KR19990036978A - 티탄산 바륨계 반도체 세라믹 - Google Patents

티탄산 바륨계 반도체 세라믹 Download PDF

Info

Publication number
KR19990036978A
KR19990036978A KR1019980042214A KR19980042214A KR19990036978A KR 19990036978 A KR19990036978 A KR 19990036978A KR 1019980042214 A KR1019980042214 A KR 1019980042214A KR 19980042214 A KR19980042214 A KR 19980042214A KR 19990036978 A KR19990036978 A KR 19990036978A
Authority
KR
South Korea
Prior art keywords
barium titanate
powder
ceramic
particle diameter
semiconductor ceramic
Prior art date
Application number
KR1019980042214A
Other languages
English (en)
Other versions
KR100318398B1 (ko
Inventor
미츠토시 가와모토
히데아키 니이미
료우이치 우라하라
유키오 사카베
Original Assignee
무라따 미치히로
가부시끼가이샤 무라따 세이사꾸쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 무라따 미치히로, 가부시끼가이샤 무라따 세이사꾸쇼 filed Critical 무라따 미치히로
Publication of KR19990036978A publication Critical patent/KR19990036978A/ko
Application granted granted Critical
Publication of KR100318398B1 publication Critical patent/KR100318398B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thermistors And Varistors (AREA)

Abstract

본 발명에서는, 실온 비저항이 낮으며 내전압이 높은 티탄산 바륨 반도체 세라믹을 제공하며, 본 발명의 티탄산 바륨 반도체 세라믹은 내전압 개선에 대한 요구를 충분히 만족한다. 티탄산 바륨 반도체 세라믹의 평균 세라믹 입자 지름은 약 0.9㎛ 이하로 제어된다. 이 제어에 의해, 상기 세라믹은, 실온 비저항이 낮으며, 또 내전압을 향상에 대한 요구를 충분히 만족하는 고(高)내전압을 가지며, 또 예를 들어 온도제어 및 전류제한이나 또는 항온을 위한 발열성(exothemic) 장치용에 적절하게 이용될 수 있다. 따라서, 티탄산 바륨계 반도체 세라믹을 사용함으로써, 이것을 사용한 장치는 성능면에서 개선되며 또 소형화된다.

Description

티탄산 바륨계 반도체 세라믹
본 발명은 정의 저항온도특성(positive resistance-temperature)을 가지며, 또 예를 들어 온도제어 및 전류제한 또는 항온을 위한 발열성(exothemic) 장치와 같은 용도에 적합한 티탄산 바륨 반도체 세라믹에 관한 것이다.
티탄산 바륨 반도체 세라믹은 정의 저항온도특성(PTC 특성)을 갖는다. 이것은 실온 비저항이 낮으며, 특정 온도(퀴리 온도)가 능가되는 경우, 이것의 전기 저항이 갑자기 상승한다. 그러므로, 상기 세라믹은, 예를 들어 온도제어 및 전류제한 또는 항온을 위한 발열성(exothemic) 장치와 같은 폭넓은 범위의 용도에 광범위하게 사용된다.
이들 용도는, 티탄산 반도체 세라믹이 PTC 특성 이외에도 충분한 내전압을 가져서 고전압하에서도 사용가능할 것을 요구한다. 그러므로, PTC 특성 이외에도 고(高)내전압 특성을 갖는 반도체 세라믹에 대한 요구가 있다. 특히, 회로용의 과전류 보호소자(device)는 더 높은 내전압이 실현되는 것을 요구한다.
이 때문에, 티탄산 바륨 반도체 세라믹의 내전압을 향상시키기 위해 지금까지 다양한 제안들이 있었다. 예를 들어, 일본 특허 출원 공개번호 4-26101호 공보에는, TiO2, SiO2, Al2O3, 및 MnO2가 함유된 BaTiO3와 SrTiO3를 포함한 반도체 세라믹에 Dy와 Sb를 첨가함으로써 얻어진, 세라믹 입자 지름이 6∼15㎛이고, 실온 비저항이 낮으며, 또 내전압이 높은 세라믹이 기재되어 있다. 일본 특허 공고번호 60-25004호 공보에는, 바륨-티타늄 복합 옥살레이트(barium-titanium compounded oxalate)와 Sb 산화물(반도체화제로서 기능함)을 분쇄, 혼합, 및 하소함으로써 얻어진 분말을 1350℃에서 소성하면서 하소조건과 성형압력을 제어한 경우, 세라믹 입자 지름이 1∼5㎛이며 내전압이 높은 세라믹이 얻어진다.
그러나, 일본 특허 출원 공개번호 4-26101호 공보에 기재되어 있는 반도체 세라믹은, 비저항이 약 50Ω㎝이며 내전압이 약 200V/㎜이며, 이런 내전압은 여전히 불만족스러운 것이다. 또한, 일본 특허 공고번호 60-25004호 공보에 기재되어 있는 반도체 재료는 최고 내전압이 약 500V/㎜이며, 이것은 내전압 개선을 위한 현재의 요구를 충분히 충족시키지 못한다.
그러므로, 본 발명의 목적은, 실온 비저항이 낮으며 내전압이 높은 티탄산 바륨 반도체 세라믹을 제공하는 것이며, 본 발명의 티탄산 바륨 반도체 세라믹은 내전압 개선을 위한 현재의 요구를 충분히 만족한다.
본 발명의 발명자는 상기 목적을 달성하기 위해 연구하여, 어느 한도의 값보다 더 작은 평균 세라믹 입자 지름을 갖는 티탄산 바륨 반도체 세라믹이 낮은 실온 비저항과 우수한 내전압을 갖는다는 것을 알았다. 본 발명은 이 발견에 근거하여 이루어졌다.
따라서, 본 발명은 약 0.9㎛ 이하의 평균 세라믹 입자 지름을 갖는 티탄산 바륨 반도체 세라믹을 제공한다.
본 발명의 티탄산 바륨 반도체 세라믹은, 바람직하게는, 티탄산 바륨 분말 또는 하소된 티탄산 바륨 분말로부터 얻어지는 것이 좋다. 이것들은 엄격하게 한정된 물성, 즉, 입자지름이 약 0.1㎛ 이하이고, 결정구조가 입방결정이며, 격자정수가 4.02 옹스트롬 이상인 물성을 갖고 있으며, 또 고용체의 형태로 미량의 반도체화제를 함유한다.
본 발명의 티탄산 바륨계 반도체 세라믹은 약 0.9㎛ 이하의 평균 세라믹 입자 지름을 갖는다. 평균입자지름은, 예를 들어 SEM(주사형 전자 현미경)을 사용하여 세라믹의 표면을 관찰함으로써 얻어질 수 있다.
본 발명의 티탄산 바륨계 반도체 세라믹의 제조에 있어서, 일반적으로 알려진 방법들이, 약 0.9㎛ 이하의 평균 세라믹 입자 지름을 제공하는 한 사용될 수 있다. 예를 들어, 바인더를 가하여 출발원료분말을 조립(造粒; granulating)하여 성형한 후 소성하는 연속적인 공정이 수행될 수 있다.
바람직하게는, 출발원료분말은 티탄산 바륨 분말 또는 하소된 티탄산 바륨 분말인 것이 좋다. 이들은 엄격하게 한정된 물성, 즉, 입자지름이 약 0.1㎛ 이하이고, 결정구조가 입방결정이며, 격자정수가 4.02 옹스트롬 이상인 물성을 갖고 있으며, 또 고용체의 형태로 미량의 반도체화제를 함유한다. 이런 분말이 출발원료로서 사용된 경우, 내전압이 높은 티탄산 바륨계 반도체 세라믹이 얻어진다.
상술한 물성을 갖는 세라믹이 얻어질 수 있는 한, 티탄산 바륨 분말의 제조방법에 특별한 제약이 부여되지 않는다. 예로서는, 가수분해법(hydrolysis method), 솔-겔법(sol-gel method), 수열법(hydrothermal method), 공침법(coprecipitation method), 및 고체상법(solid phase method)이 있다. 이들 중에서, 가수분해법이 바람직하다. 가수분해법에 의해 티탄산 바륨 분말을 얻기 위해서, 바륨의 염 또는 알콕사이드(alkoxide)를 함유하는 용액, 및 티타늄(titanium)의 염 또는 알콕사이드를 함유하는 용액을 제조하는 공정; 바륨과 티타늄의 임의의 화학양론비가 실현되는 비율로 용액들을 혼합하여, 반응을 발생시켜서 슬러리(slurry)를 형성하는 공정; 슬러리(slurry)를 숙성시키는 공정; 탈수(dehydrating)공정; 물로 세정(洗淨)하는 공정; 건조(乾燥)공정: 및 분쇄하는 공정이 수행될 수 있다.
제조중에, 얻어진 티탄산 바륨 분말에 미량의 반도체화제가 섞여져서, 고용체를 형성한다. "미량"이란 말은, 티탄산의 특성에 다른 영향을 상당히 미치지 않고서도 반도체 성질을 제공하기에 충분한 양을 의미한다. 이 양은 흔히 Ti에 근거하여 약 0.5m% 미만이다. 사용될 수 있는 반도체화제의 예로서는, La, Y, Sm, Ce, Dy, 또는 Ga와 같은 희토류 금속 원소; 및 Nb, Ta, Bi, Sb, 또는 W와 같은 전이 원소(transition elements)가 있다. 이들 중에서, 바람직하게는 La가 사용되는 것이 좋다. 티탄산 바륨 분말을 갖는 반도체화제의 고용체는, 예를 들어 먼저 바륨 또는 티타늄 함유 용액에 반도체화제의 염을 함유하는 용액을 첨가한 후, 바륨 성분 및 티타늄 성분을 갖는 분말을 제조함으로써 형성된다.
이렇게 하여 얻은 티탄산 바륨 분말 그 자체가 출발원료분말로서 사용될 수 있거나 또는 하소하여 출발원료분말로서 제공된다. 예를 들어, 약 800∼1000℃에서 약 1시간 내지 약 3시간 동안 하소가 수행되며, 예열(pre-heating)이 임의로 수행되어도 좋다.
그런 다음, 얻은 티탄산 바륨 출발원료분말이 예를 들어 비닐 아세테이트(vinyl acetate)와 같은 공지의 바인더를 사용하여 조립된다. 얻은 조립된 분말은 예를 들어 일축 프레스(uniaxial pressing)와 같은 공지의 방법에 의해 성형되어 성형체(compact)를 형성한다. 이것은 소성되며, 이에 의해 본 발명의 티탄산 바륨계 반도체 세라믹을 얻는다. 예를 들어, 대기중에서 약 1200∼1300℃에서 약 1시간 내지 약 3시간 동안의 조건하에서, 성형체를 소성한다.
상기한 방법에 의해 제조될 수 있는 약 0.9㎛ 이하의 평균 세라믹 입자 지름을 갖는 티탄산 바륨계 반도체 세라믹은, 실온에서 비저항이 낮으며, 또 내전압을 향상시키기 위한 요구를 충분히 만족하는 고(高)내전압을 가지며, 또 예를 들어 온도제어 및 전류제한과 같은 용도에 적합하거나 또는 항온을 위한 발열성(exothemic) 장치용에 적합하다. 티탄산 바륨계 반도체 세라믹을 사용함으로써, 이것을 사용한 장치는 성능면에서 개선되며 또 소형화된다.
실시예
이하, 본 발명을 실시예들을 참조하여 더욱 상세하게 설명한다.
실시예 1
각각의 탱크(tank)에, 0.2몰(mol)/ℓ의 수산화 바륨(barium hydroxide) 수용액(15.40 ℓ; 3.079몰 바륨 함유) 및 0.35몰/ℓ의 티타늄 알콕사이드 용액(7.58ℓ; 2.655몰 티타늄 함유)을 각각 준비하였다. IPA(이소프로필 알콜; isopropyl alcohol)에 Ti(O-iPr)4(티타늄 테트라이소프로포사이드; titanium tetraisopropoxide)를 용해시킴으로써 티타늄 알콕사이드 용액을 형성하였다. 준비과정중에, 반도체화제로서 기능하는 란탄(lanthanum)을 함유하는 고용체를 형성하기 위해, 염화란탄(LaCl3·6.3H2O)의 에탄올(ethanol) 용액(100㎖, 0.00664몰 란탄 함유)을, 티타늄 알콕사이드 용액에 첨가하였으며, 상기 혼합물을 균질이 되게 하였다.
그 후에, 각각의 탱크로부터 송액 기어 펌프(gear pump for feeding liquid)를 이용하여 각각의 용액들이 퍼 올려졌으며, 스태틱 믹서(static mixer)를 이용하여 상기 용액들을 혼합하여 반응이 일어나게 하였다. 얻은 슬러리는 숙성조(tank for aging)에 넣어지며, 스태틱 믹서에 의해 순환되어, 이에 의해 슬러리를 3시간 동안 숙성시켰다.
숙성후에, 원심 분리기(centrifugal separator)를 이용하여 슬러리를 탈수하였으며, 얻은 케이크(cake)를 균질화 혼합기(homogenization mixer)를 이용하여 80∼90℃의 뜨거운 물에서 15분간 교반함으로써 세정하였다. 연이어서, 원심 분리기를 이용하여 슬러리를 탈수하였으며, 얻은 케이크를 균질화 혼합기를 이용하여 에탄올 중에서 30분간 교반함으로써 또 세정하였다. 세정된 슬러리를 원심 분리기를 이용하여 다시 탈수하였으며, 얻은 케이크를 110℃의 오븐(oven)에서 3시간 건조하였다. 건조후, 케이크를 분쇄하여, La함유 티탄산 바륨 고용체 분말을 얻었다. 상기 분말은, 각각 SEM에 의해 입자지름이 0.05㎛이며, 또 분말 X선 회절에 의해 입방결정의 격자정수가 4.032 옹스트롬이라는 것을 확인하였다. 형광 X선 분석에 따르면, Ba/Ti비 및 La/Ti비가 각각 0.991 및 0.0021이다.
이렇게 하여 얻은 La함유 티탄산 바륨 고용체 분말을 1000℃에서 2시간 하소하였다. 이렇게 얻은 하소된 분말을 예를 들어 비닐 아세테이트와 같은 바인더와 혼합하였으며, 이에 의해 조립된 분말을 제조하였다. 이 조립된 분말에 일축 프레스를 실시하여, 직경 10㎜와 두께 1㎜를 갖는 원반상의 성형체를 형성하였다. 상기 성형체를 대기중에서 1250℃에서 2시간 소성하여, 이에 의해 티탄산 바륨계 반도체 세라믹 조각(piece)을 얻었다.
얻은 티탄산 바륨계 반도체 세라믹 조각의 세라믹 입자 지름과, 실온 비저항, 및 내전압을 구하였다. 세라믹 입자 지름에 대하여, 세라믹 조각 표면의 SEM 사진을 촬영한 후 상기 사진의 영상분석에 근거하여 산출함으로써 평균 세라믹 입자 지름을 결정하였다. 실온 비저항은, 세라믹 조각의 표면을 In-Ga로 도포한 후, 25℃에서 디지털식 전압 미터(digital electronic voltage meter)를 이용하여 4단자법(four-probe method)으로 측정한 값을 구하였다. 내전압에 대하여, 시료의 파손전에 즉각 최고인가전압을 측정하여, 상기 측정된 전압을 시료의 전극간 간격으로 나눔으로써 얻어진 값을 구하였다. 상기 결과는, 세라믹 조각에 있어서, 세라믹 입자 지름이 0.9㎛이고, 실온 비저항이 50Ω㎝이며, 내전압이 900V/㎜이라는 것을 나타낸다.
실시예 2
0.00531몰 란탄을 함유하는 염화란탄의 에탄올 용액을 사용하였다는 것을 제외하고는, 실시예 1의 과정이 수행되었으며, 이에 의해 La 함유 티탄산 바륨 고용체 분말을 얻었다. 얻은 La 함유 티탄산 바륨 고용체 분말은, 입자지름이 0.05㎛이고, 입방결정의 격자정수가 4.029 옹스트롬이며, 또 Ba/Ti비 및 La/Ti비가 각각 0.998 및 0.0018이다.
출발분말로서 하소하지 않은 분말을 사용하여 실시예 1의 과정을 수행함으로써, 이에 의해 티탄산 바륨계 반도체 세라믹 조각을 얻었다.
얻은 티탄산 바륨계 반도체 세라믹 조각은, 세라믹 입자지름이 0.8㎛이고, 실온 비저항이 78Ω㎝이며, 내전압이 1250V/㎜이다.
실시예 3
실시예 2에서 얻은 La 함유 티탄산 바륨 고용체 분말을 원료분말로서 제공하기 위해 800℃에서 2시간 하소하였다는 점을 제외하고는 실시예 2의 과정을 수행하였으며, 이에 의해 티탄산 바륨 반도체 세라믹 조각을 얻었다.
얻은 티탄산 바륨 반도체 세라믹 조각은, 세라믹 입자 지름이 0.9㎛이고, 실온 비저항이 60Ω㎝이며, 내전압이 1120V/㎜이다.
실시예 4
0.00398몰 란탄을 함유하는 염화란탄의 에탄올 용액을 사용하였다는 것을 제외하고는, 실시예 1의 과정이 수행되었으며, 이에 의해 La 함유 티탄산 바륨 고용체 분말을 얻었다. 얻은 La 함유 티탄산 바륨 고용체 분말은, 입자지름이 0.05㎛이고, 입방결정의 격자정수가 4.027 옹스트롬이며, 또 Ba/Ti비 및 La/Ti비가 각각 0.996 및 0.0013이다.
La 함유 티탄산 바륨 고용체 분말을 하소된 원료분말로서 제공하기 위해 실시예 1과 동일한 조건하에서 하소하여, 실시예 1의 과정을 수행하였다. 이에 의해 티탄산 바륨계 반도체 세라믹 조각을 얻었다. 얻은 티탄산 바륨계 반도체 세라믹 조각은, 세라믹 입자 지름이 0.8㎛이고, 실온 비저항이 84Ω㎝이며, 내전압이 1300V/㎜이다.
실시예 5
실시예 1에서 얻은 La 함유 티탄산 바륨 고용체 분말을 600℃에서 2시간 열처리하였다. 열처리된 분말은 입자지름이 0.1㎛이고, 입방결정의 격자정수가 4.020 옹스트롬이다. 열처리된 분말을 하소된 원료분말로서 제공하기 위해 실시예 1과 동일한 조건하에서 하소하여, 실시예 1의 과정을 수행하였다. 이에 의해 티탄산 바륨계 반도체 세라믹 조각을 얻었다.
얻은 티탄산 바륨계 반도체 세라믹 조각은, 세라믹 입자 지름이 0.9㎛이고, 실온 비저항이 40Ω㎝이며, 내전압이 800V/㎜이다.
실시예 6
염화란탄(LaCl3·6.3H2O)의 에탄올 용액을 티타늄 알콕사이드 용액에 첨가하지 않고서 실시예 1 과정을 수행하였으며, 이에 의해 La가 고용화되어 있지 않은 티탄산 바륨 분말을 얻었다. 얻은 티탄산 바륨 분말은, 입자지름이 0.05㎛이고, 입방결정의 격자정수가 4.028 옹스트롬이며, 또 Ba/Ti비가 0.998이다.
그런 다음, 티탄산 바륨 분말에, 0.15몰%의 함량으로 질산란탄(lanthanum nitrate) 용액의 형태로 La를 첨가하였으며, 상기 혼합물은 1000℃에서 2시간 하소되었다. 이렇게 하여 얻은 하소된 분말을 원료분말로서 사용하여, 실시예 1 과정을 수행하였으며, 이에 의해 티탄산 바륨계 반도체 세라믹 조각을 얻었다. 1200℃에서 2시간 소성을 수행하였다. 얻은 티탄산 바륨계 반도체 세라믹 조각은, 세라믹 입자 지름이 0.8㎛이고, 실온 비저항이 90Ω㎝이며, 내전압이 720V/㎜이다.
비교예 1
실시예 1에서 얻은 La 함유 티탄산 바륨 고용체 분말을 800℃에서 2시간 열처리하였다. 열처리된 분말은 입자지름이 0.17㎛이고, 입방결정의 격자정수가 4.005 옹스트롬이다. 열처리된 분말을 하소된 원료분말로서 제공하기 위해 실시예 1과 동일한 조건하에서 하소하여, 실시예 1의 과정을 수행하였다. 이에 의해 티탄산 바륨계 반도체 세라믹 조각을 얻었다.
얻은 티탄산 바륨계 반도체 세라믹 조각은, 세라믹 입자 지름이 1∼3㎛이고, 실온 비저항이 30Ω㎝이며, 내전압이 400V/㎜이다.
비교예 2
실시예 1에서 얻은 티타늄, 바륨, 및 란탄을 함유하는 슬러리를 교반형의 오토클레이브(autoclave)에 넣고, 200℃에서 8시간 수열(水熱)반응시켰다. 실시예 1의 과정을 수행하여, 이에 의해 La 함유 티탄산 바륨 고용체 분말을 얻었다. 얻은 La 함유 티탄산 바륨 고용체 분말은, 입자지름이 0.1㎛이고, 입방결정의 격자정수가 4.010 옹스트롬이며, 또 Ba/Ti비 및 La/Ti비가 각각 0.998 및 0.0020이다.
La 함유 티탄산 바륨 고용체 분말을 하소된 원료분말로서 제공하기 위해 실시예 1과 동일한 조건하에서 하소하여, 실시예 1의 과정을 수행하였다. 이에 의해 티탄산 바륨계 반도체 세라믹 조각을 얻었다.
얻은 티탄산 바륨계 반도체 세라믹 조각은, 세라믹 입자 지름이 1∼20㎛이고, 실온 비저항이 40Ω㎝이며, 내전압이 300V/㎜이다.
이렇게 설명한 실시예들 및 비교예들의 결과를 표1에 나타낸다.
원료분말들의 물성 티탄산 바륨계 반도체 세라믹의 물성
입자지름(㎛) 결정구조 격자정수(옹스트롬) Ba/Ti비 La/Ti비 Av.세라믹 입자지름(㎛) 실온비저항(Ω㎝) 내전압(V/㎜)
실시예 1 0.05 입방결정 4.032 0.991 0.0021 0.9 50 900
실시예 2 0.05 입방결정 4.029 0.998 0.0018 0.8 78 1250
실시예 3 0.05 입방결정 4.032 0.998 0.0018 0.9 60 1120
실시예 4 0.05 입방결정 4.027 0.996 0.0013 0.8 84 1300
실시예 5 0.1 입방결정 4.020 0.991 0.0021 0.9 40 800
실시예 6 0.05 입방결정 4.028 0.998 - 0.8 90 720
비교예 1 0.17 입방결정 4.005 0.991 0.0021 1∼3 30 400
비교예 2 0.1 입방결정 4.010 0.998 0.0020 1∼20 40 300
표1로부터 명백한 바와 같이, 약 0.9㎛ 이하(or less)의 세라믹 입자 지름을 갖는 세라믹 조각들 모두는, 720V/㎜ 이상(or more)만큼 높은 우수한 내전압을 나타낸다. 세라믹 입자 지름이 1㎛ 이상인 경우, 실온 비저항이 감소하며, 또 동시에 내전압이 감소한다. 원료분말의 입자지름이 약 0.1㎛를 초과하는 경우, 세라믹 입자 지름은 1㎛ 이상으로 증가하여, 내전압의 저하를 초래한다. 더욱이, 원료분말의 격자정수가 4.02 옹스트롬 이하(or less)의 경우, 세라믹 구조가 이종(heterogeneous)으로 되는데, 즉, 미립자(1㎛ 입자)와 조립자(10∼20㎛)와의 혼합물이 되어, 내전압의 저하를 초래한다. 원료분말을 얻을 때에, 반도체화제로서의 La를 미리 도프(pre-doped)하여 티타늄 및 바륨과 함께 고용화시킨 경우와, 티탄산 바륨 분말에 La를 나중에 첨가혼합한 경우에는, 후자에 있어서, 내전압이 약간 저하한다. 이것에 대한 이유로서는, 세라믹의 내전압이 세라믹 입자 자체 이외에도 세라믹을 구성하는 입자들의 조성적 균일성에 의해 영향받는다는 것이 고려될 수 있다.
상술한 바와 같이, 본 발명에 따라서 약 0.9㎛ 이하의 평균 세라믹 입자 지름을 갖는 티탄산 바륨계 반도체 세라믹은, 실온에서 비저항이 낮으며, 또 내전압을 향상시키기 위한 요구를 충분히 만족하는 고(高)내전압을 가지며, 또 예를 들어 온도제어 및 전류제한과 같은 용도에 적합하거나 또는 항온 발열과 같은 용도에도 적합하다. 티탄산 바륨계 반도체 세라믹을 사용함으로써, 이것을 사용한 장치는 성능면에서 개선되며 또 소형화된다.
더욱이, 본 발명에 있어서, 티탄산 바륨 분말 또는 하소된 티탄산 바륨 분말을 소성함으로써 특별히 높은 내전압이 부여된 세라믹이 얻어진다. 이들은 엄격하게 한정된 물성, 즉, 입자지름이 약 0.1㎛ 이하이고, 결정구조가 입방결정이며, 격자정수가 4.02 옹스트롬 이상인 물성을 갖고 있으며, 또 고용체의 형태로 미량의 반도체화제를 함유한다.

Claims (17)

  1. 약 0.9㎛ 이하의 평균 세라믹 입자 지름을 갖는 것을 특징으로 하는 티탄산 바륨 반도체 세라믹.
  2. 제1항에 있어서, 희토류 금속원소와 전이원소로 이루어진 군에서 선택된 적어도 1종의 반도체화제를 함유하는 것을 특징으로 하는 티탄산 바륨 반도체 세라믹.
  3. 제1항에 있어서, La를 함유하는 것을 특징으로 하는 티탄산 바륨 반도체 세라믹.
  4. 제1항에 있어서, 입자지름이 약 0.1㎛ 이하이고, 결정구조가 입방결정이며, 격자정수가 4.02 옹스트롬 이상이며, 또 고용체의 형태로 적어도 1종의 반도체화제를 함유하는 티탄산 바륨 분말을 포함하는 것을 특징으로 하는 티탄산 바륨 반도체 세라믹 제조용의 분말.
  5. 제4항에 있어서, 상기 반도체화제가 희토류 금속원소와 전이원소로 이루어진 군으로부터 선택된 것을 특징으로 하는 분말.
  6. 제5항에 있어서, 상기 반도체화제가 La인 것을 특징으로 하는 분말.
  7. 제 4항에 있어서, 상기 티탄산 바륨 분말이 하소된 분말인 것을 특징으로 하는 분말.
  8. 제7항에 있어서, 상기 반도체화제가 La인 것을 특징으로 하는 분말.
  9. 제 4항에 있어서, 상기 티탄산 바륨 분말이 하소되지 않은 분말인 것을 특징으로 하는 분말.
  10. 제9항에 있어서, 상기 반도체화제가 La인 것을 특징으로 하는 분말.
  11. 제1항에 있어서, 입자지름이 약 0.1㎛ 이하이고, 결정구조가 입방결정이며, 격자정수가 4.02 옹스트롬 이상이며, 또 고용체의 형태로 반도체화제를 함유하는 티탄산 바륨 분말을 한동안 어느 온도에서 소성하여, 얻은 티탄산의 평균입자지름이 약 0.9㎛ 이하인, 티탄산 바륨 반도체 세라믹 제조공정.
  12. 제11항에 있어서, 상기 반도체화제가 희토류 금속원소와 전이원소로 이루어진 군으로부터 선택된 것을 특징으로 하는 공정.
  13. 제12항에 있어서, 상기 반도체화제가 La인 것을 특징으로 하는 공정.
  14. 제 11항에 있어서, 상기 티탄산 바륨 분말이 하소된 분말인 것을 특징으로 하는 공정.
  15. 제14항에 있어서, 상기 반도체화제가 La인 것을 특징으로 하는 공정.
  16. 제 11항에 있어서, 상기 티탄산 바륨 분말이 하소되지 않은 분말인 것을 특징으로 하는 공정.
  17. 제17항에 있어서, 상기 반도체화제가 La인 것을 특징으로 하는 공정.
KR1019980042214A 1997-10-09 1998-10-09 티탄산바륨계반도체세라믹 KR100318398B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27674097A JP3608599B2 (ja) 1997-10-09 1997-10-09 チタン酸バリウム系半導体磁器
JP9-276740 1997-10-09

Publications (2)

Publication Number Publication Date
KR19990036978A true KR19990036978A (ko) 1999-05-25
KR100318398B1 KR100318398B1 (ko) 2002-02-19

Family

ID=17573687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980042214A KR100318398B1 (ko) 1997-10-09 1998-10-09 티탄산바륨계반도체세라믹

Country Status (8)

Country Link
US (2) US6472339B2 (ko)
EP (1) EP0908423B1 (ko)
JP (1) JP3608599B2 (ko)
KR (1) KR100318398B1 (ko)
CN (1) CN1087719C (ko)
DE (1) DE69810564T2 (ko)
SG (1) SG67565A1 (ko)
TW (1) TW588027B (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0001325L (sv) * 2000-04-10 2001-06-25 Valinge Aluminium Ab Låssystem för hopfogning av golvskivor samt golvskivor försedda med sådana låssystem och golv bildat av sådana golvskivor
JP3039513B2 (ja) * 1998-05-12 2000-05-08 株式会社村田製作所 チタン酸バリウム粉末、および半導体セラミック、ならびに半導体セラミック素子
JP3424742B2 (ja) * 1998-11-11 2003-07-07 株式会社村田製作所 正の抵抗温度特性を有する積層型半導体セラミック電子部品
JP2001167904A (ja) * 1999-12-09 2001-06-22 Murata Mfg Co Ltd 半導体磁器およびそれを用いた電子部品
DE10323816A1 (de) * 2003-05-23 2004-12-09 Basf Ag Verfahren zur Herstellung von Mischoxiden mit mittleren Durchmessern kleiner als 10 Nanometer
US8715614B2 (en) * 2003-07-21 2014-05-06 Beijing University Of Chemical Technology High-gravity reactive precipitation process for the preparation of barium titanate powders
CN100450934C (zh) * 2005-06-14 2009-01-14 清华大学 一种钛酸钡低维纳米粉体材料及其制备方法
JP2008205343A (ja) * 2007-02-22 2008-09-04 Tdk Corp 積層型サーミスタの製造方法
JP5413458B2 (ja) * 2009-06-05 2014-02-12 株式会社村田製作所 チタン酸バリウム系半導体磁器組成物およびチタン酸バリウム系半導体磁器素子
CN101786654B (zh) * 2010-03-04 2011-12-14 西北工业大学 纳米钛酸锶钡粉体的制备方法
CN104428847B (zh) 2012-07-25 2018-01-26 株式会社村田制作所 层叠型ptc热敏电阻元件
JP7025694B2 (ja) * 2018-01-31 2022-02-25 Tdk株式会社 誘電体磁器組成物、電子部品および積層セラミックコンデンサ
JP7025695B2 (ja) * 2018-01-31 2022-02-25 Tdk株式会社 誘電体磁器組成物、電子部品および積層セラミックコンデンサ
CN115626823B (zh) * 2022-11-02 2023-08-29 重庆三省有朋科技有限公司 一种钛酸钡基陶瓷电介质材料及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764529A (en) * 1972-02-17 1973-10-09 Matsushita Electric Ind Co Ltd Method of manufacturing fine grain ceramic barium titanate
US4535064A (en) * 1983-05-25 1985-08-13 Murata Manufacturing Co., Ltd. Ceramic compositions for a reduction-reoxidation type semiconducting capacitor
JPS6025004A (ja) 1983-07-20 1985-02-07 Shiro Okamura 光磁気記録装置
GB2193713B (en) 1986-07-14 1990-12-05 Cabot Corp Method of producing perovskite-type compounds.
US5453262A (en) 1988-12-09 1995-09-26 Battelle Memorial Institute Continuous process for production of ceramic powders with controlled morphology
US5219811A (en) * 1989-08-31 1993-06-15 Central Glass Company, Limited Powder composition for sintering into modified barium titanate semiconductive ceramic
NL8902923A (nl) * 1989-11-27 1991-06-17 Philips Nv Keramisch lichaam uit een dielektrisch materiaal op basis van bariumtitanaat.
JPH0426101A (ja) 1990-05-21 1992-01-29 Inax Corp 正特性半導体磁器
US5314651A (en) * 1992-05-29 1994-05-24 Texas Instruments Incorporated Fine-grain pyroelectric detector material and method
US5510305A (en) * 1993-06-15 1996-04-23 Murata Manufacturing Co., Ltd. Non-reducible dielectric ceramic composition
IT1270828B (it) 1993-09-03 1997-05-13 Chon Int Co Ltd Processo per la sintesi di polveri ceramiche cristalline di composti di perovskite
JP3024537B2 (ja) * 1995-12-20 2000-03-21 株式会社村田製作所 積層セラミックコンデンサ
JP3039511B2 (ja) * 1998-04-13 2000-05-08 株式会社村田製作所 半導体セラミックおよび半導体セラミック素子
JP3039513B2 (ja) * 1998-05-12 2000-05-08 株式会社村田製作所 チタン酸バリウム粉末、および半導体セラミック、ならびに半導体セラミック素子

Also Published As

Publication number Publication date
CN1087719C (zh) 2002-07-17
EP0908423B1 (en) 2003-01-08
US6472339B2 (en) 2002-10-29
DE69810564T2 (de) 2003-05-15
US20030022784A1 (en) 2003-01-30
KR100318398B1 (ko) 2002-02-19
US20010008866A1 (en) 2001-07-19
SG67565A1 (en) 1999-09-21
TW588027B (en) 2004-05-21
EP0908423A1 (en) 1999-04-14
JP3608599B2 (ja) 2005-01-12
JPH11116327A (ja) 1999-04-27
CN1214328A (zh) 1999-04-21
DE69810564D1 (de) 2003-02-13

Similar Documents

Publication Publication Date Title
KR100318398B1 (ko) 티탄산바륨계반도체세라믹
US6162752A (en) Barium titanate powder, semiconducting ceramic, and semiconducting ceramic electronic element
CN1237265A (zh) 正特性半导体陶瓷的制造方法
JPH075363B2 (ja) Ptc磁器組成物及びその製造方法
US6071842A (en) Barium titanate-based semiconductor ceramic
JPH0388770A (ja) チタン酸バリウム系半導体磁器組成物並びにサーミスター
JP3039511B2 (ja) 半導体セラミックおよび半導体セラミック素子
CN1093100C (zh) 钛酸钡系半导体陶瓷
JP2649341B2 (ja) 粒界絶縁型半導体磁器
US4175060A (en) Composition and processing procedure for making thermistors
JPH07297009A (ja) 正特性サーミスタ及びその製造方法
JP4038618B2 (ja) チタン酸バリウム系半導体磁器の製造方法
JP2653789B2 (ja) 誘電体共振器材料の製造方法
JPH10139535A (ja) チタン酸バリウム系半導体磁器の製造方法
JP2641864B2 (ja) 半導体コンデンサ材料の製造方法
JPH10152372A (ja) チタン酸バリウム系半導体磁器及びその製造方法
JPH07335404A (ja) 正特性サーミスタの製造方法
JP2970405B2 (ja) 粒界絶縁型半導体磁器組成物及びその製造方法
JPH07142207A (ja) チタン酸バリウム半導体磁器およびその製造方法
JPH03285870A (ja) 粒界絶縁型半導体磁器組成物及びその製造方法
JPH08213205A (ja) チタン酸バリウム系半導体磁器およびその製造方法
JPH10135006A (ja) 正特性サーミスタおよびその製造方法
JPH0629139B2 (ja) 誘電体磁器製造用原料粉末の製造方法
JPH09246015A (ja) 正特性半導体磁器の製造方法
JPH04160050A (ja) 磁器半導体組成物およびその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121119

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131119

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20141120

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151127

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20161205

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20171201

Year of fee payment: 17

EXPY Expiration of term