KR20060054100A - 수직 자기 기록 매체 - Google Patents

수직 자기 기록 매체 Download PDF

Info

Publication number
KR20060054100A
KR20060054100A KR1020050098411A KR20050098411A KR20060054100A KR 20060054100 A KR20060054100 A KR 20060054100A KR 1020050098411 A KR1020050098411 A KR 1020050098411A KR 20050098411 A KR20050098411 A KR 20050098411A KR 20060054100 A KR20060054100 A KR 20060054100A
Authority
KR
South Korea
Prior art keywords
magnetic recording
layer
grain boundary
recording medium
boundary layer
Prior art date
Application number
KR1020050098411A
Other languages
English (en)
Inventor
요시오 다카하시
아츠시 나카무라
유주루 호소에
Original Assignee
히다치 글로벌 스토리지 테크놀로지스 네덜란드 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 글로벌 스토리지 테크놀로지스 네덜란드 비.브이. filed Critical 히다치 글로벌 스토리지 테크놀로지스 네덜란드 비.브이.
Publication of KR20060054100A publication Critical patent/KR20060054100A/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material

Abstract

본 발명은 CoCrPt 합금과 Si 산화물을 함유하여 형성된 입상 구조(granular structure)의 자성 기록층을 갖는 수직 자기 기록 매체에 있어서, 높은 SNR과 내열 감자성(減磁性)을 양립시키는 수직 자기 기록 매체를 제공하는 것을 목적으로 한다.
본 발명의 수직 자기 기록 매체에 의하면, CoCrPt 합금과 Si 산화물로 형성된 자성 기록층의 거의 비정질 입자 경계층(grain boundary layer)에 강자성 원소를 30 at.% 내지 50 at.%, 더욱 바람직하게는 35 at.% 내지 47 at.% 함유시킴으로써, 적절한 입자간 교환 상호 작용을 실행하도록 하였다. 이에 따라, 18 dB 이상의 SNR과 3%/decade 이하의 열 감자 내성을 실현하고 있다.

Description

수직 자기 기록 매체 {PERPENDICULAR MAGNETIC RECORDING MEDIUM}
도 1은 입자 경계층의 Co 함유율에 대한 매체 SNR을 도시한 도면.
도 2는 입자 경계층의 Co 함유율에 대한 기록 자화의 감쇠율을 도시한 도면.
도 3은 계산기 시뮬레이션에 의해 구한 입자간 교환 상호 작용 에너지에 대한 분해능의 값을 도시한 도면.
도 4는 계산기 시뮬레이션에 의해 구한 입자간 교환 상호 작용 에너지에 대한 감쇠율의 값을 도시한 도면.
도 5는 계산기 시뮬레이션에 의해 구한 입자간 교환 상호 작용 에너지에 대한 자화 곡선의 기울기의 값을 도시한 도면.
도 6은 자성 기록층에 함유되는 Si 산화물의 양과 입자 경계층의 Co 함유율의 관계를 도시한 도면.
도 7은 본 발명에 따른 수직 자기 기록 매체의 구성을 도시한 도면.
도 8은 본 발명에 따른 수직 자기 기록 매체의 기록층 단면 구성을 도시한 도면.
<도면의 주요 부분에 대한 부호의 설명>
1, 10 : 윤활층
2, 11 : 보호층
3, 12 : 자성 기록층
4, 13 : 하지층
5, 14 : 연자성층
6 : 밀착층
7 : 기판
15 : 자성 결정 입자
16 : 입자 경계층
17 : 하지 결정 입자
본 발명은 하드 디스크 등의 자기 기록 장치에 이용되는 자기 기록 매체에 관한 것으로, 특히 기판면과 거의 수직 방향의 자화를 기록하는 기록 방식에 이용되는 수직 자기 기록 매체에 관한 것이다.
현재, 하드 디스크 장치에 이용되고 있는 기록 방식은 기판면의 내측 방향으로 자화를 향하게 하여 기록하는 면내 자기 기록 방식이 주류이지만, 보다 높은 기록 밀도, 즉 보다 대용량의 하드 디스크 장치를 실현하기 위해서 기판 수직 방향으로 자화를 향하게 하는 수직 자기 기록 방식이 활발히 검토되고 있다. 수직 자기 기록에 이용되는 기록 매체는 거의 기판 수직 방향으로 향한 자화 용이축을 가지며, 기록을 유지하는 자성 기록층과, 자기 헤드의 자계를 효율적으로 이용하기 위 한 연자성층 등으로 구성된다. 수직 기록 방식에서는, 기록된 자화 영역(기록 비트)의 경계 부분(자화 천이 영역)에서 자화가 반평행 방향이 되기 때문에 자기적으로 안정화하여, 소위 "지그재그 자벽(zigzag magnetic domain wall)"의 폭이 작아짐으로써, 매체 노이즈가 저감된다. 연자성층은 자기 헤드 자계의 복귀 경로가 될 뿐만 아니라, 단자극 헤드와 함께 이용하면 거울상 효과에 의해 자성 기록층 부분에 강한 자계를 발생시킬 수 있기 때문에, 높은 보자력의 기록 자성막을 이용할 수 있게 되어 기록 자화의 열 안정성을 향상시킬 수 있다.
수직 기록 매체의 매체 노이즈를 저감하기 위한 매체 미세 구조에 관한 조건으로서는, 자성 결정 입자의 입자 직경이 미세한 것 및 인접한 결정 입자간의 교환 상호 작용이 작은 것이 필요하다고 생각되어 왔다. 왜냐하면, 자화 반전의 단위는 자성 기록층을 구성하는 결정 입자 1개 또는 이들이 복수 결합한 것이기 때문에, 자화 천이 영역의 폭은 이 자화 반전 단위의 크기에 강하게 의존하기 때문이다. 단, 입자 직경의 극도의 미세화는 입자의 열적인 안정성을 저하시켜서, 실온 정도의 열 에너지라도 높은 확률로 자화의 반전, 즉 기록 자화의 감자가 발생한다고 하는 과제가 있었다. 따라서, 종래의 수직 자기 기록 매체는 10 ㎚ 정도의 입자 직경을 유지한 채로 입자간의 교환 상호 작용을 저감시킨다고 하는 방침하에 입자 경계 부분을 비자성으로 하고, 자기적인 입자간 거리를 크게 하는 개발이 진행되고 있었다. 이것을 실현하기 위해서, 결정 입자간의 상호 작용을 작게 할 목적으로 자성 결정 입자의 주변 부분(결정 입자 경계)을 비자성층으로 둘러싼 소위 입상 구조(granular structure)의 자기 기록 매체가 제안되어, 개발이 행해지고 있다. 예컨 대, 일본 특허 공개 제2002-358615호 공보에는 입자간의 평균 이격 거리를 1.0 ㎚ 이상으로 하는 입상 구조의 자기 기록 매체가 개시되어 있다. 본 개시 문헌에서 이용되는 입자 경계층(grain boundary layer)으로는 산화물, 질화물, 플루오르화물, 탄화물 등이 예시되어 있다. 또한, 일본 특허 공개 제2003-178413호 공보에는 입자 경계층을 구성하는 비자성층으로서 산화물을 이용하여 자성 기록층에 함유되는 산화물의 체적을 규정하고, 높은 보자력을 실현하는 입상 구조의 자기 기록 매체가 개시되어 있다. 덧붙여서 말하면, 면내 기록 방식으로 이용되는 자기 기록 매체에 있어서, 자성 기록층에 CoCrPt계의 합금을 이용하는 경우에는, 입자 경계 부분에 Cr 등의 비자성 원소를 편석(偏析)시킬 수 있기 때문에, 산화물 등의 첨가가 없이 입상 구조를 형성할 수 있고, 비교적 양호한 입자간 상호 작용의 저감을 도모할 수 있지만, 수직 기록 매체의 자성 기록층에 CoCrPt계 합금만을 이용한 경우에는, Cr 입자 경계로의 편석이 쉽게 일어나지 않기 때문에, 충분한 입자 경계 분리 구조, 즉 입상 구조를 형성하는 것이 곤란하였다. 그 때문에, 수직 자기 기록 매체에서는 산화물의 첨가 등에 의해 입자 경계 형성을 촉진시켜 입상 구조를 형성함으로써 저노이즈화를 도모하고 있었다.
[특허 문헌 1] 일본 특허 공개 제2002-358615호 공보
[특허 문헌 2] 일본 특허 공개 제2003-178413호 공보
이러한 입상 수직 매체라도 더욱 매체 노이즈를 저감하고, 매체 SNR(신호대 잡음비)을 높이기 위해서는 자성 결정 입자의 입자 직경을 미세화해 나갈 필요가 있다. 입상 수직 매체의 자성 기록층의 입자 직경은 기판 온도, 자성 결정 입자 형성시의 스퍼터 가스압(sputter gas pressure), 스퍼터 가스에 함유되는 산소량, 입자 경계의 체적 등 많은 파라미터에 의해 변화된다. 따라서, 원하는 결정 입자 직경을 얻기 위해서는 상기 형성 조건 중 하나를 제어하는 것이 아니라, 복수의 형성 조건을 적절하게 제어할 필요가 있다. 결정 입자 직경은 투과 전자 현미경에 의한 관찰에 의해 고정밀도로 측정할 수 있고, 각종 형성 조건에 따른 변화는 쉽게 알 수 있다. 예컨대, 스퍼터 가스 내에 함유되는 산소량을 증가시키면 결정 입자 직경은 급격히 미세화하는 것이 확인된다.
그런데, 전술한 바와 같이, 저노이즈화를 위해 자성 기록층의 결정 입자 직경을 과도하게 미세화하면, 내열 감자성, 즉 기록 자화의 시간적 감쇠에 대한 내성이 나빠지게 된다. 예를 들면, 입자 직경 6.2 ㎚, 막 두께 20 ㎚, 1축 이방성 정수 22.4 kJ/㎥의 자성 기록층에 기록된 정보의 경우, 200 Gb/in2의 기록 재생 조건으로 25 dB 이상의 SNR을 얻을 수 있지만, 10년 후에는 기록 직후의 신호량의 40%로까지 감쇠되어 버리는 것이 계산기 시뮬레이션에 의해 밝혀졌다. 즉, 매체 노이즈 저감과 내열 감자성 확보는 트레이드-오프(trade-off)의 관계에 있어, 그 양립을 도모하는 것이 자기 기록 매체로서는 필요 불가결한 과제이다.
본 발명의 목적은 높은 SNR과 내열 감자성을 양립시킨 수직 자기 기록 매체를 제공하는 것이다.
본 발명의 발명자들은 수직 자기 기록 매체의 형성 조건이나 구조를 변화시킨 테스트, 계산기 시뮬레이션에 의한 검토, 투과 전자 현미경을 이용한 미세 구조의 해석 등, 예의 검토를 행하여 입상 구조를 가진 자성 기록층의 조성 구조를 제어하는 것이 상기 목적 달성을 위해 필요한 것을 발견하였다. 또한, 상기 목적은 입상 구조를 가진 자성 기록층의 입자 경계층에 강자성 원소를 일정량 함유시킴으써 달성되는 것을 발견하였다. 입자 경계층에 함유되는 강자성 원소의 비율은 입자 경계층을 구성하는 고체 원소에 대한 원자 백분율로 30 at.% 이상, 50 at.% 이하일 필요가 있고, 바람직하게는 35 at.% 이상, 47 at.% 이하이다.
(실시예)
이하, 본 발명에서 채용한 수단을 발명자들이 얻은 지견을 바탕으로 설명한다.
도 1은 CoCrPt 합금과 Si 산화물로 구성되는 자성 기록층을 가진 수직 자기 기록 매체에 실제로 기록 재생을 행한 결과를 나타내고 있고, 입자 경계층 부분에 함유되는 Co 원자의 양을 Co, Cr, Pt, Si 원자의 합으로 나누어 얻은 Co의 함유율(원자 백분율)을 횡축에 도시하고, 400 kfci로 기록 재생했을 때의 SNR의 값을 종축에 도시한 도면이다. 도 2는 마찬가지로 입자 경계층의 Co 함유율에 대한 기록 자화의 감쇠율을 나타낸 도면이다.
도 1로부터, 입자 경계층의 Co 함유율에 대하여 기록 재생시의 SNR은 피크를 갖는 것을 알 수 있고, 특히 Co 함유율이 30%∼50%의 범위에서 S/N은 17 dB 이상을 나타내며, Co 함유율 35%∼47%의 범위에서 S/N은 18 dB 이상을 나타내는 것을 알 수 있다. 또한, 도 2로부터 입자 경계층의 Co 함유율이 30% 이상이고 자화 감자율 5% 이하를 나타내고, Co 함유율 35% 이상이고 자화 감자율 3% 이하를 나타내는 것을 알 수 있다. 즉, 입자 경계층 부분에 함유되는 강자성 원소, 즉 Co량의 모든 고체 원소의 양에 대한 비율을 원자 백분율로 30%∼50%, 더욱 바람직하게는 35%∼47%로 할 때, 높은 S/N과 내열 감자성을 양립시킬 수 있어, 상기 목적을 달성할 수 있다. 여기서, 고체 원소란 상온에서 고체인 원소를 가리키며, 산소, 질소, 아르곤 등의 상온 기체 원소는 제외한다. 왜냐하면, 예컨대 Si 산화물을 함유한 자성 기록층의 경우, 고체가 아닌 산소가 함유되게 되지만, Si와 결합하고 있고, Si 산화물로서 고려되기 때문에, Co량의 정의로서 고체 원소에 대한 비율로 할 수 있기 때문이다.
다음에, 입자 경계층에 Fe, Ni, Co와 같은 강자성 원소가 일정량 함유된 경우에, 기록 재생 특성이 향상되는 이유를 설명하기 위해서 계산기 시뮬레이션을 이용하여 자기 특성을 상세하게 검토하였다. 도 3은 입자간의 교환 상호 작용 에너지(J)(입자간의 교환 강성도(stiffness) 정수를 입자 직경과 입자 경계 폭의 합으로 나누어 2배한 것: 입자간의 자기적 결합의 강도에 대응)에 대한 분해능(1362 kfci의 선기록 밀도에 의한 재생 출력을 저기록 밀도시의 최대 재생 출력으로 나눈 값)을 도시한 도면이다. 도면으로부터 교환 상호 작용 에너지가 0.2 erg/㎠ 부근에서 최대치를 얻을 수 있는 것을 알 수 있다. 즉, 입자간에 적절한 자기적 결합이 있는 경우에 특성 향상이 예상된다. 또한, 도 4에는 교환 상호 작용 에너지(J)와 재생 신호의 시간적 감쇠량의 관계를 나타낸다. 교환 상호 작용 에너지(J)가 0.2 erg/㎠ 보다 작아지면, 급격하게 신호 감쇠량이 증대하는 것을 알 수 있다. 본 검토 결과는 입자간에 적절한 교환 상호 작용을 도입함으로써, 기록 재생 특성 및 내열 감자성의 양립이 가능한 것을 시사하고 있다. 입자간이 적절히 결합하는 것은 입자들 개개의 자화 반전을 억제하기 때문에, 내열 감자성이 향상되고, 또한 기록 비트 내의 역자구의 형성도 억제할 수 있기 때문에 분해능 향상도 가능하게 된다고 생각할 수 있다.
그런데, 강한 교환 상호 작용은 강자성 원소 사이에서 강하게 작용하기 때문에, 입자 경계층에 강자성 원소를 함유시킴으로써, 교환 상호 작용의 크기를 제어할 수 있는 것으로 생각된다. 입자 내부의 교환 상호 작용 에너지(J)는 0.2 erg/㎠보다 수배 큰 값이기 때문에, 입자 경계층 부분에는 입자 내부의 농도보다 낮은 농도로 강자성 원소를 함유시킨 것이, 입자간에 적절한 교환 상호 작용 에너지를 실현시켜, 도 1에 있어서 자기 특성의 피크가 나타났다고 생각할 수 있다.
보다 정량적인 검토를 위해서 계산기 시뮬레이션의 결과와 자화 곡선의 실측치와의 비교를 행하였다. 교환 상호 작용 에너지의 값은 직접 측정할 수는 없지만, 자화 곡선의 기울기로부터 추정할 수 있다. 자화 곡선의 기울기는 입자간의 교환 상호 작용 에너지와, 입자마다의 자기 이방성 자계의 분산에 크게 영향을 받는다. 계산기 시뮬레이션으로 이용한 자기 이방성 자계의 분산 값은 20∼30%이지만, 입자마다의 조성의 분산에 의해 구한 자기 이방성 분산과 잘 일치하고 있다. 즉, 교환 상호 작용 에너지의 값을 파라미터로 하여 계산한 자화 곡선의 기울기와, 실측에 의한 자화 곡선의 기울기를 비교하면, 교환 상호 작용 에너지의 값을 정량적으로 추정할 수 있다. 도 5에 계산기 시뮬레이션에 의해 구한 교환 상호 작용 에너지(J)에 대한 자화 곡선의 보자력 부근의 기울기를 나타낸다. 본 발명의 실시예에서 나타내는 일례의 자기 기록 매체의 매체 자화 곡선의 기울기는 1.5 정도이기 때문에, 교환 상호 작용 에너지(J)는 0.2∼0.3 erg/㎠이라고 추정할 수 있다. 즉, 교환 상호 작용 에너지가 0.2 erg/㎠ 부근에서 자기 특성은 향상되고 있는 결과와 일치하고, 정량적으로도 잘 설명할 수 있다.
다음에, 입자 경계층에 함유되는 Co 함유율의 제어 방법에 대해서 설명한다. Co 함유율은 입자 경계층의 폭과, 자성 기록층 내에 함유되는 Si 산화물의 양의 관계를 동시에 조정함으로써 제어할 수 있다. 예컨대, 입자 경계 폭 1.1 ㎚, Si 산화물이 8몰 자성 기록층에 함유되는 조건으로 스퍼터 장치를 이용하여 성막시의 스퍼터 가스압 2 Pa, 기판 온도 60℃에서 성막하면, 입자 경계 부분의 Co 함유율은 45%였다. 또한, 자성 기록층에 함유되는 Si 산화물의 양을 바꾸지 않고서, 성막시의 스퍼터 가스에 함유되는 산소량을 증가하여 입자 경계 폭을 넓히면, 입자 경계층에 함유되는 Co 함유율은 높일 수 있다. 또한, 성막시의 Ar 가스압을 높임으로써도 입자 경계 폭을 넓힐 수 있다. 자성 기록층에 함유되는 Si 산화물의 양은 기판에 바이어스 전압을 인가함으로써 제어할 수도 있다. 예컨대, 음의 바이어스 전압을 인가하면, 자성 기록층에 함유시키는 Si 산화물의 양을 증가시킬 수 있다. 입자 경계층의 Co량 제어의 일례로서 입자 경계 폭을 1.1 ㎚로 제어하고, 자성 기록층에 함유되는 Si 산화물의 양을 변화시켰을 때의 Co 함유율의 관계를 도 6에 나타낸다.
여기서, 투과 전자 현미경(TEM)을 이용한 입자 경계 부분의 강자성 원소 농 도의 측정 방법에 대해서 설명한다. 이하는 상기 Co 농도를 얻기 위해서 이용한 투과 전자 현미경에 의한 입자 경계층 부분의 Co 원소량 측정 방법을, CoCrPt 합금과 Si 산화물을 이용하여 작성한 입상 구조를 갖는 자성 기록층의 계측의 경우를 예로 들어 설명한다. 우선, 입자 경계 부분의 정의 방법에서부터 설명한다. 자성 기록층의 평면 TEM상은 육방 조밀 구조(hexagonal closed pack structure)의 결정을 001 방위에서 관찰했을 때의 격자상(lattice image)이 관찰되는 결정 입자 부분과, 그것을 둘러싸도록 형성된 거의 비정질형의 입자 경계층으로 이루어진다. 자성 기록층 부분을 단면 방향에서 관찰하면, 결정 입자는 주상 구조를 갖고 있고, 비정질형의 입자 경계층도 막 두께 방향으로 거의 일정한 두께로 형성되어 있다. 입자 경계층의 위치는 밝은 시야의 평면 TEM상을 이용하여 결정할 수 있고, 회절 콘트라스트가 강한 부분은 결정이기 때문에 결정 입자 부분을 나타내며, 회절 콘트라스트가 약한 부분이 비정질이기 때문에 입자 경계층에 해당한다. 평면 TEM상의 콘트라스트의 값의 중앙에 임계값을 설정하고, 2치화하면 입자 경계층 부분만을 추출한 상을 얻을 수 있으며, 이 부분을 입자 경계층이라 정의한다. 덧붙여서 말하면, 동시에 자성 결정 입자 부분만을 추출한 상을 얻을 수 있지만, 이것을 이용하여 평균 결정 입자 직경을 구할 수 있다. 개개의 입자의 면적을 구하여, 이 면적과 동일한 면적을 갖는 원의 직경으로서 정의한 입자 직경의 100개 이상의 산술 평균으로서 평균 결정 입자 직경을 정의한다. 입자 경계층의 평균적인 두께는 입자 경계층의 중앙에 입자 경계가 있다고 가정하여 측정한 평균 입자 직경과, 입자 경계층을 포함하지 않고 상기한 방법으로 구한 평균 결정 입자 직경의 차로 정의할 수 있다.
입자 경계층만을 추출한 상을 이용하여 이하에 도시하는 원소 분포 측정법과 조합함으로써 입자 경계 부분의 원소량을 정량화한다. 덧붙여서 말하면, 입자 경계층의 두께는 Si 산화물의 양을 체적 환산으로 15%∼25%의 범위에서 변화시키더라도 거의 변화하지 않는다.
자성 기록층에 함유되는 원소의 면내 분포는 에너지 손실 분광법(energy loss spectroscopy)을 이용한 조성 분포상(composition distribution image)으로부터 얻을 수 있다. 자기 기록 매체를 기판측에서 박막화하고, 자성 기록층과 보호층만으로 된 시료에 입사된 전자선(electron beam)은 시료 중의 원소를 여기하여, 원소에 특유의 에너지를 손실하게 한다. 시료 투과후의 전자선을 전자석 등에 의해 공간 분산시키고, 특정 에너지의 전자선만을 추출하면, 특정 원소에 대하여 에너지 손실된 전자선만을 추출할 수 있다. 이 전자선을 재차 결상시키면, 원소 분포상을 얻을 수 있다. 자성 기록층을 구성하는 원소에 대하여 원소 분포상을 얻어, 입자 경계층 부분만을 추출한 평면 TEM상과 비교함으로써, 입자 경계층 부분을 형성하고 있는 원소를 정량적으로 특정하여 추출할 수 있다. 즉, 입자 경계층 부분만을 추출한 상을 이용하여 조성 분포상을 마스크하면, 입자 경계층 부분만의 조성 분포상을 얻어, 입자 경계의 조성량을 정량화할 수 있다.
투과 전자 현미경을 이용한 상기 측정에 이용하는 영역의 넓이는 적어도 자성 결정 입자가 100개 이상 함유되도록, 복수 개의 영역을 이용하여 평균화하는 것이 바람직하다. 왜냐하면, 100개 이하 밖에 함유되지 않은 영역만 이용하면 측정값의 통계 오차가 커지기 때문이다. 또한, 측정 위치는 기록이 기록되는 자기 디스크 의 최내주 부분에서 행하는 것이 바람직하다. 왜냐하면, 자기 디스크의 내주 부분은 기록 비트의 크기가 상대적으로 작아지고, SNR이나 내열 감자 특성에 대한 사양이 가장 엄격해지는 부분이기 때문이다.
도 7 및 도 8을 이용하여 본 발명의 자기 기록 매체의 구성을 도시한다. 도 7은 본 발명에 있어서의 수직 자기 기록 매체의 단면 구조를 도시한 도면이다. 디스크형 기판(7)에 밀착층(6), 연자성층(5), 비자성의 하지층(4), 수직 자기 이방성을 갖는 입상 구조의 자성 기록층(3), 보호층(2), 윤활층(1)이 형성된다. 이들 층은 디스크형 기판(7)의 양면에 형성시킬 수 있다. 상기 각 층 중, 밀착층(6), 연자성층(5), 하지층(4), 자성 기록층(3)은 스퍼터 장치를 이용하여 형성할 수 있다. 보호층(2)은 스퍼터법, 이온 빔법, CVD법 등에 의해 형성할 수 있고, 윤활층(1)은 디핑법, 스핀 코트법 등에 의해 형성할 수 있다. 또한, 자성 기록층(3)을 제외한 각 층은 다른 수단에 의해 각각의 층을 형성하더라도, 그 자기적, 기계적, 화학적 특성이 크게 나빠지지 않는 범위라면 이용할 수 있다. 예를 들면, 연자성층(5)은 도금법을 이용하여 형성하여도 좋다.
기판(7)에는 NiP 도금한 Al 기판, 표면을 화학 강화한 유리 기판, 결정화 유리 기판 등을 이용할 수 있다. 그 밖에, 비자성으로서, 표면의 평탄성이 우수하고, 300℃ 정도의 가열에 대하여, 자화되거나 변형되지 않는 재질로 형성되어 있는 기판이라면 동일하게 이용할 수 있다. 예를 들면, Si 기판, SiC 기판 등을 이용하여도 좋다. 기판 표면은 평균 조도(average roughness)가 3 ㎚ 이하의 요철이 되도록 연마하거나 디스크 원주 방향으로 텍스처라고 불리는 미세 홈을 형성하거나 하여도 좋다.
밀착층(6)은 기판과 연자성층의 밀착성을 향상시키고, 자기 헤드와의 슬라이딩 내성을 향상시키기 위해서, 나아가서는 기판과 연자성층의 화학 반응이나 원소 확산을 억제하기 위해서 이용되며, 예를 들면, Cr, NiTa, NiTaZr, CrTi, CrTiTa, TiAl 합금 등을 이용할 수 있다. 그 밖에 상기 목적을 달성하는 비자성층이라면 동일하게 이용할 수 있다. 슬라이딩 내성의 열화나 원소 확산의 과제가 현저하지 않은 경우에는, 밀착층을 생략할 수도 있다.
연자성층(5)은 보자력이 작은 연자기 특성을 나타내는 재료가 이용되며, 예컨대, CoTaZr, FeTaC, FeAlSi, CoFeB, NiFe 등의 합금 및 그 적층 재료를 이용할 수 있다. 그 밖에, 연자기 특성을 나타내고, 포화 자속 밀도가 1 T 이상의 재질이면 동일하게 이용할 수 있다. 또한, 연자성층은 그 자화 방향을 디스크 반경 방향으로 정렬하기 위해서 자구 제어층을 맞추어 구비하여도 좋다. 예를 들면, FeMn, IrMn, MnPt, CrMnPt 등의 반강자성 재료를 CoFe, NiFe 등의 강자성층으로 코팅한 층을 연자성층의 하부, 중간부, 상부 등에 삽입하여, 가열한 후, 디스크 반경 방향의 자장을 인가한 상태에서 냉각시킴으로써, 연자성층의 자화 방향을 고정할 수 있다. 또한, 연자성층을 1 ㎚ 정도의 비자성층으로 분할하여 다층으로 함으로써, 각 층의 자화가 반평행이 되도록 결합시켜, 자화 방향을 고정할 수도 있다. 연자성층은 주로 자기 헤드 자속의 복귀 경로로서 이용되기 때문에, 헤드 자속을 통과시킬 수 있는 두께이면 된다. 예를 들면, CoTaZr 연자성층을 이용한 경우, 200 ㎚ 정도의 두께로 충분한 성능을 나타낼 수 있다.
하지층(4)은 거의 주상 구조(columnar structure)를 가진 결정 입자로 이루어진 비자성 재료로 구성된다. 하지층은 그 상부에 형성되는 자성 기록층의 결정 배향을 제어하기 위해서 이용되기 때문에, 자성 기록층이 hcp 구조인 경우에는 하지층(4)의 최상면은 hcp 구조인 것이 바람직하고, 그 우선 배향 방향은 [001]인 것이 바람직하다. 이용되는 재료는 Ru 및 그 합금, CoCr 및 그 합금, Ti 및 그 합금 등이며, 합금으로 되기 때문에 첨가되는 원소는 Ru, Cr, B, V, Zr, Mo, W 등이다. 합금으로 함으로써 격자 정수를 변화시켜, 상부에 형성되는 자성 기록층과의 격자 정합을 높일 수 있다. 한편, 하지층(4)은 복수의 층으로 구성할 수도 있다. 예를 들면, 우선, 제1 층으로서, 하지층(4)의 입자 직경 제어나 배향 제어를 위해서 MgO 등의 산화물층이나 Ta 등의 금속층을 약 1 ㎚ 형성한다. 그 후, Ru 등의 층을 적어도 한층 더 형성하면, [001] 배향한 hcp 구조의 다결정막을 형성할 수 있다.
하지층(4)을 구성하는 결정 입자의 평균 직경은 6 ㎚∼10 ㎚인 것이 바람직하다. 이것은 상부에 형성하는 자성 결정 입자의 입자 직경을 적절한 크기로 제어하기 위함이다. 결정 입자 직경은 하지층(4)의 성막시의 기판 온도, 스퍼터 가스압, 성막 레이트, 막 두께 등에 의해 제어할 수 있다. 하지층(4)의 전체 두께는 2∼20 ㎚로 하는 것이 바람직하다. 2 ㎚보다 얇으면 Ru 등의 결정화도 및 결정 배향성이 불충분해지고, 자성 기록층(3)의 결정 배향도가 저하되어 버리기 때문이다. 또한, 20 ㎚보다 두꺼우면 자기 헤드로부터 연자성층(5)까지의 거리가 너무 멀어지게 되고, 강한 자기 헤드 자계를 자성 기록층(3)에 인가할 수 없는 것을 요인으로 하는 오버라이트 특성의 저하나, 매체 보자력을 높일 수 없는 것을 요인으로 하는 기록 자화의 열 안정성의 저하를 초래하기 때문이다.
자성 기록층(3)의 단면 구조를 상세하게 설명하는 모식도를 도 8에 도시한다. 자성 기록층(12)은 거의 주상 구조를 가진 자성 결정 입자(15)와 그 결정 입자의 주위에 입자 경계층(16)이 형성된 입상 구조이다. 자성 결정 입자(15) 및 입자 경계층(16)은 CoCrPt 합금 및 이것에 B, Ta, Cu, Ru, Ti, Si 등을 첨가한 합금과, Si, Al, Ti, Mg 등의 산화물, 또는 Si, Ti, B 등의 질화물을 CoCrPt 합금 등과 동시에 스퍼터 성막함으로써 형성할 수 있다. 예를 들면, CoCrPt 합금과, Si 산화물로 구성되는 입상 구조 자성 기록층의 형성은 CoCrPt 합금과 Si 산화물을 혼합한 스퍼터 타겟을 이용하여 DC 마그네트론 스퍼터법에 의해 행할 수 있다. 또한, CoCrPt 합금의 스퍼터 타겟과 Si 산화물의 스퍼터 타겟을 회전시키면서 교대로 스퍼터 성막함으로써 행할 수도 있다.
자성 결정 입자(15)는 hcp 구조를 갖고 있고, 하지 결정 입자(17)와 거의 에피택셜 관계를 가지며, 우선 배향 방향은 [001]이 된다. 자성 결정 입자(15)의 평균 결정 입자 직경은 5 ㎚ 이상 8 ㎚ 이하인 것이 바람직하다. 5 ㎚보다 작으면, 열 안정성이 저하되고, 기록 자화의 감쇠가 현저해지기 때문이다. 한편, 8 ㎚ 이상이면 매체 노이즈가 증가하여 바람직하지 못하다. 여기서, 하지층(13)과 자성 기록층(12)의 입자 직경에 차가 있는 것은 자성 기록층(12)에는 1∼2 ㎚ 정도의 입자 경계층(16)이 형성되어 있기 때문이다.
입자 경계층(16)은 거의 비정질 구조를 갖고 있고, 주로 하지 결정 입자(17)의 입자 경계 바로 위쪽에 형성되지만, 하지 결정 입자(17)의 입자 내부 바로 위쪽 에 형성되는 경우도 있다. 평균적인 입자 경계 폭은 1 ㎚ 이상인 것이 바람직하다. 결정 입자 직경 및 입자 경계 폭의 제어는 마그네트론 스퍼터 성막 장치의 스퍼터 Ar 가스압, Ar 가스에 함유되는 산소량, 투입 전력 등을 제어함으로써 행할 수 있다.
자성 기록층(12)의 막 두께는 5 ㎚∼30 ㎚로 하는 것이 바람직하다. 5 ㎚보다 얇아지면 보자력의 저하나 열 안정성의 저하가 현저해지기 때문이다. 또한, 30 ㎚보다 두꺼워지면 자기 헤드와 연자성층(14)의 거리가 멀어지고, 헤드 자계 경사가 작아져서 기록 분해능의 저하나 헤드 자계 강도가 작아지므로 오버라이트 특성의 저하를 초래하기 때문이다.
보호층(11)은 C를 주성분으로 하는 막을 이용할 수 있다. 기타, 자성 기록층(12)의 부식 등을 보호할 수 있는 것이라면 동일하게 이용할 수 있는 것은 물론이다. 보호층(11)의 막 두께는 1 ㎚ 이상 5 ㎚ 이하인 것이 바람직하다. 1 ㎚ 이하에서는 헤드가 매체 표면에 충돌했을 때의 보호에는 불충분하고, 5 ㎚ 이상에서는 자기 헤드와 매체간의 거리가 벌어져서 기록 분해능의 저하를 야기하여 버리기 때문이다. 윤활층(10)은 퍼플루오로알킬 폴리에테르계(perfluoroalkyl polyether) 재료 등을 이용할 수 있다.
실시예
우선, 알칼리 세정한 화학 강화 유리 기판(표면 평균 조도 0.2 ㎚)에 NiTa 37.5막을 스퍼터법에 의해 Ar 가스압 1 Pa의 조건으로 막 두께 30 ㎚ 성막하였다. 여기서 NiTa 37.5에 있어서의 Ta 뒤의 숫자 37.5는 막 속에 함유되는 Ta의 농도를 원자 백분율로 나타낸 것이다. 즉, NiTa 37.5란 62.5 at.% Ni∼37.5 at.% Ta의 약기 표시이다. 또한, NiTa와 같이 수치를 나타내지 않고 기재하고 있는 것은 직전에 기재한 동일 원소를 함유하는 막과 동일 조성비로서, 약기 표시이다. 이하 동일한 약기 표시를 행한다. 다음에, CoTa3Zr5막을 Ar 가스압 0.5 Pa로 막 두께 200 ㎚, Ta막을 Ar 가스압 2 Pa로 막 두께 1 ㎚ 형성하였다. 계속해서, 램프 히터에 의해 약 200℃까지 가열을 행하고, 자계 내에서 약 60℃까지 냉각을 행하였다. 자계는 디스크 기판의 중심에서 반경 방향을 따라 4 kA/m∼8 kA/m 부여되고 있었다. 그 후, Ru막은 Ar 가스압 2.0 Pa로 막 두께 20 ㎚ 형성하였다. 이 때의 기판 온도는 60℃ 이하였다. 다음에, CoCr17Pt14와 SiO2의 복합 타겟을 이용하여 스퍼터법으로 자성 기록층을 형성하였다. Ar 가스압 2.0 Pa의 조건으로 스퍼터 성막하고, 막 두께는 18 ㎚로 하였다. 자성 기록층 형성시에도 기판 과열이나 기판으로의 바이어스 인가는 행해지지 않는다. 그 후, 보호막으로서 C를 Ar 가스압 1 Pa, 막 두께 3 ㎚ 성막하였다.
형성된 자기 기록 매체의 기록 재생 특성 평가에는 실드 갭 길이 62 ㎚, 트랙 폭 120 ㎚의 거대 자기 저항 효과를 이용한 재생 소자와, 트랙 폭 150 ㎚의 단자극 기록 소자로 이루어진 복합 자기 헤드를 이용하였다. 원주 속도 10 m/s, 스큐각 O°, 자기 스페이싱 약 15 ㎚의 조건으로 재생 출력과 노이즈를 측정하였다. 매체 SNR은 50 kFCI의 선기록 밀도에 있어서의 고립파 재생 출력과 400 kFCI의 선기록 밀도에 있어서의 매체 노이즈의 비에 의해 평가하였다. 또한, 기록 분해능은 400 kFCI의 선기록 밀도에 있어서의 재생 출력과 50 kFCI의 선기록 밀도에 있어서의 재생 출력의 비에 의해 평가하였다.
표 1은 입자 경계층에 함유되는 Co 함유량을 30%∼50%로 한 본 발명에 따른 실시예의 매체와, Co 함유량이 30% 미만 또는 50%를 초과하는 비교예의 매체의 기록 재생 특성 및 정자기 특성을 나타낸 표이다. 자성 기록층에 함유되는 Co 함유량의 제어는 스퍼터 타겟에 미리 함유되는 CoCrPt와 SiO2의 몰비를 바꿈으로써 행하였다.
입자 경계 폭은 실시예의 매체, 비교예의 매체 중 어느 매체에 있어서나 1.0 ㎚∼1.1 ㎚이며, 대체로 일정하였다.
입자 경계층 Co 농도 (at.%) 보자력 (kOe) 자화 곡선의 기울기 매체 SNR(㏈) 감쇠율 (%/decade)
실시예-1 33 3.9 1.5 17.8 -1.9
실시예-2 37 4.5 1.5 18.3 -1.5
실시예-3 40 4.8 1.4 18.6 -2.1
실시예-4 46 5.2 1.7 18.3 -0.5
실시예-5 49 5.3 1.7 17.9 -0.5
비교예-1 23 3.0 1.5 16.0 -10.5
비교예-2 28 3.2 1.4 16.8 -4.0
비교예-3 52 5.4 1.9 15.9 -0.3
비교예-4 55 5.4 2.0 15.1 -0.6
표 1로부터 밝혀진 바와 같이, 본 발명의 실시예의 매체는 입자 경계층의 Co 함유율이 약 40%에서 최대의 매체 SNR을 나타내고, 30%∼50%의 범위에서 높은 SNR을 나타내었다. 한편, 비교예의 자기 기록 매체에서는, SNR은 급격하게 저하되고 있는 것을 알 수 있다. 또한, 기록 자화의 감쇠율은 30% 이상의 Co 함유율이며, 3% 이하의 낮은 값을 나타내고 있는 데 반하여, 30% 미만의 Co 함유율에서는, 4% 이상의 높은 값을 나타내고 있는 것을 알 수 있다. 진동 시료형 자력계(vibrating sample magnetometer)에 의해 측정한 보자력이나 자화 곡선의 기울기에는 Co 함유율의 증가에 따른 단조로운 변화는 보이지만, 특성의 최대화(maximization) 등의 경향은 볼 수 없었다. 이들 결과는 전술한 바와 같이 입자 경계층에 강자성 원소인 Co를 30%∼50% 함유시킴으로써, 입자간에 적절한 교환 상호 작용을 일으킬 수 있었기 때문에 SNR의 향상과 내열 감자 특성을 양립하게 할 수 있었던 것으로 생각할 수 있다.
본 발명에 따르면, 주상 구조의 자성 결정 입자와 입자 경계층으로 이루어진 자성 기록층의 입자 경계층 부분의 조성 구조를 제어함으로써, 적절한 입자간 교환 상호 작용을 일으켜 높은 매체 S/N과 높은 내열 감자 내성을 가진 자기 기록 매체를 제공할 수 있다.

Claims (10)

  1. 기판상에 연자성층과, 비자성 중간층과, 결정 입자가 입자 경계층(grain boundary layer)에서 분리된 입상 구조(granular structure)를 갖는 자성 기록층이 형성된 수직 자기 기록 매체에 있어서,
    상기 자성 기록층의 입자 경계층은 강자성을 갖는 원소를 함유하는 것을 특징으로 하는 수직 자기 기록 매체.
  2. 제1항에 있어서, 상기 결정 입자는 거의 주상 구조(columnar structure)를 가지며, 기판면에 거의 수직인 자화 용이축을 갖는 것을 특징으로 하는 수직 자기 기록 매체.
  3. 제1항에 있어서, 상기 입자 경계층에 함유되는 강자성 원소의 비율은 그 입자 경계층을 구성하는 고체 원소에 대한 원자 백분율로 30 at.% 이상, 50 at.% 이하인 것을 특징으로 하는 수직 자기 기록 매체.
  4. 제3항에 있어서, 상기 기판은 디스크형 기판으로서, 상기 입자 경계층에 함유되는 강자성 원소의 비율은 기록이 행해지는 디스크의 최내주에서의 측정값인 것을 특징으로 하는 수직 자기 기록 매체.
  5. 제3항에 있어서, 상기 입자 경계층에 함유되는 강자성 원소의 비율은 그 입자 경계층을 구성하는 고체 원소에 대한 원자 백분율로 35 at% 이상, 47 at.% 이하인 것을 특징으로 하는 수직 자기 기록 매체.
  6. 제5항에 있어서, 상기 기판은 디스크형 기판으로서, 상기 입자 경계층에 함유되는 강자성 원소의 비율은 기록이 행해지는 디스크의 최내주에서의 측정값인 것을 특징으로 하는 수직 자기 기록 매체.
  7. 제1항에 있어서, 상기 결정 입자는 CoCrPt 합금 또는 CoCrPt를 주성분으로 하는 합금으로서, 상기 입자 경계층에 함유되는 강자성을 갖는 원소는 Co인 것을 특징으로 하는 수직 자기 기록 매체.
  8. 제1항에 있어서, 상기 자성 기록층은 CoCrPt 합금과 Si 산화물을 주성분으로서 구성된 것을 특징으로 하는 수직 자기 기록 매체.
  9. 제8항에 있어서, 상기 결정 입자는 CoCrPt 합금 또는 CoCrPt를 주성분으로 하는 합금으로서, 상기 입자 경계층에 함유되는 강자성을 갖는 원소는 Co인 것을 특징으로 하는 수직 자기 기록 매체.
  10. 제1항에 있어서, 상기 자성 기록층은 육방 조밀 구조(hexagonal closed pack structure)를 갖는 결정 입자와 거의 비정질의 입자 경계층으로 구성되는 것을 특징으로 하는 수직 자기 기록 매체.
KR1020050098411A 2004-10-27 2005-10-19 수직 자기 기록 매체 KR20060054100A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2004-00311733 2004-10-27
JP2004311733A JP2006127588A (ja) 2004-10-27 2004-10-27 垂直磁気記録媒体

Publications (1)

Publication Number Publication Date
KR20060054100A true KR20060054100A (ko) 2006-05-22

Family

ID=34940331

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050098411A KR20060054100A (ko) 2004-10-27 2005-10-19 수직 자기 기록 매체

Country Status (7)

Country Link
US (1) US7799447B2 (ko)
EP (1) EP1653451B1 (ko)
JP (1) JP2006127588A (ko)
KR (1) KR20060054100A (ko)
CN (1) CN1767009B (ko)
DE (1) DE602005010364D1 (ko)
TW (1) TW200617901A (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332474A (ja) * 2004-05-19 2005-12-02 Hitachi Global Storage Technologies Netherlands Bv 熱アシスト磁気記録装置
US7203607B2 (en) * 2004-11-12 2007-04-10 Hitachi Global Storage Technologies System and method for determining intergranular exchange in perpendicular recording media
KR100738105B1 (ko) * 2006-02-09 2007-07-12 삼성전자주식회사 확산 방지층이 삽입된 연자성 하지층을 포함하는 수직 자기기록 매체
KR100803217B1 (ko) 2006-10-04 2008-02-14 삼성전자주식회사 자기기록매체 및 그 제조방법
JP2008123603A (ja) * 2006-11-10 2008-05-29 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体およびその製造方法
JP2009116930A (ja) * 2007-11-02 2009-05-28 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体およびそれを用いた磁気記録再生装置
US8673463B2 (en) * 2008-09-02 2014-03-18 Seagate Technology Llc Method to synthesize ordered magnetic alloys at low temperature
JP5178451B2 (ja) * 2008-10-21 2013-04-10 昭和電工株式会社 磁気記憶媒体製造方法
US8268462B2 (en) * 2008-12-22 2012-09-18 Seagate Technology Llc Hybrid grain boundary additives
US8722214B2 (en) 2008-12-22 2014-05-13 Seagate Technology Llc Hybrid grain boundary additives in granular media
JP5353328B2 (ja) * 2009-03-12 2013-11-27 ダイキン工業株式会社 ヒートポンプ式給湯機
KR101094456B1 (ko) * 2009-11-30 2011-12-15 고려대학교 산학협력단 수직 자기 기록 매체 및 그 제조 방법
MY149640A (en) * 2009-12-11 2013-09-13 Jx Nippon Mining & Metals Corp Sputtering target comprising oxide phase dispersed in co or co alloy phase, magnetic thin film made of co or co alloy phase and oxide phase, and magnetic recording medium using the said thin film
JP5177256B2 (ja) * 2011-06-03 2013-04-03 富士電機株式会社 垂直磁気記録媒体およびその製造方法
US8614862B1 (en) * 2012-12-21 2013-12-24 HGST Netherlands B.V. Perpendicular magnetic recording media having a cap layer above a granular layer
JP6399515B2 (ja) * 2014-11-26 2018-10-03 昭和電工株式会社 垂直磁気記録媒体及び磁気記録再生装置
CN111033648B (zh) * 2017-08-18 2022-04-19 3M创新有限公司 磁膜
US10283701B1 (en) * 2017-11-20 2019-05-07 Samsung Electronics Co., Ltd. Method and system for providing a boron-free magnetic layer in perpendicular magnetic junctions
SG11202009585QA (en) * 2018-03-28 2020-10-29 Jx Nippon Mining & Metals Corp Perpendicular magnetic recording medium
US11948614B2 (en) 2022-02-21 2024-04-02 Seagate Technology Llc Methods of manufacturing at least a portion of a magnetic layer of a magnetic recording disk, and related magnetic recording disks

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057523A (ja) * 1983-09-07 1985-04-03 Seiko Epson Corp 垂直磁気記録媒体
US5652054A (en) * 1994-07-11 1997-07-29 Kabushiki Kaisha Toshiba Magnetic recording media having a magnetic thin film made of magnetic metals grains and nonmagnetic matrix
JP3786453B2 (ja) 1994-07-11 2006-06-14 株式会社東芝 磁気記録媒体および磁気記録再生装置
EP0817174A1 (en) * 1995-03-08 1998-01-07 TAKAHASHI, Migaku Magnetic recording medium and method of manufacturing the same
JPH1079307A (ja) 1996-09-03 1998-03-24 Hitachi Ltd 磁気記録媒体及び磁気記録再生装置
JP3141109B2 (ja) 1999-04-19 2001-03-05 東北大学長 磁気記録媒体及び磁気記録媒体の製造方法
US6524730B1 (en) * 1999-11-19 2003-02-25 Seagate Technology, Llc NiFe-containing soft magnetic layer design for multilayer media
US7056606B2 (en) * 2001-02-28 2006-06-06 Showa Denko K.K. Magnetic recording medium, method manufacture therefor, and apparatus for magnetic reproducing and reproducing recordings
JP2002358615A (ja) 2001-02-28 2002-12-13 Showa Denko Kk 磁気記録媒体、その製造方法、および磁気記録再生装置
JP2003168206A (ja) * 2001-11-29 2003-06-13 Hitachi Ltd 磁気記録媒体及びその製造方法ならびにこれを用いた磁気記憶装置
JP4582978B2 (ja) 2001-12-07 2010-11-17 富士電機デバイステクノロジー株式会社 垂直磁気記録媒体の製造方法
JP3773104B2 (ja) * 2001-12-11 2006-05-10 富士電機デバイステクノロジー株式会社 磁気記録媒体およびその製造方法
JP2004063054A (ja) 2002-07-31 2004-02-26 Hitachi Maxell Ltd 磁気記録媒体および磁気記録装置
US7429427B2 (en) * 2004-12-06 2008-09-30 Seagate Technology Llc Granular magnetic recording media with improved grain segregation and corrosion resistance

Also Published As

Publication number Publication date
CN1767009A (zh) 2006-05-03
DE602005010364D1 (de) 2008-11-27
US7799447B2 (en) 2010-09-21
EP1653451B1 (en) 2008-10-15
TW200617901A (en) 2006-06-01
EP1653451A1 (en) 2006-05-03
CN1767009B (zh) 2010-05-26
US20060088733A1 (en) 2006-04-27
JP2006127588A (ja) 2006-05-18

Similar Documents

Publication Publication Date Title
KR20060054100A (ko) 수직 자기 기록 매체
JP4380577B2 (ja) 垂直磁気記録媒体
US5792564A (en) Perpendicular recording medium and magnetic recording apparatus
JP5443065B2 (ja) 垂直磁気記録媒体
JP5103097B2 (ja) 垂直磁気記録媒体及びそれを用いた磁気記録再生装置
US20070254189A1 (en) Magnetic storage device
JP2008176858A (ja) 垂直磁気記録媒体、及びそれを用いたハードディスクドライブ
JPWO2007129687A1 (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
JP5337451B2 (ja) 垂直磁気記録媒体
US7691500B2 (en) Perpendicular magnetic recording medium
US20050142378A1 (en) Perpendicular magnetic recording medium having alternatively layered structure of Co alloy and Pt thin film, its production method and apparatus
JP5610716B2 (ja) 垂直磁気記録媒体及び磁気記憶装置
JP2005190552A (ja) 磁気記録媒体
US6686071B2 (en) Magnetic recording medium and magnetic recording apparatus using the same
JP2009140562A (ja) 垂直磁気記録媒体及び磁気記憶装置
US20100079911A1 (en) Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus using the magnetic recording medium
US20090142624A1 (en) Magnetic recording medium and a method of producing the same
US8071228B2 (en) Perpendicular magnetic recording medium
JP5627223B2 (ja) 垂直磁気記録媒体
JP4564933B2 (ja) 垂直磁気記録媒体とその磁気特性評価法、及び磁気記録再生装置
JP2004227701A (ja) 垂直磁気記録媒体
JP2009026353A (ja) 垂直磁気記録媒体
JP2006114162A (ja) 垂直磁気記録媒体及びそれを用いた磁気記録装置
JP2007102833A (ja) 垂直磁気記録媒体
JP2001093139A (ja) 磁気記録媒体および磁気記録再生装置

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid