KR20010039472A - 엑시머레이저 및 엑시머램프용의 실리카유리광학재료 및그 제조방법 - Google Patents

엑시머레이저 및 엑시머램프용의 실리카유리광학재료 및그 제조방법 Download PDF

Info

Publication number
KR20010039472A
KR20010039472A KR1019990048058A KR19990048058A KR20010039472A KR 20010039472 A KR20010039472 A KR 20010039472A KR 1019990048058 A KR1019990048058 A KR 1019990048058A KR 19990048058 A KR19990048058 A KR 19990048058A KR 20010039472 A KR20010039472 A KR 20010039472A
Authority
KR
South Korea
Prior art keywords
silica glass
optical material
glass optical
wtppm
concentration
Prior art date
Application number
KR1019990048058A
Other languages
English (en)
Other versions
KR100359947B1 (ko
Inventor
야마가타시게르
Original Assignee
마쯔자끼히로시
신에쯔 세끼에이 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17829155&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20010039472(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 마쯔자끼히로시, 신에쯔 세끼에이 가부시키가이샤 filed Critical 마쯔자끼히로시
Publication of KR20010039472A publication Critical patent/KR20010039472A/ko
Application granted granted Critical
Publication of KR100359947B1 publication Critical patent/KR100359947B1/ko

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • Y10S501/905Ultraviolet transmitting or absorbing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

본 발명은, 파장 155∼195㎚의 엑시머레이저, 엑시머램프에 대해서 초기투과율이 높고, 굴절율변동폭△n이 작고, 또한 장시간 조사하에서의 내구성에 뛰어난 실리카유리광학재료를 제공하는 것을 목적으로한 것이며, 그 해결수단에 있어서, 본 발명은, 파장 155∼195㎚의 엑시머레이저 및 엑시머램프로부터의 광선용실리카유리광학재료로서, 초고순도이며, OH기(基)를 1∼100wtppm, H2를 5×1016∼5×1019분자/㎤ 및 F를 10∼10,000wtppm을 함유하고, F이외의 할로겐을 실질적으로 함유하지 않고, 또한 굴절율변동폭△n이 3×10-6∼3×10-7인 것을 특징으로 한다.

Description

엑시머레이저 및 엑시머램프용의 실리카유리광학재료 및 그 제조방법{EXCIMER LASER AND SILICA GLASS OPTICAL MATERIAL FOR THE SAME AND ITS MANUFACTURING METHOD}
본 발명은, 실리카유리광학재료 및 그 제조방법에 관한 것으로서, 특히, 파장 155∼195㎚의 엑시머레이저 및 엑시머램프를 광원으로 하는 광선용의 실리카유리광학재료 및 그 제조방법에 관한 것이다.
상기와 같은 실리카유리광학재료는, 파장 155∼195㎚의 엑시머레이저장치 및 엑시머램프를 광원으로 하는 광세정(光洗淨)용 조사장치, 집적회로작성용 노광장치(광석판인쇄장치) 등에 결합되는 렌즈, 프리즘, 윈도, 리플렉터, 포토마스크, 튜브 등에 사용되고 있다.
종래, 실리콘웨이퍼상에 집적전자회로패턴을 묘화(描畵)하는 광석판인쇄장치의 광원으로서 g선이나 i선등의 수은램프에 의한 자외선이 사용되어 왔으나, 반도체소자의 미세화가 높아짐에 따라 상기 g선이나 i선으로는 해상도에 한계가 있고, 보다 파장이 짧은 엑시머레이저가 주목되어, KrF엑시머레이저(248㎚)를 이용한 광석판인쇄장치가 개발되어 실시단계에 진입하고 있다.
그러나, 반도체소자의 집적도는 가까운 장래 더욱 고조되는 것이 예측되며, 그것에는 선폭0.1㎛이하의 미세패턴을 묘화할 수 있는 광원이 필요하게 된다.
상기 광원으로서는 ArF엑시머레이저(193㎚)를 주로, ArCl엑시머레이저(175㎚), F2엑시머레이저(157㎚) 등의 파장 155∼195㎚의 고출력의 진공자외선이 고려하게되어, 그 개발이 시작되고 있다. 그러나, 상기 고출력진공자외선은 종래의 광석판인쇄장치에서 사용하는 자외선보다 더욱 고출력인 부분에서, 그 조사를 받은 광학재료는 투과율의 저하, 굴절율의 상승, 왜곡의 발생, 형광의 발생, 경우에 따라서는 마이크로균열의 발생 등의 대미지가 급격히 발생하여 광학재료로서 사용할 수 없게된다.
또, 현재, 반도체소자의 세정처리법으로서 ArF엑시머레이저(193㎚), F2엑시머레이저(157㎚), Xea엑시머램프(172㎚), ArCl엑시머램프(175㎚) 등의 파장 155∼195㎚의 고출력진공자외선을 사용한 드라이세정법이 개발되어 가고 있으나, 이 세정처리장치에서는 윈도나 튜브에 대형의 광학재료가 필요하다. 그러나, 광학재료가 대형화하면 고출력진공자 외선에 의한 대미지는 더욱 커지게되어, 광학재료로서 사용할 수 없게 된다.
이와 같이 사정에서, 상기 고출력진공자외선인 엑시머레이저 또는 엑시머램프에 대해서 대미지가 적은 광학재료의 개발이 열망되고 있었다.
상기와 같은 요망을 만족하는 광학재료로서는, 일본국 특개평 6-227827호 공보에 개시된 것이 알려져 있다. 즉, 상기 공보에 개시된 광학재료는, 유리형성원료를 화염가수분해시켜서 얻게되는 석영유리미립자를 베이스재에 퇴적·성장시켜서 형성된 다공질석영유리체를 가열해서 얻게되는 투명석영유리에 있어서, 이 투명석영유리속의 OH함유량이 10ppm이하로서, 할로겐을 400ppm이상 함유하고, 또한 수소를 함유하는 것을 특징으로 하는 것이다.
또, 상기 요망에 부응하는 광학재료로서 본 발명자는, 일본국 특공평 6-48734호 공보에서 수소가스농도가 적어도 5×1016(molecules/㎤)이상, OH기농도가 100wtppm이상의 레이저광용광학부재를, 또 일본국 특공평 6-27013호 공보에서 수소가스농도가 적어도 5×1016(molecules/㎤)이상, OH기농도가 50wtppm이상, 가상온도에 의거한 굴절율변동분포에서 OH기의 농도분포에 의거한 굴절율변동분포를 제거하고, 실질적으로 굴절율변동분포가 없는 합성실리카유리광학체를 제안하였다.
그러나, 상기 광학재료를 예를 들면, 직경 200㎜×두께 30㎜를 초과하는 대형광학소자로하면, 함유하는 수소분자, OH기농도 및 할로겐에 불균일분포가 일어나기 쉽고, 엑시머레이저, 엑시머램프조사하에 있어서, 투과율, 굴절율이 변화하여 광학특성의 저하가 일어난다. 또, OH기농도가 100wtppm이상과 고농도로 실리카유리광학재료에 함유되면, 진공자외영역에서 초기투과율이 낮아지고, 내구성의 저하가 일어난다. 즉, 상기 공보에서 제안된 광학재료는 155∼195㎚영역의 초기투과율이 낮고, 내구성도 부족했다는 문제가 있었다. 또, 일본국 특개평 6-227827호 공보에 개시된 광학재료에서는, 할로겐전반을 사용하고 있으나, 할로겐중에서도 Cl등에 있어서는, 자외선조사에 의해 결함을 생성하기 쉽고, 목적으로 하는 스펙트럼영역에서 투과율등, 광학재료의 성능을 열화시킨다는 큰 문제점을 안고 있었다.
그래서, 본 발명자등은 예의 연구를 계속한 결과, 광학재료에 함유되는 불순물농도를 상기 공보기재의 광학재료보다 더욱 고순도로하고, OH기농도, 수소분자농도를 특정의 범위로하고, 또한 그들의 농도분포를 균일하게 한 다음에, 할로겐중에서 F를 특히 선택하고, 또한 F농도를 상기 종래기술보다 적은 양의 특정범위량으로 함으로써, 투과율이 높고, 굴절율변동폭△n가 작으며, 엑시머레이저나 엑시머램프의 장시간조사에 대한 내구성에도 뛰어난 합성실리카유리광학재료를 얻을 수 있는 것을 발견하였다. 또, 상기 합성실리카유리광학재료속의 OH기농도와 수소분자농도를 상기 범위보다 더욱 좁은 범위로 한정함으로써 특히 파장 155∼195㎚의 엑시머레이저에 대해서도 초기투과율이 높고, 내구성도 높게 유지할 수 있는 것도 발견하여, 본 발명을 완성한 것이다.
즉, 본 발명은, 파장 155∼195㎚의 엑시머레이저, 엑시머램프에 대해서 초기투과율이 높고, 굴절율변동폭△n이 작으며, 또한 장시간조사하에서의 내구성에 뛰어난 실리카유리광학재료를 제공하는 것을 목적으로 한다.
상기 과제는, 본 발명의 하기(1)∼(13)의 어느 하나에 기재된 구성에 의해 달성된다.
(1) 파장 155∼195㎚의 엑시머레이저 및 엑시머램프로부터의 광선용실리카유리광학재료로서, 초고순도이며, OH기를 1∼100wtppm, H2를 5×1016∼5×1019분자/㎤, 및 F를 10∼10,000wtppm을 함유하고, F이외의 할로겐을 실질적으로 함유하지 않고, 또한 굴절율변동폭△n이 3×10-6∼3×10-7인 것을 특징으로 하는 실리카유리광학재료.
(2) OH기 농도변동폭 △OH가 30wtppm이내, 또한 F농도변동폭△F가 50wtppm이내인 상기 (1)의 실리카유리광학재료.
(3) H2농도변동폭△H2가 3×1017분자/㎤이내인 상기 (1) 또는 (2)의 실리카유리광학재료.
(4) OH기를 12∼100wtppm, H2를 3×1017∼1×1019분자/㎤을 함유하는 (1)∼(3)의 어느 하나의 실리카유리광학재료.
(5) F를 10∼380wtppm을 함유하는 상기 (1)∼(4)의 어느 하나의 실리카유리광학재료.
(6) 불순물로서, Li, Na 및 K가 각 5wtppm이하, Ca 및 Mg가 각 1wtppb이하, Cr, Fe, Ni, Mo 및 W가 각 0.1wtppb이하 함유하는 초고순도인 상기 (1)∼(5)의 어느 하나의 실리카유리광학재료.
(7) 7.6eV흡수대(帶)를 생성하는 산소결손형 결함의 농도가 1×1017개/㎤이하인 상기 (1)∼(6)의 어느 하나의 실리카유리광학재료.
(8) Cl함유량이 10wtppm이하인 상기 (1)∼(7)의 어느 하나의 실리카유리광학재료.
(9) 엑시머레이저 또는 엑시머램프로부터의 광선이 광로길이가 30㎚이상인 광학소자에 사용하는 상기 (1)∼(8)의 어느 하나의 실리카유리광학재료.
(10) 파장 155∼195㎚의 엑시머레이저 및 엑시머램프로부터의 광선용 실리카유리광학재료로서, 초고순도이며, OH기를 1∼100wtppm, H2를 5×1016∼1×1019분자/㎤, 및 F를 50∼10,000wtppm을 함유하고, F이외의 할로겐을 실질적으로 함유하지 않고, 그리고 OH기량을 a, F량을 b로 했을때, a와 b의 합계량이 100wtppm이상이며, 또한 b/a가 1∼1000을 만족하는 것을 특징으로 하는 실리카유리광학재료.
(11) b/a가 10∼100인 상기 (10)의 실리카유리광학재료.
(12) 규소화합물의 화염가수분해법에 의해, OH기함유백색수우트체를 만들고, 다음에 상기 수우트체를 불소함유가스분위기열처리에 의해 불소도프처리를 행하고, OH기와 불소를 함유하는 백색수우트체로하고, 다음에 투명유리화처리를 행하고, 다음에 화염가열성형에 의해 막대형상투명실리카유리체로하고, 이것을 화염가열에 의해 띠(帶)용융회전교반처리를 행하여 OH기와 불소의 농도분포를 균일화하고, 다음에 어닐처리에 의해 왜곡제거를 행하고, 최후에 수소분자함유가스분위기열처리에 의해 수소가스도프처리를 행하는 것을 특징으로 하는 실리카유리광학재료의 제조방법.
(13) 어닐처리를 수소분자함유가스분위기에서 행함으로써, 어닐처리와 수소가스도프처리를 동시에 행하는 상기(12)의 실리카유리광학재료의 제조방법.
본 발명은, 초고순도, OH기함유, 불소F함유, 용존수소가스, 굴절율변동폭△n의 5개의 물성조합에 의해, 더한층의 내엑시머레이저성, 내엑시머램프성의 향상 및 엑시머레이저 및 엑시머램프를 사용해서의 가공정밀도의 향상을 달성하였다.
5개의 물성조합이 필요한 이유로서는 다음과 같다.
초고순도에 대해서, 실리카유리속의 불순물금속농도를 적게함으로써 진공자외 영역에서의 투과율의 향상과 자외선조사시의 에너지흡수를 적게할 수 있다. Li, Na, K는 각각 5wtppb이하, Ca, Mg는 각각 1wtppb이하, Cr, Fe, Ni, Mo, W는 각각 0.1wtppb이하로 하는 것이다. Li, Na, K, Ca, Mg는 각종 내열성세라믹스의 불순물로서 함유되어 있으며, 실리카유리제조시에 오염원소가 되기쉽고, Cr, Fe, Ni, Mo, W는 플랜트의 구조재의 조성물, 특히 Mo와 W는 내열성금속원소로서 사용되어 있고, 역시 오염원소가 되기 쉽다.
OH기는, 유리그물코구조의 종단부이며 적량함유함으로써 구조를 릴랙스시켜, Si-O-Si의 결합각도를 안정치에 접근시킨다. 그러나 OH기가 고농도로 함유되면 진공자외영역에서의 투과율저하의 원인이 된다. 따라서, OH기함유량은 1∼100wtppm, 특히 단위면적당의 조사에너지밀도가 높고 조건이 엄한 155∼195㎚의 엑시머레이저용으로는 12∼100wtppm가 좋다.
F는, OH기와 마찬가지로 유리그물코구조종단부가 된다. 또 F는, 다른할로겐과 달라 고농도로 함유시켜도 진공자외영역에서의 투과율저하의 원인이 되지 않는다. 그러나, OH기를 완전히 함유하지 않고 F만을 고농도로 함유하는 유리는 가열처리에 의해 분해하고, F2가스발생이나 산소결손형생성에 의한 7.6eV(약 165㎚)흡수대를 발생한다. 따라서, OH기와 F를 동시에 함유시켜 유리의 열분해와 산소결손형결함의 생성을 억제하는 것이 중요하게 된다.
이런 관점에서는, OH기의 양을 a, F량을 b로 했을때, a와 b의 합계량이 100wtppm이상이며, 또한 b/a가 1∼1000을 만족하는 것이 바람직하다. 상기 b/a의 값은 특히 10∼100이 바람직하다. 이 경우, OH기를 1∼100wtppm, 특히 12∼100wtppm, F을 50∼10,000wtppm, 특히 50∼380wtppm함유하고 있는 것이 바라직하다.
또한, 본 발명의 광학재료에 있어서는, F이외의 할로겐을 실질적으로 함유하지 않고, 특히, Cl에 있어서는, 엑시머레이저나 엑시머램프의 조사에 의해서 유리의 진공자외영역(엑시머레이저의 파장영역)에서의 투과율의 저하를 생기게함으로, 그 함유량이 10wtppm이하인 것이 바람직하다.
용존수소가스 즉 광학재료중의 수소분자 H2는, 자외선조사에 의한 E'센터(이-블라임센터라 호칭하고 약 215㎚흡수대를 표시함)나 NBOH센터(논브리징, 옥시디엔, 홀센터라 호칭하고 약 260㎚ 및 약 630㎚흡수대를 표시한 것으로 되어 있다)의 생성을 억제하는 작용(S. Yamagata, Mineralogical Journal, Vol 115, No.8, 1991, pp.333-342에 표시함)이 있고, 그 함유량은, 5×1016∼5×1019분자/㎤, 특히 3×1017∼1×1019분자/㎤인 것이 바람직하다.
광학재료가, 상기 특개평 6-227827호 공보에 개시된 광학재료와 같이 포토마스크와 같은 두께(레이저가 통과하는 광로길이)기껏해야 2∼3㎜정도의 제품에 사용되는 경우에는 문제로 되지 않으나, 두께가 30㎜이상의 제품 즉 렌즈와 같은 광학소자에서는, 굴절율변동폭 △n가 크면, 그것을 사용해서의 가공정밀도가 저하하기 때문에 상기 △n은 가능한한 작은 쪽이 좋다. 그러나, 특히 상기한 바와 같이, F를 고농도로 도프시키면, 농도분포에 의해 △n이 증대해 버린다고 하는 문제를 새로이 보고 알게 되었다. 그래서, 본 발명의 광학재료에 있어서는, 후술하는 제조법에서 설명하는 처리를 행함에 따라서, 굴절율변동폭△n을 3×10-6∼3×10-7이라는 작은 값으로 설정했다.
이와 같이, △n의 값이 작다는 것은, 재료의 밀도변동도 작은것을 의미하고, 그 결과, 수소가스를 균일농도로 용존시키는 것이 가능하게 된다. △n이 3×10-6이하라는 것은, 전제로해서 적어도 1방향맥리(Striae)프리인 것이 필요하게 된다. △n치가 큰 유리에서는 OH기나 F의 농도분포가 불균일하고, 포화수소가스농도는 이들 OH기나 H의 농도에 영향되고 있는 것으로 추정하고 있다.
이상으로부터, 본 발명의 광학재료에서는, OH기 농도변동폭 △OH가 30wtppm이내, 또한, F농도변동폭 △F가 50wtppm이내인 것이 바람직하고, 또, H2농도변동폭△H2가 3×1017분자/㎤이내인 것이 바람직하다. 또, 7.6eV흡수대를 생성하는 산소결손형결합의 농도는, 1×1017개/㎤이하인 것이 바람직하다.
다음에, 이상 설명한 본 발명의 실리카유리광학재료의 제조방법에 대해서 설명한다.
본 발명의 실리카유리광학재료를 제조하는 데는, 먼저 규소화합물을 원료로하는 화염가수분해법에 의한 OH기함유백색수우트체를 합성한다.
상기 규소화합물로서는, SiCl4, SiHCl3, SiH2Cl2, SiCH3Cl3, Si(CH3)2Cl2, SiF4, SiHF3, SiH2F2등을 사용할 수 있다. 화염으로서는, 산수소화염, 프로판산소화염 등을 사용할 수있다. 이어서, 얻게된 OH기함유백색수우트체를 불소함유가스분위기 열처리에 의해 불소도프처리한다.
불소함유가스로서는, SiF4, CHF3, SF6등을 0.1∼100Vol.%함유하는 가스를 사용하는 것이 바람직하다. 처리온도는 400∼1200℃, 압력은 0.1∼10㎏f/㎠으로 하는 것이 바람직하다.
이후, 상기 백색수우트체의 투명유리화처리를 행한다. 이 처리는, 0.1㎏f/㎠이하의 감압분위기(He를 함유해도 된다)하에서, 온도 1400∼1600℃에서 행하는 것이 바람직하다.
계속해서, 화염가열에 의한 막대형상투명실리카유리체에의 성형 및 띠용융회전교반처리를 행한다. 이들 처리는, USP2904713, USP3128166, USP3128169, USP3483613 등에 표시된 방법을 사용해서 행할 수 있다. 특히, 상기한 바와 같이, 굴절율변동폭△n이 3×10-6∼3×10-7이 되도록 충분히 행한다.
이후, 왜곡제거를 위한 어닐처리를 행한다. 이 처리의 분위기로서는, 일반적으로는 대기가 사용되어 있고, 그외 불활성가스분위기도 사용할 수 있다. 처리온도는, 900∼1200℃에서, 1∼100시간정도 유지하고, 그후 500℃이하까지 1℃/hr∼10℃/hr에서, 서서히 냉각한다.
최후에, 수소분자함유분위기열처리에 의한 수소가스도프처리를 행한다. 수소분자함유분위기로서는, 수소가스 100%, 또는 Ar 등의 희가스와 수소가스와의 혼합가스분위기를 사용하는 것이 바람직하다. 처리온도는 100∼800℃, 특히 200∼400℃인 것이 바람직하다. 상기 온도범위보다 고온이면 환원작용이 강하게 되어, 산소결손형 결함을 생성시키고, 저온이면 수소가스의 투명유리체에의 확산용존에의 시간이 지나치게 걸린다.
처리압력은, 대기압의 약 1㎏f/㎠부터 100㎏f/㎠이 바람직하다. 수소가스 100%이고 1㎏f/㎠에서의 투명유리체의 수소가스포화용존농도는 약 1×1017∼4×1017분자/㎤, 10㎏f/㎠, 100㎏f/㎠에서는 각각 1×1018∼4×1018, 1×1019∼4×1019분자/㎤이다.
또한, 얻게된 재료는, 외표면을 연삭하여 소망하는 형상으로 된다.
(실시예)
먼저, 4염화규소 SiCl4를 원료로하고, 산수소화염가수분해법에 의해, OH기함유백색수우트체를 합성하였다.
이어서, 얻게된 OH기함유백색수우트체를, SiF450%함유가스분위기에서, 1㎏/㎠(거의 대기압과 동일함), 700∼1200℃의 범위의 조건하에서의 가열처리에 의한 불소도프처리를 행하였다. 이때, 열처리온도를 처리시간을 여러가지로 바꾸어서, 표 1 및 표 2에 표시한 바와 같이 각 실시예 및 각 비교예의 실리카유리광학재료의 OH기 및 F량을 변화시켰다.
계속해서, 백색수우트체를, 0.001㎏f/㎠이하의 진공(감압)분위기하에서, 온도 1400∼1600℃에서 가열해서 투명유리화했다.
이후, 프로판가스화염가열에 의해, 재료를 연화시켜서, 단면형상이 거의 원형의 막대형상재료로 했다. 이 막대형상재료의 길이는 약 2m이며, 직경은 약 60㎜로 했다. 이 막대형상재료의 양끝을 유지하고, 프로판가스화염가열로 국소적으로 가열하면서 비틀고, 띠용융회전교반처리를 행하였다. 가열은, 재료가 2000℃정도로 되게 행하였다. 이 띠용융회전교반처리에 의해, 각재료를 1방향맥리프리의 투명유리체로 했다. 또한, 비교예 3은, 이 띠용융회전교반처리를 행하지 않는 이외는, 조성 등이 실시예 3의 재료와 동일한 것이다.
이후, 투명유리체를 치수, 직경 300㎜, 두께 약 70㎜로 가열성형하고, 이어서, 전기로내에 설치하여, 대기분위기하, 1150℃, 20시간유지후, 4℃/hr에서 800℃까지 서서히 냉각하고, 그후, 전기로전원을 끊고 자연냉각해서 어닐처리를 행하였다.
다음에, 투명유리체를 스테인레스스틸자켓, 텅스텐메시히터의 전기로내에 설치하고, 수소 100%분위기하, 400℃가압하에서 수소가스도프처리를 행하였다. 이때, 압력을 1㎏f/㎠ 또는 10㎏f/㎠으로 변화시켜서, 각재료의 용존수소량을 표에 표시한 바와 같이 변화시켰다.
최후에, 투명유리체의 외표면을 연삭하고, 실시예 및 비교예의 직경 250㎜, 두께 50㎜의 원기둥체의 샘플을 얻었다.
비교예 1에서는, 실시예 1과 동일한 조건에 의해 OH기함유백색수우트를 합성한 후, SiF4100%가스분위기, 1㎏f/㎠, 1100℃의 조건에서 가열처리를 행하여 F도프 OH기프리로한 이외는 실시예1이나 2와 동일한 조건에서 회전교반처리, 수소도프처리를 행하고 샘플을 얻었다.
비교예 2에서는, 수소가스도프처리를 행하지 않은 것이외는 실시예 3이나 4와 마찬가지로해서 샘플을 얻었다. 얻게된 유리는, 수소가스를 용존하고 있지 않는 유리였다.
비교예 3에서는, 상기한 바와 같이 회전교반처리를 행하지않는 것이외는, 비교예 2와 마찬가지조건에서 샘플을 얻었다.
비교예 4에서는, F도프처리를 행하지 않고, 그 대신에 Cl2100%가스분위기에서 Cl도프를 행한 이외는 실시예 2와 마찬가지로해서 샘플을 얻었다. 얻게된 유리는 Cl을 900wtppm함유하고 있었다.
비교예 5에서는, 단지 F도프처리를 행하지 않는 것이외는 실시예와 마찬가지로해서 샘플을 얻었다. 얻게된 유리는 OH기를 300wtppm함유하고 있었다. 상기 실시예 및 비교예의 샘플에 대해, 상기의 OH기농도외의, OH기농도변동폭 △OH, F농도 및 F농도변동폭 △F, Cl농도, 용존수소농도 및 용존수소농도변동폭 △H2, 산소결손형결함농도, 굴절율변동폭△n, 왜곡량, 레이저 및 램프로부터의 광선조사전후의 투과율, 및 레이저 및 램프조사후의 균질성, 즉 △n치와 왜곡량을 측정하였다. 그 결과를 각표에 표시하였다. 또, 실시예 1, 2, 4, 5 및 비교예 3의 샘플의 유리의 불순물함유량을 표 5에 표시하였다.
상기 실시예 및 비교예의 각 물성치등의 측정법은 하기의 방법에 의한다.
(i) OH기농도의 측정법
D.M. DODD and D.B. FRASE R, Optical determination of OH in fused silica, Journal of Applied Physics, Vol.37(1966)P.3911 문헌기재의 측정법.
(ii) OH기농도변동폭 및 평균치의 측정법
직경 250㎜, 두께 50㎜의 원기둥형상실리카유리광학재료에 있어서, 회전대칭축방향에서 보아서 직경방향으로 10㎜간격에서 25점의 OH기농도측정을 행한다.
25점의 OH기농도의 최대치와 최소치로부터 광학재료전체에 있어서의 OH기농도변동폭(△OH)을, 25점의 OH기농도의 산출평균치로부터 OH기평균농도를 계산하는 측정법.
(iii) 수소분자농도의 측정법
V. K. KHOTIMCHENKO, et al., Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry, Journal of Applied Spectroscopy, Vo.46, No.6(1987) pp632∼635의 문헌기재의 측정법.
(iv) 수소분자농도변동폭 및 평균치의 측정법
직경 250㎜, 두께 50㎜의 원기둥형상실리카유리광학재료에 있어서, 회전대칭축방향에서 보아서 직경방향으로 10㎜간격에서 25점의 H2농도측정을 행한다. 25점의 H2농도의 최대치와 최소치로부터 광학재료전체에 있어서의 H2농도변동폭(△H2)을, 25점의 H2농도의 산술평균치로부터 H2평균농도를 계산하는 측정법.
(v) 염소농도의 측정법
HF수용액에 의해 분해후, AgNO3첨가에 의한 비탁(比濁)법에 의한 측정법.
(vi) 불소농도의 측정법
NaOH수용액으로 분해후, 이온전극법에 의해 측정한다.
(vii) 불소농도변동폭 및 평균치의 측정법
직경 250㎜, 두께 50㎜의 원기둥형상실리카유리광학재료에 있어서, 회전대칭축방향에서 보아서 직경방향으로 10㎜간격에서 25점의 F농도측정을 행한다. 25점의 F농도의 최대치와 최소치로부터 광학재료전체에 있어서의 불소농도변동폭(△F)를, 25점의 F농도의 산술평균치로부터 농도평균치를 계산하는 방법.
(Viii) 실리카유리속의 불순물측정
Na, K, Mg, Ca, Fe는 원자흡수광 광도법에 의한 측정법, Li, Cr, Ni, Mo, W는 플라즈마질량분석법에 의해 측정(ICP-MS법).
(ix) 굴절율변동폭(△n)의 측정법
He-Ne레이저(633㎚)를 광원으로 하는 광간섭법에 의한 측정법. 단, 직경 230㎜영역에 있어서의 값을 표시한다.
(x) 복굴절량(왜곡량)의 측정법.
편광판왜곡계를 사용한 지연측정법, 단. 직경 230㎜영역에 있어서의 값을 표시한다.
(xi) ArF엑시머레이저조사후의 193㎚의 투과율의 측정법.
사이즈 30×20×두께 10㎜, 양면경면연마마무리한 샘플에 파장 193㎚, 파장절반길이값폭 3㎚, 펄스수명절반값폭 17nSec, 에너지밀도 30mJ/㎠/shot, 주파수 200㎐에서 조사쇼트수 1×106shot의 레이저조사된 직후 3분후의 193㎚에서의 투과율을 측정하는 측정법.
(xii) Xe2엑시머램프조사후의 파장 172㎚의 투과율의 측정법.
사이즈 30×20×두께 10㎜, 양면경면연마마무리된 샘플에 파장 172㎚, 파장절반값폭 14㎚, 램프에너지밀도 10㎽/㎠에서 14일간 조사한 직후 3분간의 172㎚에서의 투과율을 측정하는 측정법.
(xiii) 산소결손형 결함농도의 측정법.
H. Hosono, et al., Experimental evidence for the Si-Si bond model of the 7.6 eV band in SiO2glass, Physical Review B, Vol. 44, No.21, (1991) pp.12043-12045의 문헌기재의 측정법.
실시예
실험번호 실시예 4 실시예 5 실시예 6
치수(직경×두께)(㎜) 250×50 250×50 250×50
OH기평균농도(a)(wt ppm) 20 50 100
△OH(wt ppm) 2 5 10
F 평균농도 (b)(wt ppm) 900 300 200
a+b 920 350 300
b/a 45 6 2
△F(wt ppm) 20 10 5
Cl농도(wt ppm) <10 <10 <10
H2평균농도(분자/㎤) 3×1018 3×1017 3×1017
△H2(분자/㎤) 2×1017 <5×1016 <5×1016
산소결손형결함농도(개/㎤) <1×1017 <1×1017 <1×1017
굴절율변동폭(△n) 7×10-7 4×10-7 1×10-6
왜곡량(㎚/㎝) <1 <1 <1
ArF레이저조사 조사전투과율(%) 90 90 90
조사후투과율(%) 90 90 89
Xe2램프조사 조사전투과율(%) 88 87 85
조사후투과율(%) 88 86 83
비 고
비교예
실험번호 비교예 1 비교예 2 비교예 3 비교예 4
치수(직경×두께)(㎜) 250×50 250×50 250×50 250×50
OH기평균농도(a)(wt ppm) <1 20 20 20
△OH(wt ppm) <1 2 10 2
F 평균농도 (b)(wt ppm) 1600 900 900 <10
a+b 1600 920 920 <30
b/a >1000 45 45 <0.5
△F(wt ppm) 100 20 300 <10
Cl농도(wt ppm) <10 <10 <10 900
H2평균농도(분자/㎤) 3×1017 <5×1016 3×1017 3×1017
△H2(분자/㎤) <5×1016 <5×1016 5×1017 <5×1016
산소결손형결함농도(개/㎤) 1×1018 <1×1017 <1×1017 <1×1017
굴절율변동폭(△n) 4×10-5 1×10-5 8×10-5 1×10-5
왜곡량(㎚/㎝) 1 <1 5 <1
ArF레이저조사 조사전투과율(%) 90 90 90 90
조사후투과율(%) 75 60 88-80 78
Xe2램프조사 조사전투과율(%) <5 88 88 88
조사후투과율(%) <5 54 85-80 64
비 고 F도프OH기프리 수소분자프리 회전교반처리없음 F프리CL도프
비교예
실험번호 비교예 5 비교예 6 비교예 7
치수(직경×두께)(㎜) 250×50 250×50 250×50
OH기평균농도(a)(wt ppm) 300 25 120
△OH(wt ppm) 30 ≤1 10
F 평균농도 (b)(wt ppm) <10 50 40
a+b 300 55 160
b/a 0 10 0.3
△F(wt ppm) <10 <10 <10
Cl농도(wt ppm) <10 <10 <10
H2평균농도(분자/㎤) 3×1017 3×1017 3×1017
△H2(분자/㎤) 2×1017 <5×1016 <5×1016
산소결손형결함농도(개/㎤) <1×1017 <1×1017 <1×1017
굴절율변동폭(△n) 2×10-6 3×10-6 2×10-6
왜곡량(㎚/㎝) <1 5 3
ArF레이저조사 조사전투과율(%) 89 90 90
조사후투과율(%) 88 80 85
Xe2램프조사 조사전투과율(%) 82 88 84
조사후투과율(%) 62 78 73
비 고 F프리OH기도프 a+b<100 b/a<1
불순물분석치
원소 실시예1 실시예2 실시예4 실시예5 비교예3
Li 2 1 1 1 1
Na 4 3 4 3 4
K 3 2 2 1 2
Ca 1 1 1 0.1 0.1
Mg <0.1 <0.1 0.5 <0.1 <0.1
Cr <0.1 <0.1 <0.1 <0.1 <0.1
Fe 0.1 <0.1 <0.1 <0.1 <0.1
Ni <0.1 <0.1 <0.1 <0.1 <0.1
Mo 0.1 0.1 <0.1 <0.1 <0.1
w 0.1 0.1 <0.1 <0.1 <0.1
표에서 명백한 바와 같이, 실시예 2, 3, 4는 특히 내 ArF엑시머레이저성에 뛰어나있고, 또, 이들 실시예 2, 3, 4는 특히 내 Xe2엑시머램프성에도 뛰어나 있었다.
또 실시예 1∼6의 유리는 엑시머광조사후도 △n치는 3×10-6이하, 왜곡량도 1㎚/㎝이하라는 높은 균질성을 표시했다.
한편, 비교예 1에서는, OH기를 함유하지 않고, F를 1600wtppm함유하는 유리였기때문에, 각종 가열처리에 의해 유리가 분해해서 F2가스를 발생하고, 7.6eV흡수대를 표시한 산소결손형결함을 생성하고, 내엑시머광성이 불량했다.
비교예 2에서는, 수소가스를 용존하고 있지 않는 유리이기때문에, 내엑시머광성이 좋지 않았다.
비교예 3에서는, 띠용융회전교반처리를 행하지 않았기 때문에, △OH, △F, △H2의 값이 다른것과 비교해서 크게되어 있고, △n의 값도 큰수치이다. 또 내엑시머광성도유리의 부위에 따라서 변화가 큰것이었다.
비교예 4에서는, Cl을 900wtppm함유하여 F프리의 것이기 때문에, 엑시머광조사에 의해서 광의 투과율이 격감해 버렸다.
비교예 5에서는, F도 Cl도 함유하지 않으며, OH기를 300wtppm라는 과잉함유하는 것이기 때문에, 자외선흡수끝이 장파장쪽에 시프트하고 있고, 내엑시머광성도 불량했다.
비교예 6에서는, a+b가 55wtppm로 부족했기 때문에, 내엑시머광성이 나쁘고, 왜곡량도 큰것이었다.
비교예 7에서는, b/a가 0.3으로 과소하기 때문에, 특히 내 Xe2엑시머램프성이 불량하였다.
이상에 의해, 본 발명의 실리카유리광학재료의 효과는 명백한 것이다.
즉, 본 발명은, 파장 155∼195㎚의 엑시머레이저, 엑시머램프에 대해서 초기투과율이 높고, 굴절율변동폭 △n이 작으며, 또한 장시간 조사하에서의 내구성에 뛰어난 실리카유리광학재료를 제공할 수 있어, 그 공업적가치는 큰 것이다.

Claims (13)

  1. 파장 155∼195㎚의 엑시머레이저 및 엑시머램프로부터의 광선용실리카유리광학재료로서, 초고순도이며, OH기(基)를 1∼100wtppm, H2를 5×1016∼5×1019분자/㎤, 및 F를 10∼10,000wtppm을 함유하고, F이외의 할로겐을 실질적으로 함유하지 않고, 또한 굴절율변동폭△n이 3×10-6∼3×10-7인 것을 특징으로 하는 실리카유리광학재료.
  2. 제 1항에 있어서, OH기 농도변동폭 △OH가 30wtppm이내, 또한 F농도변동폭△F가 50wtppm이내인 실리카유리광학재료.
  3. 제 1항 또는 제 2항에 있어서, H2농도변동폭△H2가 3×1017분자/㎤이내인 실리카유리광학재료.
  4. 제 1항∼제 3항의 어느 한 항에 있어서, OH기를 12∼100wtppm, H2를 3×1017∼1×1019분자/㎤을 함유하는 실리카유리광학재료.
  5. 제 1항∼제 4항의 어느 한 항에 있어서, F를 10∼380wtppm을 함유하는 실리카유리광학재료.
  6. 제 1항∼제 5항의 어느 한 항에 있어서, 불순물로서, Li, Na 및 K가 각 5wtppb이하, Ca 및 Mg가 각 1wtppb이하, Cr, Fe, Ni, Mo 및 W가 각 0.1wtppb이하 함유하는 초고순도인 실리카유리광학재료.
  7. 제 1항∼제 6항의 어느 한 항에 있어서, 7.6eV흡수대(帶)를 생성하는 산소결손형 결함의 농도가 1×1017개/㎤이하인 실리카유리광학재료.
  8. 제 1항∼제 7항의 어느 한 항에 있어서, Cl함유량이 10wtppm이하인 실리카유리광학재료.
  9. 제 1항∼제 8항의 어느 한 항에 있어서, 엑시머레이저 또는 엑시머램프로부터의 광선이 광로길이가 30㎜이상인 광학소자에 사용하는 실리카유리광학재료.
  10. 파장 155∼195㎚의 엑시머레이저 및 엑시머램프로부터의 광선용 실리카유리광학재료로서, 초고순도이며, OH기를 1∼100wtppm, H2를 5×1016∼1×1019분자/㎤, 및 F를 50∼10,000wtppm을 함유하고, F이외의 할로겐을 실질적으로 함유하지 않고, 그리고 OH기량을 a, F량을 b로 했을때, a와 b의 합계량이 100wtppm이상이며, 또한 b/a가 1∼1000을 만족하는 것을 특징으로 하는 실리카유리광학재료.
  11. 제 10항에 있어서, b/a가 10∼100인 실리카유리광학재료.
  12. 규소화합물의 화염가수분해법에 의해, OH기함유백색수우트체를 만들고, 다음에 상기 수우트체를 불소함유가스분위기열처리에 의해 불소도프처리를 행하고, OH기와 불소를 함유하는 백색수우트체로하고, 다음에 투명유리화처리를 행하고, 다음에 화염가열성형에 의해 막대형상투명실리카유리체로하고, 이것을 화염가열에 의해 띠(帶)용융회전교반처리를 행하여 OH기와 불소의 농도분포를 균일화하고, 다음에 어닐처리에 의해 왜곡제거를 행하고, 최후에 수소분자함유가스분위기열처리에 의해 수소가스도프처리를 행하는 것을 특징으로 하는 실리카유리광학재료의 제조방법.
  13. 제 12항에 있어서, 어닐처리를 수소분자함유가스분위기에서 행함으로써, 어닐처리와 수소가스도프처리를 동시에 행하는 실리카유리광학재료의 제조방법.
KR1019990048058A 1999-10-19 1999-11-01 엑시머레이저 및 엑시머램프용의 실리카유리광학재료 및그 제조방법 KR100359947B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1999-296101 1999-10-19
JP11296101A JP3069562B1 (ja) 1999-10-19 1999-10-19 エキシマレ―ザ及びエキシマランプ用のシリカガラス光学材料及びその製造方法

Publications (2)

Publication Number Publication Date
KR20010039472A true KR20010039472A (ko) 2001-05-15
KR100359947B1 KR100359947B1 (ko) 2002-11-04

Family

ID=17829155

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990048058A KR100359947B1 (ko) 1999-10-19 1999-11-01 엑시머레이저 및 엑시머램프용의 실리카유리광학재료 및그 제조방법

Country Status (7)

Country Link
US (1) US6451719B1 (ko)
EP (1) EP1094040B8 (ko)
JP (1) JP3069562B1 (ko)
KR (1) KR100359947B1 (ko)
AT (1) ATE354548T1 (ko)
DE (1) DE60033481T2 (ko)
TW (1) TW593191B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811391B1 (ko) * 2004-03-25 2008-03-07 우시오덴키 가부시키가이샤 엑시머 램프

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694554B1 (ko) * 1999-03-25 2007-03-13 아사히 가라스 가부시키가이샤 광학부재용 합성석영유리와 그 제조방법 및 사용방법
JP3228732B2 (ja) * 1999-11-24 2001-11-12 信越石英株式会社 真空紫外線リソグラフィーに用いられる投影レンズ用シリカガラス光学材料の製造方法
US6990836B2 (en) 2000-02-23 2006-01-31 Shin-Etsu Chemical Co., Ltd. Method of producing fluorine-containing synthetic quartz glass
JP2001270731A (ja) 2000-03-28 2001-10-02 Nikon Corp 合成石英ガラス部材及びこれを用いた光リソグラフィー装置
JP4500411B2 (ja) * 2000-04-24 2010-07-14 株式会社オハラ 紫外線用石英ガラスおよびその製造方法
JP4700787B2 (ja) * 2000-06-27 2011-06-15 株式会社オハラ 合成石英ガラスおよびその製造方法
US6828262B2 (en) * 2000-07-31 2004-12-07 Corning Incorporated UV photosensitive melted glasses
US6844277B2 (en) * 2000-07-31 2005-01-18 Corning Incorporated UV photosensitive melted glasses
JP2002114531A (ja) * 2000-08-04 2002-04-16 Sumitomo Electric Ind Ltd フッ素添加ガラス
US6683019B2 (en) * 2001-06-13 2004-01-27 Abb Lummus Global Inc. Catalyst for the metathesis of olefin(s)
US20050124839A1 (en) * 2001-06-13 2005-06-09 Gartside Robert J. Catalyst and process for the metathesis of ethylene and butene to produce propylene
JP4744046B2 (ja) * 2001-09-28 2011-08-10 信越石英株式会社 合成石英ガラス材料の製造方法
JP4104338B2 (ja) * 2002-01-31 2008-06-18 信越石英株式会社 ArF露光装置用合成石英ガラス素材
EP1498394B1 (en) * 2002-04-23 2009-10-14 Asahi Glass Company Ltd. Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
US20040118155A1 (en) * 2002-12-20 2004-06-24 Brown John T Method of making ultra-dry, Cl-free and F-doped high purity fused silica
JP2004269287A (ja) 2003-03-06 2004-09-30 Shinetsu Quartz Prod Co Ltd 光学用合成石英ガラス部材及びその製造方法
JP4453335B2 (ja) * 2003-10-22 2010-04-21 富士ゼロックス株式会社 光回路パターン及び高分子光導波路の製造方法
US6992753B2 (en) * 2003-12-24 2006-01-31 Carl Zeiss Smt Ag Projection optical system
US7534733B2 (en) * 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage
DE102004009577B3 (de) * 2004-02-25 2005-03-03 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung eines optischen Bauteils
JP4462557B2 (ja) * 2004-10-15 2010-05-12 コバレントマテリアル株式会社 フォトマスク用合成シリカガラス基板の製造方法、その方法によるフォトマスク用合成シリカガラス基板
US7589039B2 (en) * 2004-12-29 2009-09-15 Corning Incorporated Synthetic silica having low polarization-induced birefringence, method of making same and lithographic device comprising same
US7506521B2 (en) * 2004-12-29 2009-03-24 Corning Incorporated High transmission synthetic silica glass and method of making same
US7506522B2 (en) * 2004-12-29 2009-03-24 Corning Incorporated High refractive index homogeneity fused silica glass and method of making same
TWI312768B (en) * 2004-12-30 2009-08-01 Corning Incorporate Synthetic silica having low polarization-induced birefringence, method of making same and lithographic device comprising same
US7928026B2 (en) * 2005-06-30 2011-04-19 Corning Incorporated Synthetic silica material with low fluence-dependent-transmission and method of making the same
JP2007031217A (ja) * 2005-07-28 2007-02-08 Shinetsu Quartz Prod Co Ltd エキシマuvランプ装置用大型合成石英ガラス板
DE102006043368B4 (de) * 2005-09-16 2019-01-10 Corning Inc. Synthetisches Kieselsäureglas und Verfahren zur Herstellung desselben
US7964522B2 (en) 2006-08-31 2011-06-21 Corning Incorporated F-doped silica glass and process of making same
JP2008063181A (ja) * 2006-09-07 2008-03-21 Shin Etsu Chem Co Ltd エキシマレーザー用合成石英ガラス基板及びその製造方法
CN101730667B (zh) * 2007-05-09 2013-03-27 康宁股份有限公司 Oh、od含量低的玻璃
EP2351712B1 (en) 2008-10-06 2014-12-10 Asahi Glass Company, Limited Process for production of synthetic quartz glass
CN102378924B (zh) * 2009-03-31 2014-08-20 斯泰拉化工公司 光学构件及其制造方法
KR101703720B1 (ko) * 2016-07-06 2017-02-07 (주)에이치엔피테크 이탈방지용 삽입형 링조인트 배관
JP2023066627A (ja) * 2021-10-29 2023-05-16 ウシオ電機株式会社 エキシマランプ及び紫外光照射装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2904713A (en) 1952-07-15 1959-09-15 Heraeus Schott Quarzschmelze Casings for gas discharge tubes and lamps and process
US3128169A (en) 1953-11-25 1964-04-07 Heraeus Schott Quarzschmelze Process for making quartz glass casings
US3483613A (en) 1966-04-08 1969-12-16 Us Army Method of making variable reluctance position transducer
JP3368932B2 (ja) 1992-02-07 2003-01-20 旭硝子株式会社 透明石英ガラスとその製造方法
US5326729A (en) * 1992-02-07 1994-07-05 Asahi Glass Company Ltd. Transparent quartz glass and process for its production
JPH0627013A (ja) 1992-07-09 1994-02-04 Satake Eng Co Ltd 麦粉の粒度分析装置
JPH0648734A (ja) 1992-07-27 1994-02-22 Teika Corp 結晶性チタン酸系ペロブスカイト化合物微粒子の製造方法
JP3125630B2 (ja) * 1994-07-07 2001-01-22 株式会社ニコン 真空紫外用石英ガラスの製造方法および石英ガラス光学部材
KR100298167B1 (ko) * 1994-07-07 2001-10-24 오노 시게오 진공자외선파장대광선용실리카유리의제조방법,및그에의해제조된실리카유리및광학부재
JP3188624B2 (ja) * 1995-12-27 2001-07-16 信越石英株式会社 遠紫外線用高純度合成シリカガラス及びその製造方法
EP0835848A3 (en) * 1996-08-21 1998-06-10 Nikon Corporation Fluorine-containing silica glass, its method of manufacture and a projection exposure apparatus comprising the glass
JP3061010B2 (ja) * 1997-06-27 2000-07-10 坂東機工株式会社 ガラス板の折割装置
JPH11302025A (ja) * 1998-04-23 1999-11-02 Asahi Glass Co Ltd 合成石英ガラス光学部材およびその製造方法
US6499317B1 (en) * 1998-10-28 2002-12-31 Asahi Glass Company, Limited Synthetic quartz glass and method for production thereof
US6242136B1 (en) * 1999-02-12 2001-06-05 Corning Incorporated Vacuum ultraviolet transmitting silicon oxyfluoride lithography glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811391B1 (ko) * 2004-03-25 2008-03-07 우시오덴키 가부시키가이샤 엑시머 램프

Also Published As

Publication number Publication date
JP2001114529A (ja) 2001-04-24
TW593191B (en) 2004-06-21
EP1094040A3 (en) 2001-10-31
EP1094040A2 (en) 2001-04-25
DE60033481T2 (de) 2007-10-31
EP1094040B8 (en) 2007-05-30
JP3069562B1 (ja) 2000-07-24
EP1094040B1 (en) 2007-02-21
ATE354548T1 (de) 2007-03-15
DE60033481D1 (de) 2007-04-05
KR100359947B1 (ko) 2002-11-04
US6451719B1 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
KR100359947B1 (ko) 엑시머레이저 및 엑시머램프용의 실리카유리광학재료 및그 제조방법
US6499317B1 (en) Synthetic quartz glass and method for production thereof
EP0917523B1 (en) Synthetic silica glass used with uv-rays and method producing the same
KR100330305B1 (ko) 진공자외선리소그래피에 사용되는 투영렌즈용석영유리광학재료 및 그 제조방법 및 투영렌즈
EP1695375B1 (en) Synthetic quartz glass for optical member and its production method
JP4529340B2 (ja) 合成石英ガラスとその製造方法
JP3893816B2 (ja) 合成石英ガラスおよびその製造方法
WO1993000307A1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
JP3403317B2 (ja) 高出力真空紫外線用合成シリカガラス光学材料およびその製造方法
JP4066632B2 (ja) 合成石英ガラス光学体およびその製造方法
JP2005298330A (ja) 合成石英ガラスおよびその製造方法
JP3472234B2 (ja) エキシマレーザ及びエキシマランプ用のシリカガラス光学材料
JP4946960B2 (ja) 合成石英ガラスおよびその製造方法
JP3510224B2 (ja) 真空紫外線リソグラフィーに用いられる投影レンズ用シリカガラス光学材料および投影レンズ
EP1067097A1 (en) Synthetic quartz glass and method for preparation thereof
JP4085490B2 (ja) 光学部材用合成石英ガラスとその製造方法
JP4240709B2 (ja) 合成石英ガラスおよびその製造方法
JP2003201124A (ja) 光学部材用合成石英ガラスおよびその製法
JP2001180962A (ja) 合成石英ガラスとその製造方法
JP2003201125A (ja) 合成石英ガラスおよびその製造方法
JP2003201126A (ja) 光学部材用合成石英ガラスおよびその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121002

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141007

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150918

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160921

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 16