KR20030066318A - 레이저 어닐링 및 급속 열적 어닐링에 의한 울트라샬로우접합 형성 방법 - Google Patents
레이저 어닐링 및 급속 열적 어닐링에 의한 울트라샬로우접합 형성 방법 Download PDFInfo
- Publication number
- KR20030066318A KR20030066318A KR1020027012179A KR20027012179A KR20030066318A KR 20030066318 A KR20030066318 A KR 20030066318A KR 1020027012179 A KR1020027012179 A KR 1020027012179A KR 20027012179 A KR20027012179 A KR 20027012179A KR 20030066318 A KR20030066318 A KR 20030066318A
- Authority
- KR
- South Korea
- Prior art keywords
- wafer
- laser
- laser energy
- irradiated
- rapid thermal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000004151 rapid thermal annealing Methods 0.000 title claims abstract description 31
- 238000005224 laser annealing Methods 0.000 title description 29
- 239000002019 doping agent Substances 0.000 claims abstract description 52
- 239000000463 material Substances 0.000 claims abstract description 49
- 239000004065 semiconductor Substances 0.000 claims abstract description 33
- 238000002844 melting Methods 0.000 claims abstract description 15
- 230000008018 melting Effects 0.000 claims abstract description 15
- 239000013078 crystal Substances 0.000 claims abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 21
- 229910052710 silicon Inorganic materials 0.000 claims description 21
- 239000010703 silicon Substances 0.000 claims description 21
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 14
- 229910052796 boron Inorganic materials 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 abstract description 26
- 238000000137 annealing Methods 0.000 abstract description 20
- 230000004913 activation Effects 0.000 abstract description 5
- 230000008439 repair process Effects 0.000 abstract description 5
- 235000012431 wafers Nutrition 0.000 description 83
- 230000008569 process Effects 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000005468 ion implantation Methods 0.000 description 10
- 238000002513 implantation Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 239000012535 impurity Substances 0.000 description 5
- 238000010884 ion-beam technique Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26513—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
도펀트 재료를 포함하는 반도체 웨이퍼의 열처리 방법이 제공된다. 웨이퍼는 웨이퍼를 용융시키지 않고 도펀트 재료를 활성화시키기에 충분한 레이저 에너지로 조사된다. 뿐만 아니라, 웨이퍼의 급속 열적 어닐링이 비교적 낮은 저온에서 수행되어 결정 손상을 복구시킨다. 도펀트 활성화는 측정 가능한 확산이 전혀 없이 달성된다. 저온 급속 어닐링은 결정 손상을 복구하므로, 디바이스는 양호한 이동성 및 낮은 누설 전류를 가진다.
Description
이온 주입은 전도율-변경 도펀트 재료를 반도체 웨이퍼에 도입시키기 위한 표준 기술이다. 종래 이온 주입 시스템에서, 원하는 도펀트 재료가 이온 소스에서 이온화되고, 이온들이 가속되어 소정 에너지의 이온 빔을 형성하며, 이온 빔이 웨이퍼의 표면으로 지향된다. 이온 빔의 활성화된 이온들이 반도체 재료의 덩어리로 뚫고 들어가 반도체 재료의 결정 격자에 삽입된다. 이온 주입에 이어서, 반도체 웨이퍼가 어닐링되어 도펀트 재료가 활성화되고, 이온 주입에 의해 야기된 결정 손상을 복구시킨다. 어닐링은 소정 시간 및 온도 프로토콜에 따른 반도체 웨이퍼의 열처리에 관련된 것이다.
주지된 반도체 산업의 성향은 더 작고 고속인 디바이스를 지향하고 있다.특히, 반도체 디바이스의 외형의 횡 치수 및 깊이가 감소되고 있다. 현재 기술의 반도체 디바이스는 1,000Å 이하의 접합 깊이를 요구하고, 결국은 200Å 이하 수준의 접합 깊이를 필요로 한다.
도펀트 재료의 주입된 깊이는 반도페 웨이퍼에 주입되는 이온의 에너지에 의해 결정된다. 얕은 접합은 낮은 주입 에너지로 얻어진다. 그러나, 주입된 도펀트 재료의 활성화에 이용되는 어닐링 처리는 도펀트 재료가 반도체 웨이퍼의 주입된 영역으로부터 확산되게 한다. 그러한 확산 결과로서, 어닐링에 의해 접합 깊이가 증가된다. 어닐링에 의해 생성되는 접합 깊이의 증가에 대응하기 위해, 주입 에너지가 감소되어, 어닐링 후에 원하는 접합 깊이가 얻어진다. 이러한 접근법은 울트라샬로우(ultrashallow) 접합의 경우를 제외하고는 만족할 만한 결과를 제공한다. 어닐링 동안에 발생하는 도펀트 재료의 확산으로 인해 주입 에너지를 감소시킴으로써 얻어질 수 있는 접합 깊이에 관한 한계에 도달된다.
도펀트 재료의 활성화를 달성하면서도, 도펀트 재료의 확산을 제한하는 어닐링 처리를 개발하기 위한 수많은 노력이 있었다. 최소 열적 확산이 필요한 경우에는, 급속 열적 어닐링 또는 스파이크 어닐링이 통상 활용되었다. 급속 열적 어닐링은 통상 웨이퍼를 1 내지 30초의 시간동안 950℃ 내지 1100℃의 온도까지 가열시키는 것을 포함하는데 대해, 스파이크 어닐링은 0.1초 이하의 어닐링 시간을 포함한다. PCT 공보 제WO 99/39381호에 기재되어 있는 바와 같이, 제어되고 낮은 농도의 산소가 질소 환경(ambient)에 첨가되어 열적 확산을 최소화한다. 어닐링 파라미터의 세심한 선택에도 불구하고, 급속 열적 확산 및 스파이크 확산은 도펀트 재료가 열적 확산, 일시 향상된 확산, 산화 향상된 확산, 및 도펀트 향상된 확산(즉, 붕소 향상된 확산 또는 인 향상된 확산)에 의해 확산되게 한다. 낮은 농도의 산소가 질소 환경에 첨가되고 극히 낮은 에너지 주입이 수행되는 경우라도, 열 확산이 여전히 발생한다.
다른 주지된 어닐링 기술은 레이저 어닐링으로서, 예를 들면 1999년 6월 1일자로 발행된 Talwar 등에 의한 미국 특허 제 5,908,307호 및 1999년 9월 21자로 발행된 Talwar 등에 의한 미국 특허 제 5,956,603호에 기재되어 있다. 웨이퍼의 표면층은 비정질화되고, 도펀트 재료는 비정질화된 표면 층에 주입된다. 그런 다음에, 비정질화된 표면 층은 비정질화된 표면층을 용융시키기에 충분한 레이저 에너지로 조사되어, 도펀트 재료가 용융된 실리콘 영역에 걸쳐 분산되도록 한다. 종래 디바이스 처리와 레이저 어닐링 처리와의 통합은 비교적 복잡하다. 실리콘이나 게르마늄 선비정질화 주입은 폴리실리콘 게이트의 용융을 피하는데 필요하고, 무반사성 금속막의 피착도 또한 필요하다.
BF2 +이온 주입 및 단일 펄스 조사의 엑시머 레이저 어닐링에 의한 얕은 접합 형성을 위한 기술은 H. Tsukamoto 등에 의해"Ultrashallow Junctio㎱ Formed by Excimer Laser Annealing", Japanese Journal of Applied Physics, vol.31, Pt.2. No.6A, 1992, pp. 659-662에 기재되어 있다. 개시된 처리는 레이저 에너지 밀도가 너무 낮아 용융을 유발할 수 없는 경우라면 높은 시트 저항을 생성한다.
1979년 5월 24일에 발행된 Kirkpatrick에 의한 미국 특허 제 4,151,008호는펄스형 레이저 또는 플래시 램프로부터의 광의 짧은 지속기간 펄스로 반도체 디바이스의 선택 영역의 열처리를 개시하고 있다. 개시된 처리는 광 에너지 밀도가 너무 낮아 용융을 유발할 수 없는 경우라면 높은 시트 저항을 생성한다.
반도체 웨이퍼를 어닐링하기 위한 주지의 모든 종래 기술은 도펀트 재료의 수용 불가능할 정도의 확산, 높은 시트 저항 및 과도한 복잡성(이것으로 한정되지는 않음)을 포함하는 하나 이상의 단점들을 가지고 있다. 따라서, 원하는 도펀트 분산 및 시트 저항을 달성하고, 결정 손상을 복구하며, 확산을 최소화시키고, 제조 프로세스에 과도한 복잡성을 유발하지 않는, 반도체 웨이퍼를 어닐링하기 위한 개선된 방법이 필요하다.
본 발명은 도펀트 재료를 포함하는 반도체 웨이퍼의 열처리 방법에 관한 것으로, 특히 서브-용융(sub-melt) 레이저 어닐링 및 저온 급속 열적 어닐링을 이용한 반도체 웨이퍼의 울트라샬로우(ultrashallow) 접합을 달성하기 위한 방법에 관한 것이다.
도 1은 반도체 웨이퍼의 단순화된 부분 단면도이다.
도 2는 본 발명의 프로세스 실시예를 도시한 플로우 차트이다.
도 3은 본 발명의 프로세스 실시예를 포함하는 상이한 프로세스에 대한 옹거스트롱의 깊이 함수로서의 1입방 센티미터 당 원자의 붕소 농도의 그래프이다.
본 발명의 제1 양태에 따르면, 도펀트 재료를 포함하는 반도체 웨이퍼의 열적 처리 방법이 제공된다. 도펀트 재료는 이온 주입, 플라즈마 도핑 또는 임의의 다른 적절한 피착 기술에 의해 웨이퍼에 주입되거나 피착된다. 방법은 웨이퍼를 용융시키지 않고 도펀트 재료를 활성화시키기에 충분한 레이저 에너지로 웨이퍼를 조사하는 단계; 및 결정 손상을 복구하도록 비교적 낮은 온도에서 상기 웨이퍼의 급속 열적 어닐링을 수행하는 단계를 포함한다.
양호하게는, 레이저 에너지로 웨이퍼를 조사하는 단계는 상기 웨이퍼를 약 1100℃ 내지 1410℃의 범위 온도로 가열하기에 충분하고, 웨이퍼의 급속 열적 어닐링 단계는 상기 웨이퍼를 1 초 내지 60초 미만 범위의 시간 동안에 약 650℃ 내지 850℃의 온도 범위로 가열하는데 충분하다.
주입된 웨이퍼는 약 190 내지 1500㎚ 범위의 파장을 가지는 레이저 에너지로 조사되는 것이 바람직하다. 하나의 실시예에서, 주입된 웨이퍼는 308㎚의 파장을 가지는 엑시머 레이저로부터의 레이저 에너지로 조사된다. 다른 적절한 레이저 파장은 532㎚ 및 1064㎚를 포함한다. 웨이퍼를 조사하는데 이용되는 레이저 에너지는 하나 이상의 레이저 펄스를 포함한다. 웨이퍼는 100 내지 10,000 레이저 펄스를 포함하는 레이저 에너지로 조사되고, 상기 레이저 펄스의 펄스 폭은 10 내지 100㎱의 범위이다. 레이저 펄스의 개수와 레이저 펄스의 펄스폭의 곱은 1 내지 1,000ms의 범위이다. 하나의 실시예에서, 각각이 약 20㎱의 펄스 폭을 가지는 복수의 레이저 펄스가 이용된다.
레이저 어닐링 단계는 질소에 산소를 포함하는 환경에서 수행되고, 산소 농도는 웨이퍼의 레이저 조사 동안에 1 내지 1,000ppm 미만의 범위로 제어된다. 급속 열적 어닐링 단계는 질소에 산소를 포함하는 환경에서 수행되고, 산소 농도는 웨이퍼의 급속 열적 어닐링 동안에 1 내지 1,000ppm 미만의 범위로 제어된다.
본 발명의 제2 양태에 따르면, 반도체 웨이퍼에 도핑된 영역을 형성하는 방법이 제공된다. 상기 방법은 도펀트 재료를 상기 반도체 웨이퍼에 주입하는 단계; 웨이퍼를 용융시키지 않고 도펀트 재료를 활성화시키는데 충분한 레이저 에너지로 주입된 웨이퍼를 조사하는 단계; 및 결정 손상을 복구하도록 비교적 저온에서 주입된 웨이퍼의 급속 열적 어닐링을 수행하는 단계를 포함한다.
본 발명의 방법은 측정가능한 확산이 전혀없이 도펀트 활성화를 달성한다. 급속 열적 어닐링은 도펀트 재료의 주입으로부터의 결정 손상을 복구하므로, 디바이스는 양호한 이동성 및 낮은 누설 전류를 갖는다. 실리콘의 용융을 없앰으로써, 용융된 영역에 걸친 도펀트 분포가 회피된다.
본 발명의 더 나은 이해를 위해, 여기에 참조로 덧붙인 첨부 도면을 참조한다.
반도체 웨이퍼(10)의 매우 단순화된 부분 단면도가 도 1에 도시된다. 접합 및 원하는 전도도의 영역이 이온 주입에 의해 반도체 웨이퍼(10)에 형성된다. 실제 반도체 디바이스는 복잡한 구성의 다수 주입된 영역을 포함한다는 것과, 도 1의 반도체 디바이스(10)가 단지 설명의 목적상 도시되어 있다는 것은 자명하다. 도펀트 재료의 이온 빔(12)이 웨이퍼(10)로 지향되어 주입된 영역(14)을 형성한다. 주입된 영역(14)의 깊이는 이온 빔(12)의 이온 에너지 및 질량을 포함하는 다수의 인자에 의해 결정된다. 주입된 영역(14)의 경계는 통상 주입 마스크(16)에 의해 정의된다. 그리고 나서, 웨이퍼는 어닐링되어 도펀트 재료를 활성화하고, 이온 주입에 의해 결정 손상을 복구한다.
종래 기술의 어닐링 프로세스는 도펀트 재료의 확산을 주입된 영역(14)보다크고 깊은 불순물 영역(20)으로 유발시킨다. 불순물 영역(20)은 어닐링 후에 웨이퍼(10)의 표면에 수직인 불순물 영역(20)의 깊이인 접합 깊이 Xj를 특징으로 하고 있다. 울트라샬로우(ultrashallow) 접합을 제조하는 목적들 중 하나는 확산을 최소화하고 그럼으로써 접합 깊이 Xj를 한정하는 것이다.
저온 급속 열적 어닐링과 조합되는 서브-용융 레이저 어닐링을 포함하는 새로운 열적 처리 방법을 활용하여 최소 열적 확산 및 미용융으로 울트라샬로우 도핑된 영역을 형성함으로써 어닐링 후의 불순물 영역(20)의 접합 깊이 Xj는 종래 기술 프로세스와 비교하면 감소된다는 것을 발견하였다. 프로세스는 낮은 시트 저항의 울트라샬로우 접합을 형성하고, 이온 주입 후의 열적 확산이 바람직하지 않은, 더 깊은 불순물 영역을 형성하는데 이용될 수 있다.
본 발명에 따른 프로세스 실시예는 도 2의 플로우차트에 도시되어 있다. 반도체 웨이퍼, 전형적으로는 실리콘 웨이퍼는 단계 50에서 도펀트 재료로 주입된다. 양호한 도펀트 재료는 붕소, 인듐, 비소, 및 인을 포함하고, 이것으로 제한되지는 않는다. 하나의 예에서, 붕소(boron)는 극히 낮은 에너지, 즉 1keV 미만의 에너지에서 주입된다. 도펀트 재료는 종래의 이온 주입 시스템, 플라즈마 도핑 시스템 또는 도펀트 재료를 반도체 웨이퍼에서 원하는 깊이로 피착하거나 주입할 수 있는 임의의 다른 시스템을 이용하여 실리콘 웨이퍼에 주입될 수 있다.
단계 52에서, 도펀트 재료를 포함하는 웨이퍼가 레이저 어닐링 단계에서 레이저 에너지로 조사된다. 레이저 에너지는 웨이퍼를 녹이지 않고 도펀트 재료를활성화시키는데 충분하다. 웨이퍼는 제어된 환경(ambient)을 가지는 레이저 어닐링 챔버에 배치되고, 소정 파라미터를 가지는 레이저 에너지로 조사된다. 레이저 어닐링의 파라미터는 실리콘이나 다른 웨이퍼 재료를 녹이지 않고, 높은 웨이퍼 온도, 양호하게는 약 1100℃ 내지 1410℃의 범위를 매우 신속하게 달성하도록 선택된다. 실리콘이 용융되지 않으므로, 레이저 어닐링 단계는 "서브-용융" 레이저 어닐링이라 부른다. 레이저 어닐링 단계는 도펀트 활성화를 달성한다. 적절한 레이저 어닐링 파라미터의 예는 이하에 설명된다.
레이저 어닐링 단계(52)는 양호하게는 약 190 내지 1500㎚의 파장 범위의 펄스형 레이저 에너지를 활용한다. 하나의 바람직한 레이저는 308㎚의 출력 파장을 가지는 엑시머 레이저이다. 다른 적절한 레이저 파장은 532㎚ 및 1064㎚를 포함한다. 양호하게는, 레이저 에너지는 웨이퍼의 실리콘 또는 다른 기판 재료를 약 1㎛의 깊이까지 가열시켜야 한다. 폴리실리콘 층과 같은 특정 구조는 유전체에 의해 덩어리 실리콘으로부터 열적으로 분리된다. 레이저 에너지가 덩어리 실리콘의 깊은 층 전체에 걸쳐 흡수되는 경우에, 얇은 폴리실리콘 층은 그 에너지를 거의 흡수하지 못한다. 상기 범위에서 더 긴 파장을 이용하는 것은 폴리실리콘 게이트의 원하지 않는 용융을 방지한다는 것이 발견되었다.
웨이퍼를 조사하는데 이용되는 레이저 에너지 밀도는 웨이퍼의 표면층을 신속하게, 바람직하게는 약 10㎲ 이하에 실리콘을 녹이지 않는 약 1100℃ 내지 1410℃ 범위의 온도로 가열하도록 선택된다. 본 기술 분야에 주지된 바와 같이, 실리콘은 1410℃에서 녹는다. 레이저 에너지 밀도는 실리콘을 녹이지 않고 도펀트 재료의 활성화를 달성하도록 하기 위해 308㎚의 파장과 20㎱의 펄스 폭에서 제곱 센티미터 당 약 0.50 내지 0.58주울(J/cm2)의 범위인 것이 바람직하다.
하나 이상의 레이저 펄스가 웨이퍼를 조사하는데 이용되는 것이 바람직하다. 펄스의 개수는 1 내지 10,000의 범위이고, 펄스 폭은 약 1 내지 10,000㎱의 범위이다. 레이저 펄스의 개수와 펄스 폭의 곱은 양호하게는 1 내지 1,000㎳의 범위이다. 더 바람직하게는, 펄스의 개수는 100 내지 1,000의 범위이고, 펄스 폭은 10 내지 100㎱의 범위이다. 적절한 레이저 어닐링의 한 예에서, 각각이 20㎱의 펄스 폭을 가지는 100 펄스는 반도체 웨이퍼의 주어진 영역을 레이저 어닐링하는데 활용된다.
하나의 실시예에서, 레이저 어닐링 단계(52)는 웨이퍼의 비정질층이 녹는 종래의 레이저 어닐링에 이용되는 변형 시스템에 의해 수행될 수 있다. 레이저 어닐링 시스템의 파라미터들이 상기 설명한 바와 같은 서브-용융 레이저 어닐링을 수행하도록 변형된다. 하나의 적절한 시스템은 상기 설명한 바와 같은 서브-용융 레이저 어닐링을 수행하도록 변형될 수 있는 Verdant Technologies로부터 가용한 모델 LA-100이다.
단면 면적에 따라, 웨이퍼를 조사하는데 이용되는 레이저 빔은 전체 웨이퍼 영역을 덮거나 웨이퍼의 전체 면적보다 작은 서브-영역을 덮을 수 있다. 하나의 예에서, 레이저 빔은 웨이퍼 표면에서 10㎜×10㎜의 단면 면적을 가지고 있다. 레이저 빔이 웨이퍼의 서브-영역을 덮는 곳에서는, 웨이퍼의 전체 영역을 덮기 위해웨이퍼가 레이저 빔에 대해 스텝핑(stepping)되거나 스캐닝된다. 그러므로, 예를 들면 웨이퍼의 제1 서브-영역은 각각이 20㎱의 펄스 폭을 가지는 100개의 펄스로 조사된 후, 웨이퍼가 레이저 빔에 대해 제2 서브-영역으로 이동하거나 스텝핑되어, 제2 서브-영역은 각각이 20㎱의 펄스 폭을 가지는 100 레이저 펄스로 조사된다. 이러한 스텝핑 프로세스는 전체 웨이퍼 영역이 조사될 때까지 반복된다. 레이저 빔이 전체 웨이퍼 표면을 덮을 수 있을 만큼 충분히 큰 경우에는, 단일 레이저 펄스 시퀀스가 레이저 어닐링 단계를 수행하는데 이용될 수 있다. 또 다른 접근법에서, 웨이퍼는 하나 이상의 레이저 펄스 이후에 작은 증가량으로 스텝핑되거나, 연속적으로 스캐닝되어, 전체 웨이퍼 표면이 원하는 레벨의 레이저 에너지를 수신한다. 또 다른 접근법에서, 웨이퍼가 정지 상태로 유지되고, 레이저 빔이 굴곡되거나 정지 웨이퍼에 대해 이동되어 전체 웨이퍼 표면을 조사한다.
단계 54에서, 웨이퍼는 저온 급속 열적 어닐링 단계에서 가열된다. 웨이퍼는 제어된 환경을 가지는 급속 열적 처리 챔버에 배치되어, 소정 파라미터에 따라 가열된다. 저온 급속 열적 어닐링은 양호하게는 1초 내지 60초 미만 범위의 시간 동안에 약 650℃ 내지 850℃의 온도 범위인 것이 바람직하다. 저온 급속 열적 어닐링은 주입으로부터의 결정 손상을 복구하여, 반도체 디바이스는 양호한 이동성 및 낮은 누설 전류를 가지게 되지만, 도펀트 재료의 상당한 확산을 유발시키지 않는다. 하나의 예에서, 웨이퍼는 저온 급속 열적 어닐링 단계에서 20초 동안 700℃로 가열된다. 반도체 웨이퍼에 대한 급속 열적 어닐링 시스템은 상용으로 구입 가능하다. 하나의 적절한 시스템은 STEAG-AST로부터 가용한 모델 AST-3000이다.
레이저 어닐링(52)에 이어서 저온 급속 열적 어닐링 단계(54)가 도 2에 도시되어 있다. 다르게는, 저온 급속 열적 어닐링 단계(54)는 레이저 어닐링 단계(52) 이전에 수행될 수 있다.
레이저 어닐링 단계(52)는 양호하게는 1기압의 압력에서 질소에 산소를 포함하는 제어된 환경을 가지는 폐쇄된 챔버에서 수행된다. 양호하게는, 레이저 어닐링 챔버내의 산소 농도는 레이저 어닐링 단계(52) 동안에 1 내지 1000ppm(part per million) 미만의 범위로 제어된다. 저온 급속 열적 어닐링 단계(54)는 양호하게는 1기압의 압력에서 질소에 산소를 포함하는 제어된 환경을 가지는 열적 처리 챔버에서 수행될 수 있다. 양호한 실시예에서, 열적 처리 챔버내의 산소 농도는 1 내지 1,000ppm 미만의 범위에서 저온 급속 열적 어닐링 단계(54) 동안에 제어된다.
본 발명의 열적 처리 방법의 장점은 도 3의 붕소 도펀트 프로파일에 도시된다. 도 3에 도시된 도펀트 프로파일은 2차 이온 질량 스펙트럼 측정(SIMS)에 의해 얻어졌다. 도 3에서, 입방 센티미터 당 원자수인 붕소 농도는 수개의 다른 조건에 대해 웨이퍼 표면으로부터의 깊이 Å의 함수로서 플로팅된다. 각 경우에, 실리콘 웨이퍼는 1KeV의 에너지와 9E14/cm2(9E14/cm2은 제곱 센티미터당 9×1014의 주입 도즈량을 나타낸다)의 도즈량으로 붕소(B+) 이온으로 주입되었다.
도 3에서, 곡선(70)은 상기 설명한 바와 같이 붕소로 주입되었지만 어닐링되지 않은 실리콘 웨이퍼를 나타낸다. 곡선(72)은 상기 설명한 바와 같이 붕소로 주입되고 1050℃의 온도에서 0.2초의 시간동안 스파이크 어닐링된 실리콘 웨이퍼를나타낸다. 곡선(74)은 상기 설명한 바와 같이 붕소로 주입되고 20초 동안 700℃에서 급속 열적 어닐링되었던 실리콘 웨이퍼를 나타낸다. 곡선(76)은 상기 설명한 바와 같이 붕소로 주입되고 308㎚의 파장에서 100개의 레이저 펄스로 용융 임계점 이하에서 레이저 어닐링된 후 20초 동안 700℃에서 급속 어닐링된 실리콘 웨이퍼를 나타낸다.
곡선(76)은 측정가능한 확산이 전혀 발생하지 않았으며 여전히 제곱미터당 360Ω의 시트 저항을 가지고 있다. 곡선(76)에 의해 표시된 웨이퍼에서 3E18/cm3의 농도에서의 접합 깊이는 372Å이었다. 비교시, 곡선(74)에 의해 표시된 웨이퍼는 도펀트 재료가 활성화되지 않았다는 것을 나타내는, 더 높은 시트 저항을 나타낸다. 곡선(72)으로 나타낸 스파이크 어닐링 웨이퍼는 도펀트 재료의 상당한 확산을 나타내며, 결국 접합 깊이가 561Å이 된다. 도 3에서 곡선(70, 74, 76)이 거의 중첩한다는 것을 알 수 있다.
여기에 기재된 열적 처리 기술은 웨이퍼를 매우 높은 온도에 수 ms 동안 노출시킴으로써 짧은 시간 또는 스파이크 어닐링 동안에 종래 고온 급속 열적 어닐링을 개선시켜, 도펀트 재료의 열적 확산을 최소화시켰다. 할로우(halo) 형성의 어플리케이션에 대해서는, 이것은 붕소가 인듐 대신에 도펀트 재료로서 이용될 수 있다는 것을 의미하고, 이것은 현재 낮은 확산으로 인해 이용되지만 그 소스 재료가 부식성이고 낮은 이온 소스 수명을 가지므로 바람직하지는 않다. 개시된 프로세스의 또 다른 어플리케이션은 급속 열적 어닐링에 의해 형성되는 것보다 더급진적인(abrupt) 소스/드레인 확장의 형성이다. 이러한 프로세스에 의해 형성된 소스/드레인 확장은 주입형의 프로파일의 급진성을 가지고 있다.
본 발명은 또한 실리콘 용융을 없앰으로써 종래 레이저 어닐링을 개선시킨다. 이것은 프로세스의 통합을 디바이스 프로세스 플로우에 더 용이하게 만들며, 용융된 영역에 걸쳐 도펀트 재분산을 방지한다. 뿐만 아니라, 선 비정질화 주입이 필요하지 않다.
현재 본 발명의 양호한 실시예로 간주되는 것을 도시하고 기술했지만, 본 기술 분야의 숙련자라면, 첨부된 청구의 범위에 의해 정의된 본 발명의 범주를 벗어나지 않고서도 다양한 변경과 변형이 가능하다는 것을 잘 알고 있을 것이다.
Claims (28)
- 도펀트 재료를 포함하는 반도체 웨이퍼의 열처리 방법에 있어서,웨이퍼를 용융시키지 않고 도펀트 재료를 활성화시키기에 충분한 레이저 에너지로 웨이퍼를 조사하는 단계; 및결정 손상을 복구하도록 비교적 낮은 온도에서 상기 웨이퍼의 급속 열적 어닐링을 수행하는 단계를 포함하는 열처리 방법.
- 제1항에 있어서, 상기 레이저 에너지로 웨이퍼를 조사하는 단계는 상기 웨이퍼를 약 1100℃ 내지 1410℃의 온도 범위로 가열하기에 충분한 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼의 급속 열적 어닐링 단계는 상기 웨이퍼를 1 초 내지 60초 미만 범위의 시간 동안에 약 650℃ 내지 850℃의 온도 범위로 가열하는데 충분한 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼는 308㎚의 파장을 가지는 엑시머 레이저로부터의 레이저 에너지로 조사되는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼는 532㎚의 파장을 가지는 레이저 에너지로 조사되는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼는 1064㎚의 파장을 가지는 레이저 에너지로 조사되는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼는 약 190 내지 1500㎚ 범위의 파장을 가지는 레이저 에너지로 조사되는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼는 복수의 레이저 펄스를 포함하는 레이저 에너지로 조사되는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼는 1 내지 10,000 레이저 펄스를 포함하는 레이저 에너지로 조사되는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼는 약 1 내지 10,000㎱ 범위의 펄스폭을 가지는 레이저 펄스를 포함하는 레이저 에너지로 조사되는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼는 100 내지 10,000 레이저 펄스를 포함하는 레이저 에너지로 조사되고, 상기 레이저 펄스의 펄스 폭은 10 내지 100㎱의 범위인 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼는 하나 이상의 레이저 펄스를 포함하는 레이저 에너지로 조사되고, 레이저 펄스의 개수와 레이저 펄스의 펄스폭의 곱은 1 내지 1,000㎲의 범위인 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼는 하나 이상의 레이저 펄스를 포함하는 레이저 에너지로 조사되고, 상기 각 레이저 펄스는 약 20㎱의 펄스 폭을 가지는 열처리 방법.
- 제1항에 있어서, 실리콘 웨이퍼는 약 0.50 내지 0.58J/cm2범위의 에너지 밀도 및 308㎚의 파장을 가지는 레이저 에너지로 조사되는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼의 급속 열적 어닐링 단계는 약 20초의 지속기간을 가지는 열처리 방법.
- 제15항에 있어서, 상기 웨이퍼의 급속 열적 어닐링 단계는 상기 웨이퍼를 약 700℃의 온도로 가열하는 단계를 포함하는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼의 급속 열적 어닐링 단계는 상기 웨이퍼를 레이저 에너지로 조사하는 단계 후에 수행되는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼의 급속 열적 어닐링 단계는 상기 웨이퍼를 레이저 에너지로 조사하는 단계 이전에 수행되는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼를 레이저 에너지로 조사하는 단계 동안에, 산소 농도를 1 내지 1,000ppm 미만 범위로 제어하는 단계를 더 포함하는 열처리 방법.
- 제1항에 있어서, 상기 웨이퍼의 급속 열적 어닐링 단계 동안에, 산소 농도를 1 내지 1,000ppm 미만 범위로 제어하는 단계를 더 포함하는 열처리 방법.
- 반도체 웨이퍼에 도핑된 영역을 형성하는 방법에 있어서,도펀트 재료를 상기 반도체 웨이퍼에 주입하는 단계;상기 웨이퍼를 용융시키지 않고 도펀트 재료를 활성화시키는데 충분한 레이저 에너지로 상기 주입된 웨이퍼를 조사하는 단계; 및결정 손상을 복구하도록 비교적 저온에서 상기 주입된 웨이퍼의 급속 열적 어닐링을 수행하는 단계를 포함하는 도핑 영역 형성 방법.
- 제21항에 있어서, 상기 도펀트 재료를 반도체 웨이퍼에 주입하는 단계는 붕소를 1keV 미만의 에너지로 주입하는 단계를 포함하는 도핑 영역 형성 방법.
- 제21항에 있어서, 상기 도펀트 재료를 반도체 웨이퍼에 주입하는 단계는 붕소, 인듐, 비소 및 인으로 구성되는 그룹으로부터 선택된 재료를 주입하는 단계를 포함하는 도핑 영역 형성 방법.
- 제21항에 있어서, 상기 주입된 웨이퍼를 레이저 에너지로 조사하는 단계는 상기 웨이퍼를 약 1100℃ 내지 1410℃의 온도 범위로 가열하는데 충분한 도핑 영역 형성 방법.
- 제24항에 있어서, 상기 주입된 웨이퍼의 급속 열적 어닐링 단계는 1초 내지 60초 미만 범위의 시간 동안에 상기 웨이퍼를 약 650℃ 내지 850℃의 온도 범위로 가열하는데 충분한 도핑 영역 형성 방법.
- 제21항에 있어서, 상기 주입된 웨이퍼는 복수의 레이저 펄스로 조사되는 도핑 영역 형성 방법.
- 제21항에 있어서, 상기 주입된 웨이퍼는 약 190 내지 1500㎚ 범위의 파장을 가지는 레이저 에너지로 조사되는 도핑 영역 형성 방법.
- 제21항에 있어서, 주입된 실리콘 웨이퍼는 약 0.50 내지 0.58J/cm2범위의 에너지 밀도 및 308㎚의 파장을 가지는 레이저 에너지로 조사되는 도핑 영역 형성 방법.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19023300P | 2000-03-17 | 2000-03-17 | |
US60/190,233 | 2000-03-17 | ||
US63841000A | 2000-08-11 | 2000-08-11 | |
US09/638,410 | 2000-08-11 | ||
PCT/US2001/008241 WO2001071787A1 (en) | 2000-03-17 | 2001-03-15 | Method of forming ultrashallow junctions by laser annealing and rapid thermal annealing |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030066318A true KR20030066318A (ko) | 2003-08-09 |
KR100839259B1 KR100839259B1 (ko) | 2008-06-17 |
Family
ID=26885893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020027012179A KR100839259B1 (ko) | 2000-03-17 | 2001-03-15 | 레이저 어닐링 및 급속 열적 어닐링에 의한 울트라샬로우접합 형성 방법 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1264335A1 (ko) |
JP (1) | JP4942128B2 (ko) |
KR (1) | KR100839259B1 (ko) |
CN (1) | CN1222016C (ko) |
TW (1) | TWI271791B (ko) |
WO (1) | WO2001071787A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101442821B1 (ko) * | 2007-11-08 | 2014-09-19 | 어플라이드 머티어리얼스, 인코포레이티드 | 펄스 트레인 어닐링 방법 |
US9498845B2 (en) | 2007-11-08 | 2016-11-22 | Applied Materials, Inc. | Pulse train annealing method and apparatus |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7026229B2 (en) * | 2001-11-28 | 2006-04-11 | Vartan Semiconductor Equipment Associates, Inc. | Athermal annealing with rapid thermal annealing system and method |
US20030186519A1 (en) * | 2002-04-01 | 2003-10-02 | Downey Daniel F. | Dopant diffusion and activation control with athermal annealing |
US6878415B2 (en) * | 2002-04-15 | 2005-04-12 | Varian Semiconductor Equipment Associates, Inc. | Methods for chemical formation of thin film layers using short-time thermal processes |
US7135423B2 (en) * | 2002-05-09 | 2006-11-14 | Varian Semiconductor Equipment Associates, Inc | Methods for forming low resistivity, ultrashallow junctions with low damage |
KR100739837B1 (ko) | 2003-02-19 | 2007-07-13 | 마쯔시다덴기산교 가부시키가이샤 | 불순물 도입 방법 및 불순물 도입 장치 |
US20040235281A1 (en) * | 2003-04-25 | 2004-11-25 | Downey Daniel F. | Apparatus and methods for junction formation using optical illumination |
WO2005020306A1 (ja) | 2003-08-25 | 2005-03-03 | Matsushita Electric Industrial Co., Ltd. | 不純物導入層の形成方法及び被処理物の洗浄方法並びに不純物導入装置及びデバイスの製造方法 |
WO2005036626A1 (ja) * | 2003-10-09 | 2005-04-21 | Matsushita Electric Industrial Co., Ltd. | 接合の形成方法およびこれを用いて形成された被処理物 |
US7132338B2 (en) | 2003-10-10 | 2006-11-07 | Applied Materials, Inc. | Methods to fabricate MOSFET devices using selective deposition process |
JP2005142344A (ja) | 2003-11-06 | 2005-06-02 | Toshiba Corp | 半導体装置の製造方法および半導体製造装置 |
US7078302B2 (en) | 2004-02-23 | 2006-07-18 | Applied Materials, Inc. | Gate electrode dopant activation method for semiconductor manufacturing including a laser anneal |
CN1965391A (zh) | 2004-05-14 | 2007-05-16 | 松下电器产业株式会社 | 制造半导体器件的方法和设备 |
CN1954409B (zh) * | 2004-05-18 | 2010-10-13 | 库克有限公司 | 注入计数掺杂质离子 |
JP4614747B2 (ja) * | 2004-11-30 | 2011-01-19 | 住友重機械工業株式会社 | 半導体装置の製造方法 |
JP2006245338A (ja) * | 2005-03-03 | 2006-09-14 | Nec Electronics Corp | 電界効果型トランジスタの製造方法 |
JP5283827B2 (ja) * | 2006-03-30 | 2013-09-04 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
DE102006053182B4 (de) * | 2006-11-09 | 2015-01-15 | Infineon Technologies Ag | Verfahren zur p-Dotierung von Silizium |
JP2008251839A (ja) * | 2007-03-30 | 2008-10-16 | Ihi Corp | レーザアニール方法及びレーザアニール装置 |
JP5178046B2 (ja) * | 2007-05-01 | 2013-04-10 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US20100015788A1 (en) * | 2007-09-10 | 2010-01-21 | Yuichiro Sasaki | Method for manufacturing semiconductor device |
JP2011514664A (ja) * | 2008-01-31 | 2011-05-06 | プレジデント アンド フェローズ オブ ハーバード カレッジ | パルスレーザ照射を介してドープされる材料の平坦面の工学 |
JP5346484B2 (ja) | 2008-04-16 | 2013-11-20 | 大日本スクリーン製造株式会社 | 熱処理方法および熱処理装置 |
JP2009302373A (ja) * | 2008-06-16 | 2009-12-24 | Nec Electronics Corp | 半導体装置の製造方法 |
JP2010212530A (ja) * | 2009-03-12 | 2010-09-24 | Fuji Electric Systems Co Ltd | 半導体素子の製造方法 |
JP5556431B2 (ja) * | 2010-06-24 | 2014-07-23 | 富士電機株式会社 | 半導体装置の製造方法 |
TW201310551A (zh) * | 2011-07-29 | 2013-03-01 | Applied Materials Inc | 熱處理基材的方法 |
JP5661009B2 (ja) * | 2011-09-08 | 2015-01-28 | 住友重機械工業株式会社 | 半導体装置の製造方法 |
US9558973B2 (en) | 2012-06-11 | 2017-01-31 | Ultratech, Inc. | Laser annealing systems and methods with ultra-short dwell times |
SG10201503482QA (en) | 2012-06-11 | 2015-06-29 | Ultratech Inc | Laser annealing systems and methods with ultra-short dwell times |
CN103835000A (zh) * | 2012-11-20 | 2014-06-04 | 上海华虹宏力半导体制造有限公司 | 一种高温改善多晶硅表面粗糙度的方法 |
JP5718975B2 (ja) * | 2013-05-23 | 2015-05-13 | 株式会社Screenホールディングス | 熱処理方法 |
US20150111341A1 (en) * | 2013-10-23 | 2015-04-23 | Qualcomm Incorporated | LASER ANNEALING METHODS FOR INTEGRATED CIRCUITS (ICs) |
US10083843B2 (en) | 2014-12-17 | 2018-09-25 | Ultratech, Inc. | Laser annealing systems and methods with ultra-short dwell times |
JP6587818B2 (ja) * | 2015-03-26 | 2019-10-09 | 株式会社Screenホールディングス | 熱処理方法 |
US9859121B2 (en) | 2015-06-29 | 2018-01-02 | International Business Machines Corporation | Multiple nanosecond laser pulse anneal processes and resultant semiconductor structure |
US10622268B2 (en) * | 2015-12-08 | 2020-04-14 | Infineon Technologies Ag | Apparatus and method for ion implantation |
CN111599670A (zh) * | 2019-02-20 | 2020-08-28 | 创能动力科技有限公司 | 晶片加工方法及半导体装置 |
CN110752159B (zh) * | 2019-10-28 | 2023-08-29 | 中国科学技术大学 | 对氧化镓材料退火的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3190653B2 (ja) * | 1989-05-09 | 2001-07-23 | ソニー株式会社 | アニール方法およびアニール装置 |
JP2821628B2 (ja) * | 1989-11-10 | 1998-11-05 | ソニー株式会社 | 半導体装置の製造方法 |
JP3185386B2 (ja) * | 1992-07-31 | 2001-07-09 | ソニー株式会社 | 半導体装置の製造方法 |
JP3211394B2 (ja) * | 1992-08-13 | 2001-09-25 | ソニー株式会社 | 半導体装置の製造方法 |
KR100231607B1 (ko) * | 1996-12-31 | 1999-11-15 | 김영환 | 반도체 소자의 초저접합 형성방법 |
US5966605A (en) * | 1997-11-07 | 1999-10-12 | Advanced Micro Devices, Inc. | Reduction of poly depletion in semiconductor integrated circuits |
US6087247A (en) * | 1998-01-29 | 2000-07-11 | Varian Semiconductor Equipment Associates, Inc. | Method for forming shallow junctions in semiconductor wafers using controlled, low level oxygen ambients during annealing |
-
2001
- 2001-03-15 WO PCT/US2001/008241 patent/WO2001071787A1/en not_active Application Discontinuation
- 2001-03-15 EP EP01916675A patent/EP1264335A1/en not_active Withdrawn
- 2001-03-15 CN CNB018062164A patent/CN1222016C/zh not_active Expired - Fee Related
- 2001-03-15 JP JP2001569868A patent/JP4942128B2/ja not_active Expired - Fee Related
- 2001-03-15 KR KR1020027012179A patent/KR100839259B1/ko not_active IP Right Cessation
- 2001-03-19 TW TW090106353A patent/TWI271791B/zh not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101442821B1 (ko) * | 2007-11-08 | 2014-09-19 | 어플라이드 머티어리얼스, 인코포레이티드 | 펄스 트레인 어닐링 방법 |
KR101442819B1 (ko) * | 2007-11-08 | 2014-09-19 | 어플라이드 머티어리얼스, 인코포레이티드 | 펄스 트레인 어닐링 방법 |
US9498845B2 (en) | 2007-11-08 | 2016-11-22 | Applied Materials, Inc. | Pulse train annealing method and apparatus |
US11040415B2 (en) | 2007-11-08 | 2021-06-22 | Applied Materials, Inc. | Pulse train annealing method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
WO2001071787A1 (en) | 2001-09-27 |
TWI271791B (en) | 2007-01-21 |
CN1222016C (zh) | 2005-10-05 |
CN1419708A (zh) | 2003-05-21 |
JP2003528462A (ja) | 2003-09-24 |
JP4942128B2 (ja) | 2012-05-30 |
KR100839259B1 (ko) | 2008-06-17 |
EP1264335A1 (en) | 2002-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100839259B1 (ko) | 레이저 어닐링 및 급속 열적 어닐링에 의한 울트라샬로우접합 형성 방법 | |
KR100511765B1 (ko) | 소형 집적회로의 제조방법 | |
US5399506A (en) | Semiconductor fabricating process | |
KR100301273B1 (ko) | 얕은접합형성방법,반도체구조체및전계효과트랜지스터 | |
US5956603A (en) | Gas immersion laser annealing method suitable for use in the fabrication of reduced-dimension integrated circuits | |
EP0976147B1 (en) | Method for forming a silicide region on a silicon body | |
US6051483A (en) | Formation of ultra-shallow semiconductor junction using microwave annealing | |
US5474940A (en) | Method of fabricating a semiconductor device having shallow junctions in source-drain regions and a gate electrode with a low resistance silicide layer | |
US6297135B1 (en) | Method for forming silicide regions on an integrated device | |
US4243433A (en) | Forming controlled inset regions by ion implantation and laser bombardment | |
US4502205A (en) | Method of manufacturing an MIS type semiconductor device | |
US20020086502A1 (en) | Method of forming a doped region in a semiconductor material | |
JPH07112063B2 (ja) | 電界効果トランジスタの製作方法 | |
US6835626B2 (en) | Method to overcome instability of ultra-shallow semiconductor junctions | |
US20140363986A1 (en) | Laser scanning for thermal processing | |
JP2002246329A (ja) | 半導体基板の極浅pn接合の形成方法 | |
JPH0677155A (ja) | 半導体基板の熱処理方法 | |
US20010018258A1 (en) | Method for fabricating semiconductor device | |
JP2004158621A (ja) | ドーピング方法およびその装置 | |
GB2099219A (en) | Semiconductor device manufacture | |
Pressley | Semiconductor Processing Using Excimer Lasers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120524 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20130531 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |