과일 경우 지나치게 양이 많으므로 전구체의 전이금속 함유량을 줄일 수 있어, 소성 후 전기화학 특성의 저하를 가져올 수 있어 바람직하지 않다.
하나의 구체적인 예에서, 상기 환원제는 히드라진(hydrazine), 옥살산, 아스코르브 산, 기타 당류 물질로 이루어진 군에서 선택되는 하나 이상일 수 있고, 상세하게는, 당류 물질일 수 있다.
상기 당류 물질은, 예를 들면, 프락토스(fructose), 슈크로오스(sucrose), 글루코오스(glucose), 갈락토스(galactose), 락토스(lactose), 말토오스(maltose), 녹말(starch), 및 덱스트린(dextrin)으로 이루어진 군에서 선택되는 하나 이상일 수 있으며, 상세하게는, 슈크로오스(sucrose)일 수 있다.
상기 환원제 중 당류 물질을 사용하는 경우, 상기 당류 물질이 상세하게는, 전이금속 전구체의 내부 및/또는 표면에 존재할 수 있으며, 더욱 상세하게는, 상기 전이금속 전구체에는 폐기공(closed pore)이 존재하고, 당류 물질의 적어도 일부는 상기 폐기공 내에 포함되어 있을 수 있다.
상기와 같이 전이금속 전구체 입자 내부의 폐기공(closed pore)에 갇힌 환원제는 탄화되어 일부 잔존하므로 전이금속 전구체의 탄소 표면처리 효과를 나타낼 수 있고, 따라서 본 발명에 따른 전이금속 전구체는 구형화도가 증가할 뿐만 아니라, 보다 균일한 입도를 가질 수 있으며 소성 후 전기화학 특성의 향상 역시 가져올 수 있다.
하나의 구체적인 예에서, 상기 전이금속 함유 염은 소성시 용이하게 분해되고 휘발되기 쉬운 음이온을 갖는 것이 바람직한 바, 황산염 또는 질산염일 수 있다. 예를 들어, 황산 니켈, 황산 티타늄, 황산 망간, 질산 니켈, 질산 티타늄, 질산 망간 등을 들 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 염기성 물질은 수산화나트륨, 수산화칼륨, 수산화리튬 등을 들 수 있고, 바람직하게는 수산화나트륨이 사용될 수 있으나, 이에 한정되는 것은 아니다.
본 발명은 또한, 상기 복합 전이금속 화합물을 제조하는 방법을 제공한다.
구체적으로, 본 발명에 따른 전이금속 전구체는 (i) 전구체 제조용 전이금속 함유 염들을 혼합하여 전이금속 수용액을 준비하는 과정; (ii) 상기 전이금속 수용액에 전이금속 수용액의 몰 대비 0.01 내지 10 몰%의 환원제를 첨가하여 혼합하는 과정; 및 (iii) 과정(ii)의 혼합 후 강염기를 첨가하여 공침시키는 과정;을 포함하여 제조될 수 있다.
하나의 구체적인 예에서, 상기 공침 과정에서 전이금속과 착체를 형성할 수 있는 첨가제 및/또는 탄산 알칼리를 추가로 첨가할 수 있다. 상기 첨가제는, 예를 들어, 암모늄 이온 공급체, 에틸렌 디아민류 화합물, 구연산류 화합물 등이 사용될 수 있다. 상기 암모늄 이온 공급체는, 예를 들어, 암모니아수, 황산암모늄염 수용액, 질산암모늄염 수용액 등을 들 수 있다. 상기 탄산 알칼리는 탄산 암모늄,탄산나트륨,탄산 칼륨 및 탄산 리튬으로 이루어진 군에서 선택될 수 있다. 경우에 따라서는, 이들을 2 이상 혼합하여 사용할 수도 있다.
상기 첨가제와 탄산 알칼리의 첨가량은 전이금속 함유 염의 양, pH 등을 고려하여 적절히 결정할 수 있다.
본 발명은 또한, 일실시예로 상기 전이금속 전구체로부터 제조될 수 있는 리튬 복합 전이금속 산화물을 제공한다. 구체적으로, 상기 전이금속 전구체와 리튬 전구체를 혼합하고, 산화 분위기에서 소성 반응시켜, 리튬 이차전지용 양극 활물질인 리튬 복합 전이금속 산화물을 제조할 수 있다.
이 때, 상기 리튬 복합 전이금속 산화물은, 환원제를 사용하여 제조되는 복합 전이금속 화합물을 전구체로서 사용하므로, 탄소로 표면 처리되어 있을 수 있다.
이는 상기에서 언급한 바와 같이, 환원제로서 당류 물질을 사용하는 경우, 전이금속 전구체 입자 내부의 폐기공(closed pore)에 갇힌 당류 물질의 환원제가 탄화되어 전이금속 전구체에 일부 잔존하므로, 이를 사용하여 제조되는 리튬 복합 전이금속 산화물이 탄소 처리 효과를 나타낼 수 있는 것이다. 따라서, 상기 탄소는 당류 물질의 환원제로부터 유래될 수 있다.
상기 리튬 전구체는 특별히 제한되지 않으며, 예를 들어, 수산화리튬, 탄산리튬, 산화리튬 등을 들 수 있고, 바람직하게는 탄산 리튬(Li2CO3) 및 또는 수산화 리튬(LiOH)일 수 있다.
상기 리튬 복합 전이금속 산화물의 제조를 위한 전이금속 전구체와 리튬 함유 물질의 반응 조건은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.
한편, 본 발명은, 하기 화학식 2로 표현되는 조성을 가지며, Mn의 함량이 60 내지 85 몰%인 리튬 복합 전이금속 산화물을 제공한다.
Li1+z[NiaMbMn1-(a+b)]2O4-yAy (2)
상기 식에서,
M은 Ti, Co, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이고;
A는 -1 또는 -2가의 하나 이상의 음이온이고;
0.15≤a≤0.3;
0.005≤b≤0.1;
-0.1≤z≤0.1;
0≤y≤0.1이다.
즉, Mn의 일부가 Ni과 M이 특정 범위로 소정량 치환되어 있는 형태의 리튬 복합 전이금속 산화물을 제공한다.
이 때, 상기 리튬 복합 전이금속 산화물은 하나의 구체적인 예에서, 탄소로 표면처리되어 있을 수 있다.
상기 리튬 복합 전이금속 산화물은 리튬 이차전지용 전극 활물질로서 바람직하게 사용될 수 있으며, 이들은 단독으로 사용될 수도 있고, 다른 공지의 리튬 이차전지용 전극 활물질과 혼합되어 사용될 수도 있다.
본 출원의 발명자들이 확인한 바에 따르면, 상기 리튬 복합 전이금속 산화물을 리튬 이차전지의 전극 활물질로 사용하는 경우에는 고속 충전 성능이 높을 뿐 아니라, 초기 방전용량 및 효율이 우수하고, 출력 특성 및 수명 특성이 향상된다는 장점이 있다.
따라서, 본 발명은 상기 리튬 복합 전이금속 산화물을 양극 활물질로서 포함하는 양극 및 이를 포함하는 리튬 이차전지를 제공한다.
상기 양극은, 예를 들어, 양극 집전체 상에 본 발명에 따른 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 리튬 이차전지는 일반적으로 상기 양극, 음극, 분리막 및 리튬염 함유 비수 전해질로 구성되어 있으며, 본 발명에 따른 리튬 이차전지의 기타 성분들에 대해 이하에서 설명한다.
음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.
상기 음극 재료는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
리튬함유 비수계 전해질은 비수 전해질과 리튬으로 이루어져 있다. 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸 포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N, N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
본 발명은 또한, 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공하고, 상기 전지모듈을 포함하는 전지팩을 제공한다.
상기 전지팩은 고온 안정성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
도 1은 실시예 1에서 제조한 전구체의 SEM 이미지를 FE-SEM(Hitachi사 S-4800 모델)으로 촬영한 사진이다;
도 2는 비교예 1에서 제조한 전구체의 SEM 이미지를 FE-SEM(Hitachi사 S-4800 모델)으로 촬영한 사진이다.
이하, 본 발명의 실시예를 참조하여 설명하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
<실시예 1>
4L 습식 반응기용 탱크에 증류수 3L를 채운 뒤 질소가스를 탱크에 2 L/min의 속도로 연속적으로 투입하여 용존 산소를 제거하였다. 이때, 탱크 안의 증류수 온도를 온도 유지장치를 이용하여 45 ~ 50℃로 유지하였다. 또한, 탱크 외부에 설치되어 있는 모터와 연결되어 있는 임펠러를 이용하여, 탱크 내부의 증류수를 1000 ~ 1200 rpm의 속도로 교반하였다.
니켈 황산염, 티타늄 황산염 및 망간 황산염을 0.25: 0.04: 0.71의 비율(몰비)로 혼합하여 2M 농도의 전이금속 수용액을 준비하였고, 여기에 수크로오스(sucrose) 0.2 몰%를 같이 혼합하였다. 그와 별도로 4M 수산화나트륨 수용액을 준비하였다. 상기 전이금속 수용액은 0.18 L/hr으로 습식 반응기용 탱크에 정량 펌프로 연속적으로 펌핑 하였다. 상기 수산화나트륨 수용액은 탱크 내부의 증류수 pH 조절을 위해 컨트롤 장비와 연동시켜, 습식 반응기 탱크 내부의 증류수를 pH 11.0 ~ 11.5가 유지되도록, 가변식 펌핑 하였다. 이때, 첨가물로서 30% 농도의 암모니아 용액을 0.035L ~ 0.04 L/hr의 속도로 반응기에 연속적으로 함께 펌핑 하였다.
전이금속 수용액, 수산화나트륨 수용액, 암모니아 용액의 유량을 조절하여 용액의 습식 반응기 탱크 내의 평균 체류 시간은 5 ~ 6 시간 정도가 되도록 하였으며, 탱크 내의 반응이 정상 상태(steady state)에 도달한 후, 지속 시간을 주어 좀더 밀도 높은 복합 전이금속 전구체를 합성하였다.
정상 상태의 도달 후, 전이금속 수용액의 전이금속 이온, 수산화나트륨의 수산화 이온, 및 암모니아 용액의 암모니아 이온이 20 시간 동안 지속적으로 반응하여 제조된 니켈-티타늄-망간 복합 전이금속 전구체를, 탱크 옆 상단에 설치되어 있는 오버플로 파이프를 통해 연속적으로 얻는다.
이렇게 얻어진 복합 전이금속 전구체를 증류수로 여러 번 세척하고, 120℃ 항온 건조기에서 24 시간 건조시켜, 평균 입경이 7 마이크로미터이고, 탭밀도가 2.0 g/cm3인 Ni0.25Ti0.04Mn0.71(OH1-x)2의 니켈-티타늄-망간 복합 전이금속 전구체를 얻었다.
<비교예 1>
전이금속 수용액에 수크로오스(sucrose)를 혼합하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 Ni0.25Ti0.04Mn0.71(OH1-x)2의 니켈-티타늄-망간 복합 전이금속 전구체를 제조하였다. 제조된 니켈-티타늄-망간 복합 전이금속 전구체의 평균 입경은 8 마이크로미터이고, 탭밀도는 0.6 g/cm3이었다.
<비교예 2>
전이금속 수용액에 수크로오스(Sucrose) 20 몰%를 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 Ni0.25Ti0.04Mn0.71(OH1-x)2의 니켈-티타늄-망간 복합 전이금속 전구체를 제조하였다. 제조된 니켈-티타늄-망간 복합 전이금속 전구체의 평균 입경은 28 마이크로미터이고, 탭밀도는 0.75 g/cm3이었다.
<실험예 1>
실시예 1 및 비교예 1에서 각각 제조한 전구체의 SEM 이미지를 FE-SEM(Hitachi사 S-4800 모델)으로 촬영하여 하기 도 1 및 도 2에 나타내었다.
도 1 및 도 2를 살펴보면, 수크로오스(Sucrose) 0.2 몰%을 사용한 실시예 1의 전구체의 경우, 수크로오스(Sucrose)를 혼합하지 않은 비교예 1의 전구체에 비하여, 1차 입자의 응집력이 좋아져, 입자의 형상이 보다 구형을 띄는 것을 확인할 수 있다.
<실시예 3, 비교예 3 및 4>
코인 전지의 제조
실시예 1, 비교예 1 및 2에서 각각 제조된 니켈-티타늄-망간 복합 전이금속 전구체들을 각 조성의 몰비에 맞게 Li2CO3와 혼합한 후에 5℃/분의 승온 속도로 가열하여 950℃에서 10 시간 동안 소성시켜Li[Ni0.25Ti0.04Mn0.71]2O4의 양극 활물질 분말을 제조하였다.
이렇게 제조된 양극 활물질 분말에 도전재로서 Denka와 바인더로서 KF1100을 95: 2.5: 2.5의 중량비로 혼합하여 슬러리를 제조하여, 20 ㎛ 두께의 알루미늄 박(Al foil)에 균일하게 코팅하였다. 이를 130℃로 건조하여 리튬 이차전지용 양극을 제조하였다.
상기에서 제조된 리튬 이차전지용 양극과, 상대 전극(음극)으로서 리튬 메탈 박과, 분리막으로서 폴리 에틸렌막(Celgard, 두께: 20 ㎛), 및 에틸렌 카보네이트, 디메틸렌 카보네이트, 디에틸 카보네이트가 1: 2: 1로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용하여, 2016 코인 전지를 제조하였다.
<실시예 4>
코인 전지의 제조
실시예 1에서 제조된 니켈-티타늄-망간 복합 전이금속 전구체들을 각 조성의 몰비에 맞게 전구체 대비 110 몰%의 Li2CO3 및 5 몰%의 NH4F와 혼합한 후에 5℃/분의 승온 속도로 가열하여 950℃에서 10 시간 동안 소성시켜Li1.1[Ni0.25Ti0.04Mn0.71]2O3.95F0.05의 양극 활물질 분말을 제조하였다.
이렇게 제조된 양극 활물질 분말에 도전재로서 Denka와 바인더로서 KF1100을 95: 2.5: 2.5의 중량비로 혼합하여 슬러리를 제조하여, 20 ㎛ 두께의 알루미늄 박(Al foil)에 균일하게 코팅하였다. 이를 130℃로 건조하여 리튬 이차전지용 양극을 제조하였다.
상기에서 제조된 리튬 이차전지용 양극과, 상대 전극(음극)으로서 리튬 메탈 박과, 분리막으로서 폴리 에틸렌막(Celgard, 두께: 20 ㎛), 및 에틸렌 카보네이트, 디메틸렌 카보네이트, 디에틸 카보네이트가 1: 2: 1로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용하여, 2016 코인 전지를 제조하였다.
<실험예 2>
초기 충방전 특성
상기 실시예 3, 4 및 비교예 3, 4에서 각각 제조된 코인 전지들에 대해 전기 화학 분석 장치(Toyo System, Toscat 3100U)를 사용하여 3.5 ~ 4.9 V 영역에서 양극 활물질 전기적 특성을 평가하였다.
전지 평가는 0.1C의 인가전류와 3.5 에서 4.9 V의 전압 범위에서 충방전 용량을 측정하여 방전 용량 및 충방전 효율 결과를 하기 표 1에 나타내었다.
표 1
Figure PCTKR2013005903-appb-T000001
상기 표 1에서 보는 바와 같이, 전구체에 0.2 mol%의 수크로오스를 처리한 실시예 3, 4의 전지의 경우, 유사한 값으로 환원제를 처리하지 않은 비교예 3 및 수크로오스를 과량 첨가한 비교예 4에 비하여 초기 충방전 용량 및 효율이 우수한 것을 확인할 수 있다. 특히 수크로오스를 과량 첨가한 비교예 4는 첨가하지 않은 비교예 3보다도 더욱 초기 충방전 용량 및 효율이 떨어짐을 알 수 있다. 이는 환원제가 과량 첨가되면서 전구체의 전이금속 함유량을 줄이기 때문인 것으로 보인다.
<실험예 3>
수명 특성
상기 실시예 3, 4 및 비교예 3, 4에서 각각 제조된 코인 전지들에 대해, 1.0C의 전류로 50회 충방전 하여 수명 특성을 평가 하였다. 그 결과를 하기 표 2에 나타내었다.
표 2
Figure PCTKR2013005903-appb-T000002
상기 표 2에서 보는 바와 같이, 전구체에 0.2 mol%의 수크로오스를 처리한 실시예 3, 4의 전지의 경우, 유사한 값으로 거의 100% 가까운 방전용량을 나타내는 바, 환원제를 처리하지 않은 비교예 3 및 수크로오스를 과량 첨가한 비교예 4에 비하여 우수한 수명 특성을 나타냄을 알 수 있다. 특히 수크로오스를 과량 첨가한 비교예 4는 첨가하지 않은 비교예 3보다도 더욱 초기 충방전 용량 및 효율이 떨어짐을 알 수 있다. 이는 환원제가 과량 첨가되면서 전구체의 전이금속 함유량을 줄이기 때문인 것으로 보인다.
<실험예 4>
출력 특성
상기 실시예 3, 4 및 비교예 3, 4에서 각각 제조된 코인 전지들에 대해, 0.1C의 전류로 충방전 후 2.0C의 전류로 방전하여 조건으로 출력 특성을 평가 하였다. 그 결과를 하기 표 3에 나타내었다.
표 3
Figure PCTKR2013005903-appb-T000003
상기 표 3에서 보는 바와 같이, 전구체에 0.2 mol%의 수크로오스를 처리한 실시예 3, 4의 전지의 경우, 유사한 값으로 환원제를 처리하지 않은 비교예 3 및 수크로오스를 과량 첨가한 비교예 4에 비하여 월등한 출력특성을 나타냄을 알 수 있다. 특히 수크로오스를 과량 첨가한 비교예 4는 첨가하지 않은 비교예 3보다도 더욱 초기 충방전 용량 및 효율이 떨어짐을 알 수 있다. 이는 환원제가 과량 첨가되면서 전구체의 전이금속 함유량을 줄이기 때문인 것으로 보인다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 리튬 복합 전이금속 산화물 제조용 전이금속 전구체는 Mn의 산화를 방지하기 위해 환원제를 첨가한 상태에서 공침법으로 제조되므로, 구형화도가 증가되고, 보다 균일한 입도를 갖는, 특정한 조성의 Mn의 함량이 60 내지 85 몰%인 복합 전이금속 화합물의 합성이 가능하다. 특히, 당류 물질의 환원제를 사용할 경우에는 전이금속 전구체의 폐기공에 잔존하여 탄소 표면처리의 효과를 가질 수 있어 소성 후 양극 활물질의 전기화학 특성 역시 향상시킬 수 있다.
또한, 이를 기반으로 리튬 복합 전이금속 산화물을 제조할 경우, 이를 포함하는 이차전지는 우수한 초기 방전용량 및 효율, 향상된 출력 특성 및 수명 특성을 발휘할 수 있다.

Claims (31)

  1. 하기 화학식 1로 표현되는 조성을 가지며, Mn의 함량이 60 내지 85 몰%인 복합 전이금속 화합물을 포함하는 것을 특징으로 하는 전이금속 전구체:
    NiaMbMn1-(a+b)(OH1-x)2 (1)
    상기 식에서,
    M은 Ti, Co, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이고;
    0.15≤a≤0.3;
    0≤b≤0.1;
    0<x<0.5이다.
  2. 제 1 항에 있어서, 상기 M은 Ti 또는 Al 인 것을 특징으로 하는 전이금속 전구체.
  3. 제 1 항에 있어서, 상기 a는 0.2 이상 내지 0.25 이하인 것을 특징으로 하는 전이금속 전구체.
  4. 제 1 항에 있어서, 상기 Mn의 함량은 70 내지 80 몰%인 것을 특징으로 하는 전이금속 전구체.
  5. 제 1 항에 있어서, 상기 x는 0.2 이상 내지 0.5 미만인 것을 특징으로 하는 전이금속 전구체.
  6. 제 1 항에 있어서, 상기 x는 0.3 이상 내지 0.5 미만인 것을 특징으로 하는 전이금속 전구체.
  7. 제 1 항에 있어서, 상기 복합 전이금속 화합물의 평균 입경은 4 마이크로미터 내지 20 마이크로미터인 것을 특징으로 하는 전이금속 전구체.
  8. 제 1 항에 있어서, 상기 복합 전이금속 화합물의 탭밀도는 0.8 g/cm3 내지 2.5 g/cm3의 밀도를 갖는 것을 특징으로 하는 전이금속 전구체.
  9. 제 1 항에 있어서, 상기 복합 전이금속 화합물은 전이금속 함유 염이 혼합된 전이금속 수용액에 염기성 물질 및 Mn의 산화를 방지하기 위한 환원제를 첨가한 상태에서 공침법으로 제조되는 것을 특징으로 하는 전이금속 전구체.
  10. 제 9 항에 있어서, 상기 환원제는 상기 전이금속 수용액의 몰량 대비 0.01 내지 10 몰%인 것을 특징으로 하는 전이금속 전구체.
  11. 제 9 항에 있어서, 상기 환원제는 히드라진(hydrazine), 옥살산, 아스코르브 산, 기타 당류 물질로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 전이금속 전구체.
  12. 제 11 항에 있어서, 상기 당류 물질은 프락토스(fructose), 슈크로오스(sucrose), 글루코오스(glucose), 갈락토스(galactose), 락토스(lactose), 말토오스(maltose), 녹말(starch), 및 덱스트린(dextrin)으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 전이금속 전구체.
  13. 제 12 항에 있어서, 상기 당류 물질은 슈크로오스(sucrose)인 것을 특징으로 하는 전이금속 전구체.
  14. 제 9 항에 있어서, 상기 환원제는 당류 물질이며 전이금속 전구체의 내부 및/또는 전이금속 전구체의 표면에 존재하는 것을 특징으로 하는 전이금속 전구체.
  15. 제 9 항에 있어서, 상기 환원제는 당류 물질이며, 상기 당류 물질의 적어도 일부가 전이금속 전구체에 존재하는 폐기공(closed pore)내에 포함되어 있는 것을 특징으로 하는 전이금속 전구체.
  16. 제 9 항에 있어서, 상기 전이금속 함유 염은 황산염이고, 염기성 물질은 수산화 나트륨인 것을 특징으로 하는 전이금속 전구체
  17. 제 16 항에 있어서, 상기 황산염은 황산 니켈, 황산 티타늄 및 황산 망간으로 이루어진 군에서 선택되는 하나 또는 둘 이상인 것을 특징으로 하는 전이금속 전구체.
  18. 제 1 항에 있어서, 상기 전이금속 전구체의 전체량을 기준으로 상기 복합 전이금속 화합물이 30 중량%이상으로 함유되어 있는 것을 특징으로 하는 전이금속 전구체.
  19. 제 18 항에 있어서, 상기 복합 전이금속 화합물이 50 중량% 이상으로 함유되어 있는 것을 특징으로 하는 전이금속 전구체.
  20. 제 1 항에 따른 전이금속 전구체에서 복합 전이금속 화합물을 제조하는 방법으로서,
    (i) 전구체 제조용 전이금속 염을 포함하는 전이금속 수용액을 준비하는 과정;
    (ii) 상기 전이금속 수용액에 전이금속 수용액의 몰 대비 0.01 내지 10 몰%의 환원제를 혼합하는 과정; 및
    (iii) 과정(ii)의 혼합 후 강염기를 첨가하여 공침시키는 과정;
    을 포함하는 것을 특징으로 하는 전이금속 전구체의 제조 방법.
  21. 제 1 항에 따른 전이금속 전구체를 사용하여 제조된 것을 특징으로 하는 리튬 복합 전이금속 산화물.
  22. 제 21 항에 있어서, 상기 리튬 복합 전이금속 산화물은 탄소로 표면처리되어 있는 것을 특징으로 하는 리튬 복합 전이금속 산화물.
  23. 제 22 항에 있어서, 상기 탄소는 당류 물질의 환원제로부터 유래된 것을 특징으로 하는 리튬 복합 전이금속 산화물.
  24. 하기 화학식 2로 표현되는 조성을 가지며, Mn의 함량이 60 내지 85 몰%인 것을 특징으로 하는 리튬 복합 전이금속 산화물:
    Li1+z[NiaMbMn1-(a+b)]2O4-yAy (2)
    상기 식에서,
    M은 Ti, Co, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이고;
    A는 -1 또는 -2가의 하나 이상의 음이온이고;
    0.15≤a≤0.3;
    0.005≤b≤0.1;
    -0.1≤z≤0.1;
    0≤y≤0.1이다.
  25. 제 24 항에 있어서, 상기 리튬 복합 전이금속 산화물은 탄소로 표면처리되어 있는 것을 특징으로 하는 리튬 복합 전이금속 산화물.
  26. 제 24 항에 따른 리튬 복합 전이금속 산화물을 양극 활물질로서 포함하는 것을 특징으로 하는 양극.
  27. 제 26 항에 따른 양극을 포함하는 것을 특징으로 하는 리튬 이차전지.
  28. 제 27 항에 따른 리튬 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.
  29. 제 28 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전지팩.
  30. 제 29 항에 따른 전지팩을 포함하는 것을 특징으로 하는 디바이스.
  31. 제 30 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.
PCT/KR2013/005903 2012-07-09 2013-07-03 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물 WO2014010862A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112014031358A BR112014031358B8 (pt) 2012-07-09 2013-07-03 Método para preparar um composto de metal de transição compósito de um precursor de metal de transição
EP13816829.9A EP2871161B1 (en) 2012-07-09 2013-07-03 Precursor for preparing lithium composite transition metal oxide, method for preparing same, and method for preparing a lithium composite transition metal oxide
CN201380031477.XA CN104364201B (zh) 2012-07-09 2013-07-03 用于制备锂复合过渡金属氧化物的前体、用于制备所述前体的方法和锂复合过渡金属氧化物
IN10250DEN2014 IN2014DN10250A (ko) 2012-07-09 2013-07-03
PL13816829T PL2871161T3 (pl) 2012-07-09 2013-07-03 Prekursor do wytwarzania litowego kompozytu tlenku metalu przejściowego, sposób jego wytwarzania oraz sposób wytwarzania litowego kompozytu tlenku metalu przejściowego
JP2015515958A JP6072235B2 (ja) 2012-07-09 2013-07-03 リチウム複合遷移金属酸化物製造用前駆体、及びその製造方法
US14/559,155 US9966600B2 (en) 2012-07-09 2014-12-03 Precursor for preparing lithium composite transition metal oxide, method for preparing the precursor, and lithium composite transition metal oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0074278 2012-07-09
KR20120074278 2012-07-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/559,155 Continuation US9966600B2 (en) 2012-07-09 2014-12-03 Precursor for preparing lithium composite transition metal oxide, method for preparing the precursor, and lithium composite transition metal oxide

Publications (1)

Publication Number Publication Date
WO2014010862A1 true WO2014010862A1 (ko) 2014-01-16

Family

ID=49916261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005903 WO2014010862A1 (ko) 2012-07-09 2013-07-03 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물

Country Status (10)

Country Link
US (1) US9966600B2 (ko)
EP (1) EP2871161B1 (ko)
JP (1) JP6072235B2 (ko)
KR (2) KR101490852B1 (ko)
CN (1) CN104364201B (ko)
BR (1) BR112014031358B8 (ko)
IN (1) IN2014DN10250A (ko)
PL (1) PL2871161T3 (ko)
TW (1) TWI464948B (ko)
WO (1) WO2014010862A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577100A (zh) * 2014-12-13 2015-04-29 山东精工电子科技有限公司 通过添加高分子糖类作为成形介质制备锂离子二次电池正极材料LiNi0.5Co0.2Mn0.3O2的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497909B1 (ko) 2012-05-04 2015-03-03 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
WO2014010849A1 (ko) 2012-07-09 2014-01-16 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 전구체
KR101506640B1 (ko) * 2014-02-11 2015-03-27 한국화학연구원 이종 복합 소재를 이용한 전극 활물질 및 이의 제조방법
KR102273779B1 (ko) * 2014-04-04 2021-07-06 삼성에스디아이 주식회사 복합양극활물질 제조방법, 복합양극활물질 및 이를 채용한 양극과 리튬전지
WO2016068682A1 (ko) * 2014-10-31 2016-05-06 주식회사 엘지화학 전이금속 산화물 전구체, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지
KR20180043842A (ko) * 2015-09-11 2018-04-30 유미코아 리튬 금속 산화물 재료, 이차 배터리의 양극에서의 그의 용도, 및 이러한 리튬 금속 산화물 재료의 제조 방법
PL3281915T3 (pl) 2016-08-10 2019-09-30 Umicore Prekursory materiałów katody zawierających tlenek metalu przejściowego litu do baterii wielokrotnego ładowania
JP6980053B2 (ja) * 2020-05-07 2021-12-15 住友化学株式会社 リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質前駆体の製造方法及びリチウム二次電池用正極活物質の製造方法
WO2023070368A1 (zh) * 2021-10-27 2023-05-04 宁德时代新能源科技股份有限公司 锂镍锰复合氧化物材料、二次电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100633287B1 (ko) * 2005-07-05 2006-10-11 한양대학교 산학협력단 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용양극 활물질, 그 제조 방법 및 그를 사용한 리튬이차전지
KR20090062254A (ko) * 2007-12-12 2009-06-17 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20090078128A (ko) * 2008-01-14 2009-07-17 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조방법, 및 이를포함하는 리튬 이차 전지
US7579114B2 (en) * 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
KR20090105868A (ko) * 2008-04-03 2009-10-07 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 신규 전구체

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032624B2 (ja) * 2000-09-26 2008-01-16 三菱化学株式会社 リチウム遷移金属複合酸化物の製造方法
JP4475941B2 (ja) * 2003-12-12 2010-06-09 日本化学工業株式会社 リチウムマンガンニッケル複合酸化物の製造方法
JP4411157B2 (ja) 2004-07-27 2010-02-10 日本化学工業株式会社 リチウムマンガンニッケル系複合酸化物、その製造方法及びそれを用いたリチウム二次電池
EP2325930B1 (en) * 2004-12-28 2012-10-10 Boston-Power, Inc. Lithium-ion secondary battery
JP2006219323A (ja) * 2005-02-09 2006-08-24 Sumitomo Metal Mining Co Ltd リチウムマンガンニッケルアルミニウム複合酸化物およびその製造方法
EP1912899B1 (de) * 2005-08-12 2012-10-10 Toda Kogyo Europe GmbH Anorganische verbindungen
KR100872370B1 (ko) * 2007-03-29 2008-12-05 대정이엠(주) 리튬 이차전지용 스피넬형 양극 활물질 및 그 제조방법
WO2009098835A1 (ja) * 2008-02-04 2009-08-13 Panasonic Corporation リチウム含有遷移金属酸化物の製造方法
TWI397506B (zh) * 2008-04-03 2013-06-01 Lg Chemical Ltd 鋰過渡金屬氧化物製備用之前驅物
EP2261176B1 (en) * 2008-04-03 2022-09-14 LG Energy Solution, Ltd. Novel precursor for the production of a lithium composite transition metal oxide
WO2010026627A1 (ja) * 2008-09-03 2010-03-11 住友大阪セメント株式会社 電極材料の製造方法と電極材料および電極並びに電池
JPWO2010113512A1 (ja) * 2009-04-03 2012-10-04 パナソニック株式会社 リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池
US20120176097A1 (en) * 2009-09-18 2012-07-12 Hideharu Takezawa Method for charging/discharging positive electrode active material in a lithium secondary battery, charging/discharging system provided with lithium secondary battery and vehicle, electronic device, battery module, battery pack
KR101217453B1 (ko) * 2009-12-24 2013-01-02 제이에이치화학공업(주) 리튬이차전지 양극활물질용 전구체인 니켈계 복합금속수산화물 및 그 제조방법
CN102306776A (zh) * 2011-08-26 2012-01-04 北大先行科技产业有限公司 一种锂离子电池正极材料的制备方法
CN103765639B (zh) * 2011-12-09 2016-03-02 株式会社杰士汤浅国际 非水电解质二次电池用活性物质、非水电解质二次电池用活性物质的制造方法、非水电解质二次电池用电极、及非水电解质二次电池
KR101497909B1 (ko) * 2012-05-04 2015-03-03 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
KR20130125124A (ko) * 2012-05-08 2013-11-18 한국과학기술연구원 리튬이차전지용 나노복합체 양극 활물질을 제조하는 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579114B2 (en) * 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
KR100633287B1 (ko) * 2005-07-05 2006-10-11 한양대학교 산학협력단 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용양극 활물질, 그 제조 방법 및 그를 사용한 리튬이차전지
KR20090062254A (ko) * 2007-12-12 2009-06-17 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20090078128A (ko) * 2008-01-14 2009-07-17 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조방법, 및 이를포함하는 리튬 이차 전지
KR20090105868A (ko) * 2008-04-03 2009-10-07 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 신규 전구체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2871161A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577100A (zh) * 2014-12-13 2015-04-29 山东精工电子科技有限公司 通过添加高分子糖类作为成形介质制备锂离子二次电池正极材料LiNi0.5Co0.2Mn0.3O2的方法

Also Published As

Publication number Publication date
BR112014031358B8 (pt) 2023-01-17
CN104364201A (zh) 2015-02-18
IN2014DN10250A (ko) 2015-08-07
CN104364201B (zh) 2017-04-12
KR20140007748A (ko) 2014-01-20
BR112014031358B1 (pt) 2021-08-24
PL2871161T3 (pl) 2019-08-30
TW201419638A (zh) 2014-05-16
TWI464948B (zh) 2014-12-11
BR112014031358A2 (pt) 2017-06-27
JP6072235B2 (ja) 2017-02-01
EP2871161A4 (en) 2016-01-27
EP2871161B1 (en) 2019-03-13
KR20140130376A (ko) 2014-11-10
JP2015523955A (ja) 2015-08-20
US20150090926A1 (en) 2015-04-02
KR101490852B1 (ko) 2015-02-09
US9966600B2 (en) 2018-05-08
EP2871161A1 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2014010862A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물
WO2010079965A2 (ko) 리튬 이차전지용 양극 활물질
WO2013165150A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
WO2010079962A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079958A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079949A2 (ko) 리튬 이차전지용 양극 활물질
WO2015016563A1 (ko) 전해액과 반응을 방지하기 위한 코팅층을 포함하는 전극
WO2013122352A1 (ko) 수계 바인더를 포함하는 음극을 구비한 리튬 이차전지
WO2011132931A2 (ko) 탄소가 코팅된 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2011081422A9 (ko) 리튬 복합 산화물 및 그 제조 방법.
WO2013137577A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
WO2017069410A1 (ko) 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
WO2017069407A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2017069405A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2009145471A1 (ko) 리튬 복합 전이금속 산화물 제조용 신규 전구체
WO2011132961A2 (ko) 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2015016506A1 (ko) 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
WO2014010867A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2014196816A1 (ko) 신규한 이차전지
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
CN104350636A (zh) 用于高电压的正极活性材料和包含其的锂二次电池
WO2011065650A2 (ko) 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2012036474A2 (ko) 양극 활물질 및 이를 이용한 리튬 이차전지
WO2012111951A2 (ko) 이차전지용 양극 합제 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013816829

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015515958

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014031358

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014031358

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141215