KR19980042544A - 스핀밸브형 박막소자 - Google Patents

스핀밸브형 박막소자 Download PDF

Info

Publication number
KR19980042544A
KR19980042544A KR1019970060868A KR19970060868A KR19980042544A KR 19980042544 A KR19980042544 A KR 19980042544A KR 1019970060868 A KR1019970060868 A KR 1019970060868A KR 19970060868 A KR19970060868 A KR 19970060868A KR 19980042544 A KR19980042544 A KR 19980042544A
Authority
KR
South Korea
Prior art keywords
layer
magnetic layer
free magnetic
thin film
type thin
Prior art date
Application number
KR1019970060868A
Other languages
English (en)
Other versions
KR100283305B1 (ko
Inventor
가끼하라요시히꼬
사이또마사미찌
Original Assignee
가따오까마사따까
알프스덴끼가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가따오까마사따까, 알프스덴끼가부시끼가이샤 filed Critical 가따오까마사따까
Publication of KR19980042544A publication Critical patent/KR19980042544A/ko
Application granted granted Critical
Publication of KR100283305B1 publication Critical patent/KR100283305B1/ko

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3929Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
    • G11B5/3932Magnetic biasing films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/002Antiferromagnetic thin films, i.e. films exhibiting a Néel transition temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature

Abstract

본 발명에 따라, 반강자성층 (1) 상에 하드 바이어스층 (6) 이 형성됨으로써, 얇은 막두께로 수평면 (6') 을 프리자성층 (4) 의 하면 (4') 보다도 상방에 형성할 수 있다. 따라서, 강한 바이어스 자계를 발생하는 h1 부분의 하드 바이어스층이 프리자성층 (4) 의 측면에 맞닿아, 상기 프리자성층 (4) 의 자화가 X 방향으로 단자구화되기 쉬워, 바크하우젠 노이즈 (Barkhausen noise) 의 발생을 저감시키는 것이 가능해진다.

Description

스핀밸브형 박막소자
본 발명은 고정자성층의 자화방향과 외부자계의 영향을 받는 프리 (Free) 자성층의 자화방향과의 관계에서 전기저항이 변화하는 소위 스핀밸브형 박막소자에 관한 것으로서, 특히, 프리자성층에 안정된 바이어스 자계를 부여하여 바크하우젠 노이즈 (Barkhausen noise) 의 발생을 저감시킨 스핀밸브형 박막소자에 관한 것이다.
도 4 는 하드 디스크에서의 기록자계를 검출하는 스핀밸브형 박막소자 (스핀밸브형 박막자기헤드) 의 종래의 구조를 나타낸 단면도이다.
도면에 나타낸 바와 같이, 반강자성층 (11), 고정자성층 (핀 (Pinned) 자성층) (2), 비자성도전층 (3) 및 프리자성층 (4) 이 적층되고, 그 양측에는 하드 바이어스층 (6, 6) 이 형성되어 있다.
종래에는 반강자성층 (11) 에는 FeMn (철-망간) 함금막, 고정자성층 (2) 및 프리자성층 (4) 에는 FeNi (철-니켈) 합금막, 비자성도전층 (3) 에는 Cu (구리) 막, 또 하드 바이어스층에는 CoPt (코발트-백금) 합금막 등이 일반적으로 사용되었다. 또한, 부호 7, 8 은 Ta (탄탈) 등의 비자성재료로 형성된 바탕층 및 보호층이다.
도 4 에 나타낸 스핀밸브형 박막소자의 제조방법으로서는, 먼저 바탕층 (7) 부터 보호층 (8) 까지의 6 층이 막형성되고, 그 후 이온밀링 등의 에칭공정으로 상기 6 층의 측부가 경사면이 되도록 깍아지며, 그 후에, 상기 6 층의 양측에 하드 바이어스층 (6) 이 막형성된다. 하드 바이어스층 (6) 의 표면은 다른 층과 평행한 상면인 수평면 (6') 과, 상기 6 층의 양측의 경사면을 따른 경사면 (6) 이 연속된다. 상기 수평면 (6') 의 부분에서 하드 바이어스층 (6) 은 일정한 막두께 (h1) 로 형성되는데 대하여, 경사면 (6) 의 부분에서 하드 바이어스층 (6) 의 막두께는 상방을 향함에 따라 서서히 얇아진다.
상기 고정자성층 (2) 은 반강자성층 (11) 과 접하여 형성되고, 상기 고정자성층 (2) 은 반강자성층 (11) 과의 계면에서의 교환결합으로 인한 교환 이방성자계에 의해, Y 방향으로 단자구화 (單磁區化) 되어, 자화방향이 Y 방향으로 고정된다.
또, 프리자성층 (4) 의 자화방향은 X 방향으로 자화되어 있는 하드 바이어스층 (6) 의 영향을 받아 X 방향으로 일치된다.
이 스핀밸브형 박막소자에서는, 하드 바이어스층 (6, 6) 상에 탄탈 등의 중간층 (9, 9) 을 통하여 형성된 도전층 (10, 10) 으로부터 고정자성층 (2), 비자성도전층 (3) 및 프리자성층 (4) 에 정상전류가 부여된다. 하드 디스크 등의 자기기록매체의 주행방향은 Z 방향이고, 상기 자기기록매체로부터의 누설자계가 Y 방향으로 부여되면, 프리자성층 (4) 의 자화방향이 X 에서 Y 방향으로 향하여 변화한다. 이 프리자성층 (4) 내에서의 자화방향의 변동과, 고정자성층 (2) 의 고정자화방향과의 관계에서 전기저항이 변화하고, 이 전기저항치의 변화에 근거하는 전압변화에 의해, 자기기록매체로부터의 누설자계가 검출된다.
이 스핀밸브형 박막소자에서는, 고정자성층 (2), 비자성도전층 (3) 및 프리자성층 (4) 은 비교적 얇은 막두께로 형성되지만, 반강자성층 (11) 은 상당히 두꺼운 막두께로 형성된다. 예를 들면, 고정자성층 (2), 비자성도전층 (3) 및 프리자성층 (4) 은 각각이 100 옹스트롬 이하로 형성되는데에 대하여, 반강자성층 (11) 은 300 옹스트롬 정도의 막두께로 형성된다. 이 때문에, 아래부터 반강자성층 (11), 고정자성층 (2), 비자성도전층 (3) 및 프리자성층 (4) 이 적층되고, 상기 4 층의 측부에 하드 바이어스층 (6) 이 형성되는 종래의 스핀밸브형 박막소자에서는, 두께치수 (h1) 를 갖는 수평면 (6') 부분의 하드 바이어스층 (6) 은 프리자성층 (4) 보다도 상당히 하방에 형성되어, 수평면 (6') 은 프리자성층 (4) 의 하면보다도 하방에 위치하며, 상기 프리자성층 (4) 의 측면에는 경사면 (6) 의 부분에서 하드 바이어스층 (6) 이 얇게 남을 뿐이다.
상기 하드 바이어스층 (6) 은 그의 보자력에 의해 X 방향으로 자화되어 있는 층인데, 경사면 (6) 이 형성되어 있는 (h2) 의 부분에서는 X 방향으로 하드 바이어스층 (6) 의 막두께가 얇기 때문에, 이 부분에서 프리자성층 (4) 에 X 방향으로의 충분한 바이어스 자계를 부여할 수 없는 구조로 되어 있다. 따라서, 상기 프리자성층 (4) 의 자화방향이 X 방향으로 안정되기 어려워, 바크하우젠 노이즈가 발생하기 쉬운 결점이 있다.
본 발명은 상기 종래의 과제를 해결하기 위한 것으로, 하드 바이어스층의 수평면이 프리자성층에 접근하고, 바람직하게는 프리자성층의 하면보다도 상방에 형성되도록 하여, 상기 프리자성층의 자화방향이 X 방향으로 일치되기 쉽고, 그 결과 바크하우젠 노이즈의 발생을 저감할 수 있도록 된 스핀밸브형 박막소자를 제공하는 것을 목적으로 하고 있다.
또 본 발명은 상기 바이어스층과 반강자성층과의 사이에 Cr (크롬) 등으로 완충막 및 배향막을 형성함으로써, 안정된 바이어스 자계를 발생시키는 것이 가능해진 스핀밸브형 박막소자를 제공하는 것을 목적으로 하고 있다.
도 1 은 본 발명의 스핀밸브형 박막소자의 구조를 나타낸 단면도.
도 2 는 완충막 및 배향막의 막두께와 바크하우젠 노이즈 발생율과의 관계를 나타낸 선도.
도 3 은 오버랩량의 비 (%) 와 바크하우젠 노이즈 발생율과의 관계를 나타낸 선도.
도 4 는 종래의 스핀밸브형 박막소자의 구조를 나타낸 단면도.
* 도면의 주요부분에 대한 부호의 설명 *
1 : 반강자성층 2 : 고정자성층
3 : 비자성도전층 4 : 프리자성층
5 : 금속막 6 : 하드 바이어스층
7 : 바탕층 8 : 보호층
9 : 중간층 10 : 도전층
본 발명은 반강자성층 위에, 상기 반강자성층과의 교환 이방성 결합에 의해 자화방향이 고정되는 고정자성층이 형성되고, 그 위에 비자성도전층 및 프리자성층이 순서대로 적층되며, 적어도 상기 프리자성층의 양측에 위치하여 상기 프리자성층의 자화방향을 상기 고정자성층의 자화방향과 교차하는 방향으로 일치시키는 바이어스층과, 고정자성층과 비자성도전층과 프리자성층에 검출전류를 부여하는 도전로가 설치되어 있는 스핀밸브형 박막소자에 있어서, 상기 반강자성층은 고정자성층, 비자성도전층 및 프리자성층보다도 더욱 양측의 영역으로 신장되어 있고, 상기 바이어스층이 이 반강자성층의 위에 형성되어, 고정자성층, 비자성도전층 및 프리자성층보다도 더욱 양측으로 신장되어 있는 반강자성층은, 고정자성층의 하면보다도 더욱 낮고, 각층의 중첩방향을 검출 갭방향으로 했을 때에, 상기 바이어스층의 다른 층과 평행한 상면은, 프리자성층의 하면보다도 상기 검출 갭방향에서의 상측에 위치되어 있는 스핀밸브형 박막소자이다.
또한, 반강자성층과 바이어스층의 사이에는, 체심입방구조이며 또한 (100) 배향의 금속막이 완충막 및 배향막으로서 형성되어 있는 것이 바람직하고, 예를 들면, 상기 금속막은 Cr, Ti, Mo 또는 W50Mo50중의 어느 1 종 이상으로 형성된다. 또, 상기 금속막의 막두께의 바람직한 범위는 18 옹스트롬 이상이고 55 옹스트롬 이하이다. 더욱 바람직한 상기 금속막의 막두께의 범위는 20 옹스트롬 이상이고 50 옹스트롬이하이다.
또, 각층의 중첩방향을 검출 갭방향으로 했을 때에, 상기 바이어스층의 다른 층과 평행한 상면은, 프리자성층의 하면보다도 상기 검출 갭방향에서의 상측에 위치하고 있는 것이 바람직하고, 바이어스층의 상기 상면과, 프리자성층의 하면과의 검출 갭방향의 거리는, 프리자성층의 막두께 치수의 60% 이상인 것이 더욱 바람직하다.
본 발명에서는 고정자성층, 비자성도전층, 및 프리자성층의 양측에, 그 하층이 되는 반강자성층이 신장되어 있고, 하드 바이어스층이 반강자성층의 위에 형성되어 있다. 따라서, 반강자성층의 막두께가 커도 하드 바이어스층을 종래의 위치보다도 높은 위치에서 프리자성층에 가까운 위치에 형성할 수 있고, 하드 바이어스층의 다른 층과 평행한 상면 즉 수평면 (6') (도 4 의 h1 의 부분) 을 프리자성층의 하면보다도 상방에 위치시키는 것도 가능하다.
또, 반강자성층을 고정자성층의 하면보다도 더욱 낮아지도록 깍음으로써, 고정자성층이 반강자성층 상에 잔류하는 것을 방지할 수 있어, 프리자성층, 비자성도전층, 고정자성층으로 이루어진 자기감지영역을 확정할 수 있다.
하드 바이어스층의 수평면 (6') 의 부분을 프리자성층에 접근시키고, 더욱 바람직하게는 하드 바이어스층의 수평면 (6') 을 프리자성층의 하면보다도 상측의 위치에 형성함으로써, 프리자성층에 대하여 수평방향 (세로 바이어스 방향 ; X 방향) 에 대하여 강한 바이어스 자계를 부여할 수 있다. 따라서, 상기 프리자성층은 종래에 비하여 고정자성층의 자화방향과 교차하는 방향으로 단자구화되기 쉬워져, 바크하우젠 노이즈의 발생을 저감시키는 것이 가능해진다.
특히, 상기 바이어스층 아래에 결정구조가 체심입방구조이고 또한 (100) 배향의 Cr 등으로 형성된 금속막이 완충막 및 배향막으로서 막형성되면, 바이어스층의 보자력 및 각형비 (角形比) 가 커져, 프리자성층의 자화를 고정자성층의 자화방향과 교차하는 방향으로 단자구화시키기 위한 바이어스 자계를 증대시킬 수 있다. 또, 상기 금속막의 막두께가 18 내지 55 옹스트롬의 범위내이면, 바크하우젠 노이즈의 발생을 더 저감시킬 수 있다. 또한, 상기 금속막의 막두께를 20 내지 50 옹스트롬의 범위로 하면, 더욱 바크하우젠 노이즈의 발생을 저감시킬 수 있다.
도 1 은 본 발명의 스핀밸브형 박막소자의 구조를 나타낸 단면도이다. 도 1 에서 X 방향으로 신장되는 소자의 중앙부분만을 파단하여 나타내고 있다.
이 자기저항효과형 자기헤드는 하드디스크 장치에 설치되는 부상식 슬라이더의 트레일링측 단부 등에 설치되어 하드디스크 등의 기록자계를 검출하는 것으로, 하드디스크 등의 자기기록매체의 이동방향은 Z 방향이며, 자기기록매체로부터의 누설자계의 방향은 Y 방향이다.
도 1 의 가장 아래에 형성되어 있는 것은 Ta (탄탈) 등의 비자성재료로 형성된 바탕층 (7) 이다. 이 바탕층 (7) 상에 PtMn (백금-망간) 합금으로 형성된 반강자성층 (1), FeNi (철-니켈) 합금으로 형성된 고정자성층 (핀자성층) (2) 이 적층되어 있다. 상기 고정자성층 (2) 상에 Cu (구리) 등 전기저항이 낮은 비자성도전층 (3) 이 형성되고, 상기 비자성도전층 (3) 상에 FeNi 합금의 프리자성층 (4) 이 형성되며, 또한 상기 프리자성층 (4) 상에 Ta (탄탈) 등의 보호층 (8) 이 형성되어 있다. 또, 상기 고정자성층 (2), 비자성도전층 (3) 및 프리자성층 (4) 은 상기 반강자성층 (1) 에 대하여 얇은 막두께로 형성되어 있다. 예를 들면, 고정자성층 (2) 의 막두께는 40 옹스트롬, 비자성도전층 (3) 의 막두께는 25 옹스트롬, 프리자성층 (4) 의 막두께는 80 옹스트롬 정도이지만, 반강자성층 (1) 의 막두께는 300 옹스트롬 정도이다.
상기 반강자성층 (1) 과 고정자성층 (2) 이 적층된 상태에서, 소정 크기의 자계 중에서 열처리를 실시함으로써, 상기 양 층의 계면에서 교환 이방성자계가 얻어지고, 상기 고정자성층의 자화방향이 Y 방향으로 단자구화되어 고정된다.
본 발명에서는 반강자성층 (1) 에 PtMn 합금을 사용했는데, 상기 PtMn 합금은 종래부터 사용되고 있는 FeMn 합금에 비하여, 아래의 효과를 기대할 수 있다.
먼저, PtMn 합금은 FeMn 합금에 비하여 내식성이 우수하고, 스핀밸브형 박막소자의 제조공정에서의 각종의 용제나 세정제에서도 부식이 전혀 진행되지 않아, 혹독한 환경하에서의 스핀밸브형 박막소자의 동작에 있어서도 화학적으로 안정되어 있다.
또, PtMn 합금은 FeMn 합금에 비하여 블로킹 온도가 높고, 따라서 자기저항효과형 자기헤드의 동작시의 온도가 높아져도, 안정된 교환 이방성 자계를 발생할 수 있어 판독 정밀도가 안정된다.
또한, PtMn 합금의 막형성후의 열처리온도는 230 ℃ 이하에서도 충분한 교환 이방성자계를 얻을 수 있다. 열처리온도가 특히 250 ℃ 이상이 되면, 비자성도전층 (3) 과 고정자성층 (2) 및 프리자성층 (4) 과의 계면에서 확산이 발생하기 쉬우나, PtMn 합금을 사용함으로써, 상기 확산을 미연에 방지할 수 있다.
또, PtMn 합금을 대신하여, PdMn (팔라듐-망간) 합금, 또는 Pt-Mn-X (X=Ni, Pd, Rh, Ru, Ir, Cr, Co) 합금을 사용하여도 상기의 효과를 얻는 것이 가능하다.
또, 고정자성층 (2) 을 FeNi 합금을 대신하여 Co (코발트), Fe-Co (철-코발트) 합금, Fe-Co-Ni (철-코발트-니켈) 합금으로 형성하여도, 반강자성층 (1) 과의 계면에서 교환 이방성자계를 얻을 수 있다. 또, 프리자성층 (4) 도 이들의 자성재료로 형성할 수 있다.
이 적층체의 제조방법은, 바탕층 (7) 부터 보호층 (8) 까지의 6 층이 스패터 (spatter) 에 의해 막형성된 후, 상기 고정자성층 (2), 비자성도전층 (3), 프리자성층 (4) 및 보호막 (8) 을 방향의 중심에 남기고, 그 양측부분이 이온밀링 등의 건식 에칭공정, 또는 이것과 습식 에칭과의 병용에 의해 제거된다. 이 때, 반강자성층 (1) 도 에칭의 영향을 받아 깊이치수 (d1) 의 부분에서 깍인다. 그 결과, 고정자성층 (2) 부터 보호막 (8) 까지의 층의 양측부가 각도 (θ1) 의 경사면이 되고, 또한, 반강자성층 (1) 의 양측부분의 깍아낸 부분에도 경사면 (1', 1') 이 형성된다. 반강자성층 (1) 의 양측부분을 깍아냄으로써, 금속막 (5) 이 형성되는 부분에 고정자성층 (2) 이 남는 것을 방지할 수 있다. 상기 고정자성층 (2) 을 반강자성층 (1) 상에서 완전히 제거함으로써, 프리자성층 (4), 비자성도전층 (3), 고정자성층 (2) 으로 이루어진 자기감지영역을 경사면 (1', 1') 내에 확정할 수 있다.
부호 5 는 Cr (크롬) 등으로 형성된 완충막 및 배향막으로 이루어진 금속막으로, 이 금속막 (5) 은 고정자성층 (2) 등으로부터 더 양측으로 신장되는 부분인 반강자성층 (1) 의 (T1) 영역의 상면부터, 상기 반강자성층 (1) 의 경사면 (1') 및 고정자성층 (2), 비자성도전층 (3), 프리자성층 (4) 의 측면에 걸쳐 막형성된다.
그리고, 상기 금속막 (5) 상에 CoPt (코발트-백금) 합금등으로 형성되는 하드 바이어스층 (6) 이 막형성된다. 도면에 나타낸 바와 같이, 상기 하드 바이어스층 (6) 의 표면에는, 다른 층과 평행한 상면인 수평면 (6') 과, 상기의 각도 (θ1) 의 경사면을 따라 형성되는 경사면 (6) 이 형성되어 있고, 상기 수평면 (6') 은 프리자성층 (4) 의 하면 (4') 보다도 상방에 형성되어 있다. 즉, 층이 중첩되는 방향인 Z 방향을 검출 갭방향으로 했을 때에, 하드 바이어스층 (6) 의 수평면 (다른 층과 평행한 상면) (6') 은 프리자성층 (4) 의 하면 (4') 보다도 검출 갭방향에서의 상방에 위치하고 있다.
특히, 상기 프리자성층 (4) 의 하면 (4') 부터 수평면 (6') 까지의 상기 검출 갭방향의 거리 (오버랩량) 를 d2 로 하고, 상기 프리자성층 (4) 의 막두께를 d3 로 했을 때, d2/d3 에서 구해지는 오버랩량의 비가 60 % 이상인 것이 바람직하다. 본 발명에서는 상기 하드 바이어스층 (6) 이 금속막 (5) 을 통하여 막두께가 두꺼운 반강자성층 (1) 위에 형성되어 있기 때문에, 상기 하드 바이어스층 (6) 의 막두께 (h1) 가 얇아도, 수평면 (6') 을 프리자성층 (4) 의 하면 (4') 에 접근시키고, 바람직하게는 하면 (4') 보다도 상방에 형성하는 것이 가능해진다.
이와 같이, 체적이 큰 h1 부분의 하드 바이어스층 (6) 의 일부분이, 프리자성층 (4) 의 양측에 위치하여 프리자성층 (4) 의 양측면과 대향하거나 접촉함으로써, h1 부분의 하드 바이어스층의 측부에서 발생하는 강한 X 방향으로의 바이어스 자계가 프리자성층 (4) 에 부여되어, 상기 프리자성층 (4) 의 자화방향이 X 방향으로 용이하게 단자구화된다. 따라서, 바크하우젠 노이즈는 발생하기 어려워져, 기록매체에의 재생·녹음의 정밀도가 향상된다.
여기에서, 상기 금속막 (5) 의 역할에 대하여 설명한다.
금속막 (5) 을 형성하는 Cr 은 그 결정구조가 체심입방구조 (bcc) 이고 또한 (100) 배향으로 되어 있고, 또 하드 바이어스층을 형성하는 CoPt 계 합금의 결정구조는 면심입방구조 (fcc) 와 조밀육방구조 (hcp) 의 혼상으로 되어 있다.
여기에서 Cr 의 격자정수와 CoPt 합금의 hcp 의 격자정수는 근사치로 되어 있기 때문에, 상기 CoPt 합금은 fcc 구조를 형성하기 어렵고 hcp 구조로 형성되기 쉽게 되어 있다. 이 때 hcp 의 c 축은 CoPt 합금-Cr 의 경계면내에 우선 배향된다. 상기 hcp 는 fcc 에 비하여 c 축 방향으로 큰 자계이방성을 발생시키기 때문에, 하드 바이어스층에 자계를 부여했을 때의 보자력 (Hc) 은 커진다. 또한, hcp 의 c 축은 CoPt 합금-Cr 의 경계면내에서 우선배향으로 되어 있기 때문에 잔류자화 (Br) 는 증대하고, 잔류자화 (Br)/포화자속밀도 (Bs) 로 구해지는 각형비 (S) 는 큰 값이 된다. 그 결과, 하드 바이어스층으로부터 발생하는 바이어스 자계를 증대시키는 것이 가능해져, 프리자성층 (4) 을 단자구화하기 쉬워진다.
또, 상기 금속막 (5) 의 막두께는 18 옹스트롬 이상이고 55 옹스트롬 이하의 범위인 것이 바람직하고, 더욱 바람직하게는 20 옹스트롬 이상이고 50 옹스트롬 이하의 범위내이다. 이 범위내에서 상기 금속막 (5) 을 형성하면, 바크하우젠 노이즈의 발생이 현저하게 저하된다. 금속막 (5) 의 막두께가 상기 범위보다도 크면, 프리자성층 (4) 의 X 방향의 측면과 하드 바이어스층 (6) 사이에 개재하는 상기 금속막 (5) 의 영향에 의해, 하드 바이어스층 (6) 으로부터 프리자성층 (4) 에 부여되는 바이어스 자계가 저하되어 버린다. 반대로, 금속막 (5) 의 막두께가 상기 범위보다도 작으면, 반강자성층 (1) 과 하드 바이어스층 (6) 이 교환결합을 일으켜, 양 층의 자화가 서로 영향을 받아 반강자성층 (1) 의 자화방향과 하드 바이어스층 (6) 의 자화방향의 직교성이 저하된다.
또한, 결정구조가 체심입방구조 (bcc) 이고 또한 (100) 배향이 되는 금속막 (5) 으로서는, Cr 이외에 Ti (티탄), W (텅스텐), Mo ( 몰리브덴) 또는 W50Mo50(50, 50 은 at%) 중의, 어느 1 종 또는 2 종 이상으로 형성되어도 된다. 또, 하드 바이어스층 (6) 은 CoPt 합금이외에, Co-Cr-Ta (코발트-크롬-탄탈) 합금으로 형성되어 있어도 된다.
또한, 하드 바이어스층 (6, 6) 상에는 Ta (탄탈) 등의 비자성재료로 형성된 중간층 (9, 9) 이 형성되고, 상기 중간층 (9, 9) 상에는 W (텅스텐), Cu (구리) 등으로 형성된 도전층 (10,10) 이 형성되어 있다.
이상 상기의 스핀밸브형 박막소자에서는, 도전층 (10) 으로부터 고정자성층 (2), 비자성도전층 (3) 및 프리자성층 (4) 에 정상전류 (검출전류) 가 부여되고, 게다가 기록매체로부터 Y 방향으로 자계가 부여되면, 프리자성층 (4) 의 자화방향이 X 방향에서 Y 방향으로 향하여 변화한다. 이 때, 프리자성층 (4) 과 고정자성층 (2) 중 한쪽 층에서 다른 쪽으로 이동하려고 하는 전자가, 비자성도전층 (3) 과 고정자성층 (2) 과의 계면, 또는 비자성도전층 (3) 과 프리자성층 (4) 과의 계면에서 산란을 일으켜, 전기저항이 변화한다. 따라서, 정상전류가 변화하여 검출출력을 얻을 수 있다.
또, 본 발명에서는 하드 바이어스층 (6) 을 반강자성층 (1) 의 표면으로부터 고정자성층 (2), 비자성도전층 (3) 및 프리자성층 (4) 의 측부에 걸쳐 형성함으로써, 하드 바이어스층 (6) 과, 반강자성층 (1) 부터 프리자성층 (4) 까지의 상기 4 층과의 접촉면적을 크게 할 수 있으며, 따라서 스핀밸브형 박막소자의 직류저항 (DCR) 을 작게 하는 것이 가능해진다. 이 때문에, 검출출력은 커지고, 판독 정밀도가 안정된다.
실시예
도 1 에 나타낸 형상의 스핀밸브형 박막소자를 제작하여, 바크하우젠 노이즈에 관하여 측정하였다.
먼저, 금속막 (5) 의 막두께와 바크하우젠 노이즈의 관계에 대하여 실험을 실시하였다. 이하에 실험시에서의 도 1 의 부호 1 부터 부호 8 까지의 층의 재질과 막두께에 대하여 설명한다.
반강자성층 (1) 은 PtMn (백금-망간) 합금으로 형성하고, 막두께를 300 옹스트롬으로 하였다. 단, 깍아진 깊이치수 (d1) 는 100 옹스트롬이었기 때문에 폭치수 (T1) 에서의 반강자성층 (1) 의 막두께는 200 옹스트롬이 되었다.
고정자성층 (2) 은 FeNi (철-니켈) 합금으로 형성하고, 막두께를 40 옹스트롬으로 하였다.
비자성도전층 (3) 은 Cu (구리) 로 형성하고, 막두께를 25 옹스트롬으로 하였다.
프리자성층 (4) 은 FeNi (철-니켈) 합금으로 형성하고 막두께를 80 옹스트롬으로 하였다.
하드 바이어스층 (6) 은 CoPt (코발트-백금) 합금으로 형성하고 수평면 (6') 부분의 막두께 (h1) 를 300 옹스트롬으로 하였다.
바탕층 (7) 은 Ta (탄탈) 로 형성하고 막두께를 40 옹스트롬으로 하였다.
보호막 (8) 은 Ta (탄탈) 로 형성하고 막두께를 50 옹스트롬으로 하였다.
또한, 중간층 (9) 은 Ta (탄탈) 로, 도전층 (10) 은 Cr (크롬) 로 형성하였다.
또, 도면의 수직방향과 고정자성층 (2) 으로부터 보호층 (8) 의 측부에 형성되는 경사면과의 각도 (θ1) 는 20˚ 이었다.
그리고, 금속막 (5) 을 Cr (크롬) 로 형성하고, 막두께를 10, 15, 20, 30, 40, 50, 60, 70 옹스트롬으로 한 8 종류의 박막자기헤드를 각각 20개씩 제작하여, 20 개 중 몇 개의 자기저항효과형 자기헤드에 현저한 바크하우젠 노이즈가 발생하였는지에 대하여 조사하였다. 그 결과를 표 1 에 나타낸다.
완충막의 막두께와 노이즈 발생회수의 관계
완충막의 막두께(Å) 노이즈 발생회수 노이즈 발생율 (%)
10 20개/20개 100
15 12개/20개 60
20 2개/20개 10
30 1개/20개 5
40 1개/20개 5
50 2개/20개 10
60 6개/20개 30
70 12개/20개 60
도 2 는 표 1을 근거로 작성한 금속막 (5) 의 막두께와 바크하우젠 노이즈의 발생율과의 관계를 나타낸 그래프이다.
도면에 나타낸 바와 같이, 금속막 (5) 의 막두께가 두꺼워짐에 따라 바크하우젠 노이즈 발생율은 서서히 작아지고, 막두께가 약 35 옹스트롬일 때, 상기 바크하우젠 노이즈 발생율은 가장 작아진다. 막두께가 35 옹스트롬 이상이 되면 서서히 상기 바크하우젠 노이즈 발생율이 커지고 있다. 이 실험결과에 의해 본 발명에서는 금속막 (5) 의 막두께가 18 옹스트롬 내지 55 옹스트롬이면, 바크하우젠 노이즈의 발생율을 20 % 이하로 억제할 수 있는 것이 확인되었다.
또한, 금속막 (5) 의 막두께가 20 옹스트롬 내지 50 옹스트롬이면, 바크하우젠 노이즈의 발생율을 10 % 이하로 억제할 수 있어 더 바람직하다.
금속막 (5) 이 18 옹스트롬 이하이면, 바크하우젠 노이즈의 발생율이 커지고 있는 것은, 하드 바이어스층 (6) 의 CoPt 막과 반강자성층 (1) 의 PtMn 막과의 계면에서 교환결합이 일어나, 하드 바이어스층이 X 방향으로 단자구화되기 어려워져, 프리자성층 (4) 의 자화를 X 방향으로 일치시키는 것이 곤란해지기 때문이라고 생각된다.
또, 금속막 (5) 이 55 옹스트롬 이상이 되면, 바크하우젠 노이즈 발생율이 커지는 것은, 하드 바이어스층 (6) 과 프리자성층 (4) 사이에 개재하는 금속막 (5) 의 박막이 너무 두꺼워져, 하드 바이어스층 (6) 으로부터의 바이어스 자계가 프리자성층 (4) 에 걸리기 어려워져, 상기 프리자성층 (4) 의 자화가 X 방향으로 일치되기 어려워지기 때문이라 생각된다.
다음에, 하드 바이어스층 (6) 의 막두께를 변화시키고, 하드 바이어스층 (6) 과 프리자성층 (4) 과의 오버랩량 (d2) 과, 프리자성층 (4) 의 막두께 (d3) 와의 비 (d2/d3) 와, 바크하우젠 노이즈량과의 관계에 대하여 조사하였다.
금속막 (5) 의 막두께를 30 옹스트롬에 고정하고, 하드 바이어스층 (6) 이외의 층의 재질 및 막두께는 상기에 기재한 것을 사용하였다.
상기 하드 바이어스층 (6) 의 막두께를 오버랩량의 비 (d2/d3) 가 100%, 80%, 60%, 40%, 20% 가 되도록 하고, 각각의 오버랩량의 비가 되는 자기저항효과형 자기헤드를 20 개씩 제작하여, 20 개 중 몇개의 자기저항효과형 자기헤드에 현저한 바크하우젠 노이즈가 발생했는지에 대하여 조사하였다.
오버랩량의 비와 노이즈 발생회수의 관계
오버랩량비(d2/d3)(%) 노이즈 발생회수 노이즈 발생율(%)
100 1개/20개 5
80 2개/20개 10
60 4개/20개 20
40 12개/20개 60
20 20개/20개 100
도 3 은 표 2 를 근거로 하여 작성한 오버랩량의 비 (d2/d3) 와 바크하우젠 노이즈의 발생율과의 관계를 나타낸 그래프이다.
도 3 에 나타낸 바와 같이, 오버랩량의 비 (%) 가 커짐에 따라, 바크하우젠 노이즈 발생율이 감소하고 있는 것을 알 수 있다. 특히 오버랩량의 비 (%) 가 60 % 이상이면, 바크하우젠 노이즈의 발생율을 20 % 이하로 억제할 수 있다. 또한 오버랩량의 비 (%) 를 80 % 이상으로 함으로써, 바크하우젠 노이즈의 발생율을 10 % 이하로 억제할 수 있어 더 바람직하다.
오버랩량의 비 (%) 가 작아지면, 바크하우젠 노이즈가 발생하기 쉬워지는 것은, 하드 바이어스층 (6) 으로부터의 바이어스 자계가 프리자성층 (4)에 걸리기 어려워져, 상기 프리자성층 (4) 의 자화가 X 방향으로 일치되기 어려워지기 때문이다.
이상 상기의 본 발명에 의하면, 반강자성층상에, 프리자성층으로 바이어스 자계를 부여하는 바이어스층을 형성함으로써, 수평면을 갖는 하드 바이어스층을 프리자성층의 측면에 접근시키기 쉬워져, 프리자성층에 강한 바이어스 자계를 부여하기 쉬워진다. 이 때문에, 상기 프리자성층의 자화를 고정자성층의 자화방향과 교차하는 방법으로 일치시키기 쉬워지고, 그 결과 바크하우젠 노이즈의 발생율을 저감시키는 것이 가능해진다.
특히, 프리자성층의 막두께를 (d3), 상기 프리자성층의 저면부터 바이어스층의 수평부까지의 상기 바이어스층의 막두께를 (d2) 로 했을 때, (d2/d3) 에서 구해지는 오버랩량의 비가 60 % 이상이면, 더욱 바크하우젠 노이즈의 발생을 억제할 수 있다.
또, 상기 바이어스층 아래에 결정구조가 체심입방구조 (bcc) 인 완충막 및 배향막을 형성함으로써, 상기 바이어스층의 보자력 및 각형비가 커져 프리자성층의 단자구화에 필요한 바이어스 자계를 증대시키는 것이 가능해지고, 특히, 상기 완충막 및 배향막의 막두께가 18 내지 55 옹스트롬의 범위내이면, 프리자성층에 강한 바이어스 자계를 부여할 수 있어, 더욱 바크하우젠 노이즈의 발생을 저감시킬 수 있다.

Claims (14)

  1. 반강자성층 위에, 상기 반강자성층과의 교환 이방성 결합에 의해 자화방향이 고정되는 고정자성층이 형성되고, 그 위에 비자성도전층 및 프리자성층이 순서대로 적층되며, 적어도 상기 프리자성층의 양측에 위치하여 상기 프리자성층의 자화방향을 상기 고정자성층의 자화방향과 교차하는 방향으로 일치시키는 바이어스층과, 고정자성층과 비자성도전층과 프리자성층에 검출전류를 부여하는 도전로가 설치되어 있는 스핀밸브형 박막소자에 있어서,
    상기 반강자성층은 고정자성층, 비자성도전층 및 프리자성층보다도 더 양측의 영역으로 신장되어 있고, 상기 바이어스층이 이 반강자성층의 위에 형성되고, 고정자성층, 비자성도전층 및 프리자성층보다도 더 양측으로 신장되어 있는 반강자성층은, 고정자성층의 하면보다도 더욱 낮고, 각층의 중첩방향을 검출 갭방향으로 했을 때에, 상기 바이어스층의 다른 층과 평행한 상면은, 프리자성층의 하면보다도 상기 검출 갭방향에서의 상측에 위치되어 있는 스핀밸브형 박막소자.
  2. 제 1 항에 있어서, 반강자성층과 바이어스층 사이에는 체심입방구조이며 또한 (100) 배향의 금속막이 형성되어 있는 스핀밸브형 박막소자.
  3. 제 1 항에 있어서, 바이어스층의 상기 상면과 프리자성층의 하면과의 검출 갭방향의 거리는, 프리자성층의 막두께 치수의 60 % 이상인 스핀밸브형 박막소자.
  4. 제 2 항에 있어서, 상기 금속막은 Cr, Ti, Mo 또는 W50Mo50중의 어느 1 종 이상으로 형성되어 있는 스핀밸브형 박막소자.
  5. 제 2 항에 있어서, 상기 금속막의 막두께는 18 옹스트롬 이상이고 55 옹스트롬 이하인 스핀밸브형 박막소자.
  6. 제 2 항에 있어서, 상기 금속막의 막두께는 20 옹스트롬 이상이고 50 옹스트롬 이하인 스핀밸브형 박막소자.
  7. 제 2 항에 있어서, 바이어스층의 상기 상면과 프리자성층의 하면과의 검출 갭방향의 거리는, 프리자성층의 막두께 치수의 60 % 이상인 스핀밸브형 박막소자.
  8. 제 4 항에 있어서, 상기 금속막의 막두께는 18 옹스트롬 이상이고 55 옹스트롬 이하인 스핀밸브형 박막소자.
  9. 제 4 항에 있어서, 상기 금속막의 막두께는 20 옹스트롬 이상이고 50 옹스트롬 이하인 스핀밸브형 박막소자.
  10. 제 4 항에 있어서, 바이어스층의 상기 상면과 프리자성층의 하면과의 검출 갭방향의 거리는, 프리자성층의 막두께 치수의 60 % 이상인 스핀밸브형 박막소자.
  11. 제 5 항에 있어서, 바이어스층의 상기 상면과 프리자성층의 하면과의 검출 갭방향의 거리는, 프리자성층의 막두께 치수의 60 % 이상인 스핀밸브형 박막소자.
  12. 제 6 항에 있어서, 바이어스층의 상기 상면과 프리자성층의 하면과의 검출 갭방향의 거리는, 프리자성층의 막두께 치수의 60 % 이상인 스핀밸브형 박막소자.
  13. 제 8 항에 있어서, 바이어스층의 상기 상면과 프리자성층의 하면과의 검출 갭방향의 거리는, 프리자성층의 막두께 치수의 60 % 이상인 스핀밸브형 박막소자.
  14. 제 9 항에 있어서, 바이어스층의 상기 상면과 프리자성층의 하면과의 검출 갭방향의 거리는, 프리자성층의 막두께 치수의 60 % 이상인 스핀밸브형 박막소자.
KR1019970060868A 1996-11-22 1997-11-18 스핀밸브형박막소자 KR100283305B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31204296A JP3455037B2 (ja) 1996-11-22 1996-11-22 スピンバルブ型薄膜素子、その製造方法、及びこのスピンバルブ型薄膜素子を用いた薄膜磁気ヘッド
JP96-312042 1996-11-22

Publications (2)

Publication Number Publication Date
KR19980042544A true KR19980042544A (ko) 1998-08-17
KR100283305B1 KR100283305B1 (ko) 2001-04-02

Family

ID=18024523

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970060868A KR100283305B1 (ko) 1996-11-22 1997-11-18 스핀밸브형박막소자

Country Status (3)

Country Link
US (1) US5959810A (ko)
JP (1) JP3455037B2 (ko)
KR (1) KR100283305B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360036B1 (ko) * 1999-01-27 2002-11-07 알프스 덴키 가부시키가이샤 스핀 밸브형 자기 저항 효과 박막 소자와 그 제조 방법 및그 소자를 구비하는 박막 자기 헤드

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263004B2 (ja) * 1997-06-06 2002-03-04 アルプス電気株式会社 スピンバルブ型薄膜素子
SG68063A1 (en) 1997-07-18 1999-10-19 Hitachi Ltd Magnetoresistive effect type reproducing head and magnetic disk apparatus equipped with the reproducing head
JP3175922B2 (ja) * 1997-10-24 2001-06-11 アルプス電気株式会社 スピンバルブ型薄膜素子の製造方法
JPH11175920A (ja) 1997-12-05 1999-07-02 Nec Corp 磁気抵抗効果型複合ヘッドおよびその製造方法
US6278595B1 (en) * 1998-01-27 2001-08-21 Seagate Technology Llc Magnetoresistive sensor having a hard-biasing material and a cubic-titanium-tungsten underlayer
JPH11259825A (ja) * 1998-03-06 1999-09-24 Tdk Corp 磁気抵抗効果型ヘッド
JP3134990B2 (ja) * 1998-03-09 2001-02-13 日本電気株式会社 電流制御機能素子
JP2000030226A (ja) 1998-07-14 2000-01-28 Tdk Corp 磁気抵抗効果素子、該素子を備えた薄膜磁気ヘッド、及び該素子の製造方法
US6587315B1 (en) * 1999-01-20 2003-07-01 Alps Electric Co., Ltd. Magnetoresistive-effect device with a magnetic coupling junction
JP3703348B2 (ja) 1999-01-27 2005-10-05 アルプス電気株式会社 スピンバルブ型薄膜素子とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッド
US6490140B1 (en) * 1999-04-28 2002-12-03 Seagate Technology Llc Giant magnetoresistive sensor with a PtMnX pinning layer and a NiFeCr seed layer
JP2000331318A (ja) 1999-05-18 2000-11-30 Fujitsu Ltd 磁気抵抗効果ヘッド
US6204071B1 (en) * 1999-09-30 2001-03-20 Headway Technologies, Inc. Method of fabrication of striped magnetoresistive (SMR) and dual stripe magnetoresistive (DSMR) heads with anti-parallel exchange configuration
JP2001176030A (ja) * 1999-12-20 2001-06-29 Alps Electric Co Ltd スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド
JP2001177163A (ja) * 1999-12-20 2001-06-29 Tdk Corp 磁気変換素子および薄膜磁気ヘッド
JP2001196659A (ja) * 2000-01-12 2001-07-19 Tdk Corp トンネル磁気抵抗効果素子、薄膜磁気ヘッド、メモリ素子ならびにこれらの製造方法
JP3607850B2 (ja) 2000-04-06 2005-01-05 アルプス電気株式会社 磁気抵抗効果型薄膜磁気素子及びその製造方法と、その磁気抵抗効果型薄膜磁気素子を備えた薄膜磁気ヘッド
JP2002151757A (ja) * 2000-11-09 2002-05-24 Alps Electric Co Ltd 薄膜磁気素子及びその製造方法
JP3657875B2 (ja) * 2000-11-27 2005-06-08 Tdk株式会社 トンネル磁気抵抗効果素子
US6738237B2 (en) 2001-01-04 2004-05-18 Hitachi Global Storage Technologies Netherlands B.V. AP-pinned spin valve design using very thin Pt-Mn AFM layer
JP2002319111A (ja) * 2001-02-15 2002-10-31 Fujitsu Ltd 磁気抵抗効果型磁気ヘッド
US6721146B2 (en) 2001-03-14 2004-04-13 International Business Machines Corporation Magnetic recording GMR read back sensor and method of manufacturing
US6668443B2 (en) * 2001-07-30 2003-12-30 Headway Technologies, Inc. Process for manufacturing a spin valve recording head
US6888706B2 (en) * 2001-08-08 2005-05-03 Alps Electric Co., Ltd. Magnetic sensing element having hard bias layer formed on bias underlayer and process for manufacturing the same
JP3971140B2 (ja) * 2001-08-14 2007-09-05 Tdk株式会社 磁気抵抗効果素子並びにこれを用いた磁気ヘッド及びヘッドサスペンションアセンブリ
US7027274B1 (en) 2001-08-30 2006-04-11 Western Digital (Fremont), Inc. Spin-dependent tunneling read/write sensor for hard disk drives
US6636400B2 (en) 2001-09-18 2003-10-21 International Business Machines Corporation Magnetoresistive head having improved hard biasing characteristics through the use of a multi-layered seed layer including an oxidized tantalum layer and a chromium layer
US7149062B2 (en) * 2002-02-26 2006-12-12 Hitachi Global Storage Technologies Netherlands, B.V. Spin valve structure with Si seed layer and reduced PtMn antiferromagnetic layer thickness
US6876527B2 (en) * 2002-11-08 2005-04-05 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor with antiparallel coupled lead/sensor overlap region
JP3730976B2 (ja) 2003-07-14 2006-01-05 Tdk株式会社 薄膜磁気ヘッド、ヘッドジンバルアセンブリ、及び、ハードディスク装置
US7155810B2 (en) * 2003-09-30 2007-01-02 Hitachi Global Storage Technologies Netherlands, B.V. Method for fabricating a magnetic head
JP4146818B2 (ja) * 2004-04-21 2008-09-10 Tdk株式会社 薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
US7688555B2 (en) * 2004-06-15 2010-03-30 Headway Technologies, Inc. Hard bias design for extra high density recording
JP2006086275A (ja) * 2004-09-15 2006-03-30 Tdk Corp 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、およびハードディスク装置
US7483246B2 (en) * 2004-09-29 2009-01-27 Hitachi Global Storage Technologies Netherlands B.V. Magnetic sensor having a seedlayer for providing improved hard magnet properties
US7310209B2 (en) * 2004-09-29 2007-12-18 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having a high coercivity hard magnetic bias layer deposited over a metallic layer
US7616409B2 (en) * 2005-01-10 2009-11-10 Hitachi Global Storage Technologies Netherlands B.V. Magnetic sensor having a Ru/Si based seedlayer providing improved free layer biasing
US7663847B2 (en) * 2005-08-09 2010-02-16 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having an anisotropic hard bias without a buffer layer
US8325137B2 (en) * 2009-03-11 2012-12-04 Maroun Gregory Maroun Quiet mouse
US9797963B2 (en) 2014-03-25 2017-10-24 Allegro Microsystems, Llc Systems and methods for a magnetic target with magnetic bias field

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079035A (en) * 1989-10-10 1992-01-07 International Business Machines Corporation Method of making a magnetoresistive read transducer having hard magnetic bias
US5018037A (en) * 1989-10-10 1991-05-21 Krounbi Mohamad T Magnetoresistive read transducer having hard magnetic bias
US5285339A (en) * 1992-02-28 1994-02-08 International Business Machines Corporation Magnetoresistive read transducer having improved bias profile
US5442507A (en) * 1993-09-24 1995-08-15 Matsushita Electric Industrial Co., Ltd. Magnetoresistive magnetic head
US5491600A (en) * 1994-05-04 1996-02-13 International Business Machines Corporation Multi-layer conductor leads in a magnetoresistive head
US5438470A (en) * 1994-05-13 1995-08-01 Read-Rite Corporation Magnetoresistive structure with contiguous junction hard bias design with low lead resistance
US5434826A (en) * 1994-09-26 1995-07-18 Read-Rite Corporation Multilayer hard bias films for longitudinal biasing in magnetoresistive transducer
US5495378A (en) * 1995-01-30 1996-02-27 Seagate Technology, Inc. Magnetoresistive sensor with improved performance and processability
US5608593A (en) * 1995-03-09 1997-03-04 Quantum Peripherals Colorado, Inc. Shaped spin valve type magnetoresistive transducer and method for fabricating the same incorporating domain stabilization technique
US5793207A (en) * 1996-10-09 1998-08-11 International Business Machines Corporation Disk drive with a thermal asperity reduction circuitry using a spin valve sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360036B1 (ko) * 1999-01-27 2002-11-07 알프스 덴키 가부시키가이샤 스핀 밸브형 자기 저항 효과 박막 소자와 그 제조 방법 및그 소자를 구비하는 박막 자기 헤드

Also Published As

Publication number Publication date
US5959810A (en) 1999-09-28
JPH10154314A (ja) 1998-06-09
KR100283305B1 (ko) 2001-04-02
JP3455037B2 (ja) 2003-10-06

Similar Documents

Publication Publication Date Title
KR100283305B1 (ko) 스핀밸브형박막소자
KR100300366B1 (ko) 스핀밸브형박막소자
US6608740B2 (en) Spin-valve thin-film magnetic element provided with single free magnetic layer
US8537505B2 (en) Magnetoresistive effect head having a free layer and a magnetic domain control layer that applies a magnetic field more strongly in an upper part of the free layer
JP2004185676A (ja) トンネル磁気抵抗効果ヘッドおよび磁気ディスク装置
US6764778B2 (en) Thin film magnetic element with accurately controllable track width and method of manufacturing the same
US6961223B2 (en) Spin-valve thin-film magnetic element without sensing current shunt and thin-film magnetic head including the same
JP2004030881A (ja) 磁気再生ヘッドおよびその製造方法
US20090080125A1 (en) Magnetic head
US7573675B2 (en) Thin film magnetic head
JP3734716B2 (ja) 磁気検出素子の製造方法
US20020081458A1 (en) Magnetic sensing element with improved sensitivity and method for making the same
JP2001110016A (ja) スピンバルブ型薄膜磁気素子およびその製造方法、およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
KR100319423B1 (ko) 스핀밸브형박막소자및그제조방법
US6635366B2 (en) Spin valve thin film magnetic element and thin film magnetic head
JP3939514B2 (ja) 磁気検出素子の製造方法
JP2004031882A (ja) 磁気検出素子及びその製造方法
JP3699000B2 (ja) スピンバルブ型薄膜素子およびその製造方法
US7817381B2 (en) Thin film magnetic head which suppresses inflow of magnetic generated by bias-applying layers into a free layer from a layering direction
JP3710349B2 (ja) スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
KR100277375B1 (ko) 스핀밸브형 박막소자 및 그 제조방법
JP3766605B2 (ja) 磁気検出素子及びその製造方法
JP3607629B2 (ja) スピンバルブ型薄膜素子及びこのスピンバルブ型薄膜素子を用いた薄膜磁気ヘッド
JP2002163810A (ja) スピンバルブ型薄膜磁気素子およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP3939519B2 (ja) 磁気検出素子及びその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121129

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20141128

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee