KR20010024942A - 고분자 화합물, 고분자 전해질용 폴리머 및 이온 도전성고분자 전해질용 조성물 - Google Patents

고분자 화합물, 고분자 전해질용 폴리머 및 이온 도전성고분자 전해질용 조성물 Download PDF

Info

Publication number
KR20010024942A
KR20010024942A KR1020007009008A KR20007009008A KR20010024942A KR 20010024942 A KR20010024942 A KR 20010024942A KR 1020007009008 A KR1020007009008 A KR 1020007009008A KR 20007009008 A KR20007009008 A KR 20007009008A KR 20010024942 A KR20010024942 A KR 20010024942A
Authority
KR
South Korea
Prior art keywords
group
polymer
polyglycidol
monovalent hydrocarbon
weight
Prior art date
Application number
KR1020007009008A
Other languages
English (en)
Inventor
다카야 사토
Original Assignee
모치즈키 아키히로
닛신보세키 가부시키 가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 모치즈키 아키히로, 닛신보세키 가부시키 가이샤 filed Critical 모치즈키 아키히로
Publication of KR20010024942A publication Critical patent/KR20010024942A/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33365Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing cyano group
    • C08G65/33368Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing cyano group acyclic
    • C08G65/33372Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing cyano group acyclic acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polyethers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

분자사슬의 말단의 10% 이상이 1가의 기, 특히 시아노기 치환 1가 탄화수소기에 의하여 봉쇄된 높은 이온 도전성을 갖고, 동시에 고농도로 이온 도전성 염을 녹여도 결정화되지 않고 고분자 전해질용으로서 알맞는 고분자 화합물.

Description

고분자 화합물, 고분자 전해질용 폴리머 및 이온 도전성 고분자 전해질용 조성물{POLYMERIC COMPOUND, POLYMER FOR POLYELECTROLYTE, AND COMPOSITION FOR IONICALLY CONDUCTIVE POLYELECTROLYTE}
종래부터, 2차전지, 콘덴서 등의 전해질에는 주로 물, 에틸렌카보네이트, 프로필렌카보네이트, 테트라히드로푸란 등의 실온부근이상의 온도에서 액체의 저분자물질이 사용되고 있었다. 특히 리튬계의 전지에서는 증발, 인화, 연소하기 쉬운 저분자 유기계 액체전해질이 사용되는 일이 많고, 장기간의 안정성을 확보하기 위하여 전지외장에 금속깡통을 사용하여, 용기의 기밀성을 높일 필요가 있고, 이 때문에, 저분자유기계 액체전해질을 사용한 전기소자 및 전자소자는 그것의 중량이 무겁게 되고, 게다가 제조공정이 번잡하게 된다는 결점이 있었다.
한편, 전해질로서 고분자를 사용하면, 휘발성이 극히 작고, 증발하기 어려운 전해질이 얻어짐과 동시에, 충분한 분자량의 큰 고분자 전해질은 실온이상의 온도에서 유동성을 나타내지 않는, 소위 고체전해질로서도 사용할 수 있고, 이온 도전성 염을 용해하는 용매의 역할과 전해질을 고체화하는 역활을 가진다는 이점이 있다.
이와같은 고분자 전해질로서는 1978년에 프랑스의 그레노블대학의 알몬드 등이, 고체의 폴리에틸렌옥시드에 과염소산리튬이 용해하는 것을 발견하고, 분자량 2000정도의 폴리에틸렌옥시드에 1M의 리튬염을 용해하였을 경우, 실온에서 10-7S/cm정도의 이온 도전성을 나타내는 것을 보고하고 있다. 또, 다른 그룹이 실온하에 액체의 분자량 200정도의 폴리에틸렌옥시드에, 1M의 리튬염을 용해하였을 경우, 실온에서 10-4S/cm∼10-5S/cm정도의 이온 도전성을 나타내는 것을 보고하고 있고, 폴리에틸렌옥시드와 같은 이온 도전성 염을 용해하는 능력을 갖는 고분자물질은 전해질로서 기능하는 것이 알려져 있다.
그후, 폴리에틸렌옥시드류와 관계된 폴리머를 중심으로 하여, 폴리프로필렌옥시드, 폴리에틸렌이민, 폴리우레탄, 폴리에스테르 등 여러갈래에 걸치는 고분자물질에 대하여 유사의 연구가 행해지고 있다.
그런데, 가장 잘 연구되고 있는 폴리에틸렌옥시드는, 상기한 바와 같이 이온 도전성 염을 용해할 능력이 높은 폴리머이지만, 반면, 반(半)결정성폴리머이고, 다량의 금속염을 용해시키면 이들 금속염이 고분자 사슬사이에의 가교구조를 형성하고, 폴리머가 결정화하고, 이때문에 이온 도전성을 예기한 값 보다 상당히 낮은 것으로 된다.
이는 폴리에틸렌옥시드와 같은 직쇄상폴리에테르계 고분자 매트릭스중에 용해한 이온 도전체가 고분자 매트릭스의 유리전이온도 이상에서 고분자매트릭스중의 아모르포스(무정형)영역내를 고분자사슬의 극소적인 세그먼트운동에 동반하여 이동하고, 이온 도전성을 가지는 양이온이 고분자사슬에 의하여 강하게 배위를 받아, 그 이동성이 고분자사슬의 국소운동의 영향을 강하게 받아버리기 때문이다. 이 폴리머사슬의 극소적인 운동은 브라운운동(Brawnian motion)이라 불리우고 있다.
그러므로, 이온 도전성 고분자 전해질의 매트릭스 고분자로서 폴리에틸렌옥시드와 같은 직쇄상 폴리에테르계 고분자를 선택하는 것은 득책은 아니다.
실제, 지금까지의 보고에서도 폴리에틸렌옥시드, 폴리프로필렌옥시드, 폴리에틸렌이민 등의 직쇄상 고분자만으로 이루어지는 이온 도전성 고분자 전해질은 실온에서 이온 도전성이 10-7S/cm정도, 높더라도 겨우 10-6S/cm정도이다.
이와같은 높은 도전성을 갖는 이온 도전성 고분자 전해질을 얻기 위해서는 매트릭스 고분자내에 이온 도전체가 이동하기 쉬운 아모르포스(무정형)영역을 많이 존재시킴과 동시에 이온 도전성 염을 고농도로 용해시키더라도 결정화하지 않는 분자설계가 필요하다.
이와같은 방법의 하나로서 폴리에틸렌옥시드에 분기구조를 도입하는 시도가 제안되어 있다(오가다 다다야등, 섬유학회지 P52∼57 1990년). 이 제안에 의하면, 높은 이온 도전성(실온에서 약 10-4S/cm)을 갖는 폴리에틸렌옥시드 유도체의 이온 도전성 고분자 고체전해질을 합성할 수 있지만, 폴리머의 합성방법이 극히 번잡하기 때문에 제품화되기에는 이르지 않고 있다.
또, 매트릭스 고분자에 3차원 망상구조를 취하게하여, 결정 구조를 저해시키므로서 이온 도전성을 확보하는 방법도 보고되고 있다. 예를들면 3차원 망상구조의 폴리머를 고분자 매트릭스로서 사용하는 예로서 폴리옥시알킬렌 성분을 함유하는 아크릴계 모노머 혹은 메타크릴계 모노머를 중합시키는 방법이 제안되고 있다(일본특개평 5-25353호 공보).
그러나, 이 방법은 이온 도전성 염의 모노머에의 용해성이 낮기 때문에, 탄산비닐덴 등의 제 3성분을 첨가하여야 하는 것, 얻어진 폴리머의 물리적 강도가 낮은 것 등의 문제점이 있다.
본 발명은 신규한 고분자 화합물, 그 고분자 화합물로 이루어지는 고분자 전해질용 폴리머 및 높은 이온 도전성을 갖는 고분자 전해질용 조성물에 관한 것이다.
도 1은 본 발명의 합성예 1의 폴리글리시돌의13C-NMR 스펙트럼이다.
도 2는 합성예 1의 폴리글리시돌을 트리메틸실릴화한 트리메틸실릴화 폴리글리시돌의29Si-NMR 스펙트럼이다.
도 3은 광각(廣角)엑스선 산란 스펙트럼을 도시하고, 상단은 과염소산리튬의 결정 스펙트럼, 하단은 중량 평균분자량 4000의 폴리글리시돌에 1M의 과염소산리튬을 용해시킨 복합체의 스펙트럼이다.
(발명을 실시하기 위한 최량의 형태)
이하, 본 발명에 대하여 더욱더 상세히 설명한다.
본 발명의 고분자 화합물은 상기 화학식 1로 표시되는 단위(이하, A단위라함)와 상기 화학식 2로 표시되는 단위(이하, B 단위라 함)를 갖는 분자사슬(폴리글리시돌)의 말단의 일부 또는 전부를 소정의 1가의 기에 의하여 봉쇄한 것이다. 이 폴리글리시돌 화합물의 분자사슬은 글리시돌 또는 3-클로로-1,2-프로판디올을 중합시킴으로서 얻을 수가 있지만, 일반적으로는 글리시돌을 원료로 사용하여 중합을 행하는 것이 추장된다.
상기 중합반응으로서는 ①수산화나트륨, 수산화칼륨, 여러가지의 아민화합물 등의 염기성촉매를 사용하여 행하는 방법과 ②루이스산 촉매를 사용하여 행하는 방법이 알려져 있다(Andrzej Dworak et al., Macromol. Chem. Phys. 196, 1963-1970(1995), R. Toker., Macromolecules 27, 320-322(1994)참조).
①염기성 촉매를 사용하여 중합하는 방법은 개시점으로 이루어지는 알코올성 화합물(활성수소화합물)을 첨가하여 행하는 경우가 많고, 고분자량의 폴리머는 얻기 어려운 것이다. 그 반응기서는 하기에 표시하는 대로이다.
구체적인 중합방법은 플라스크내에 글리시돌을 소정량 넣고, 용매로서 염화메틸렌을 첨가하고, 소정온도로 세트하고, 촉매로서 수산화칼륨을 소정량 첨가하고, 교반하면서 반응시킨다. 이경우, 필요에 따라 활성수소화합물을 배합한다. 반응종료후, 메탄올을 가하여 반응을 정지하고, 메탄올과 염화메틸렌을 감압하에 증류한다. 얻어진 폴리머를 물에 용해하고, 이온교환수지를 사용하여 중화하고, 이온교환수지를 여벌하고, 물을 감압하에 증류하고, 건조하므로서 폴리글리시돌을 얻을 수가 있다.
이경우, 활성수소화합물로는, 에탄올, 메탄올, 이소프로필알코올, 벤질알코올 등의 알코올류, 글리세린, 펜타에리스리톨, 솔비톨, 디에틸렌글리콜, 에틸렌글리콜, 트리오스, 테트라오스, 펜타오스, 헥소스 등의 폴리올류, 폴리비닐알코올, 폴리에틸렌비닐알코올 등의 수산기를 갖는 고분자 화합물 등을 사용할 수가 있다.
이 활성수소 화합물은 몰비로(첨가한 활성수소화합물의 활성수소기의 몰수)/(글리시돌의 투입 몰수)=0.0001∼1, 보다 바람직하게는 0.001∼1, 더욱더 바람직하게는 0.005∼0.5, 가장 바람직하게는 0.01∼0.1의 범위이다.
한편 ②루이스산 촉매를 사용하여 중합하는 방법은 물이 없는 계에서 중합반응을 행하는 것이고, 그 반응기소는 하기에 표시하는 대로이다.
구체적인 중합방법으로서는 플라스크내에 글리시돌을 소정량 투입하고, 필요에 따라 용매로서 염화메틸렌을 사용하고, 소정의 반응온도하, 촉매(반응개시제)를 소정량 첨가하여, 질소가스기류하, 교반하면서 반응시킨다. 반응종료후, 메탄올을 첨가하고, 반응을 정지시켜 메탄올과 염화메틸렌을 감압하여 증류제거한다. 얻어진 폴리머를 물에 용해하고 탄산수소나트륨으로 중화한 후, 용액을 이온교환수지를 충전한 컬럼을 통과시켜서, 컬럼통과후의 용액을 여별하고, 여액을 감압하에 증류하고, 건조하므로서 폴리글리시돌을 얻을 수가 있다.
이경우, 촉매(반응개시제)로서는 트리플루오로보레이트·디에틸에테레이트 (BF3·OEt2), SnCl4, HPF6·OEt2등을 사용할 수가 있다(Et는 에틸기를 나타낸다).
이와 같이하여 얻어지는 폴리글리시돌은 말단이 OH기이고, 또13C-NMR로 측정(Varian VXR 300 NMR spetrometer를 사용하여, 용매 D2O로 DEPT측정)한 경우, 도 1에 도시한 바와같이 A단위와 B단위의 2개의 단위로 유래하는 탄소를 나타내는 피크가 나타나고, 폴리글리시돌이 A,B 2개의 단위로 이루어지는 것이 확인된다.
또, 상기 폴리글리시돌은 분자중에 A,B 2개의 단위를 양자 합하여 2개이상, 바람직하게는 6개이상, 보다 바람직하게는 10개 이상 존재하는 것이 바람직하다. 이경우, 상한은 특별히 제한되지 않지만, 10,000개 이하인 것이 바람직하다. 폴리글리시돌에 액체로서의 유동성이 요구되는 경우에는 A,B단위의 합계가 적은 편이 바람직하고, 한편, 높은 점성이 요구되는 경우에는 A,B단위의 합계가 많은 편이 바람직하다.
이들, A,B단위의 출현에는 규칙성은 없고, 무작위이고, 예를 들면 -A-A-A-, -A-A-B-, -A-B-A-, -B-A-A-, -A-B-B-, -B-A-B-, -B-B-A-, -B-B-B-등 어떠한 복합도 가능하다.
폴리글리시돌로서는 겔여과 크로마토그래피(GPC)을 사용한 폴리에틸렌글리콜 환산의 중량평균분자량(Mw)이 바람직하게는 200∼730,000, 보다 바람직하게는 200∼100,000, 더욱더 바람직하게는 600∼20,000이다. 이경우, 중량평균분자량이 2000정도까지의 폴리글리시돌은 실온에서 유동하는 고점도 액체이지만, 중량평균분자량이 3000을 초과하는 폴리글리시돌은 실온에서 연성 페이스트상의 고체이다. 또, 평균분자량비(Mw/Mn)가 1.1∼20, 보다 바람직하게는 1.1∼10인 것이 바람직하다.
상기 폴리글리시돌은 그 분자량의 대소에 의하여 실온(20℃)에서 점도가 높은 물엿상태 액체로부터 고무상의 고체상태까지 겉보기 형상이 변화하고, 분자량이 클수록 실온(20℃)에서 유동성이 낮은 소위 고체(연성페이스트고체)라 불리우는 것으로 된다.
또, 폴리글리시돌은 분자량의 대소에 불구하고, 직쇄상 폴리머는 아니고, 고도로 분기한 분자사슬의 서로 뒤얽힘에 의한 아모르포스(무정형)폴리머이다. 이는 광각엑스선회절의 결과로부터 결정의 존재를 시사하는 피크는 볼 수없는 것으로도 인정된다.
또, 분자중의 A단위와 B단위의 비율은 도 2에 도시하는 바와같이, 폴리글리시돌의 수산기에 트리메틸실릴기를 도입한 트리메틸실릴화 폴리글리시돌의29Si-NMR를 측정하므로서 구할 수 있다. 이경우, A단위와 B단위와의 비율은 몰비로 A:B=1/9∼9/1, 바람직하게는 3/7∼7/3이다.
이 폴리글리시돌은 무색투명이고, 독성도 없기 때문에, 각종 활성 물질의 결착바인더 물질(예를 들면 전기장발광의 바인더등)등의 전기화학재료, 증점제, 알킬렌글리콜의 대체물등으로서 폭넓은 용도에 사용할 수 있는 것이다.
다음에, 본 발명의 고분자 화합물은 상기 폴리글리시돌의 분자사슬의 말단 OH기의 10% 이상이, 할로겐원자, 비치환 또는 치환 1가 탄화수소기, R1CO-기 (R1은 비치환 또는 치환 1가 탄화수소기), R1 3Si-기(R1은 상기와 같음), 아미노기, 알킬아미노기, H(OR2)m-기 (R2는 탄소수 2∼4의 알킬렌기, m는 1∼100의 정수) 및 인 원자를 포함하는 기로부터 선택되는 1종 또는 2종 이상의 1가의 기에 의하여 봉쇄된 것이다.
이 경우, 상기 기에 의한 폴리글리시돌 분자사슬 말단의 봉쇄에는, ①고농도로 이온 도전성 염을 포함하는 폴리머에서, 저유전율(低誘電率)의 고분자 매트릭스중에서는 해리한 금속양이온과 쌍을 이루는 음이온의 재결합이 생기기 쉽고, 도전성의 저하가 생기지만, 고분자 매트릭스의 극성을 올리면 이온의 회합이 일어나기 어려우므로, 폴리글리시돌의 측쇄(수산기)에 극성기를 도입하므로서 매트릭스 고분자의 유전율을 높이는 목적과 ②고분자 전해질 폴리머에 소수성, 난연성 등의 우수한 특성을 부여하는 목적이 있다.
상기 ①고분자 화합물의 유전율을 높이기 위하여는 폴리글리시돌과 수산기 반응성의 화합물을 반응시키므로서, 폴리글리시돌의 분자사슬말단(수산기)을 고극성의 치환기로 봉쇄한다.
이와같은 고극성의 치환기로서는 특히 제한되는 것은 아니지만, 디이온성의 치환기 보다 중성의 치환기의 편이 바람직하고, 예를들면 비치환 또는 치환1가 탄화수소기, R1CO-기(R1은 비치환 또는 치환 1가 탄화수소기), H(OR2)m-기(R2는 탄소수 2∼4의 알킬렌기, m는 1∼100의 정수)등을 들 수 있다. 또 필요에 따라서는 아미노기, 알킬아미노기 등으로 봉쇄할 수도 있다.
한편, ②고분자 화합물에 소수성, 난연성을 부여하는 경우에는 폴리글리시돌의 분자사슬말단(수산기)을 할로겐원자, R1 3Si-기(R1는 상기와 같음), 인 원자를 포함하는 기 등으로 봉쇄한다.
여기서, 상기 치환기에 대하여 구체적으로 설명하면, 할로겐원자로서는, 불소, 브롬, 염소 등을 들 수 있고, 탄소수 1∼10, 바람직하게는 1∼8의 비치환의 1가 탄화수소기로서는, 예를들면, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 펜틸기, 네오펜틸기, 헥실기, 시클로헥실기, 옥틸기, 노닐기, 데실기 등의 알킬기, 페닐기, 톨릴기, 크실릴기 등의 아릴기, 벤질기, 페닐에틸기, 페닐프로필기등의 아랄킬기, 비닐기, 알릴기, 프로페닐기, 이소프로페닐기, 부텐일기, 헥세닐기, 시클로헥세닐기, 옥테닐기 등의 알케닐기 기등의 탄소수 1∼10, 바람직하게는 1∼8의 비치환 1가 탄화수소기나, 이것들의 비치환 1가 탄화수소기의 수소원자의 일부 또는 전부를 불소, 브롬, 염소 등의 할로겐 원자, 시아노기, 수산기, H(OR2)m-기(R2는 탄소수 2∼4의 알킬렌기, m는 1∼100의 정수), 아미노기, 아미노알킬기, 포스포노기 등으로 치환한 것, 예를들면 시아노에틸기, 시아노벤질기, 기타의 알킬기에 시아노기가 결합한 치환기, 클로로메틸기, 클로로프로필기, 브로모에틸기, 트리플루오로프로필기 등을 들 수 있고, 이들의 1종을 단독으로 또는 2종이상을 복합하여 사용할 수가 있다.
R1CO-기로서는 예를들면 R1이 탄소수 1∼10, 바람직하게는 탄소수 1∼8의 상기와 동일한 비치환 1가 탄화수소기 및 이들 비치환 1가 탄화수소기의 수소원자의 일부 또는 전부를 상기 예시한 것과 동일한 기로 치환한 치환1가 탄화수소기인 것을 들 수 있고, 바람직하게는 R1은 알킬기 또는 페닐기이고, 아실기, 벤조일기, 시아노벤조일기 등이 바람직하다.
H(OR2)m-기로서는 R2는 탄소수 2∼4의 알킬렌기(예를들면 에틸렌기, 프로필렌기, 부틸렌기)를 표시하고, m는 1∼100, 바람직하게는 2∼70의 정수이다. 더욱이, 에틸렌옥시기, 프로필렌옥시기, 부틸렌옥시기는 2종이상이 혼재하여 있어도 된다.
R1 3Si-기에서 R1은 상기와 동일한 것이고, R1이 탄소수 1∼10, 바람직하게는 탄소수 1∼8의 상기와 동일한 비치환 1가 탄화수소기 및 치환 1가 탄화수소기 인 것을 들 수 있고, 바람직하게는 R1은 알킬기이고, 트리알킬실릴기, 그중에서도 트리메틸실릴기가 바람직하다.
또, 상기 치환기는 아미노기, 알킬아미노기, 인 원자를 함유하는 기등일지라도 된다.
여기서, 상기 치환기에 의한 말단봉쇄율은 10%이상, 바람직하게는 50%이상, 더욱더 바람직하게는 90%이상이고, 실질적으로 모든 말단을 상기 치환기로 봉쇄(봉쇄율 약 100%)할 수도 있다.
더욱이, 폴리머분자사슬의 모든 말단을 할로겐원자, R1 3Si-기인 원자를 함유하는 기로 봉쇄하면 폴리머 자체의 이온 도전성 염 용해능력이 저하하는 경우가 있으므로, 용해성의 정도를 고려하면서, 적당량의 치환기를 도입할 필요가 있다. 구체적으로 전말단(全末端)(수산기)에 대하여 10∼95%, 바람직하게는 50∼95%, 더욱더 바람직하게는 50∼90%이다.
본 발명에서는 이들 치환기중에서도 특히 시아노기 치환 1가 탄화수소기 또는 시아노기 치환 1가 탄화수소기와 R1 3Si-기를 병용하는 것이 바람직하고, 구체적으로는 시아노에틸기, 시아노벤질기, 시아노벤조일기, 기타의 알킬기에 시아노기가 결합한 치환기, 또는 이들 시아노치환 일가 탄화수소기와 트리메틸실릴기 등을 조합한 것을 들 수 있다.
더욱이, 시아노에틸기 등의 시아노기 치환 1가 탄화수소기와 트리메틸실릴기등의 R1 3Si-기를 조합하였을 경우, 양자의 비율은 시아노기 치환 1가 탄화수소기를 분자사슬의 전말단(수산기)의 70∼97%, 바람직하게는 90∼97%, R1 3Si-기를 전말단의 30∼3%, 바람직하게는 10∼3%이다. 이와같이 시아노기 치환 1가 탄화수소기와 R1 3Si-기를 조합하여 도입한 폴리머는 우수한 도전성과 소수성을 겸비하는 것이다.
이와같은 치환기로 폴리글리시돌분자사슬을 봉쇄(도입)하는 방법으로서는 시아노에틸기를 도입하는 경우에는, 예를들면 폴리글리시돌을 디옥산과 아크릴로니트릴에 혼합하여, 이 혼합용액에 수산화나트륨용액을 첨가하여, 교반하면서 반응시키므로서 측쇄의 일부 또는 전부에 시아노에틸기를 도입한 시아노에틸화폴리글리시돌을 얻을 수가 있다.
아세틸기를 도입하는 경우에는 예를들면, 폴리글리시돌을 아세트산과 염화메틸렌에 혼합하고, 이 혼합용액에 과염소산 수용액과 무수아세트산을 가하여, 실온에서 교반시켜, 반응액을 냉수에 붓고, 석출한 침전을 채취하여 얻어진 침전을 아세톤에 용해하여, 다시 물에 투입한다. 탄산수소나트륨을 가하여 중화한 후, 여과하고 침전을 모아 물과 함께 투석튜브에 넣고, 이온교환수로 투석하고, 침전을 모아 수세하고, 감압건조하므로서 아세틸화 폴리글리시돌을 얻을 수가 있다.
시아노벤조일기를 도입하는 경우에는 예를들면 폴리글리시돌을 디옥산과 혼합하고, 피리딘을 첨가하고, 계속하여 시아노벤조일클로라이드를 디옥산에 용해시킨 용액을 적하한다. 그후, 용액을 소정의 온도에서 반응시켜 반응물을 메탄올:물=3:4의 용액에 붓고, 석출한 침전을 채취하고, 침전을 N,N-디메틸술폭시드에 용해하여 투석튜브에 넣어 투석하고, 침전을 모아서, 수세하고, 감압건조하므로서 시아노벤조일화폴리글리시돌을 얻을 수가 있다.
트리메틸실릴기를 도입하는 경우에는 예를들면, 폴리글리시돌을 디메틸아세트아미드에 용해하고, 이 용액에 비스(트리메틸실릴)아세트아미드를 가하여 실온에서 교반반응시켜, 반응액을 빙수로 냉각하고, 냉각한 메탄올:물=4:1용액에 붓는다. 석출한 침전물을 여별하여 여과물을 아세트아미드에 용해하고, 여지로 여과한 후, 용액을 감압건조하므로서 트리메틸실릴화폴리글리시돌을 얻을 수가 있다.
더욱이, 기타의 치환기도 말단 OH기에 각종 기를 도입하는 공지의 수법을 사용하여 봉쇄를 행할 수가 있다.
본 발명의 고분자 화합물(폴리글리시돌 유도체)는, 고분자 전해질용 폴리머로서 알맞게 사용할 수가 있고, 구체적으로, 액상의 이온 도전성 고분자 전해질 조성물로서 사용하는 경우와, 고분자 고체 전해질 조성물로서 사용하는 경우의 2종류의 사용법이 있고, 어느 경우에도, 이온 도전성 고분자 전해질용 조성물의 필수성분은 (A) 상기 고분자 화합물로 이루어지는 고분자 전해질용 폴리머와, (B) 이온 도전성 염이다.
여기서, (B)성분의 이온 도전성 염으로서는 통상의 전기화학소자용으로 사용되고 있는 것이면 특히 제한없이 사용할 수가 있고, 예를들면 LiClO4, LiBF4, LiAsF6, LiPF6, LiSbF6, LiCF3SO3, LiCF3COO, NaClO4, NaBF4, NaSCN, KBF4, Mg(ClO4)2, Mg(BF4)2, (C4H9)4NBF4, (C2H5)4NBF4, (C4H9)4NClO4등을 들 수 있고, 이들의 1종을 단독으로 또는 2종이상을 조합하여 사용할 수가 있다.
이 (B)성분의 이온 도전성 염의 배합량은 사용하는 이온 도전성 염의 종류, 폴리글리시돌 유도체의 분자량, 봉쇄하는 치환기의 종류 등에 따라 상이하고, 일률적으로는 규정할 수 없지만 통상, 폴리글리시돌 또는 폴리글리시돌유도체 100중량부에 대하여 이온 도전성 염을 5∼1000중량부, 바람직하게는 10∼500중량부, 보다 바람직하게는 10∼100중량부이다. 이온 도전성 염이 배합량이 지나치게 적으면 이온도전체의 농도가 희박하게 되고, 도전성이 실용상 지나치게 낮아지는 결과로 되는 경우가 있다. 한편, 지나치게 많으면 고분자의 매트릭스의 이온 도전성 염에 대한 용해능력을 초과해 버려 염류의 석출이 생기는 경우가 있다.
더욱이 본 발명의 고분자 전해질용 조성물에는 상기 (A), (B) 성분 이외에도 이온 도전성 염을 용해할 수 있는 용매를 상용량 배합할 수가 있다. 이와같은 용매로서는 디부틸에테르, 1,2-디메톡시에탄, 1,2-에톡시메톡시에탄, 메틸디글라임, 메틸트리글라임, 메틸테트라글라임, 에틸글라임, 에틸디글라임, 부틸디글라임 등, 글리콜에테르류(에틸셀로솔브, 에틸카르비톨, 부틸셀로솔브, 부틸카르비톨등)등의 사슬모양 에테르류, 테트라히드로푸란, 2-메틸테트라히드로푸란, 1,3-디옥솔란, 4,4-디메틸-1,3-디옥산등의 복소고리식에테르, γ-부티로락톤, γ-발레로락톤, δ-발레로락톤, 3-메틸-1,3-옥사졸리딘-2-온, 3-에틸-1,3-옥사졸리딘-2-온 등의 부티로락톤유, 기타 전기화학소자에 일반적으로 사용되는 용제인 물, 알코올용제(메탄올, 에탄올, 부탄올, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 1,4-부탄디올, 글리세린 등), 폴리옥시알킬렌폴리올(메틸렌옥시드, 폴리프로필렌옥시드, 폴리옥시에틸렌·옥시프로필렌글리콜 및 이것들의 2종이상 병용), 아미드용제(N-메틸포름아미드 N,N-디메틸포름아미드, N-메틸아세트아미드, N-메틸피롤리디논등), 카보네이트 용제(프로필렌카보네이트, 에틸렌카보네이트, 스티렌카보네이트 등)이미다졸리디논용제, 1,3-디메틸-2-이미다졸리디논 등) 등을 들 수 있고, 이들의 용매중에서 1종을 단독으로 혹은 2종이상을 혼합하여 사용할 수도 있다.
본 발명의 고분자 전해질용 조성물은, 실온(20℃)에서 점도가 높은 물엿상 액체로부터 고무상의 고체상태까지 겉보기 형상이 변화하고, 분자량이 큰 것일 수록 실온(20℃)에서 유동성이 낮은, 소위 고체(연성 페이스트 고체)이다.
본 발명의 고분자 전해질용 조성물은 상술한 바와 같이, 광각 X선 산란 스펙트럼의 결과로부터 이온 도전성 염에 의거한 피크는 볼 수 없고, 이온 도전성 염이 고분자층에서 완전 해리하고 있는 것이 인정되고, 교류 임피던스법에 의하여 유전율 측정한 결과에 따르면, 폴리글리시돌 유도체 100중량부에 대하여 이온 도전성 염을 9∼15중량부 포함하는 경우, 10-3S/㎝∼10-4S/㎝ 정도의 높은 도전성을 나타내는 것이다.
이와같이, 본 발명의 고분자 전해질용 조성물은, 이온 도전성 염을 고농도로 첨가하더라도 결정화되지 않고, 비정질이고, 금속이온이 분자내를 원활하게 이동할 수 있고, 높은 전위가 생김과 동시에, 증발, 액체누설의 걱정이 없고, 난연성이고, 리튬이온 2차 전지를 비롯한 각종 전지용 전해질로서 알맞는 것이다.
더욱이, 본 발명의 고분자 전해질용 조성물에서는, 분자량이 적은 폴리글리시돌을 사용하는 경우는, 액체의 고분자 전해질로 되지만, 충분히 분자량이 큰 폴리글리시돌을 사용하면, 고체의 고분자 전해질로 되고, 어느 것이나 우수한 도전성을 갖는 것이다. 이경우, 고체라 할지라도, 소성변형하기 쉬운 고무상 고체이기 때문에 응력변형하기 쉽고, 용이하게 필름시트상으로 형성할 수 있는 것이다.
(발명의 개시)
본 발명은 상기 사정에 비추어서 이루어진 것으로 신규한 고분자 화합물, 그 고분자 화합물로 이루어지는 고분자 전해질용 폴리머 및 높은 이온 도전성을 갖는 고분자 전해질용 조성물을 제공하는 것을 목적으로 한다.
본 발명자는, 상기 목적을 달성하기 위하여 예의 검토를 거듭한 결과, 하기 화학식 1로 표시되는 단위와, 하기 화학식 2로 표시되는 단위를 갖고, 분자사슬의 말단의 10% 이상이 할로겐원자, 비치환 또는 치환 1가 탄화수소기, R1CO-기 (R1은 비치환 또는 치환 1가 탄화수소기), R1 3Si-기 (R1은 상기와 같음), 아미노기, 알킬아미노기, H(OR2)m-기 (R2는 탄소수 2∼4의 알킬렌기, m는 1∼100의 정수) 및 인 원자를 포함하는 기로 부터 선택되는 1종 또는 2종 이상의 1가의 기에 의하여 봉쇄된 신규한 고분자 화합물, 특히, 말단을 봉쇄하는 1가의 기가 시아노기치환 1가 탄화수소기 또는 시아노기치환 1가 탄화수소기와 R1 3Si-기인 고분자 화합물이, 높은 전기 화학적 안정성과 이온 도전성 염을 고농도로 용해하는 능력을 가짐과 동시에, 이온 도전성 염을 고농도로 용해하더라도 결정화하지 않고, 비정질이고, 고분자중에 이온 도전체가 원활하게 움직일 수 있는 아모르포스(무정형) 폴리머일인 것과 이 폴리머에 이온 도전성 염을 고농도로 용해시킨 조성물이 우수한 이온 도전성을 갖고, 리튬계 2차 전지의 고분자 전해질로서 최적한 것임을 지견하고, 본 발명을 하기에 이르렀다.
따라서 본 발명은 제 1 로, 하기 화학식 1로 표시되는 단위와, 하기 수학식 2로 표시되는 단위를 갖고, 분자사슬의 말단의 10% 이상이 할로겐원자, 비치환 또는 치환 1가 탄화수소기, R1CO-기 (R1은 비치환 또는 치환 1가 탄화수소기), R1 3Si-기 (R1은 상기와 같음), 아미노기, 알킬아미노기, H(OR2)m-기 (R2는 탄소수 2∼4의 알킬렌기, m는 1∼100의 정수) 및 인 원자를 포함하는 기로부터 선택되는 1종 또는 2종 이상의 1가의 기에 의하여 봉쇄된 고분자 화합물을 제공한다.
또, 본 발명은, 제 2 로, 상기 고분자 화합물로 이루어지는 고분자 전해질 폴리머, 제 3 으로, 이 고분자 전해질용 폴리머(상기 고분자 화합물)와 이온 도전성 염을 주성분으로 하는 이온 도전성 고분자 전해질용 조성물을 제공한다.
이하, 합성예, 실시예 및 비교예를 표시하고, 본 발명을 구체적으로 설명하지만, 본 발명은 하기의 실시예에 제한되는 것은 아니다.
(합성예 1)
플라스크내에 글리시돌 농도가 4.2mol/L로 되도록 염화메틸렌을 용매로서 투입하고, 반응온도를 -10℃로 세트하였다.
촉매(반응개시제)로서 트리플루오로보레이트·디에틸에테레이트(BF3·OEt2)를 1.2×10-2mol/L로 되도록 첨가하여, 질소가스기류하, 3시간 교반하면서 반응시켰다. 반응종료후, 메탄올을 첨가하고, 반응을 정지시켜, 메탄올과 염화메틸렌을 감압하에 증류제거하였다.
얻어진 조제 폴리머를 물에 용해하고, 탄산수소나트륨으로 중화한 후, 용액을 이온교환수지(상품명: 앰벌라이트 IRC-76: 오르가노주식회사 제)를 충전한 컬럼을 통과시켰다. 컬럼통과후의 용액을 5C의 여지로 여별하고, 여액을 감압하로 증류하고, 건조하였다.
얻어진 정제폴리글리시돌을 0.1M 식염수를 이동상으로 하는 겔여과 크로마토그래피(GPC)로 분석하고, 폴리에틸렌글리콜환산의 중량평균분자량을 측정하였다. 또 광각 X선회절에 의하여 결정성을 평가하고, 실온에서의 상태를 육안관찰하였다. 결과를 표 2에 표시하다. 더욱더,13C-NMR스펙트럼의 측정(Varian VXR 300NMR spectrometer를 사용하고 용매 D2O로 DEPT측정)결과를 도 1에 도시하다.
(합성예 2)
플라스크내에 글리시돌 농도가 15mol/L로 되도록 투입하고, 반응온도를 -10℃에 세트하였다.
촉매(반응개시제)로서 HPF6·OEt2를 1.8×10-3mol/L로 되도록 첨가하여, 질소가스 기류하, 56시간 교반하면서 반응시켰다. 반응종료후, 메탄올을 첨가하여 반응을 정지시켜, 메탄올과 염화메틸렌을 감압하에 증류제거하였다.
얻어진 폴리머를 물에 용해하고, 탄산수소나트륨도 중화한 후, 용액을 이온교환수지(상품명: 앰벌라이트 IRC-76: 오르가노 주식회사제)를 충전한 컬럼을 통과시켰다. 컬럼 통과후의 용액을 5C의 여지로 여별하고, 여액을 감압하에 증류하고, 건조하였다.
얻어진 폴리글리시돌의 분자량을 0.1M 식염수를 이동상으로 하는 겔 여과크로마토그래피(GPC)로 분석하고, 폴리에틸렌글리콜 환산의 중량 평균 분자량을 측정한 즉 21530이었다. 또, 광각 X선 회절에 의하여 결정성을 평가한 즉, 비정질이고, 실온에서의 상태는 연성 페이스트 고체이었다.
(합성예 3)
플라스크에 글리시돌 100중량부를 투입하고, 염화메틸렌을 10000중량부 첨가하고, 20℃로 세트하였다. 촉매로서 수산화칼륨을 20중량부 첨가하고, 22시간 교반하면서 반응시켰다. 반응종료후, 메탄올을 가하여 반응을 정지시켜, 메탄올과 염화메틸렌을 감압하에 증류하였다.
얻어진 조제폴리머를 물에 용해하고, 이온교환수지(상품명: 앰벌라이트 IRC-76: 오르가노 주식회사 제)를 사용하여 중화하고, 이온교환수지를 여별하고, 물을 감압하에 증류하고, 건조하였다.
얻어진 폴리글리시돌의 분자량을 0.1M 식염수를 이동상으로 하는 겔여과 크로마토그래피(GPC)로 분석하고, 폴리에틸렌글리콜 환산의 중량 평균 분자량을 측정한 즉, 1100이었다. 또 광각 X선 회절에 의하여 결정성을 평가한즉, 비정질이고, 실온에서의 상태는 고점도 액체이었다.
(실시예 1)
폴리글리시돌의 시아노에틸화
합성예 3에서 얻어진 폴리글리시돌 3중량부을 디옥산 20중량부와 아크릴로니트릴 14중량부에 혼합하였다. 이 혼합 용액에 수산화나트륨 0.16중량부를 1중량부의 물에 용해한 수산화나트륨 용액을 첨가하여, 10시간, 25℃에서 교반하였다. 반응종료후, 혼합액에 20중량부의 물을 가하고, 뒤이어, 이온교환수지(상품명: 앰벌라이트 IRC-76; 오르가노 주식회사제)를 사용하여 중화하였다. 이온교환수지를 여별한 후, 용액에 50중량부의 아세톤을 가하고, 불용해부분을 여별하였다. 여과된 용액을 감압농축하고, 조제(粗製) 시아노에틸화 폴리글리시돌을 얻었다. 이 조제 시아노에틸화 폴리글리시돌을 아세톤에 용해하고, 5A의 여지로 여과한 후, 물에 침전시켜 석출한 성분을 모았다. 이 아세톤 용해, 물에 침전이라는 조작을 2회 반복한 후, 50℃에서 감압 건조하여 정제 시아노 에틸화 폴리글리시돌을 얻었다.
얻어진 시아노 에틸화 폴리글리시돌의 적외 흡수 스펙트럼을 측정한 즉, 수산기의 흡수는 관찰되지 않고, 모든 수산기가 시아노에틸기로 치환되어 있는 것을 알았다. 또 광각 X선 회절에 의하여 결정성을 평가한 즉, 실온에서 비정질이었다. 더욱더, 실온에서의 상태를 육안 관찰하였다. 결과를 표 1에 표시하다.
(실시예 2)
폴리글리시돌의 시아노에틸화
합성예 1에서 얻어진 폴리글리시돌을 사용하여 실시예 1과 동일한 방법에 의하여 정제 시아노에틸화 폴리글리시돌을 얻었다.
얻어진 시아노 에틸화 폴리글리시돌의 적외 흡수 스펙트럼을 측정한 즉, 수산기의 흡수는 관찰되지 않고, 모든 수산기가 시아노에틸기로 치환되어 있는 것을 알았다. 또 광각 X선 회절에 의하여 결정성을 평가한 즉, 실온에서 비정질이었다. 더욱더, 실온에서의 상태를 육안 관찰하였다. 결과를 표 1에 표시하다.
(실시예 3)
폴리글리시돌의 시아노에틸화
합성예 2에서 얻어진 폴리글리시돌을 사용하여 실시예 1과 동일한 방법으로 정제 시아노에틸화 폴리글리시돌을 얻었다.
얻어진 시아노에틸화 폴리글리시돌의 적외 흡수 스펙트럼을 측정한 즉, 수산기의 흡수는 관찰되지 않고, 모든 수산기가 시아노에틸기로 치환되어 있는 것을 알았다. 또 광각 X선 회절에 의하여 결정성을 평가한 즉, 실온에서 비정질이었다. 더욱더, 실온에서의 상태를 육안 관찰하였다. 결과를 표 1에 표시하다.
(실시예 4)
폴리글리시돌의 시아노에틸·트리메틸실릴화
합성예 1에서 얻어진 폴리글리시돌 3중량부를 디옥산 20중량부와 아크릴로니트릴 14중량부에 혼합하였다. 이 혼합용액에 수산화나트륨 0.16중량부를 1중량부의 물에 용해한 수산화나트륨용액을 첨가하여, 5시간, 25℃에서 교반하였다. 반응종료후, 혼합액에 20중량부의 물을 가하고, 뒤이어, 이온교환수지(상품명: 앰벌라이트 IRC-76; 오르가노 주식회사제)를 사용하여 중화하였다. 이온교환수지를 여별한 후, 용액에 50중량부의 아세톤을 가하고, 불용부분을 여별하였다. 여과된 용액을 감압농축하고, 조제 시아노 에틸화 폴리글리시돌을 얻었다.
이 조제 시아노에틸화 폴리글리시돌 1중량부를 디메틸아세트아미드에 용해하였다. 이 용액에 비스(트리메틸실릴) 아세트아미드 2중량부를 가하여, 실온에서 5시간 교반하였다. 반응액을 빙수로 냉각하고, 0℃로 냉각한 메탄올: 물=4:1 용액에 부었다. 석출한 침전물을 여별하여 여과물을 아세트아미드에 용해하였다. 이 용액을 5C의 여지로 여과한 후, 용액을 감압 건조하여 시아노에틸·트리메틸실릴화 폴리글리시돌을 얻었다.
얻어진 시아노에틸·트리메틸실릴화 폴리글리시돌의 적외 흡수 스펙트럼을 측정한 즉, 수산기의 흡수는 관찰되지 않었다. 원소분석의 결과로 부터 수산기의 시아노에틸화율은 87%로, 나머지 13%의 수산기는 트리메틸실릴화 되어있는 것을 알았다. 또, 광각 X선 회절에 의하여 결정성을 평가한 즉, 실온에서 비정질이었다. 더욱더 실온에서의 상태를 육안 관찰하였다. 결과를 표 1에 표시하다.
(실시예 5)
폴리글리스돌의 아세틸화
합성예 1에서 얻어진 폴리글리시돌 1중량부를 아세트산 30중량부와 염화메틸렌 30중량부에 혼합하였다. 이 혼합용액에 60% 과염소산 수용액 0.4중량부와 무수아세트산 40중량부를 가하여 실온에서 8시간 교반하였다. 반응액을 냉수에 붓고, 석출한 침전을 채취하였다. 얻어진 침전을 아세톤에 용해하여, 다시 물에 투입하여, 탄산수소나트륨을 가하여 중화한 후, 5C의 여지로 여과하였다. 침전을 모아 물과 함께 투석튜브에 넣어, 이온교환수로 3일간 투석을 행하였다. 침전을 모우고 수세하여, 감압건조하여 아세틸화 폴리글리시돌을 얻었다.
얻어진 아세틸화 폴리글리시돌의 적색흡수 스펙트럼을 측정한 즉, 수산기의 흡수는 관찰되지 않고, C=O기 유래의 피크가 관찰되고, 모든 수산기가 아세틸되어 있는 것을 알았다. 또, 광각 X선회절에 의하여 결정성을 평가한 즉, 실온에서 비정질이었다. 더욱더, 실온에서의 상태를 육안관찰하였다. 결과를 표 1에 표시하다.
(실시예 6)
폴리글리시돌의 시아노벤조일화
합성예 1에서 얻어진 폴리글리시돌 0.4중량부를 디옥산 10중량부와 혼합하고, 피리딘 1.24중량부를 첨가하였다. 계속하여, 시아노벤조일클로라이드 2.05 중량부를 디옥산 10중량부에 용해시킨 용액을 적하하였다. 그후, 용액을 80℃로 세트하고, 12시간 반응시켰다. 반응물을 에탄올:물3:4의 용액에 붓고, 석출한 침전을 채취하였다. 침전을 N,N-디메틸술폭시드에 용해하여, 투석튜브에 넣고, 이온교환수로 3일간 투석을 행하였다. 침전을 모으고, 수세하고, 감압건조하여 시아노벤조일화 폴리글리시돌을 얻었다.
얻어진 시아노벤조일화 폴리글리시돌의 적외흡수 스펙트럼을 측정한 즉, 수산기의 흡수는 관찰되지 않고, C=O기 유래의 피크와 C≡N기 유래의 피크가 관찰되고, 모든 수산기가 시아노벤조일화 되어 있는 것을 알았다. 또, 광각 X선회절에 의하여 결정성을 평가한 즉, 실온에서 비정질이었다. 더욱더, 실온에서의 상태를 육안관찰하였다. 결과를 표 1에 표시하다.
원료폴리글리돌(중량평균분자량) 폴리글리시돌의 말단수산기에 도입된 치환기 결정성 실온에서의 상태
실시예 1 합성예9(1100) 시아노에틸기 비정질 고점도액체
실시예 2 합성예1(6250) 시아노에틸기 비정질 연성페이스트고체
실시예 3 합성예8(21530) 시아노에틸기 비정질 연성페이스트고체
실시예 4 합성예1(6250) 시아노에틸기·트리메틸실릴기 비정질 연성페이스트고체
실시예 5 합성예1(6250) 아세틸기 비정질 연성페이스트고체
실시예 6 합성예1(6250) 시아노에틸기 비정질 연성페이스트고체
(실시예 7∼12)
고분자 전해질용 조성물의 제조
표 2에 표시한 폴리글리시돌 유도체와 과염소산리튬을 테트라히드로푸란에 용해시켰다. 이경우, 과염소산리튬 1mol에 대하여 과염소산리튬중량+폴리글리시돌유도체 중량=1㎏로 되도록 투입하였다.
이 용액을 감압하에 방치하여 테트라히드로푸란을 증발시키므로서, 폴리글리시돌유도체·과염소산리튬복합체(고분자 전해질용 조성물)가 얻어졌다.
얻어진 복합체를 200미크론의 간격을 갖는 구리판 2매 사이에 끼워넣어 교류 임피던스법으로 도전율 측정을 행하고, 실온에서의 상태을 육안에 의하여 판단하였다.(S: 연질 페이스트 고체, L: 고점도 액체). 또 광각 X선 측정을 행하여 결정성을 확인하였다. 더욱더 얻어진 복합체를 100℃에서 5시간 방치하고, 증발에 동반하는 중량 감소비율을 측정하였다. 결과를 표 2에 표시하다.
(비교예 1)
폴리글리시돌 유도체 대신에 분자량 200의 폴리에틸렌 글리콜을 사용한 이외는 실시예 7과 동일한 방법으로 폴리에틸렌글리콜·과염소산리튬 복합체(고분자 전해질 조성물)을 작성하였다.
얻어진 복합체를 200미크론의 간격을 갖는 구리판 2매 사이에 끼워넣어, 교류 입피던스법으로 도전율 측정을 행하고, 실온에서의 상태를 육안에 의하여 판단하였다.(S: 연질페이스트 고체, L: 고점도 액체). 또 광각 X선 측정을 행하여 결정성을 확인하였다. 더욱더, 얻어진 복합체를 100℃에서 5시간 방치하고, 증발에 동반한 중량 감소 비율을 측정하였다. 결과를 표 3에 표시하다.
(비교예 2)
폴리글리시돌 유도체 대신에 분자량 2000의 폴리에틸렌 글리콜을 사용한 이외는 실시예 7과 동일한 방법으로 폴리에틸렌 글리콜·과염소산리튬 복합체(고분자 전해질 조성물)을 작성하였다.
얻어진 복합체를 200미크론의 간격을 갖는 구리판 2매 사이에 끼워넣어, 교류 입피던스법으로 도전율 측정을 행하고, 실온에서의 상태를 육안에 의하여 판단하였다.(S: 연질페이스트 고체, L: 고점도 액체). 또 광각 X선 측정을 행하여 결정성을 확인하였다. 더욱더, 얻어진 복합체를 100℃에서 5시간 방치하고, 증발에 동반한 중량 감소 비율을 측정하였다. 결과를 표 3에 표시하다.
실시예
7 8 9 10 11 12
폴리머
실시예 1 1
실시예 2 1
실시예 3 1
실시예 4 1
실시예 5 1
실시예 6 1
PEG 200
PEG 2000
도전성(S/㎝) 8.0×10-4 5.2×10-4 2.9×10-4 8.9×10-5 7.0×10-5 5.0×10-4
결정성 비정질 비정질 비정질 비정질 비정질 비정질
실온에서의 상태 L S S S S S
증발에 동반하는 중량감소(%) 0.1이하 0.1이하 0.1이하 0.1이하 0.1이하 0.1이하
비교예
1 2
폴리머
실시예 1
실시예 2
실시예 3
실시예 4
실시예 5
실시예 6
PEG 200 1
PEG 2000 1
도전성(S/㎝) 9.0×10-5 8.0×10-7
결정성 비정질 결정질
실온에서의 상태 L S
증발에 동반하는 중량감소(%) 0.1이하 0.1이하
* PEG 200: 폴리에틸렌글리콜 200* PEG 2000: 폴리에틸렌글리콜 2000실온에서의 상태S: 연질 페이스트 고체L: 고점도 액체
본 발명에 의하면, 높은 이온 도전성을 갖고, 동시에 고농도로 이온 도전성 염을 용해하더라도 결정화하지 않고, 고분자 전해질용으로서 알맞는 신규 고분자 전해질 폴리머 및 고분자 전해질용 조성물이 얻어진다.

Claims (5)

  1. 하기 화학식 1로 표시되는 단위와, 하기 화학식 2로 표시되는 단위를 갖고, 분자사슬의 말단의 10% 이상이 할로겐원자, 비치환 또는 치환 1가 탄화수소기, R1CO-기 (R1은 비치환 또는 치환 1가 탄화수소기), R1 3Si-기 (R1은 상기와 같음), 아미노기, 알킬아미노기, H(OR2)m-기 (R2는 탄소수 2∼4의 알킬렌기, m는 1∼100의 정수) 및 인 원자를 포함하는 기로 부터 선택되는 1종 또는 2종 이상의 1가의 기에 의하여 봉쇄된 것을 특징으로 하는 고분자 화합물.
    (화학식 1)
    (화학식 2)
  2. 제 1 항에 있어서, 말단을 봉쇄하는 1가의 기가, 시아노치환 1가 탄화수소기 또는 시아노기 치환 1가 탄화수소기와 R1 3Si-기인 것을 특징으로 하는 고분자 화합물.
  3. 제 1 항 또는 제 2 항에 기재된 고분자 화합물로 이루어지는 것을 특징으로 하는 고분자 전해질용 폴리머.
  4. 제 3 항에 기재된 고분자 전해질용 폴리머와 이온 도전성 염을 주성분으로 하는 이온 도전성 고분자 전해질용 조성물.
  5. 제 4 항에 있어서, 리튬계 2차 전지용인 것을 특징으로 하는 조성물.
KR1020007009008A 1998-12-17 1999-12-15 고분자 화합물, 고분자 전해질용 폴리머 및 이온 도전성고분자 전해질용 조성물 KR20010024942A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35882498 1998-12-17
JP98-358824 1998-12-17
PCT/JP1999/007040 WO2000035991A1 (fr) 1998-12-17 1999-12-15 Compose polymere, polymere pour polyelectrolyte et composition pour polyelectrolyte conducteur par migration des ions

Publications (1)

Publication Number Publication Date
KR20010024942A true KR20010024942A (ko) 2001-03-26

Family

ID=18461304

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020007009008A KR20010024942A (ko) 1998-12-17 1999-12-15 고분자 화합물, 고분자 전해질용 폴리머 및 이온 도전성고분자 전해질용 조성물

Country Status (9)

Country Link
US (1) US6472106B1 (ko)
EP (1) EP1057846B1 (ko)
KR (1) KR20010024942A (ko)
CN (1) CN1163539C (ko)
CA (1) CA2320953A1 (ko)
DE (1) DE69908755T2 (ko)
DK (1) DK1057846T3 (ko)
MY (1) MY133920A (ko)
WO (1) WO2000035991A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751203B1 (ko) * 2005-08-19 2007-08-22 주식회사 엘지화학 공융혼합물을 포함하는 전해질
KR100884479B1 (ko) * 2006-07-28 2009-02-20 주식회사 엘지화학 공융혼합물을 이용한 이차 전지 및 이의 제조 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2350702A1 (en) * 2000-06-16 2001-12-16 Nisshinbo Industries, Inc. Polymer battery and method of manufacture
JP5021867B2 (ja) 2001-04-09 2012-09-12 第一工業製薬株式会社 ポリエーテル系高分子化合物、これを用いてなるイオン伝導性高分子組成物及び電気化学デバイス
KR20030089721A (ko) * 2001-04-20 2003-11-22 닛신보세키 가부시키 가이샤 고분자 겔 전해질용 조성물 및 고분자 겔 전해질, 및 그전해질을 사용한 2차 전지 및 전기 이중층 커패시터
EP1440995B1 (de) * 2003-01-23 2019-08-07 Rapp Polymere GmbH Hydroxylgruppenhaltige Polymere
CN101447589B (zh) * 2007-11-27 2011-01-26 比亚迪股份有限公司 锂离子电池非水电解液及含有该电解液的锂离子电池
DE102010038774A1 (de) * 2010-08-02 2012-02-02 Evonik Goldschmidt Gmbh Modifizierte Alkoxylierungsprodukte, die zumindest eine nicht-terminale Alkoxysilylgruppe aufweisen, mit erhöhter Lagerstabilität und erhöhter Dehnbarkeit der unter deren Verwendung hergestellten Polymere
FR3019552B1 (fr) * 2014-04-03 2016-04-01 Urgo Lab Composition filmogene
DE102023115168B3 (de) 2023-06-09 2024-07-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Elektrochemische Zelle, umfassend als Festkörperelektrolyt eine näher definierte Polymerverbindung und ein Leitsalz, entsprechendes Verfahren, entsprechender Festkörperelektrolyt, entsprechende Verwendungen und entsprechendes Kit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198752A (ja) * 1984-10-22 1986-05-17 Kao Corp 水溶性樹脂用可塑剤
US4597838A (en) * 1985-08-29 1986-07-01 Omi International Corporation Additive agent for zinc alloy electrolyte and process
JPH0238451A (ja) * 1988-07-27 1990-02-07 Yotsukaichi Gosei Kk イオン導電性固体電解質材料
JPH0295004A (ja) 1988-09-30 1990-04-05 Nec Corp 電力増幅装置
JPH02295004A (ja) * 1989-05-09 1990-12-05 Hitachi Maxell Ltd リチウムイオン伝導性ポリマー電解質
JP2978290B2 (ja) 1991-07-18 1999-11-15 松下電器産業株式会社 高分子固体電解質
US5268243A (en) * 1992-01-27 1993-12-07 Dai-Ichi Kogyo Seiyaku Co., Ltd. Galvanic cell
WO1995013311A2 (en) * 1993-11-10 1995-05-18 Valence Technology, Inc. Capped compounds for solid polymeric electrolytes
CA2175950C (en) * 1995-05-08 2008-12-02 Shinzo Kohjiya Polymer solid electrolyte
JP3475595B2 (ja) 1995-08-03 2003-12-08 日清紡績株式会社 イオン導電性高分子固体電解質電池
JPH09194586A (ja) * 1996-01-25 1997-07-29 Daicel Chem Ind Ltd 高純度ポリグリセリン脂肪酸エステル
JP3729610B2 (ja) * 1996-08-19 2005-12-21 株式会社デンソー 難燃性固体電解質
JP3282565B2 (ja) 1996-11-22 2002-05-13 ダイソー株式会社 架橋高分子固体電解質及びその用途
TW444044B (en) * 1996-12-09 2001-07-01 Daiso Co Ltd Polyether copolymer and polymer solid electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751203B1 (ko) * 2005-08-19 2007-08-22 주식회사 엘지화학 공융혼합물을 포함하는 전해질
KR100884479B1 (ko) * 2006-07-28 2009-02-20 주식회사 엘지화학 공융혼합물을 이용한 이차 전지 및 이의 제조 방법

Also Published As

Publication number Publication date
EP1057846A4 (en) 2001-12-12
DK1057846T3 (da) 2003-09-29
EP1057846A1 (en) 2000-12-06
CN1163539C (zh) 2004-08-25
CN1293688A (zh) 2001-05-02
CA2320953A1 (en) 2000-06-22
DE69908755D1 (de) 2003-07-17
DE69908755T2 (de) 2004-04-29
US6472106B1 (en) 2002-10-29
EP1057846B1 (en) 2003-06-11
MY133920A (en) 2007-11-30
WO2000035991A1 (fr) 2000-06-22

Similar Documents

Publication Publication Date Title
KR101001415B1 (ko) 이온 전도체
US7504473B2 (en) Conductive polymeric compositions for lithium batteries
EP1057869B1 (en) Composition for ionically conductive polyelectrolyte and ionically conductive solid polyelectrolyte
JP4748153B2 (ja) 電解液
KR100907773B1 (ko) 전해액
CA2332839A1 (en) Polymeric compound, binder resin, ion conductive polymer electrolyte composition and secondary cell
CA2333277A1 (en) Ion-conductive solid polymer-forming composition and ion-conductive solid polymer electrolyte, binder resin and secondary cell
KR20010024942A (ko) 고분자 화합물, 고분자 전해질용 폴리머 및 이온 도전성고분자 전해질용 조성물
KR100874300B1 (ko) 이온 전도체
EP2692772A1 (en) Polyether compound and electrolyte composition
EP2803107B1 (en) Silicone epoxy ether compositions, methods for making same and uses therefor
JP2000234020A (ja) 高分子電解質用ポリマー及びイオン導電性高分子電解質用組成物
EP0675894B1 (en) Ion-conductive polymer and electrolyte additives
EP0566169B1 (en) Conductive polymers with ionic conductance
JP4982943B2 (ja) イオン伝導体
KR960010255B1 (ko) 인을 함유하는 폴리에틸렌옥사이드 유도체 및 그의 제조 방법
WO2007013658A1 (en) Solvent for reaction and production method using the same
JP2013142095A (ja) ポリグリシドール誘導体及びポリグリシドール誘導体含有固体電解質用組成物

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid