KR20000022271A - 전력 증폭기 및 이를 이용한 rf 입력 신호 증폭 방법 - Google Patents

전력 증폭기 및 이를 이용한 rf 입력 신호 증폭 방법 Download PDF

Info

Publication number
KR20000022271A
KR20000022271A KR1019980710691A KR19980710691A KR20000022271A KR 20000022271 A KR20000022271 A KR 20000022271A KR 1019980710691 A KR1019980710691 A KR 1019980710691A KR 19980710691 A KR19980710691 A KR 19980710691A KR 20000022271 A KR20000022271 A KR 20000022271A
Authority
KR
South Korea
Prior art keywords
signal
amplifier
input signal
input
bias
Prior art date
Application number
KR1019980710691A
Other languages
English (en)
Other versions
KR100284798B1 (ko
Inventor
제임스**에드워드 미츠라프
Original Assignee
비센트 비.인그라시아
모토로라 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비센트 비.인그라시아, 모토로라 인코포레이티드 filed Critical 비센트 비.인그라시아
Publication of KR20000022271A publication Critical patent/KR20000022271A/ko
Application granted granted Critical
Publication of KR100284798B1 publication Critical patent/KR100284798B1/ko

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/18Indexing scheme relating to amplifiers the bias of the gate of a FET being controlled by a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/432Two or more amplifiers of different type are coupled in parallel at the input or output, e.g. a class D and a linear amplifier, a class B and a class A amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

전력 증폭기(105, 107 또는 205, 207)를 사용하여 RF 입력 신호를 증폭하는 방법은 RF 입력 신호를 동상 신호 및 직각상 신호로 분할하는 단계를 포함한다. 반송파 증폭기 바이어스 입력(111, 211) 신호는 RF 입력 신호의 크기에 대해 변한다. 피킹 증폭기 바이어스 입력(113, 213) 신호는 RF 입력 신호의 크기에 대해 변한다. 동상 신호는 반송파 증폭기(105, 205)에 의해서 증폭되어 제 1 증폭된 신호로서 발생된다. 직각상 신호는 피킹 증폭기(107, 207)에 의해서 증폭되어 제 2 증폭된 신호로서 발생된다. 제 1 증폭된 신호 및 제 2 증폭된 신호는 그들의 위상이 조합되어(115, 215) 출력 신호로서 발생된다.

Description

전력 증폭기 및 이를 이용한 RF 입력 신호 증폭 방법
바람직하게는, 무선 주파수(RF) 전력 증폭기가 RF 신호를 아주 효율적인 방식으로 선형 증폭해야 하는데, 그럼에도 불구하고, 효율을 최대로 하면 선형성이 나빠지고 반대로 선형성을 좋게 하면 효율이 나빠지는 문제가 있다. 효율은 일반적으로 입력 구동 레벨에 비례하며, 고 효율은 증폭기의 출력 전력이 최대에 이를 때까지는 통상 얻어지지 않는데, 이는 선형 동작과 일치하지 않는 것이다. 도허티-타입 증폭기는 부분적으로 피크 전력 아래에서는 표준 AB급 증폭기 및 B급 증폭기보다 효율이 좋은데, 이는 RF 입력 레벨의 변화시 그들의 반송파 증폭기의 부하선이 순간적으로 변형되기 때문이다. 달리 말해서, 도허티-타입 증폭기는 보다 밀접한 입력 구동 레벨과 효율 간의 관계를 나타내는데, 이는 증폭기 부하선이 입력 구동 레벨의 변화시 고 효율이 유지되도록 연속적으로 변형되기 때문이다. 또한, 도허티-타입 증폭기의 바이어스 전력은 표준 AB급 증폭기 및 B급 증폭기보다 상당히 감소된다.
도허티-증폭기의 바이어싱 방법은 버나드 이. 시몬(BERNARD E. SIGMON) 등이 1995년 12월 4일자로 출원하여 본 출원의 출인인에게 양도한 미국 특허 출원 제08/566,811호(발명의 명칭: 고 효율을 위해 능동 바이어스를 사용하는 선형 증폭기 및 방법(LINEAR POWER AMPLIFIER USING ACTIVE BIAS FOR HIGH EFFICIENCY AND METHOD THEREOF))에 개시되고 있다. 이 특허 출원은 본 출원에 참고로 인용된다. 이 특허 출원에 개시된 회로는 반송파 증폭기의 게이트 또는 베이스 바이어스 전류 변동에 의거하여 그 증폭기 디바이스의 RF 입력 전력을 측정한다. 그러나, 이러한 메카니즘은 MOSFET(금속 산화물 반도체 전계 효과 트랜지스터) 증폭기 디바이스에 대해서는 효율적이지 못한데, 이는 그러한 디바이스는 어떤 RF 구동 레벨에서는 바이어스 전류를 인출하지 못하기 때문이다.
따라서, MOSFET 또는 다른 제로(zero) 바이어스 전류 증폭기에 대해 양호한 바이어싱을 제공하면서도 동적 RF 입력 구동 범위에서 효율적인 도허티-타입 증폭기용의 바이어스 회로가 필요하다.
본 발명은 도허티-타입(Doherty-type) 증폭기의 바이어싱(이것에 국한되지는 않음)을 포함한 선형 전력 증폭기에 관한 것이다.
도 1은 본 발명에 따라 바이어스 제어 기능을 갖춘 도허티-타입 증폭기의 블럭도이고,
도 2는 본 발명에 따라 바이어스 제어 기능을 갖춘 다른 도허티-타입 증폭기의 블럭도이고,
도 3은 본 발명에 따른 반송파 증폭기의 바이어스 제어 회로에 대한 블럭도이고,
도 4는 본 발명에 따른 피킹 증폭기의 바이어스 제어 회로에 대한 블럭도이고,
도 5A 및 5B는 본 발명에 따른 바이어스 제어 신호의 그래프이고,
도 6은 본 발명에 따른 피킹 증폭기의 반송파 증폭기에 대한 블럭도이다.
양호한 실시예의 상세 설명
이제 도허티-타입 전력 증폭기의 바이어스 제어를 위한 장치 및 방법에 대해 설명한다. 도허티 전력 증폭기는 반송파 증폭기 및 피킹 증폭기로 구성된다. 반송파 증폭기 및 피킹 증폭기에는 서로 다른 바이어스 신호가 제공되어, 일정한 전력 이득을 제공하는 한편 중간변조 왜곡을 제한한다. 일 실시예에서, 반송파 증폭기 바이어스 신호는 피킹 증폭기 바이어스 신호의 증가시에 감소한다.
본 발명에 따른 전력 증폭기에 구비된 전력 분할기는 RF 입력 신호를 수신하여 그 RF 입력 신호로부터 동상 신호 및 직각상 신호를 발생한다. 반송파 증폭기는 전력 분할기로부터 동상 신호를 증폭하는 것으로서, 반송파 증폭기 바이어스 입력을 가진다. 피킹 증폭기는 전력 분할기로부터 직각상 신호를 증폭하는 것으로서, 피킹 증폭기 바이어스 입력을 가진다. 조합기는 반송파 증폭기의 출력 및 피킹 증폭기의 출력에 결합된다. 조합기는 반송파 증폭기의 출력 및 피킹 증폭기의 출력을 위상 가산 방식으로 조합한다. 제 1 바이어스 회로는 반송파 증폭기에 결합되며, 반송파 증폭기의 바이어스 입력은 제 1 바이어스 회로에 의해서 제공되며 전력 증폭기의 RF 입력 신호의 크기를 나타내는 제 1 신호에 의해서 제어된다. 제 2 바이어스 회로는 피킹 증폭기에 결합되며, 피킹 증폭기의 바이어스 입력은 제 2 바이어스 회로에 의해서 제공되며 전력 증폭기의 RF 입력 신호의 크기를 나타내는 제 2 신호에 의해서 제어된다. 선택적으로, 제 1 신호 및 제 2 신호는 동일 신호일 수도 있다. 또한, 제 1 신호 및/또는 제 2 신호는 RF 입력 신호에 결합된 포락선 검출기의 출력으로부터 도출될 수도 있다. 또한, 제 1 신호 및/또는 제 2 신호는 반송파 증폭기에 의해서 인출된 전류에 비례할 수도 있다. 또한, 반송파 증폭기 바이어스 레벨은 피킹 증폭기 바이어스 레벨의 증가시에 감소될 수도 있다.
전력 증폭기를 사용하여 RF 입력 신호를 증폭하는 방법은 그 RF 입력 신호를 동상 및 직각상 신호로 분할하는 단계를 포함한다. 반송파 증폭기 바이어스 입력 신호는 RF 입력 신호의 크기에 대해 변한다. 피킹 증폭기 바이어스 입력 신호는 RF 입력 신호의 크기에 대해 변한다. 동상 신호는 반송파 증폭기에 의해서 증폭되어 제 1 증폭된 신호로서 발생된다. 직각상 신호는 피킹 증폭기에 의해서 증폭되어 제 2 증폭된 신호로서 발생된다. 제 1 증폭된 신호 및 제 2 증폭된 신호는 그들의 위상이 조합되어 출력 신호로서 발생된다. 또한, 반송파 증폭기 바이어스 입력 신호를 변화시키는 단계 및 피킹 증폭기 바이어스 입력 신호를 변화시키는 단계는 반송파 증폭기 바이어스 입력 신호가 피킹 증폭기 바이어스 입력 신호의 증가시에 감소되도록 수행될 수도 있다. RF 입력 신호의 포락선 검출은 그 RF 입력 신호의 크기를 도출하도록 수행될 수도 있다. RF 입력 신호의 크기는 반송파 증폭기에 의해서 인출된 전류로부터 결정될 수도 있다.
도 1에는 바이어스 제어 기능을 갖춘 도허티-타입 전력 증폭기의 블럭도가 도시된다. RF 입력 신호는 방향성 결합기(101)에 공급되며, 이 방향성 결합기는 입력 신호의 작은 샘플을 그의 결합된 출력에 제공하는 한편 입력 신호 전력의 대부분을 주 출력에 전달하는 기능을 수행한다. 방향성 결합기(101)의 주 출력은 직각 스플리터(quadrature splitter)(103)에 입력된다. 이 스플리터의 분할 작용으로, 동상 신호 및 직각상 신호는 RF 입력 신호보다 크기가 3㏈ 작다. 직각 스플리터(103)의 동상(0°) 출력은 반송파 증폭기(105)에 입력된다. 직각 스플리터(103)의 직각상(-90°) 출력은 피킹 증폭기(107)에 입력된다. 방향성 결합기(101)의 결합된 출력은 검출기(109)에 입력된다. 이 검출기는 허버트 엘. 크라우스(Herbert L. Krauss) 등의 저서인 Solid State Radio Engineering(John Wiley & Sons, New York, 1980)의 9장에 개시되고 있는 바와 같은 다이오드 포락선 검출기일 수도 있다.
검출기(109)의 출력은 RF 입력 신호의 RF 입력 전력 레벨 및 RF 신호의 크기의 표시이다. 검출기(109)는 피크 또는 평균 전력을 나타내도록 세팅될 수도 있다. 검출기의 출력은 반송파 증폭기 바이어스 제어 회로(111) 및 피킹 증폭기 바이어스 제어 회로(113)에 입력된다. 반송파 증폭기 바이어스 제어 회로(111)의 출력은 CA 바이어스 제어 신호로서, 이 신호는 반송파 증폭기(105)의 바이어스 제어 입력에 입력된다. 양호한 실시예에서, 반송파 증폭기는 검출기(109) 출력이 낮은 입력 신호 레벨을 나타낼 때에 컷오프보다 약간 높게 바이어스된다. 이 프로세스는 반송파 증폭기가 낮은 입력 신호 레벨에서 선형 증폭을 행할 수 있게 한다. 피킹 증폭기 바이어스 제어 회로(113)의 출력은 PA 바이어스 제어 신호로서, 이 신호는 피킹 증폭기(107)의 바이어스 제어 입력에 입력된다. 양호한 실시예에서, 피킹 증폭기는 검출기(109)가 낮은 입력 신호 레벨을 나타낼 때에 컷오프 보다 낮게 바이어스된다. 이 프로세스는 RF 입력 신호가 그의 최대 허용된 진폭의 약 절반에 이를 때까지 피킹 증폭기가 전류를 인출하지 못하도록 하는 것에 의해 낮은 입력 신호 레벨에서의 효율을 향상시킨다.
반송파 증폭기(105)의 출력 및 피킹 증폭기(107)의 출력은 조합기(115)에 입력된다. 양호한 실시예에서, 조합기는 쿼터 파장(1/4) 50Ω 전송선(117)으로 구성되는데, 이 전송선의 출력은 RF 포트(119)에서 피킹 증폭기 출력에 접속된다. 낮은 입력 신호 레벨들에서, 피킹 증폭기는 비활성 상태에 있으며 RF 출력 포트(119)에서 조합기(115)에 대해 고임피던스를 나타낸다. 양호한 실시예에서, RF 출력 포트의 임피던스는 공칭적으로 25Ω이며, (1/4) 50Ω 전송선(117)은 그 임피던스를 반송파 증폭기의 출력에서 100Ω으로 변환한다. 반송파 증폭기는 공칭 50Ω 부하로 동작하도록 구성되기 때문에, 100Ω의 부하는 RF 입력 신호가 그의 최대 허용된 진폭의 절반에 이를 때에 반송파 증폭기가 그의 공칭 최대 출력 전력 레벨의 1/2에서 포화되도록 한다. 이 점에서, RF 입력 신호의 진폭은 피킹 증폭기가 전력을 RF 출력 포트(119)로 전달하기 시작하도록 한다. 이들 조건에서, (1/4) 50Ω 전송선(117)은 또한 반송파 및 피킹 증폭기의 출력들이 그들의 위상이 RF 출력 포트(119)에서 가산되어 최대 이용가능한 출력 전력 및 효율을 제공하도록 한다. 필터는 또한 검출기(109)와 바이어스 제어 회로(111, 113) 사이에 삽입되어, 중간변조 왜곡을 발생할 수도 있는 AC 성분 또는 단락 포락선 변동이 검출기(119)로부터 제거되도록 할 수도 있다.
반송파 증폭기(1050 및 피킹 증폭기(107)가 상술한 바와 같이 이상적으로 동작하는 경우, 바이어스 레벨들은 제로 검출기 출력에 설정된 레벨들로 일정하게 유지될 수도 있다. 즉, 어떠한 바이어스 제어 회로도 필요하지 않을 것이다. 그러나, 이같은 상황은 실제에 있어서는 좀처럼 가능하지 않다. 예를 들어, 피킹 증폭기(107)는 RF 입력 신호가 그의 최대 허용된 진폭의 절반에 이를 때까지는 비활성 상태를 유지하도록 바이어스되는 경우에 부적당한 이득을 가질 수도 있다. 이 경우, RF 입력 신호가 그의 최대 허용된 진폭의 절반을 초과할 때 피킹 증폭기(107)에 대한 바이어스를 증가시키는 것이 바람직하다. 또한, 어떤 다른 RF 입력 신호 레벨에서는 반송파 증폭기(105)에 대한 바이어스를 감소시켜 도허티-타입 증폭기의 이득이 넓은 범위의 입력 신호 레벨들에 걸쳐서 일정하게 유지되도록 하는 것이 바람직하다. 이 프로세스는 도허티-타입 전력 증폭기의 선형성을 향상시켜 RF 출력 포트(119)에서 중간 왜곡의 레벨이 감소되게 한다.
검출기(109)는 회로의 어느 다른 곳에 결합되어 다른 동작 조건 예를 들어 반송파 증폭기(105) 및/또는 피킹 증폭기(107) RF 출력 또는 DC 입력 전류를 감시할 수도 있다. 검출기(109)의 위치 및 기능에 대한 최종 선택은 도허티 증폭기의 전반적인 특성(예를 들어, 효율, 이득, 이득 평탄도, 중간변조 왜곡 등)을 최적화하도록 이루어진다.
바이어스 제어 기능을 갖춘 도허티-타입 전력 증폭기의 다른 실시예가 도 2에 도시된다. RF 신호는 직각 스플리터(203)에 입력된다. 직각 스플리터(203)의 동상(0°) 출력은 반송파 증폭기(205)에 입력된다. 직각 스플리터(203)의 직각상(-90°) 출력은 피킹 증폭기(207)에 입력된다. 차동 증폭기(209)는 반송파 증폭기(205)에 대한 DC 전력 입력과 직렬의 저항(RS) 양단간에 배치된다. 이 저항 양단간의 전압은 반송파 증폭기(205)에 의해 인출된 DC 전류에 비례하며, 이 전류는 다시 RF 신호의 RF 입력 전력 레벨에 비례한다. 차동 증폭기(209)의 출력은 저항(RS) 양단간의 전압이 증폭된 것이다. 반송파 증폭기 바이어스 제어 회로(211)의 출력은 반송파 증폭기(205)의 바이어스 제어 입력에 입력된다. 피킹 증폭기 바이어스 제어 회로(213)의 출력은 피킹 증폭기(207)의 바이어스 제어 입력에 입력된다. 반송파 증폭기(205)의 출력 및 피킹 증폭기(207)의 출력은 조합기(215)에 입력된다. 조합기(215)는 쿼터 파장(1/4) 50Ω 전송선(217)을 포함하는데, 이 전송선은 노드(219)에 출력을 발생한다. 조합기(215)의 기능은 도 1을 참조하여 설명한 조합기(115)의 기능과 유사하다.
반송파 증폭기의 바이어스 제어 회로의 블럭을 도 3에 도시했다. 반송파 증폭기 바이어스 제어 회로(111 또는 211)는 반송파 증폭기(105 또는 205)에 입력되는 CA 바이어스 제어 신호를 출력한다. 연산 증폭기(301)는 그의 전원 입력이 Vcc에 결합된 것으로서 그의 정(+) 입력은 기준 전압 Vos에 결합된다. Vos는 오프셋 기준 전압이다. 연산 증폭기(301)의 부(-) 입력은 바이어스 제어 회로에 대한 입력과 직렬의 저항(R1)을 가진다. 도 1의 경우, 바이어스 제어 회로 입력 신호는 검출기(109)의 출력 신호이다. 도 2의 경우, 바이어스 제어 회로 입력 신호는 차동 증폭기(209)의 출력이다. 저항(R2)은 연산 증폭기(301)의 입력과 연산 증폭기(301)의 출력 간에 직렬로 결합된다.
도 4에는 피킹 증폭기의 바이어스 제어 회로의 블럭도가 도시된다. 피킹 증폭기 바이어스 제어 회로(113 또는 213)는 피킹 증폭기(107 또는 207)에 입력되는 PA 바이어스 제어 신호를 출력한다. 연산 증폭기(401)는 그의 전원 입력이 Vcc에 결합된 것으로서 그의 정(+) 입력은 바이어스 제어 회로(113 또는 213)에 대한 입력 신호에 결합된다. 도 1의 경우, 바이어스 제어 회로 입력 신호는 검출기(109)의 출력 신호이다. 도 2의 경우, 바이어스 제어 회로 입력 신호는 차동 증폭기(209)의 출력이다. 직렬 저항(R3)은 기준 전압(Vos)과 차동 증폭기의 부(-) 입력 사이에 배치된다. 다른 직렬 저항(R4)은 연산 증폭기(401)의 부(-) 입력과 연산 증폭기(401)의 출력 간에 직렬로 결합된다.
도시된 바와 같은 바이어스 제어 회로(111, 113, 211 및 213)는 정(+)의 전압을 그들의 입력 신호로서 취급하도록 구성된다. 당업자에 의해, 바이어스 제어 회로(111, 113, 211 및 213)는 부(-) 입력 신호를 취급하도록 변형될 수도 있다.
도 5A에는 검출기 출력에 대한 CA 바이어스 제어 신호의 그래프가 도시된다. CA 바이어스 제어 신호는 검출기(109 또는 209)가 출력을 발생할 때 반대 방향의 트랙킹을 행한다. CA 바이어스 제어 신호는 검출기(109 또는 209)의 출력(Vdet)이 대체적으로 Vos + (Vos-Vcc)R1/R2의 레벨에 이를 때까지 거의 Vcc를 유지한다. CA 바이어스 제어 신호는 그 다음 거의 제로 레벨에 이를 때까지 -R2/R1의 비에 의해서 결정되는 기울기로 떨어진다.
예를 들어, 검출기(109 또는 209)의 출력이 4V로부터 5V로 변할 때 CA 바이어스 제어 신호가 5V로부터 4V로 변할 필요가 있다고 가정한다. 우선, Vcc=5V로 세팅하여 CA 바이어스 제어 신호가 원하는 범위로 변하게 한다. 다음, -R2/R1=5로 세팅하여 예를 들어 R1=1000Ω으로 하고 R2=5000Ω으로 하여 원하는 기울기를 얻는다. 마지막으로, 상기의 식을 Vdet=4V 및 Vcc=5V로 하여 풀면, Vos의 필요한 값인 대략 4.17V가 얻어진다.
주목할 것은 도 3의 반송파 증폭기 바이어스 제어 회로는 또한 차동 증폭기(209)에 대해 사용될 수도 있다는 것이다. 이 경우, 기준 전압 Vos는 전원 DC에 가장 가까운 저항 Rs의 단부에 접속되며, INPUT로서 표시된 터미널은 Rs의 타단부에 접속된다. 전체적인 전류/전압 전달 함수는 R2/R1이다.
도 5B에는 검출기 출력에 대한 PA 바이어스 제어 신호의 그래프가 도시된다. PA 바이어스 제어 신호는 검출기(109 또는 209)가 출력을 발생할 때 동일 방향의 트랙킹을 행한다. PA 바이어스 제어 신호는 검출기(109 또는 209)의 출력(Vdet)이 대체적으로 (Vos)R4/(R3+R4) 레벨에 이를 때까지 거의 제로를 유지한다. PA 바이어스 제어 신호는 그 다음 거의 Vcc 레벨에 이를 때까지 (R3+R4)/R3의 비에 의해서 결정되는 기울기로 떨어진다.
예를 들어, 검출기(109 또는 209)의 출력이 2.5V로부터 5V로 변할 때 PA 바이어스 제어 신호가 0V로부터 5V로 변할 필요가 있다고 가정한다. 우선, Vcc=5V로 세팅하여 PA 바이어스 제어 신호가 원하는 범위로 변하게 한다. 다음, (R3+R4)/R3=2로 세팅하여 예를 들어 R3=1000Ω으로 하고 R4=1000Ω으로 하여 원하는 기울기를 얻는다. 마지막으로, 상기의 식을 Vdet=2.5V 및 Vcc=5V로 하여 풀면, Vos의 필요한 값인 대략 5V가 얻어진다.
도 6에는 반송파 증폭기(105 또는 205) 또는 피킹 증폭기(107 또는 207)의 블럭도가 도시된다. 도 6의 증폭기에 대한 입력은 입력 정합 회로(601)에 접속된다. 입력 정합 회로의 출력은 RF 전력 증폭 디바이스(603)의 게이트에 접속된다. RF 전력 증폭 디바이스(603)는 MOSFET 전력 증폭 디바이스 예를 들어 VMOS 또는 LDMOS일 수도 있다. 입력 정합 회로(601)의 기능은 MOSFET 디바이스(603)의 게이트의 RF 임피던스인 약 1Ω을 RF 입력 공급원의 최적 기능에 필요한 레벨인 전형적인 50Ω으로 변환하기 위한 것이다. 입력 정합 회로는 허버트 엘. 크라우스(Herbert L. Krauss) 등의 저서인 Solid State Radio Engineering(John Wiley & Sons, New York, 1980)에 개시되고 있는 바와 같은 리액티브 성분, 변환기 및 전송선의 각종 조합에 의해서 구성될 수도 있다. 트랜지스터(603)의 게이트는 또한 저항 R6을 통해 접지에 접속된다. 트랜지스터(603)의 소스는 접지에 접속된다. 트랜지스터(603)의 드레인은 RF 쵸크(605)를 쵸크를 통해 전원 Vdd에 접속된다. 바이어스 제어 입력은 저항 Rgc를 통해 트랜지스터(603)의 게이트에 접속된다. 검출기 출력이 최대로부터 최소로 되는 때 게이트 바이어스 전압 Vg에 원하는 변화를 부여하도록 Rgc를 선택한다. 이 Vg의 변화는 R5=R6=2000Ω으로 가정한 경우 대체적으로 Vcc*1000/(1000+Rgc)이다. 그 다음, 적절한 바이어스 제어 회로(111, 113, 211 또는 213)를 접속한 상태에서 Vgg를 세팅하여 최소의 검출기(109 또는 209) 출력에서 Vg를 부여하도록 한다. 트랜지스터(603)의 드레인은 출력 정합 회로(607)에 접속되며, 이 회로는 MOSFET 디바이스(603)의 드레인의 임피던스인 전형적으로 1Ω을 RF 출력 포트(119)의 임피던스인 전형적으로 50Ω으로 변환한다. 출력 정합 회로는
허버트 엘. 크라우스(Herbert L. Krauss) 등의 저서인 Solid State Radio Engineering(John Wiley & Sons, New York, 1980)에 개시되고 있는 바와 같은 리액티브 성분, 변환기 및 전송선의 각종 조합에 의해서 구성될 수도 있다. 출력 정합 회로는 증폭기의 RF 출력을 출력한다.
본 발명에 의하면, 제로 바이어스 전류를 가진 도허티 전력 증폭기의 바이어스 제어가 제공된다. 상술한 바이어싱 방안에 의하면, 반송파 증폭기가 그의 포화점에 이를 때까지 피킹 증폭기를 엄격히 컷오프 상태로 유지시킴으로써, MOSFET 디바이스를 사용하는 종래 도허티 증폭기와 비교하여 효율이 향상된다. 본 발명의 바이어싱 방안에 의하면, 또한 피킹 증폭기에 대한 바이어스가 증가될 때 반송파 증폭기에 대한 바이어스가 감소되기 때문에 도허티 전력 증폭기에서 전력 이득이 전력 레벨의 함수로서 더욱 일정하게 유지될 수 있다. 이같은 이득 변화의 감소 덕분에 도허티 전력 증폭기에서 중간변조 왜곡이 감소된다(선형성이 향상된다.)

Claims (10)

  1. 전력 증폭기에 있어서,
    RF 입력 신호를 수신하여 그 RF 입력 신호로부터 동상 신호 및 직각상 신호를 발생하는 전력 분할기와;
    상기 전력 분할기로부터의 상기 동상 신호를 증폭하는 반송파 증폭기 ― 이 반송파 증폭기는 반송파 증폭기 바이어스 입력을 가짐 ― 와;
    상기 전력 분할기로부터의 상기 직각상 신호를 증폭하는 피킹 증폭기(peaking amplifier) ― 이 피킹 증폭기는 피킹 증폭기 바이어스 입력을 가짐 ― 와;
    상기 반송파 증폭기의 출력 및 상기 피킹 증폭기의 출력에 결합되어, 상기 반송파 증폭기의 출력 및 상기 피킹 증폭기의 출력을 위상 가산 방식으로 조합하는 조합기와;
    상기 반송파 증폭기에 결합된 제 1 바이어스 회로 ― 상기 반송파 증폭기 바이어스 입력은 상기 제 1 바이어스 회로에 의해서 제공되며 상기 전력 증폭기의 상기 RF 입력 신호의 크기를 나타내는 제 1 신호에 의해서 제어됨 ― 와;
    상기 피킹 증폭기에 결합된 제 2 바이어스 회로 ― 상기 피킹 증폭기 바이어스 입력은 상기 제 2 바이어스 회로에 의해서 제공되며 상기 전력 증폭기의 상기 RF 입력 신호의 크기를 나타내는 제 2 신호에 의해서 제어됨 ―
    를 구비하는 전력 증폭기.
  2. 제 1 항에 있어서,
    상기 제 1 신호 및 상기 제 2 신호는 동일 신호인 전력 증폭기.
  3. 제 1 항에 있어서,
    상기 제 1 신호는 상기 RF 입력 신호에 결합된 포락선 검출기의 출력으로부터 도출되는 전력 증폭기.
  4. 제 1 항에 있어서,
    상기 제 2 신호는 상기 RF 입력 신호에 결합된 포락선 검출기의 출력으로부터 도출되는 전력 증폭기.
  5. 제 1 항에 있어서,
    상기 반송파 증폭기는 전류를 인출하며, 상기 제 1 신호는 그 전류에 비례하는 전력 증폭기.
  6. 제 1 항에 있어서,
    상기 반송파 증폭기는 전류를 인출하며, 상기 제 2 신호는 그 전류에 비례하는 전력 증폭기.
  7. 제 1 항에 있어서,
    상기 반송파 증폭기 바이어스 레벨은 상기 피킹 증폭기 바이어스 레벨의 증가시에 감소되는 전력 증폭기.
  8. 전력 증폭기를 사용하여 RF 입력 신호를 증폭하는 방법에 있어서,
    상기 RF 입력 신호를 동상 신호 및 직각상 신호로 분할하는 단계와;
    상기 RF 입력 신호의 크기에 대해 반송파 증폭기 바이어스 입력 신호를 변화시키는 단계와;
    상기 RF 입력 신호의 크기에 대해 피킹 증폭기 바이어스 입력 신호를 변화시키는 단계와;
    상기 동상 신호를 반송파 증폭기에 의해서 증폭하여 제 1 증폭된 신호를 생성하는 단계와;
    상기 직각상 신호를 피킹 증폭기에 의해서 증폭하여 제 2 증폭된 신호를 생성하는 단계와;
    상기 제 1 증폭된 신호와 상기 제 2 증폭된 신호를 위상 조합하여 출력 신호를 생성하는 단계
    를 포함하는 전력 증폭기를 이용한 RF 입력 신호 증폭 방법.
  9. 제 8 항에 있어서,
    상기 반송파 증폭기 바이어스 입력 신호를 변화시키는 단계와 상기 피킹 증폭기 바이어스 입력 신호를 변화시키는 단계는 상기 반송파 증폭기 바이어스 입력 신호가 상기 피킹 증폭기 바이어스 입력 신호의 증가시에 감소되도록 수행되는 전력 증폭기를 이용한 RF 입력 신호 증폭 방법.
  10. 제 8 항에 있어서,
    RF 입력 신호를 포락선 검출하여 상기 RF 입력 신호의 크기를 도출하는 단계와; 상기 RF 입력 신호의 크기를 상기 반송파 증폭기에 의해서 인출된 전류로부터 결정하는 단계 중 적어도 하나의 단계를 더 포함하는 전력 증폭기를 이용한 RF 입력 신호 증폭 방법.
KR1019980710691A 1996-06-28 1997-04-16 전력 증폭기 및 이를 이용한 rf 입력 신호 증폭 방법 KR100284798B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/672,710 US5757229A (en) 1996-06-28 1996-06-28 Bias circuit for a power amplifier
US8/672,710 1996-06-28
PCT/US1997/006165 WO1998000912A1 (en) 1996-06-28 1997-04-16 Bias circuit for a power amplifier

Publications (2)

Publication Number Publication Date
KR20000022271A true KR20000022271A (ko) 2000-04-25
KR100284798B1 KR100284798B1 (ko) 2001-03-15

Family

ID=24699688

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980710691A KR100284798B1 (ko) 1996-06-28 1997-04-16 전력 증폭기 및 이를 이용한 rf 입력 신호 증폭 방법

Country Status (9)

Country Link
US (1) US5757229A (ko)
EP (1) EP0908006B1 (ko)
JP (1) JP4210332B2 (ko)
KR (1) KR100284798B1 (ko)
AU (1) AU702964B2 (ko)
CA (1) CA2257887A1 (ko)
DE (1) DE69736107T2 (ko)
MY (1) MY116892A (ko)
WO (1) WO1998000912A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480496B1 (ko) * 2002-11-18 2005-04-07 학교법인 포항공과대학교 도허티 증폭기를 이용한 신호 증폭 장치
KR100786456B1 (ko) * 2001-08-07 2007-12-17 가부시키가이샤 히다치 고쿠사이 덴키 피드 포워드 방식 왜곡 보상 증폭 장치 및 어댑티브프리디스토션 방식 왜곡 보상 증폭 장치
KR101122383B1 (ko) * 2005-08-01 2012-03-26 삼성전자주식회사 선형성 개선을 위한 멀티 모드용 전력 증폭기

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085074A (en) * 1997-02-28 2000-07-04 Motorola, Inc. Apparatus and method for amplifying an amplitude-varying signal
US6097252A (en) * 1997-06-02 2000-08-01 Motorola, Inc. Method and apparatus for high efficiency power amplification
US5861777A (en) * 1997-07-02 1999-01-19 Motorola, Inc. Method and apparatus for compensation of phase distortion in power amplifiers
US5886575A (en) * 1997-09-30 1999-03-23 Motorola, Inc. Apparatus and method for amplifying a signal
US6084468A (en) * 1997-10-06 2000-07-04 Motorola, Inc. Method and apparatus for high efficiency wideband power amplification
US6359506B1 (en) * 1998-04-02 2002-03-19 Ericsson Inc. Linear modulation using a linear and a non-linear amplifier
US6028485A (en) * 1998-08-03 2000-02-22 Motorola, Inc. Power amplification apparatus and method therefor
US6233440B1 (en) * 1998-08-05 2001-05-15 Triquint Semiconductor, Inc. RF power amplifier with variable bias current
KR100362925B1 (ko) * 1999-03-31 2002-11-29 가부시키가이샤 엔.티.티.도코모 피드포워드 증폭기
US6157253A (en) * 1999-09-03 2000-12-05 Motorola, Inc. High efficiency power amplifier circuit with wide dynamic backoff range
DE60039063D1 (de) * 1999-11-11 2008-07-10 Broadcom Corp Gigabit ethernet senderempfänger mit analoger eingangsschaltung
US6374092B1 (en) * 1999-12-04 2002-04-16 Motorola, Inc. Efficient multimode power amplifier
US6359504B1 (en) * 2000-01-28 2002-03-19 Lucent Technologies Inc. Power amplifier using upstream signal information
US6816003B2 (en) 2000-02-04 2004-11-09 The Trustees Of Columbia University In The City Of New York Circuits with dynamic biasing
US6320462B1 (en) * 2000-04-12 2001-11-20 Raytheon Company Amplifier circuit
KR20010104951A (ko) * 2000-05-17 2001-11-28 타이 중 치 비직조의 합성직물
SE516847C2 (sv) * 2000-07-07 2002-03-12 Ericsson Telefon Ab L M Sammansatt förstärkare samt sändare som innefattar en sådan förstärkare
SE516145C2 (sv) * 2000-06-06 2001-11-26 Ericsson Telefon Ab L M Sammansatt förstärkare
WO2002003543A1 (fr) * 2000-06-30 2002-01-10 Mitsubishi Denki Kabushiki Kaisha Amplificateur haute frequence
US6639463B1 (en) * 2000-08-24 2003-10-28 Lucent Technologies Inc. Adaptive power amplifier system and method
US6731173B1 (en) * 2000-10-23 2004-05-04 Skyworks Solutions, Inc. Doherty bias circuit to dynamically compensate for process and environmental variations
EP1202467B1 (fr) * 2000-10-24 2004-07-07 Koninklijke Philips Electronics N.V. Emetteur de signaux à commande impulsionnelle d'amplification
US6384679B1 (en) * 2000-11-15 2002-05-07 National Semiconductor Corporation Rail-to-rail amplifier with reduced GM and compensating cap
US6731172B2 (en) * 2001-01-16 2004-05-04 Skyworks Solutions, Inc. Doherty power amplifier with integrated quarter wave transformer/combiner circuit
WO2002063768A1 (en) * 2001-02-05 2002-08-15 The Trustees Of Columbia University In The City Of New York Circuits with dynamic biasing
US6864742B2 (en) * 2001-06-08 2005-03-08 Northrop Grumman Corporation Application of the doherty amplifier as a predistortion circuit for linearizing microwave amplifiers
US6469581B1 (en) * 2001-06-08 2002-10-22 Trw Inc. HEMT-HBT doherty microwave amplifier
US20020186079A1 (en) * 2001-06-08 2002-12-12 Kobayashi Kevin W. Asymmetrically biased high linearity balanced amplifier
US6917246B2 (en) * 2001-09-10 2005-07-12 Skyworks Solutions, Inc. Doherty bias circuit to dynamically compensate for process and environmental variations
US6737922B2 (en) * 2002-01-28 2004-05-18 Cree Microwave, Inc. N-way RF power amplifier circuit with increased back-off capability and power added efficiency using unequal input power division
US6791417B2 (en) * 2002-01-28 2004-09-14 Cree Microwave, Inc. N-way RF power amplifier circuit with increased back-off capability and power added efficiency using selected phase lengths and output impedances
US6700444B2 (en) * 2002-01-28 2004-03-02 Cree Microwave, Inc. N-way RF power amplifier with increased backoff power and power added efficiency
KR100553252B1 (ko) * 2002-02-01 2006-02-20 아바고테크놀로지스코리아 주식회사 휴대용 단말기의 전력 증폭 장치
US6985704B2 (en) 2002-05-01 2006-01-10 Dali Yang System and method for digital memorized predistortion for wireless communication
US8472897B1 (en) 2006-12-22 2013-06-25 Dali Systems Co. Ltd. Power amplifier predistortion methods and apparatus
US8811917B2 (en) 2002-05-01 2014-08-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
US8380143B2 (en) * 2002-05-01 2013-02-19 Dali Systems Co. Ltd Power amplifier time-delay invariant predistortion methods and apparatus
SE524408C2 (sv) * 2002-06-19 2004-08-03 Ericsson Telefon Ab L M Effektiv generering av radiofrekventa strömmar
KR100450744B1 (ko) 2002-08-29 2004-10-01 학교법인 포항공과대학교 도허티 증폭기
JP2004221646A (ja) 2003-01-09 2004-08-05 Nec Corp ドハ−ティ増幅器
KR20040079597A (ko) * 2003-03-08 2004-09-16 학교법인 포항공과대학교 적응 바이어스 제어 기술을 이용한 초고주파 도허티증폭장치
US7038539B2 (en) * 2003-05-06 2006-05-02 Powerwave Technologies, Inc. RF amplifier employing active load linearization
KR100830527B1 (ko) * 2003-09-17 2008-05-21 닛본 덴끼 가부시끼가이샤 증폭기
DE112004001976T5 (de) * 2003-10-21 2006-10-19 Wavics, Inc., Palo Alto Hochlinearität-Doherty-Kommunikationsverstärker mit Vorspannungssteuerung
US7339426B2 (en) * 2004-03-19 2008-03-04 Powerwave Technologies, Inc. High efficiency linear amplifier employing dynamically controlled back off
US7064615B2 (en) * 2004-03-24 2006-06-20 Freescale Semiconductor, Inc. Method and apparatus for doherty amplifier biasing
US7440733B2 (en) * 2004-04-09 2008-10-21 Powerwave Technologies, Inc. Constant gain nonlinear envelope tracking high efficiency linear amplifier
US7123096B2 (en) * 2004-05-26 2006-10-17 Raytheon Company Quadrature offset power amplifier
US20060017509A1 (en) * 2004-07-21 2006-01-26 Veitschegger William K Auxiliary transistor gate bias control system and method
US7327803B2 (en) 2004-10-22 2008-02-05 Parkervision, Inc. Systems and methods for vector power amplification
US7355470B2 (en) 2006-04-24 2008-04-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning
US7148746B2 (en) * 2004-10-26 2006-12-12 Andrew Corporation High efficiency amplifier
US7295065B2 (en) * 2004-11-18 2007-11-13 Beecem Communications Inc. High efficiency doherty amplifier with a segmented main amplifier
SE528473C2 (sv) * 2005-02-28 2006-11-21 Infineon Technologies Ag Monolitiskt integrerad effektförstärkaranordning
WO2007003219A1 (en) * 2005-06-30 2007-01-11 Freescale Semiconductor, Inc Wireless communication unit, integrated circuit and biasing circuit therefor
JP2007053540A (ja) * 2005-08-17 2007-03-01 Nec Corp ドハティ型増幅器
US20070075780A1 (en) * 2005-10-05 2007-04-05 Enver Krvavac Apparatus and method for adaptive biasing of a Doherty amplifier
US8334722B2 (en) 2007-06-28 2012-12-18 Parkervision, Inc. Systems and methods of RF power transmission, modulation and amplification
US7911272B2 (en) 2007-06-19 2011-03-22 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US8013675B2 (en) 2007-06-19 2011-09-06 Parkervision, Inc. Combiner-less multiple input single output (MISO) amplification with blended control
US9106316B2 (en) 2005-10-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US20130078934A1 (en) 2011-04-08 2013-03-28 Gregory Rawlins Systems and Methods of RF Power Transmission, Modulation, and Amplification
US7831221B2 (en) * 2005-12-13 2010-11-09 Andrew Llc Predistortion system and amplifier for addressing group delay modulation
US8093946B2 (en) * 2006-03-17 2012-01-10 Nujira Limited Joint optimisation of supply and bias modulation
US7937106B2 (en) 2006-04-24 2011-05-03 ParkerVision, Inc, Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US8031804B2 (en) 2006-04-24 2011-10-04 Parkervision, Inc. Systems and methods of RF tower transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
CN101479956B (zh) 2006-04-28 2013-07-31 大力系统有限公司 用于无线通信的高效率线性化功率放大器
JP4831571B2 (ja) * 2006-05-02 2011-12-07 富士通株式会社 増幅器ユニット及びその故障検出方法
US7518448B1 (en) * 2006-09-27 2009-04-14 Nortel Networks Limited Amplifier mode switch
US20080122542A1 (en) * 2006-11-27 2008-05-29 Gregory Bowles Enhanced amplifier with auxiliary path bias modulation
JP2008147857A (ja) * 2006-12-07 2008-06-26 Mitsubishi Electric Corp 高効率増幅器
CN101563840B (zh) * 2006-12-19 2012-06-06 三菱电机株式会社 电力放大装置
CN102017553B (zh) 2006-12-26 2014-10-15 大力系统有限公司 用于多信道宽带通信系统中的基带预失真线性化的方法和系统
US9026067B2 (en) 2007-04-23 2015-05-05 Dali Systems Co. Ltd. Remotely reconfigurable power amplifier system and method
US8274332B2 (en) * 2007-04-23 2012-09-25 Dali Systems Co. Ltd. N-way Doherty distributed power amplifier with power tracking
WO2008144017A1 (en) 2007-05-18 2008-11-27 Parkervision, Inc. Systems and methods of rf power transmission, modulation, and amplification
US8224266B2 (en) 2007-08-30 2012-07-17 Dali Systems Co., Ltd. Power amplifier predistortion methods and apparatus using envelope and phase detector
JP5169122B2 (ja) * 2007-10-09 2013-03-27 住友電気工業株式会社 ドハティ増幅装置
EP2248255A4 (en) 2007-12-07 2014-05-28 Dali Systems Co Ltd DIGITAL PREDISTORSION RF DERIVED BASEBAND
JP4950083B2 (ja) * 2008-01-15 2012-06-13 ルネサスエレクトロニクス株式会社 高効率電力増幅器
JP5338262B2 (ja) * 2008-11-05 2013-11-13 日本電気株式会社 電力増幅器およびその増幅方法
US7944293B2 (en) * 2008-12-11 2011-05-17 Samsung Electro-Mechanics Company, Ltd. Systems and methods for an adaptive bias circuit for a differential power amplifier
KR101310993B1 (ko) 2009-01-26 2013-09-24 닛본 덴끼 가부시끼가이샤 고주파 증폭기, 무선 장치 및 제어 방법
EP2426816A1 (en) 2009-04-28 2012-03-07 Panasonic Corporation Power amplifier
CN106160674A (zh) 2009-12-21 2016-11-23 大力系统有限公司 用于改善发射机与接收机之间的隔离的系统
US8351877B2 (en) 2010-12-21 2013-01-08 Dali Systems Co. Ltfd. Multi-band wideband power amplifier digital predistorition system and method
EP3068047A3 (en) 2009-12-21 2017-03-01 Dali Systems Co. Ltd. Modulation agnostic digital hybrid mode power amplifier system and method
US8542768B2 (en) 2009-12-21 2013-09-24 Dali Systems Co. Ltd. High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
US8447245B2 (en) 2010-01-22 2013-05-21 Freescale Semiconductor, Inc. Radio frequency transmitter having an amplifier with power supply modulation
EP2372905B1 (en) * 2010-04-01 2012-06-20 Alcatel Lucent Efficiency-improved Doherty amplifier arrangement
US8183929B2 (en) * 2010-04-09 2012-05-22 Viasat, Inc. Multi-chip doherty amplifier with integrated power detection
US8803599B2 (en) * 2010-05-26 2014-08-12 Stmicroelectronics, Inc. Dendrite resistant input bias network for metal oxide semiconductor field effect transistor (MOSFET) devices
JP5527047B2 (ja) 2010-06-29 2014-06-18 富士通株式会社 増幅装置
JP2012034134A (ja) * 2010-07-29 2012-02-16 Sumitomo Electric Device Innovations Inc 増幅器
KR101829517B1 (ko) 2010-09-14 2018-02-14 달리 시스템즈 씨오. 엘티디. 원격으로 재구성가능한 분산 안테나 시스템 및 방법
WO2012167111A2 (en) 2011-06-02 2012-12-06 Parkervision, Inc. Antenna control
US8829998B2 (en) * 2012-10-23 2014-09-09 Airspan Networks Inc. Doherty power amplifier
WO2014155501A1 (ja) * 2013-03-26 2014-10-02 日本電気株式会社 電力増幅装置および電力増幅方法
US9136804B2 (en) * 2013-07-29 2015-09-15 Freescale Semiconductor, Inc. Switch-mode amplifier
CN104348425A (zh) * 2013-07-31 2015-02-11 展讯通信(上海)有限公司 一种实现多个射频功率放大单元的自适应兼容系统及方法
JP2015046795A (ja) * 2013-08-28 2015-03-12 株式会社東芝 電力増幅装置、及び電力増幅装置の制御方法
KR20160058855A (ko) 2013-09-17 2016-05-25 파커비전, 인크. 정보를 포함하는 시간의 함수를 렌더링하기 위한 방법, 장치 및 시스템
JP2015104062A (ja) * 2013-11-27 2015-06-04 三菱電機株式会社 高効率増幅器
JP5833094B2 (ja) * 2013-12-26 2015-12-16 株式会社東芝 電力増幅装置、及び電力増幅装置の制御方法
WO2015106422A1 (en) 2014-01-16 2015-07-23 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for adjusting peak power capability
JP2015220680A (ja) * 2014-05-20 2015-12-07 三菱電機株式会社 高効率増幅器
US9806681B2 (en) * 2015-02-15 2017-10-31 Skyworks Solutions, Inc. Doherty power amplifier having AM-AM compensation
JP6776709B2 (ja) * 2016-08-04 2020-10-28 富士通株式会社 電力増幅装置、半導体集積回路および電力増幅装置の制御方法
KR102029558B1 (ko) * 2017-12-27 2019-10-07 삼성전기주식회사 광대역 선형화가 개선된 파워 증폭 장치
KR20200114745A (ko) * 2019-03-29 2020-10-07 삼성전자주식회사 전력증폭기 소손 방지를 위한 전압 보호 회로 및 이를 포함하는 전자 장치
US11190154B2 (en) * 2019-06-14 2021-11-30 Murata Manufacturing Co., Ltd. Power amplifier circuit
WO2024034682A1 (ja) * 2022-08-12 2024-02-15 株式会社村田製作所 ドハティ増幅回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2210028A (en) * 1936-04-01 1940-08-06 Bell Telephone Labor Inc Amplifier
BR9305438A (pt) * 1992-03-13 1994-08-02 Motorola Inc Rede combinada amplificadora de potência de sinal de radiofrequência (RF) e dispositivo de comunicações de sinal de radiofrequência de modo duplo
US5311143A (en) * 1992-07-02 1994-05-10 Motorola, Inc. RF amplifier bias control method and apparatus
US5420541A (en) * 1993-06-04 1995-05-30 Raytheon Company Microwave doherty amplifier
US5568086A (en) * 1995-05-25 1996-10-22 Motorola, Inc. Linear power amplifier for high efficiency multi-carrier performance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786456B1 (ko) * 2001-08-07 2007-12-17 가부시키가이샤 히다치 고쿠사이 덴키 피드 포워드 방식 왜곡 보상 증폭 장치 및 어댑티브프리디스토션 방식 왜곡 보상 증폭 장치
KR100480496B1 (ko) * 2002-11-18 2005-04-07 학교법인 포항공과대학교 도허티 증폭기를 이용한 신호 증폭 장치
KR101122383B1 (ko) * 2005-08-01 2012-03-26 삼성전자주식회사 선형성 개선을 위한 멀티 모드용 전력 증폭기

Also Published As

Publication number Publication date
DE69736107D1 (de) 2006-07-27
AU2729297A (en) 1998-01-21
EP0908006A1 (en) 1999-04-14
US5757229A (en) 1998-05-26
AU702964B2 (en) 1999-03-11
CA2257887A1 (en) 1998-01-08
EP0908006B1 (en) 2006-06-14
JP4210332B2 (ja) 2009-01-14
DE69736107T2 (de) 2006-11-09
WO1998000912A1 (en) 1998-01-08
JP2000513535A (ja) 2000-10-10
KR100284798B1 (ko) 2001-03-15
MY116892A (en) 2004-04-30
EP0908006A4 (en) 2001-08-08

Similar Documents

Publication Publication Date Title
KR100284798B1 (ko) 전력 증폭기 및 이를 이용한 rf 입력 신호 증폭 방법
JP3372438B2 (ja) 効率を高くするためにアクティブ・バイアスを用いる線形電力増幅器とその方法
US7295064B2 (en) Doherty amplifier
EP1020026B1 (en) Apparatus and method for amplifying a signal
US6359504B1 (en) Power amplifier using upstream signal information
KR101101575B1 (ko) 전력 증폭기용 셀프 믹싱 적응형 바이어스 회로 시스템 및 방법
EP1620942B1 (en) Rf amplifier employing active load linearization
JP2004173231A (ja) ドハティ増幅器を用いた信号増幅装置
US7193460B1 (en) Circuit for controlling power amplifier quiescent current
US4462004A (en) Dynamic class-4 FET amplifier
US20070183530A1 (en) Transmission device and radio communication device
US6424212B1 (en) Power amplifiers
US5373251A (en) Transmission output amplifier
US7368995B2 (en) Power amplifier with active bias circuit
US6970041B2 (en) Linearization method and amplifier arrangement
CN114584077A (zh) 多尔蒂功率放大器的偏置电路
US6377118B1 (en) Linearizer for power amplifier
JP2000022452A (ja) 電力増幅器
US20240128934A1 (en) Doherty amplifier circuit
JP2000341063A (ja) 高周波電力増幅器
KR900008160B1 (ko) 고주파 전력 증폭기 출력 제어회로
KR20050022838A (ko) 주입동기식 발진기를 이용한 eer
JPH09307360A (ja) 広帯域電力増幅回路

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121129

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20141209

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee