JP3703348B2 - スピンバルブ型薄膜素子とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッド - Google Patents

スピンバルブ型薄膜素子とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッド Download PDF

Info

Publication number
JP3703348B2
JP3703348B2 JP34543499A JP34543499A JP3703348B2 JP 3703348 B2 JP3703348 B2 JP 3703348B2 JP 34543499 A JP34543499 A JP 34543499A JP 34543499 A JP34543499 A JP 34543499A JP 3703348 B2 JP3703348 B2 JP 3703348B2
Authority
JP
Japan
Prior art keywords
layer
magnetic layer
thin film
free magnetic
film element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34543499A
Other languages
English (en)
Other versions
JP2000285419A (ja
Inventor
直也 長谷川
賢治 本田
芳彦 柿原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP34543499A priority Critical patent/JP3703348B2/ja
Priority to US09/491,397 priority patent/US6538858B1/en
Publication of JP2000285419A publication Critical patent/JP2000285419A/ja
Application granted granted Critical
Publication of JP3703348B2 publication Critical patent/JP3703348B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3218Exchange coupling of magnetic films via an antiferromagnetic interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • H01F41/325Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film applying a noble metal capping on a spin-exchange-coupled multilayer, e.g. spin filter deposition

Description

【0001】
【発明の属する技術分野】
本発明は、固定磁性層の固定磁化方向と外部磁界の影響を受けるフリー磁性層の磁化の方向との関係で電気抵抗が変化するスピンバルブ型薄膜素子とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッドに関し、とくに、フリー磁性層の磁区制御を良好に行うことができ、安定性に優れたスピンバルブ型薄膜素子とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッドに関する。
【0002】
【従来の技術】
図15は、薄膜磁気ヘッドの一例を示す斜視図である。
この薄膜磁気ヘッドは、ハードディスク装置などの磁気記録媒体に搭載される浮上式のものである。この薄膜磁気ヘッドのスライダ251は、図15において符号235で示す側がディスク面の移動方向の上流側に向くリーディング側で、符号236で示す側がトレーリング側である。このスライダ251のディスクに対向する面では、 レール状のABS面(エアーベアリング面:レール部の浮上 面)251a、251a、251bと、エアーグルーブ251c、251cとが形成されている。
そして、このスライダ251のトレーリング側の端面251dには、磁気コア部250が設けられている。
【0003】
この例で示す薄膜磁気ヘッドの磁気コア部250は、図16および図17に示す構造の複合型磁気ヘッドであり、スライダ251のトレーリング側端面251d上に、MRヘッド(読出ヘッド)h1と、 インダクティブヘッド(書込ヘッ ド)h2とが順に積層されて構成されている。
【0004】
この例のMRヘッドh1は、基板を兼ねるスライダ251のトレーリング側端部に形成された磁性合金からなる下部シールド層253上に、下部ギャップ層254が設けられている。そして、下部ギャップ層254上には、磁気抵抗効果素子層245が積層されている。この磁気抵抗効果素子層245上には、上部ギャップ層256が形成され、その上に上部シールド層257が形成されている。この上部シールド層257は、その上に設けられるインダクティブヘッドh2の下部コア層と兼用にされている。
このMRヘッドh1は、ハードディスクのディスクなどの磁気記録媒体からの微小の漏れ磁界の有無により、磁気抵抗効果素子層245の抵抗を変化させ、この抵抗変化を読み取ることで記録媒体の記録内容を読み取るものである。
【0005】
また、インダクティブヘッドh2は、下部コア層257の上に、ギャップ層264が形成され、その上に平面的に螺旋状となるようにパターン化されたコイル層266が形成されている。上記コイル層266は、第1の絶縁材料層267Aおよび第2の絶縁材料層267Bに囲まれている。第2絶縁材料層267Bの上に形成された上部コア層268は、ABS面251bにて、その磁極端部268aを下部コア層257に、磁気ギャップGの厚みをあけて対向させ、図16および図17に示すように、その基端部268bを下部コア層257と磁気的に接続させて設けられている。
また、上部コア層268の上には、アルミナなどからなる保護層269が設けられている。
【0006】
このようなインダクティブヘッドh2では、コイル層266に記録電流が与えられ、コイル層266からコア層に記録電流が与えられる。そして、上記インダクティブヘッドh2は、磁気ギャップGの部分での下部コア層257と上部コア層268の先端部からの漏れ磁界により、ハードディスクなどの磁気記録媒体に磁気信号を記録するものである。
【0007】
上記MRヘッドh1に設けられている磁気抵抗効果素子層245には、巨大磁気抵抗効果を示すGMR(Giant Magnetoresistive)素子などが備えられている。このGMR素子は、複数の材料を組み合わせて形成された多層構造のものである。巨大磁気低抗効果を生み出す構造には、いくつかの種類がある。その中で比較的構造が単純で、外部磁界に対して抵抗変化率の高いものとしてスピンバルブ方式がある。スピンバルブ方式には、シングルスピンバルブ方式とデュアルスピンバルブ方式とがある。
【0008】
図18は、従来のスピンバルブ型薄膜素子を備えた薄膜磁気ヘッドの要部の一例を記録媒体との対向面側から見た場合の構造を示した断面図である。
図18において、符号MR1は、スピンバルブ型薄膜素子を示している。このスピンバルブ型薄膜素子MR1は、フリー磁性層125、非磁性導電層124、固定磁性層123、反強磁性層122が下部ギャップ層254側から順に一層ずつ形成された、いわゆるトップ型のシングルスピンバルブ型薄膜素子である。
【0009】
図18において符号121は、例えばTa(タンタル)などで形成された下地層を示している。この下地層121の上には、フリー磁性層125が形成され、さらにフリー磁性層125の上には、Cuなどで形成された非磁性導電層124が形成され、上記非磁性導電層124の上には、固定磁性層123が形成され、さらに固定磁性層123の上には、反強磁性層122が形成され、反強磁性層122の上には、Taなどで形成された保護層127が形成され、積層体a10とされている。
固定磁性層123は、反強磁性層122に接して形成されることにより、固定磁性層123と反強磁性層122との界面にて交換結合磁界(交換異方性磁界)が発生し、固定磁性層123の磁化は、例えば、図示Y方向に固定される。
【0010】
フリー磁性層125の両側には、例えば、Co一Pt(コバルト−白金)合金で形成されたハードバイアス層126、126すなわち永久磁石膜が形成されている。このハードバイアス層126、126は、フリー磁性層125が複数の磁区を形成することによって生じるバルクハウゼンノイズを抑制し、フリー磁性層125を単磁区化するためのものである。ハードバイアス層126、126が、例えば、図示X1方向に磁化されている場合、ハードバイアス層126、126からの漏れ磁束によって、フリー磁性層125の磁化が図示X1方向に揃えられる。これにより、フリー磁性層125の変動磁化と固定磁性層123の固定磁化とが交差する関係となっている。
なお、符号128は、 Cr、Ta、Auなどで形成された導電層を示してい る。
【0011】
このスピンバルブ型薄膜素子MR1では、ハードディスクなどの記録媒体からの洩れ磁界により、図示X1方向に揃えられたフリー磁性層125の磁化方向が変動すると、図示Y方向に固定された固定磁性層123の磁化方向となす角度の関係で電気抵抗が変化し、この電気抵抗値の変化に基づく電圧変化により、記録媒体からの洩れ磁界が検出される。
ここで積層体a10の中央部分が、磁気記録媒体からの記録磁界の再生に寄与し、磁気抵抗効果を発揮する感度領域であり、検出トラック幅Twを規定している。
【0012】
図22は、従来のその他の例のスピンバルブ型薄膜素子を備えた薄膜磁気ヘッドの要部の一例を記録媒体との対向面側から見た場合の構造を示した断面図である。
図22において、符号MR2は、スピンバルブ型薄膜素子を示している。このスピンバルブ型薄膜素子MR2が図18に示したスピンバルブ型薄膜素子MR1と特に異なるところは、反強磁性層122、固定磁性層153、非磁性導電層124、フリー磁性層165が下部ギャップ層254側から順に一層ずつ形成された、いわゆるボトム型のシングルスピンバルブ型薄膜素子である点である。
図22において、符号a11は積層体である。この積層体a11は、下地層121上に反強磁性層122が形成され、該反強磁性層122上に固定磁性層153が形成され、さらに固定磁性層153上に非磁性導電層124が形成され、該非磁性導電層124上にフリー磁性層165が形成され、さらにフリー磁性層165上に保護層127が形成されてなるものである。
【0013】
また、このスピンバルブ型薄膜素子MR2の固定磁性層153は、非磁性中間層154と、この非磁性中間層154を挟む第1の固定磁性層155と第2の固定磁性層156から構成されている。第1固定磁性層155は、非磁性中間層154より反強磁性層122側に設けられ、第2の固定磁性層156は、非磁性中間層154より非磁性導電層124側に設けられている。
第1の固定磁性層155及び第2の固定磁性層156は、NiFe合金等より形成されている。また、非磁性中間層154は、Ru等の非磁性材料より形成されている。
第1の固定磁性層155と第2の固定磁性層156の厚さは、異なる厚さとすることが好ましく、図22では、第2の固定磁性層156の厚さが第1の固定磁性層155の厚さより大とされている。
【0014】
第1の固定磁性層155と反強磁性層122との界面では交換結合磁界(交換異方性磁界)が発生し、第1の固定磁性層155の磁化方向は反強磁性層122との交換結合磁界により図示Y方向に固定され、第2の固定磁性層156は第1の固定磁性層155と反強磁性的に結合してその磁化方向が図示Y方向の反対方向側に固定されている。
第1、第2の固定磁性層155、156の磁化方向が互いに反平行とされているので、第1、第2の固定磁性層155、156の磁気モーメントが相互に打ち消し合う関係にあるが、第2の固定磁性層156の厚さが第1の固定磁性層155より大きく、この第2の固定磁性層156に由来する自発磁化が僅かに残る結果となり、固定磁性層153がフェリ磁性状態となっている。そしてこの自発磁化が反強磁性層122との交換結合磁界によって更に増幅され、固定磁性層153の磁化方向が図示Y方向に固定されている。
【0015】
また、このスピンバルブ型薄膜素子MR2のフリー磁性層165は、NiFe合金等の強磁性材料からなる強磁性層166とCo等の強磁性材料からなる拡散防止層167から形成されている。拡散防止層167は、非磁性導電層124側に設けられている。フリー磁性層165は、ハードバイアス層126、126からの漏れ磁束によって磁化が図示X1方向に揃えられている。
【0016】
このスピンバルブ型薄膜磁気素子MR2では、導電層128、128からフリー磁性層165、非磁性導電層124、固定磁性層153に検出電流(センス電流)が与えられる。ハードディスクなどの記録媒体の移動方向は、図示Z方向であり、磁気記録体からの洩れ磁界により図示Y方向に磁界が与えられると、フリー磁性層165の磁化は、図示X1方向からY方向に変動し、このときの非磁性導電層124とフリー磁性層165との界面、および非磁性導電層124と第2の固定磁性層156との界面でスピン依存した電導電子の散乱が起こることにより、電気抵抗が変化し、記録媒体からの漏れ磁界が検出される。
また、第1、第2の固定磁性層155、156が反強磁性的に結合して第1、第2の固定磁性層155、156の磁気モーメントが相互に打ち消し合う関係にあるが、第2の固定磁性層156の厚さが第1の固定磁性層155より大きく、この第2の固定磁性層156に由来する自発磁化が僅かに残る結果となり、固定磁性層153がフェリ磁性状態となるので、この自発磁化が反強磁性層122との交換結合磁界によって更に増幅され、固定磁性層153の磁化方向が図示Y方向に固定され、スピンバルブ型薄膜磁気素子MR2の安定性を向上させている。
【0017】
図23は、従来のその他の例のスピンバルブ型薄膜素子を備えた薄膜磁気ヘッドの要部の一例を記録媒体との対向面側から見た場合の構造を示した断面図である。
図23において、符号MR3は、スピンバルブ型薄膜素子を示している。このスピンバルブ型薄膜素子MR3が図22に示したスピンバルブ型薄膜素子MR2と特に異なるところは、フリー磁性層の構造と、フリー磁性層と保護層との間にバックド層が設けられていない点である。
図23において、符号a12は積層体である。この積層体a12は、下地層121上に反強磁性層122が形成され、該反強磁性層122上に固定磁性層153が形成され、さらに固定磁性層153上に非磁性導電層124が形成され、該非磁性導電層124上にフリー磁性層175が形成され、さらにフリー磁性層175上に保護層127が形成されてなるものである。
このスピンバルブ型薄膜素子MR3のフリー磁性層175は、磁性中間層176と、この非磁性中間層176を挟む第1のフリー磁性層177と第2のフリー磁性層178から構成されている。
第1のフリー磁性層177は、非磁性中間層176より保護層127側に設けられ、第2のフリー磁性層178は、非磁性中間層176より非磁性導電層124側に設けられている。また、第2のフリー磁性層178は、拡散防止層179と強磁性層180とから形成されている。
また、第1のフリー磁性層177は、NiFe合金等の強磁性材料により形成され、非磁性中間層176は、Ru等の非磁性材料により形成されている。拡散防止層179及び強磁性層180はいずれも強磁性材料からなるもので、拡散防止層179は例えばCoFe合金から形成され、強磁性層180はNiFe合金から形成されている。
【0018】
第2のフリー磁性層178の厚さt2は、第1のフリー磁性層177の厚さt1よりも厚く形成されている。
また、第1のフリー磁性層178及び第2のフリー磁性層178の飽和磁化をそれぞれM1、M2としたとき、第1のフリー磁性層177及び第2のフリー磁性層178の磁気的膜厚はそれぞれM1・t1、M2・t2となる。なお、第2のフリー磁性層178が拡散防止層179及び強磁性層180から構成されているため、第2のフリー磁性層178の磁気的膜厚M2・t2は、拡散防止層179の磁気的膜厚と強磁性層180の磁気的膜厚との和となる。
【0019】
そしてこのフリー磁性層175は、第1のフリー磁性層177と第2のフリー磁性層178との磁気的膜厚の関係を、M2・t2>M1・t1とするように構成されている。また、第1のフリー磁性層177及び第2のフリー磁性層178は、相互に反強磁性的に結合自在とされている。即ち、第2フリー磁性層178の磁化方向がハードバイアス層126、126により図示X1方向に揃えられた場合、第1フリー磁性層177の磁化方向は図示X1方向の反対方向に揃えられる。また、第1、第2のフリー磁性層177、178の磁気的膜厚の関係がM2・t2>M1・t1とされていることから、第2のフリー磁性層178の磁化が残存した状態となり、フリー磁性層175全体の磁化方向が図示X1方向に揃えられる。このときのフリー磁性層175の実効膜厚は、(M2・t2−M1・t1)となる。
このように、第1のフリー磁性層177と第2のフリー磁性層178は、それぞれの磁化方向が反平行方向となるように反強磁性的に結合され、かつ磁気的膜厚の関係がM2・t2>M1・t1とされていることから、人工的なフェリ磁性状態とされている。またこれにより、フリー磁性層175の磁化方向と固定磁性層153の磁化方向とが交差する関係となる。
【0020】
このスピンバルブ型薄膜素子MR3では、ハードディスクなどの記録媒体からの洩れ磁界により、図示X1方向に揃えられたフリー磁性層175の磁化方向が変動すると、図示Y方向に固定された固定磁性層153の磁化との関係で電気抵抗が変化し、この電気抵抗値の変化に基づく電圧変化により、記録媒体からの洩れ磁界が検出される。
またフリー磁性層175は、相互に反強磁性的に結合した第1、第2のフリー磁性層177、178から構成されているので、フリー磁性層175全体の磁化方向が、僅かな大きさの外部磁界によって変動し、スピンバルブ型薄膜磁気素子の感度が高くなる。
【0021】
【発明が解決しようとする課題】
図18に示したスピンバルブ型薄膜素子MR1では、 ハードバイアス層126、126は、積層体a10の側面と接合して形成されている。上記ハードバイアス層126、126の積層体a10の側面上部に接合されている部分の断面形状は、上記側面上部の上端に近づくにつれて、厚さが薄くなっている。そして、積層体a10の側面上端に接合されている先端部126a、126aは、尖った断面形状となっている。
【0022】
このため、積層体a10の側面上端に接合されているハードバイアス層126、126からの漏れ磁束が、先端部126a、126aからスピンバルブ型薄膜素子MR1上に設けられている上部シールド層257に吸われて、図18の矢印Cで示す磁束の流れとなりやすく、フリー磁性層125に加わる有効磁界が減少するという不都合があった。このため、フリー磁性層125の磁区制御を良好に行うことが困難で、安定性が悪いことが問題となっていた。
また、積層体a10の側面上端付近でのハードバイアス層126、126の先端部126a、126aの磁化は、図18に示す矢印Aおよび矢印Dで示される方向となっているため、先端部126a、126aから漏れて上記先端部126a、126aの根元に吸われる磁界(矢印B)と、根元から漏れて先端部126a、126aに吸われる磁束(矢印E)とが、本来フリー磁性層125に印可したい磁界方向と逆向きの磁界をフリー磁性層125の両端部に作用させることになり、フリー磁性層125の磁区制御に悪影響を及ぼすため、安定性が悪く、問題となっていた。
【0023】
また、図22に示したスピンバルブ型薄膜素子MR2においても、積層体a11の側壁上端付近でのハードバイアス層126、126の先端部126a、126aの磁化が、スピンバルブ型薄膜素子MR1と同様に矢印Aおよび矢印Dで示される方向となっているため、双極子磁界(外部反磁界)、すなわち、先端部126a、126aから漏れて先端部126a、126aの根元に吸われる磁界(矢印B)と、根元から漏れて先端部126a、126aに吸われる磁束(矢印E)とが、本来フリー磁性層165に印可したい磁場方向と逆向きの磁場をフリー磁性層165の両端部に作用させることになり、フリー磁性層165の磁区制御に悪影響を及ぼしたり、トラック幅Twの両端の再生波形が異常になってしまい、問題となっていた。
【0024】
また、図23に示したスピンバルブ型薄膜素子MR3においては、積層体a12の側面上端付近でのハードバイアス層126、126の先端部126a、126aから第1のフリー磁性層177に与えられる磁場が強く、しかもこの磁場は第1のフリー磁性層177に付与したい磁化方向と逆向きの磁化を作用させる磁場であるので、ハードバイアス層126、126の磁界がスピンフロップ磁界(Hsf)より大きくなると、本来第1のフリー磁性層177に付与したい磁化方向と逆向きに作用させる磁場を第1のフリー磁性層177の両端部(各ハードバイアス層126の近傍部分)に作用させることとなり、第1のフリー磁性層177の中央部では磁化の方向が第2のフリー磁性層178の磁化の向きの逆向き(X1方向の逆向き)に揃っているものの両端部では磁化の方向が乱れてしまう。このように第1のフリー磁性層177の両端部の磁化の方向が乱れると、磁化の向きが第1のフリー磁性層177の磁化の方向と反平行方向(X1方向)に揃えられる第2のフリー磁性層178は、中央部の磁化の方向が第1のフリー磁性層177の磁化の向きと逆向き(X1方向)に揃っているものの、両端部の磁化の方向が乱れてしまい、第1、第2のフリー磁性層177、178の両端部の磁化の方向が反平行に揃わなくなり、トラック幅Twの両端のところで、再生波形不安定性の原因となり、サーボエラー等を引き起こし、問題となっていた。
【0025】
上記スピンフロップ磁界について図24を用いて説明する。図24は、フリー磁性層のM−H曲線を示す図である。このM−H曲線は、図23に示す構成のスピンバルブ型薄膜素子MR3のフリー磁性層175に対してトラック幅方向から外部磁界Hを印加したときの、フリー磁性層175の磁化Mの変化を示したものである。外部磁界Hがハードバイアス層126、126からのバイアス磁界に相当する。
また、図24中、F1で示す矢印は、第1のフリー磁性層177の磁化方向を表し、F2で示す矢印は、第2のフリー磁性層178の磁化方向を表す。
図24に示すように、外部磁界Hが小さいときは、第1のフリー磁性層177と第2のフリー磁性層178が反強磁性的に結合した状態、即ち矢印F1と矢印F2の方向が反平行になっているが、外部磁界Hの大きさがある値を超えると、矢印F1と矢印F2の方向が反平行に揃わなくなり、第1、第2フリー磁性層177、178の反強磁性的結合が壊され、フェリ磁性状態が保てなくなる。これがスピンフロップ転移である。またこのスピンフロップ転移が起きたときの外部磁界の大きさがスピンフロップ磁界であり、図24ではHsfで示している。そして、さらに外部磁界Hをスピンフロップ磁界より大きくしていくと、F1の方向がさらに回転して、F2の方向の平行方向を向き、即ち、F1は元の方向と180゜異なる方向を向き、フェリ磁性状態が完全に崩れてしまう。これが飽和磁界であり、図24ではHSで示している。従って、図23の第1、第2のフリー磁性層177、178の両端部の磁化の方向は、例えば、図24のHsfとHsの間に示すような関係となっている。
【0026】
本発明は、上記事情に鑑みてなされたもので、上記のような問題を解決し、フリー磁性層に加わる有効磁界の減少が起こりにくく、積層体の側面上端付近において、フリー磁性層の磁化の方向と反対の方向に磁場を作用させる磁界が生じにくく、上記フリー磁性層の磁区制御を良好に行うことができる安定性に優れたスピンバルブ型薄膜素子を提供することを課題としている。
さらに、このスピンバルブ型薄膜素子を備えた薄膜磁気ヘッドを提供することを課題としている。
【0027】
【課題を解決するための手段】
上記課題を解決するために、本発明のスピンバルブ型薄膜素子は、基板上に、反強磁性層と、この反強磁性層と接して形成され、上記反強磁性層との交換結合磁界により磁化方向が固定される固定磁性層と、上記固定磁性層に非磁性導電層を介して形成されたフリー磁性層と、上記反強磁性層と上記固定磁性層と上記非磁性導電層とフリー磁性層とが少なくとも積層されてなる積層体の両側に形成され、上記フリー磁性層の磁化方向を上記固定磁性層の磁化方向と交差する方向へ揃えるためのハードバイアス層と、上記ハードバイアス層上に形成されて上記積層体に検出電流を与える導電層とを有するスピンバルブ型薄膜素子であり、
上記反強磁性層と上記固定磁性層と上記非磁性導電層と上記フリー磁性層は、上記基板側から、反強磁性層、固定磁性層、非磁性導電層、フリー磁性層の順で積層され、
上記ハードバイアス層は、上記フリー磁性層と同じ階層位置に配置され、上記ハードバイアス層の上面は、上記積層体の側面上端より基板側の位置で上記積層体の側面と接合され、
上記フリー磁性層が非磁性中間層を介して2つに分断され、分断された層どうしで磁化の向きが反平行となるフェリ磁性状態とされ、上記非磁性中間層で分断された2つのフリー磁性層のうち上記非磁性導電層に接する方を第2のフリー磁性層とし、他方を第1のフリー磁性とした場合に、上記ハードバイアス層の上面は、上記第2のフリー磁性層の上面から下面までの間と同じ階層位置で上記積層体の側面と接合されていることを特徴とするものである。
【0028】
なお、ここでの「ハードバイアス層は、フリー磁性層と同じ階層位置に形成され」とは、少なくともハードバイアス層とフリー磁性層とが接合されている状態を意味し、上記ハードバイアス層と上記フリー磁性層との接合部分の厚さが上記フリー磁性層の膜厚よりも薄い状態も含まれる。
また、ここで、「ハードバイアス層の上面」とは、上記基板側と反対側の面を意味している。
さらに、「接合」とは、直接接触して接続することのみならず、例えば、下地層、中間層等を介して積層体等と接続されることをも意味している。
【0029】
このようなスピンバルブ型薄膜素子では、 上記ハードバイアス層の上面は、 上記積層体の側面上端より基板側の位置で上記積層体の側面と接合されているので、ハードバイアス層からの漏れ磁束が、上部シールド層に吸われることによるフリー磁性層に加わる有効磁界の減少が起こりにくいものとなり、フリー磁性層が単磁区化されやすくなるため、上記フリー磁性層の磁区制御を良好に行うことができる安定性に優れたスピンバルブ型薄膜素子とすることができる。
また、上記ハードバイアス層が、上記フリー磁性層と同じ階層位置に配置されたスピンバルブ型薄膜素子とすることで、フリー磁性層に対して、強いバイアス磁界を与えやすくなり、フリー磁性層を単磁区化しやすく、バルクハウゼンノイズの発生を低減させることができる。
【0030】
また、上記のスピンバルブ型薄膜素子においては、上記ハードバイアス層の上面が、上記ハードバイアス層の最上位置と同じまたは最上位置よりも基板側の位置で上記積層体の側面と接合されていることが好ましい。
このようなスピンバルブ型薄膜素子とすることで、積層体の側面上端付近でのフリー磁性層の磁化の方向と反対の方向に磁場を作用させる磁界が生じにくいものとなり、フリー磁性層が単磁区化されやすくなるため、上記フリー磁性層の磁区制御をより一層良好に行うことができる優れたスピンバルブ型薄膜素子とすることができる。
【0031】
また、上記のスピンバルブ型薄膜素子においては、上記ハードバイアス層は、上記フリー磁性層の膜厚方向に上記フリー磁性層の膜厚よりも大きな膜厚とされ、上記ハードバイアス層の上面は、上記フリー磁性層の上面よりも基板から離れた位置に配置されていることが望ましい。
このようなスピンバルブ型薄膜素子とすることで、フリー磁性層に対して、より一層強いバイアス磁界を与えやすくなり、フリー磁性層を単磁区化しやすくなるため、バルクハウゼンノイズの発生をより一層低減させることができる。
【0032】
また、上記のスピンバルブ型薄膜素子においては、上記ハードバイアス層の下面は、上記フリー磁性層の下面よりも基板側の位置に配置されていることが好ましい。
このようなスピンバルブ型薄膜素子とすることで、さらにフリー磁性層に対して、強いバイアス磁界を与えやすくなり、フリー磁性層を単磁区化しやすくなるため、バルクハウゼンノイズの発生をより一層低減させることができる。
【0033】
また、上記のスピンバルブ型薄膜素子においては、上記反強磁性層は、X−Mn(ただし、Xは、Pt、Pd、Ru、Ir、Rh、Osのうちから選択される1種の元素を示す。)の式で示される合金からなり、Xが37〜63原子%の範囲であることが望ましい。
さらにまた、上記のスピンバルブ型薄膜素子においては、上記反強磁性層が、X’−Pt−Mn(ただし、X’は、Pd、Cr、Ru、Ni、Ir、Rh、Os、Au、Ag、Ne、Ar、Xe、Krのうちから選択される1種または2種以上の元素を示す。)の式で示される合金からなり、X’+Ptが37〜63原子%の範囲であることが望ましい。
【0034】
反強磁性層に、X−Mnの式で示される合金またはX’−Pt−Mnの式で示される合金を用いたスピンバルブ型薄膜素子とすることで、上記反強磁性層に従来から使用されているNiO合金、FeMn合金、NiMn合金などを用いたものと比較して、交換結合磁界が大きく、またブロッキング温度が高く、さらに耐食性に優れているなどの優れた特性を有するスピンバルブ型薄膜素子とすることができる。
【0035】
また、上記のスピンバルブ型薄膜素子においては、上記ハードバイアス層と上記導電層との間に、TaやCrなどからなる中間層が設けられたものとしてもよい。
導電層として、Crを用いた場合は、Taの中間層を設けることにより、後工程のレジスト硬化などの熱プロセスに対して拡散バリアーとして機能し、ハードバイアス層の磁気特性の劣化を防ぐことができる。また、導電層としてTaを用いる場合は、Crの中間層を設けることにより、Crの上に堆積するTaの結晶を、より低抵抗の体心立方構造としやすくする効果がある。
【0036】
また、上記のスピンバルブ型薄膜素子においては、上記ハードバイアス層と上記積層体との間および上記ハードバイアス層と基板との間に、Crからなるバイアス下地層が設けられたものとしてもよい。
結晶構造が体心立方構造(bcc構造)であるCrからなるバイアス下地層を設けることにより、上記ハードバイアス層の保磁力および角形比が大きくなり、上記フリー磁性層の単磁区化に必要なバイアス磁界を増大させることができる。
【0037】
また、上記のスピンバルブ型薄膜素子においては、上記フリー磁性層の厚さ方向両側に、各々非磁性導電層と固定磁性層と反強磁性層とが形成されたデュアル型構造とされてなるものとしてもよい。
このようなスピンバルブ型薄膜素子とすることで、フリー磁性層/非磁性導電層/固定磁性層の3層の組合わせを2組有するものとなり、シングルスピンバルブ型薄膜素子と比較して、大きな△MR(抵抗変化率)が得られ、高密度記録化に対応できるものとすることができる。
【0038】
また、上記のスピンバルブ型薄膜素子においては、上記固定磁性層が非磁性中間層を介して2つに分断され、分断された層どうしで磁化の向きが反平行となる人工フェリ磁性状態とされてなるものとしてもよい。
固定磁性層が非磁性中間層を介して2つに分断されたスピンバルブ型薄膜素子とした場合、2つに分断された固定磁性層のうち一方が他方の固定磁性層を適正な方向に固定する役割を担い、固定磁性層の状態を非常に安定した状態に保つことが可能となる。
一方、フリー磁性層が非磁性中間層を介して2つに分断されたスピンバルブ型薄膜素子とした場合、2つに分断されたフリー磁性層どうしの間に交換結合磁界が発生し、フェリ磁性状態とされ、磁気的な膜厚が減少するので外部磁界に対して感度よく反転できるものとなる。
【0039】
また、上記のスピンバルブ型薄膜素子においては、上記積層体は上記フリー磁性層の上記非磁性導電層に対する逆側に接する非磁性導電材料からなるバックド層を有することが好ましい。
このようなスピンバルブ型薄膜素子とすることで、上記導電層からのセンス電流が積層体内部において流れる中心高さ位置を、バックド層がない場合に固定磁性層側に位置していた状態に比べて、このバックド層側に変化することができる。これにより、フリー磁性層位置におけるセンス電流磁界の強度を低減し、このセンス電流磁界からのフリー磁性層の変動磁化への寄与を低減することができる。従って、フリー磁性層の変動磁化の方向を所望の方向に補正することがより容易になり、アシンメトリーの小さい優れたスピンバルブ型薄膜素子とするために、フリー磁性層の変動磁化の方向を制御することを、より容易にすることができる。
【0040】
さらに、上記のスピンバルブ型薄膜素子のうちシングルスピンバルブ型薄膜素子においては、上記導電層が、上記積層体の両側から上記積層体の中央部分に向けてこの積層体の表面に延出して被着形成されていることが好ましい。
このようなスピンバルブ型薄膜素子とすることで、導電層からのセンス電流が、ハードバイアス層と積層体との接合部分に流れにくくなり、このハードバイアス層を介さずに、直接、積層体にセンス電流を流す割合を多くできる。しかも、この場合、積層体と導電層との接合面積を増大することにより、磁気抵抗効果に寄与しない接合抵抗を下げることができ、再生特性を向上することができる。
【0041】
また、上記のスピンバルブ型薄膜素子のうちシングルスピンバルブ型薄膜素子あるいは反強磁性層が基板側に位置するボトムタイプのシングルスピンバルブ型薄膜素子においては、上記ハードバイアス層の上面は、上記フリー磁性層の上面から下面までの間と同じ階層位置で上記積層体の側面と接合されているこことが好ましい。
このようなスピンバルブ型薄膜素子とすることで、積層体の側面上端付近でのフリー磁性層に付与したい磁化の方向と反対の方向に磁場を作用させる双極子磁界(外部反磁界)が生じにくいものとなり、該双極子磁界に起因してフリー磁性層の両端部の磁化の方向が乱れるのを改善でき、ハードバイアス層からの漏れ磁束によりフリー磁性層の磁化を揃えることができ、フリー磁性層が単磁区化され易くなるため、上記フリー磁性層の磁区制御を一層良好に行うことができ、また、トラック幅の両端の再生波形に異常が生じるのを防止でき、再生波形の安定性を向上できる。
【0042】
さらに、上記のスピンバルブ型薄膜素子のうちシングルスピンバルブ型薄膜素子あるいは反強磁性層が基板側に位置するボトムタイプのシングルスピンバルブ型薄膜素子においては、上記ハードバイアス層の上面は、上記フリー磁性層の上面から該フリー磁性層の膜厚の半分の厚みの位置までの間と同じ階層位置で上記積層体の側面と接合されていることが好ましい。
このようなスピンバルブ型薄膜素子とすることで、上記双極子磁界に起因してフリー磁性層の両端部の磁化の方向が乱れるのを改善できるうえ、フリー磁性層に対して強いバイアス磁界を与え易くなり、フリー磁性層をより単磁区化し易くなり、また、再生波形の安定性もより向上させることができる。
【0043】
また、上記のスピンバルブ型薄膜素子のうちシングルスピンバルブ型薄膜素子あるいは反強磁性層が基板側に位置するボトムタイプのシングルスピンバルブ型薄膜素子においては、上記フリー磁性層が非磁性中間層を介して2つに分断され、分断された層どうしで磁化の向きが反平行となるフェリ磁性状態とされ、上記非磁性中間層で分断された2つのフリー磁性層のうち上記非磁性導電層に接する方を第2のフリー磁性層とし、他方を第1のフリー磁性とした場合に、上記ハードバイアス層の上面は、上記第2のフリー磁性層の上面から下面までの間と同じ階層位置で上記積層体の側面と接合されているスピンバルブ型薄膜素子とすることで、第1のフリー磁性層に付与したい磁化方向と逆向きに作用させる強い磁場が積層体の側面上端付近でのハードバイアス層の先端部からかかるのを回避でき、第1のフリー磁性層の両端部の磁化の方向が乱れるのを改善でき、第1のフリー磁性層の両端部の磁化の方向が乱れることに起因して磁化の向きが第1のフリー磁性層の磁化の向きと逆向きに揃えられる第2のフリー磁性層の両端部の磁化の方向が乱れることを防止でき、第1、第2のフリー磁性層の反強磁的な結合を安定して維持させてフリー磁性層のフェリ磁性状態を保つことができ、従って、スピンバルブ型薄膜素子の感度を低下させることなく、トラック幅の両端の再生波形に異常が生じるのを防止でき、再生波形の安定性を向上できる。
【0044】
さらに、上記のスピンバルブ型薄膜素子のうちシングルスピンバルブ型薄膜素子あるいは反強磁性層が基板側に位置するボトムタイプのシングルスピンバルブ型薄膜素子においては、上記ハードバイアス層の上面は、上記第2のフリー磁性層の上面から上記第2のフリー磁性層の膜厚の半分の厚みの位置までの間と同じ階層位置で上記積層体の側面と接合されていることが好ましい。
このようなスピンバルブ型薄膜素子とすることで、第1のフリー磁性層の両端部の磁化の方向が乱れるのを改善でき、第1のフリー磁性層の両端部の磁化の方向が乱れることに起因して磁化の向きが第1のフリー磁性層の磁化の向きと逆向きに揃えられる第2のフリー磁性層の両端部の磁化の方向が乱れることを防止できるうえ、第2のフリー磁性層に対しては付与したい磁化方向と同じ向きに磁場を作用させる強いバイアス磁界が与えられ、スピンバルブ型薄膜素子の感度をより高くでき、しかもトラック幅の両端の再生波形に異常が生じるのを防止でき、再生波形の安定性を向上できる。
【0045】
さらにまた、上記のスピンバルブ型薄膜素子のうちシングルスピンバルブ型薄膜素子あるいは反強磁性層が基板側に位置するボトムタイプのシングルスピンバルブ型薄膜素子においては、上記第2のフリー磁性層の飽和磁化および厚さをそれぞれM2、t2とし、上記第1のフリー磁性層の飽和磁化および厚さをそれぞれM1、t1とし、上記第2のフリー磁性層の磁気的膜厚をM 2 ・t 2 とし、上記第1のフリー磁性層の磁気的膜厚をM 1 ・t 1 としたときに、M2・t2>M1・t1なる関係を満たすことが好ましい。
このようなスピンバルブ型薄膜素子とすることで、第2のフリー磁性層の磁気的膜厚が、第1のフリー磁性層の磁気的膜厚よりも大きくなり、第1のフリー磁性層と第2のフリー磁性層の磁気的膜厚の差分がフリー磁性層の磁気的な実効膜厚となる。従って、第1、第2のフリー磁性層の膜厚を適宜調整してフリー磁性層の実効膜厚を薄くすることにより、フリー磁性層の磁化方向を僅かな大きさの外部磁界により変動させることができ、スピンバルブ型薄膜磁気素子の感度を高くすることが可能となる。
また、フリー磁性層全体の厚さをある程度厚くできるので、抵抗変化率が極端に小さくなることがなく、スピンバルブ型薄膜素子の感度を高くすることが可能となる上記ハードバイアス層の上面は、上記第2のフリー磁性層の上面から下面までの間と同じ階層位置で上記積層体の側面と接合されていることが好ましい。
【0046】
また、上記のスピンバルブ型薄膜素子のうちシングルスピンバルブ型薄膜素子においては、上記反強磁性層と上記固定磁性層と上記非磁性導電層と上記フリー磁性層は、上記基板側から、反強磁性層、固定磁性層、非磁性導電層、フリー磁性層の順で積層されたボトムタイプであってもよい。
このようなスピンバルブ型薄膜素子とすることで、比抵抗の高い反強磁性層を介さずに積層体に与えるセンス電流の割合を向上することができ、基板側から、フリー磁性層、非磁性導電層、固定磁性層、反強磁性層の順で積層されたトップタイプにおいて発生していた、ハードバイアス層を経由して反強磁性層の下側に位置する固定磁性層、非磁性導電層、フリー磁性層付近に直接流れ込む検出電流(センス電流)の分流成分を低減することができる。このため、サイドリーディングを防止することができ、磁気記録密度の高密度化により一層対応することが可能となる。
【0047】
また、基板上に、反強磁性層と、 この反強磁性層と接して形成 され、上記反強磁性層との交換結合磁界により磁化方向が固定される固定磁性層と、上記固定磁性層に非磁性導電層を介して形成されたフリー磁性層とを少なくとも有する積層膜を形成する工程と、上記積層膜の上にリフトオフ用レジストを形成する工程と、上記リフトオフ用レジストに覆われていない部分をイオンミリングにより除去し、台形状の積層体を形成する工程と、上記積層体の両側に、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、上記ハードバイアス層を、上記フリー磁性層と同じ階層位置に配置されるように形成し、かつ、上記ハードバイアス層の上面を、上記積層体の側面上端より基板側の位置で上記積層体の側面と接合されるように形成する工程と、上記ハードバイアス層上に、ターゲットと基板との角度を傾斜させた状態で対向させ、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、導電層を形成する工程とを有するスピンバルブ型薄膜素子の製造方法によれば、上記のスピンバルブ型薄膜素子を容易に得ることができる。
【0048】
また、基板上に、反強磁性層と、 この反強磁性層と接して形成 され、上記反強磁性層との交換結合磁界により磁化方向が固定される固定磁性層と、上記固定磁性層に非磁性導電層を介して形成されたフリー磁性層とを少なくとも有する積層膜を形成する工程と、
上記積層膜の上に上記積層膜に対向する下面に切り込み部の形成されたリフトオフ用レジストを形成する工程と、
上記リフトオフ用レジストに覆われていない部分をイオンミリングにより除去し、台形状の積層体を形成する工程と、
上記積層体の両側に、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、上記ハードバイアス層を、上記フリー磁性層と同じ階層位置に配置されるように形成し、かつ、上記ハードバイアス層の上面を、上記積層体の側面上端より基板側の位置で上記積層体の側面と接合されるように形成する工程と、
上記ハードバイアス層上、および、上記リフトオフ用レジストの切り込み部に対応する上記積層体上に、ターゲットと基板との角度を傾斜させた状態で対向させ、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、導電層を形成する工程とを有するスピンバルブ型薄膜素子の製造方法としてもよい。
【0049】
このようなスピンバルブ型薄膜素子の製造方法によれば、形成した積層膜に、切り込み部の形成されたリフトオフ用レジストを1回形成する1レジスト工程により、レジストパターンを形成してイオンミリングにより積層体をエッチングし、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、ターゲットと基板との角度を傾斜させないかまたは傾斜させた状態で対向させることを選択し、かつこの傾斜角度を設定して、ハードバイアス層および導電層を所望の形状に形成し、上記のスピンバルブ型薄膜素子を得ることができる。
ここで、切り込み部の幅寸法、言い換えると、上記リフトオフレジストの上記積層体両側方向における幅寸法に対して、上記切り込み部における、上記積層体に接触していない上記積層体両側方向における幅寸法、つまり、トラック幅方向の寸法を設定することにより、この切り込み部内に形成される導電層の部分、つまり、導電層が積層体の両側からこの積層体の中央部分に向けて積層体表面に延出して形成されるオーバーレイ部の長さ寸法を設定することができる。
これにより、フォトレジスト(リフトオフ用レジスト)を1回形成するのみで、積層体、ハードバイアス層、および、導電層を所望の形状に形成することができ、かつ、ターゲットと基板との角度を傾斜させないかまたは傾斜させた状態で対向させることを選択したスパッタ法により、ハードバイアス層および電極層を所望の形状に形成し、工程数の少ない状態で、上記のスピンバルブ型薄膜素子を容易に得ることができる。
【0050】
また、基板上に、反強磁性層と、 この反強磁性層と接して形成 され、上記反強磁性層との交換結合磁界により磁化方向が固定される固定磁性層と、上記固定磁性層に非磁性導電層を介して形成されたフリー磁性層とを少なくとも有する積層膜を形成する工程と、
上記積層膜の上に上記積層膜に対向する下面に切り込み部の形成された第1のリフトオフ用レジストを形成する工程と、
上記第1のリフトオフ用レジストに覆われていない部分をイオンミリングにより除去し、台形状の積層体を形成する工程と、
上記積層体の両側に、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、上記ハードバイアス層を、上記フリー磁性層と同じ階層位置に配置されるように形成し、かつ、上記ハードバイアス層の上面を、上記積層体の側面上端より基板側の位置で上記積層体の側面と接合されるように形成する工程と、
上記第1のリフトオフレジストを剥離する工程と、
上記積層体に接触している上記第1のリフトオフ用レジストの上記積層体両側方向の寸法よりも、上記積層体に接触している上記積層体両側方向の寸法が幅狭に設定され、かつ、上記積層体に対向する下面に切り込み部の形成された第2のリフトオフ用レジストを上記積層体の上に形成する工程と、
上記第2のリフトオフ用レジストに覆われていない部分に、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、導電層を形成する工程とを有するスピンバルブ型薄膜素子の製造方法としてもよい。
【0051】
このようなスピンバルブ型薄膜素子の製造方法によれば、形成した積層膜に、幅寸法の異なる、切り込み部の形成された2種類のリフトオフ用レジストを2回形成する2レジスト工程により、積層体およびハードバイアス層を形成し、かつ、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、ターゲットと基板との角度を傾斜させないかまたは傾斜させた状態で対向させることを選択して、導電層を所望の形状に形成し、上記のスピンバルブ型薄膜素子を得ることができる ここで、第1のリフトオフ用レジストにおいて、切り込み部のトラック幅方向寸法、言い換えると、上記リフトオフレジストの上記積層体両側方向における幅寸法に対して、上記切り込み部における、上記積層体に接触していない上記積層体両側方向における幅寸法、つまり、トラック幅方向の寸法を設定すること、および、イオンミリング時のイオンビーム入射角度を設定することにより、積層体のトラック幅方向寸法、および、ハードバイアス層の形成形状を設定することができる。同様にして、第2のリフトオフ用レジストにおいて、この第2のリフトオフ用レジストにおけるトラック幅方向寸法を設定することにより、導電層の部分、つまり、導電層が積層体の両側からこの積層体の中央部分に向けて積層体表面に延出して形成されるオーバーレイ部の長さ寸法を設定することができる。
さらに、上記ハードバイアス層を形成する工程の後に、上記リフトオフ用レジストまたは上記第2のリフトオフ用レジストの切り込み部に対応する上記積層体表面の一部をイオンミリングや逆スパッタにより除去する工程を有することにより、積層体の最上層である保護層やバックド層をイオンミリングや逆スパッタによりクリーニングし、電極層とバックド層との充分な接続を得ることができ、接触抵抗を低減することができる。
【0052】
また、上記のスピンバルブ型薄膜素子の製造方法においては、上記積層体を形成する工程において、上記フリー磁性層の上記非磁性導電層に対する逆側に非磁性導電材料からなるバックド層を形成することが好ましい。
【0053】
また、上記のスピンバルブ型薄膜素子においては、上記第2のフリー磁性層の膜厚が上記第1のフリー磁性層の膜厚よりも大きいことが好ましい。
さらにまた、上記課題は、上記のスピンバルブ型薄膜素子が備えられてなることを特徴とする薄膜磁気ヘッドによって解決できる。
このような薄膜磁気へッドとすることで、フリー磁性層の磁区制御を良好に行うことができる安定性に優れた薄膜磁気へッドとすることができる。
【0054】
【発明の実施の形態】
以下、本発明のスピンバルブ型薄膜素子の実施形態について、図面を参照して詳しく説明する。
[第1の実施形態]
図1は、本発明の第1の実施形態のスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
本発明のスピンバルブ型薄膜素子と、図18に示す従来のスピンバルブ型薄膜素子MR1とが異なるところは、ハードバイアス層および導電層の形状が異なるところである。
このスピンバルブ型薄膜素子では、ハードディスクなどの磁気記録媒体の移動方向は、図示Z方向であり、磁気記録媒体からの洩れ磁界の方向は、Y方向である。
【0055】
図1において、符号1は、基板K上に設けられ、例えば、Ta(タンタル)などで形成されている下地層を示している。この下地層1の上には、フリー磁性層5が形成され、さらに上記フリー磁性層5の上には、非磁性導電層4が形成されている。この非磁性導電層4の上には、固定磁性層3が形成され、さらに、上記固定磁性層3の上には、反強磁性層2が形成され、上記反強磁性層2の上には、Taなどで形成された保護層7が形成され、積層体a1を形成している。
また、符号6、6は、ハードバイアス層を示し、符号8、8は、導電層を示している。
【0056】
本発明の第1の実施形態のスピンバルブ型薄膜素子において、上記反強磁性層2は、PtMn合金で形成されていることが好ましい。PtMn合金は、従来から反強磁性層2として使用されているNiMn合金やFeMn合金などに比べて耐食性に優れ、しかもブロッキング温度が高く、交換結合磁界(交換異方性磁界)も大きい。
また、上記PtMn合金に代えて、X−Mn(ただし、Xは、Pd、Ru、Ir、Rh、Osのうちから選択される1種の元素を示す。)の式で示される合金あるいはX’−Pt−Mn(ただし、X’は、Pd、Ru、Ir、Rh、Os、Au、Ag、Ne、Ar、Xe、Krのうちから選択される1種または2種以上の元素を示す。)の式で示される合金で形成されていてもよい。
【0057】
また、上記PtMn合金および上記X−Mnの式で示される合金において、PtあるいはXが37〜63原子%の範囲であることが望ましい。 より好ましく は、47〜57原子%の範囲である。
さらにまた、X’−Pt−Mnの式で示される合金において、X’+Ptが37〜63原子%の範囲であることが望ましい。より好ましくは、47〜57原子%の範囲である。さらに、上記X’−Pt−Mnの式で示される合金としては、X’がAu、Ag、Ne、Ar、Xe、Krのうちから選択される1種または2種以上の元素である場合は、0.2〜10原子%の範囲であることが望ましく、Pd、Ru、Ir、Rh、Osのうちから選択される1種または2種以上の元素である場合は、0.2〜40原子%の範囲であることが望ましい。
上記反強磁性層2として、上記した適正な組成範囲の合金を使用し、これをアニール処理することで、大きな交換結合磁界を発生する反強磁性層2を得ることができる。とくに、PtMn合金であれば、64kA/mを越える交換結合磁界を有し、上記交換結合磁界を失うブロッキング温度が380℃(653K)と極めて高い優れた反強磁性層2を得ることができる。
【0058】
上記固定磁性層3は、強磁性体の薄膜からなり、 例えば、Co、NiFe合 金、CoNiFe合金、CoFe合金などで形成されることが好ましい。
また、上記非磁性導電層4は、Cu、Cr、Au、Ag、Ru、Irなどに代表される非磁性体からなり、通常、2〜4nm(20〜40Å)程度の厚さに形成されている。
【0059】
上記フリー磁性層5は、上記固定磁性層3と同様の材質などで形成されることが好ましい。
【0060】
上記ハードバイアス層6、6は、例えば、Co−Pt合金やCo−Cr−Pt合金などで形成されることが好ましい。
上記ハードバイアス層6、6は、上記フリー磁性層5と同じ階層位置に配置され、上記フリー磁性層5の膜厚方向に上記フリー磁性層5の膜厚よりも大きな膜厚とされることが好ましい。 また、上記ハードバイアス層6、6の上面6A、 6Aは、上記フリー磁性層5の上面5Aよりも基板Kから離れた位置に(すなわち、図1では上側に)配置され、上記ハードバイアス層6、6の下面は、上記フリー磁性層5の下面よりも基板K側の位置に(すなわち、図1では下側に)配置されている。
また、上記ハードバイアス層6、6の上面6A、6Aと上記積層体a1の側面b1、b1との接合点c1、c1は、積層体a1の側面b1、b1の上端d1、d1より基板側の位置(すなわち、図1では下側)で、かつ、上記ハードバイアス層6、6の最上位置(図1の例では、ハードバイアス層6、6の上面6A、6A)より下側の位置とされることが好ましい。
【0061】
また、導電層8、8は、例えば、Cr、Ta、Auなどで形成されることが好ましい。上記導電層8、8は、上記ハードバイアス層6、6上に、上記積層体a1の側面b1、b1に接合されて形成されることが好ましい。
【0062】
図1に示すスピンバルブ型薄膜素子においては、上記反強磁性層2は、固定磁性層3に接して形成され、アニール(熱処理)を施すことにより、反強磁性層2と固定磁性層3との界面にて、交換結合磁界(交換異方性磁界)が発生し、例えば、図1に示すように、固定磁性層3の磁化が図示Y方向に固定される。
また、上記ハードバイアス層6、6が、 図示X1方向に磁化されていること で、上記フリー磁性層5の磁化が、図示X1方向に揃えられている。 これによ り、上記フリー磁性層5の変動磁化と上記固定磁性層3の固定磁化とが90度で交差する関係となっている。
【0063】
このようなスピンバルブ型薄膜素子では、上記導電層8、8からフリー磁性層5、非磁性導電層4、固定磁性層3にセンス電流が与えられる。記録媒体から図1に示す図示Y方向に磁界が与えられると、フリー磁性層5の磁化は、図示X1方向からY方向に変動する。このときの非磁性導電層4とフリー磁性層5との界面、および非磁性導電層4と固定磁性層3との界面で、スピンに依存した伝導電子の散乱が起こることにより、電気抵抗が変化し、記録媒体からの洩れ磁界が検出される。
【0064】
次に、図2〜図5を参照して、図1に示すスピンバルブ型薄膜素子の製造方法の一例を詳しく説明する。
まず、図2に示すように、基板K上に、積層体a1とされる下地層1、フリー磁性層5、非磁性導電層4、固定磁性層3、反強磁性層2、保護層7を順次成膜して積層膜Mを形成したのち、上記積層膜M上にリフトオフ用レジスト9を形成する。次に、上記リフトオフ用レジスト9に覆われていない部分を、イオンミリングにより除去して、図3に示すように側面1b、1bとされる傾斜面を形成して等脚台形状の積層体a1を形成する。
【0065】
ついで、上記積層体a1の両側に、ハードバイアス層6、6を、図4に示すように、上記フリー磁性層5と同じ階層位置に配置されるように形成し、かつ、ハードバイアス層6、6の上面6Aを、上記積層体a1の側面b1、b1の上端d1、d1より下側の位置で上記積層体a1の側面b1、b1と接合されるように形成する。
このとき、上記ハードバイアス層6、6は、上記フリー磁性層5の膜厚方向に上記フリー磁性層5の膜厚よりも大きな膜厚とされることが望ましい。また、上記ハードバイアス層6、6の上面6Aは、上記フリー磁性層5の上面5Aよりも基板Kから離れた位置に(すなわち、図4では上側に)配置され、上記ハードバイアス層6、6の下面は、上記フリー磁性層5の下面よりも基板K側の位置に(すなわち、図4では下側に)配置され、上記ハードバイアス層6、6の上面6Aと上記積層体a1の側面b1、b1との接合点c1、c1は、上記ハードバイアス層6、6の最上位置(図4では上面6A)より下側の位置とされることが好ましい。
【0066】
この製造方法において、リフトオフ用レジスト9は、二層レジスト法、イメージリバース法などによって形成されることが好ましい。
また、ハードバイアス層6、6の形成は、スパッタ法などによって行うことができ、上記ハードバイアス層6、6を上記フリー磁性層5とほぼ平行となるように形成するために、ターゲットと基板Kとが平行となるように対向させるとともに、スパッタ粒子s1の角度分布が狭く、直進性のよい方法により形成することが好ましい。
上記ハードバイアス層6、6は、図4に示すように、スパッタされたスパッタ粒子のうち、リフトオフ用レジスト9によって遮られないスパッタ粒子s1によって形成される。 このとき、スパッタされたスパッタ粒子s1の角度分布が狭 く、直進性がよいと、リフトオフ用レジスト9の端部9a、9aの真下よりも内側に入り込むスパッタ粒子s1が少ない。これにより、ハードバイアス層6、6の上面6Aと上記積層体a1の側面b1、b1との接合点c1、c1は、上記ハードバイアス層6、6の最上位置 (図4では上面6A)より下側の位置とされ る。また、上記接合点c1、c1は、上記積層体a1の側面b1、b1の上端d1、d1より下側の位置とされる。 したがって、上記接合点c1、c1の位置 は、リフトオフ用レジスト9の端部9a、9aの位置と、スパッタ粒子s1の角度分布および直進性によって決定される。
このハードバイアス層6、6の形成は、具体的には、例えば、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法などによって好ましく行われる。
【0067】
続いて、図5に示すように、上記ハードバイアス層6、6の上に、上記積層体a1の側面b1、b1に接合されるように導電層8、8を形成する。
上記導電層8、8の形成は、積層体a1の側面b1、b1に接するように形成するため、 例えば、ターゲットと基板Kとの角度を傾斜させた状態で対向させ て、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法などによって好ましく行われる。また、従来のスパッタ法などの角度分布の広いスパッタ法などによっても好ましく形成される。
上記導電層8、8は、 図5に示すように、スパッタされたスパッタ粒子のう ち、リフトオフ用レジスト9によって遮られないスパッタ粒子s2によって形成される。このとき、ターゲットと基板Kとの角度を傾斜させた状態で対向させてスパッタすると、 または、スパッタされたスパッタ粒子s2の角度分布が広い と、上記リフトオフ用レジスト9の端部9a、9aの真下よりも内側に、多くのスパッタ粒子s2が入り込む。これにより、導電層8、8は、上記積層体a1の側面b1、b1に接合されて形成される。
続いて、上記リフトオフ用レジスト9を除去することにより、図1に示すスピンバルブ型薄膜素子が得られる。
【0068】
このようなスピンバルブ型薄膜素子では、上記ハードバイアス層6、6の上面6A、6Aは、上記積層体a1の側面b1、b1の上端d1、d1より下側の位置で上記積層体a1の側面b1、b1と接合され、図18に示す構造のように、積層体a10の側面上端に接合されている尖った断面形状の先端部126a、126aがないので、ハードバイアス層6、6からの漏れ磁束が、上部シールド層に吸われることによるフリー磁性層5に加わる有効磁界の減少が起こりにくいものとなり、フリー磁性層5が単磁区化されやすくなるため、上記フリー磁性層5の磁区制御を良好に行うことができる安定性に優れたスピンバルブ型薄膜素子とすることができる。
また、上記ハードバイアス層6、6が、上記フリー磁性層5と同じ階層位置に配置されているので、フリー磁性層5に対して、強いバイアス磁界を与えやすくなり、フリー磁性層5を単磁区化しやすく、バルクハウゼンノイズの発生を低減させることができる。
【0069】
また、このようなスピンバルブ型薄膜素子においては、上記ハードバイアス層6、6の上面6A、6Aが、上記ハードバイアス層6、6の最上位置よりも下側の位置で上記積層体a1の側面b1、b1と接合され、図18に示す構造のように、 積層体a10の側面上端に接合されている尖った断面形状の先端部126 a、126aがないので、 積層体a1の側面b1、b1の上端d1、d1付近 で、フリー磁性層5の磁化の方向と反対の方向に磁場を作用させる磁界が生じにくいものとなり、フリー磁性層5が単磁区化されやすくなるため、上記フリー磁性層5の磁区制御をより一層良好に行うことができる優れたスピンバルブ型薄膜素子とすることができる。
【0070】
また、上記ハードバイアス層6、6は、上記フリー磁性層5の膜厚方向に上記フリー磁性層5の膜厚よりも大きな膜厚とされ、上記ハードバイアス層6、6の上面6A、6Aは、上記フリー磁性層5の上面5Aよりも上側の位置に配置されているので、 フリー磁性層5に対して、より強いバイアス磁界を与えやすくな り、フリー磁性層5を単磁区化しやすくなるため、バルクハウゼンノイズの発生をより一層低減させることができる。
【0071】
さらに、上記ハードバイアス層6、6の下面が、上記フリー磁性層5の下面よりも下側の位置に配置されているので、フリー磁性層5に対して、より一層強いバイアス磁界を与えやすくなり、フリー磁性層を単磁区化しやすくなるため、バルクハウゼンノイズの発生をより一層低減させることができる。
【0072】
また、このスピンバルブ型薄膜素子において、上記反強磁性層2を、X−Mnの式で示される合金またはX’−Pt−Mnの式で示される合金からなり、XまたはX’+Ptが37〜63原子%の範囲であるものとすることで、上記反強磁性層2に従来から使用されているNiO合金、FeMn合金、NiMn合金などを用いたものと比較して、 交換結合磁界が大きく、またブロッキング温度が高 く、さらに耐食性に優れているなどの優れた特性を有するスピンバルブ型薄膜素子とすることができる。
【0073】
また、上記スピンバルブ型薄膜素子の製造方法は、基板K上に、下地層1、フリー磁性層5、非磁性導電層4、固定磁性層3、反強磁性層2、保護層7を順次成膜して積層膜Mを形成したのち、上記積層膜M上にリフトオフ用レジスト9を形成し、上記リフトオフ用レジスト9に覆われていない部分をイオンミリングにより除去して台形状の積層体a1を形成し、ついで、上記積層体a1の両側に、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、上記ハードバイアス6、6層を、上記フリー磁性層5と同じ階層位置に配置されるように形成し、かつ、上記ハードバイアス層6、6の上面6Aを、上記積層体a1の側面b1、b1の上端d1、d1より基板K側の位置で上記積層体a1の側面b1、b1と接合されるように形成し、上記ハードバイアス層6、6上に、従来のスパッタ法、または、ターゲットと基板Kとの角度を傾斜させた状態で対向させ、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、導電層8、8を形成する製造方法であるので、図1に示すスピンバルブ型薄膜素子を容易に得ることができる。
【0074】
本発明の第1の実施形態のスピンバルブ型薄膜素子においては、ハードバイアス層6、6は、上述したように、図1に示す形状とすることができるが、上記フリー磁性層5と同じ階層位置に配置され、かつ、上記ハードバイアス層6、6の上面6Aが、上記積層体a1の側面b1、b1の上端d1、d1より基板K側の位置で上記積層体a1の側面b1、b1と接合されていれば、他の形状としてもよい。
【0075】
例えば、図19に示すように、ハードバイアス層600、600の上面に盛り上がり部600a、600aが形成された形状や、図20に示すように、ハードバイアス層601、601の上面が平坦に形成された形状や、図21に示すように、ハードバイアス層602、602の断面が積層体a1の側面b1、b1に近づくにつれて薄くなるように形成された形状としてもよい。
また、図19に示すスピンバルブ型薄膜素子においても、フリー磁性層5の磁区制御をより一層良好に行うために、上記ハードバイアス層600、600の上面600A、600Aが、上記ハードバイアス層600、600の最上位置(図19の例では、盛り上がり部600a、600aの最上位置)よりも下側の位置で上記積層体a1の側面b1、b1と接合されている。
さらにまた、図20に示すスピンバルブ型薄膜素子においては、フリー磁性層5の磁区制御をより一層良好に行うために、上記ハードバイアス層601、601の上面601A、601Aが、上記ハードバイアス層6、6の最上位置(図20の例では、上面601A、601A) と同じ位置で上記積層体a1の側面b 1、b1と接合されている。
【0076】
本発明の第1の実施形態のスピンバルブ型薄膜素子においては、上述したように、非磁性導電層4の厚さ方向上下に、固定磁性層3とフリー磁性層5をそれぞれ単層構造として設けたが、これらを複数構造としてもよい。巨大磁気抵抗変化を示すメカニズムは、非磁性導電層4と固定磁性層3とフリー磁性層5との界面で生じる伝導電子のスピン依存散乱によるものである。Cuなどからなる上記非磁性導電層4に対し、スピン依存散乱が大きな組み合わせとして、Co層が例示できる。このため、固定磁性層3をCo以外の材料で形成した場合、固定磁性層3の非磁性導電層4側の部分を図1の2点鎖線で示すように薄いCo層3aで形成することが好ましい。また、フリー磁性層5をCo以外の材料で形成した場合も固定磁性層3の場合と同様に、フリー磁性層5の非磁性導電層4側の部分を図1の2点鎖線で示すように薄いCo層5aで形成することが好ましい。
【0077】
また、本発明の第1の実施形態のスピンバルブ型薄膜素子においては、上述したように、ハードバイアス層6、6および上記導電層8、8を、それぞれ単層構造としたが、これらを複数構造としてもよい。
上記のスピンバルブ型薄膜素子においては、上記ハードバイアス層6、6と上記導電層8、8との間には、図1の鎖線で示すように、TaやCrなどからなる中間層6a、6aが設けられてなるものとしてもよい。
導電層8、8として、Crを用いた場合は、Taの中間層6a、6aを設けることにより、後工程のレジスト硬化などの熱プロセスに対して拡散バリアーとして機能し、ハードバイアス層6、6の磁気特性の劣化を防ぐことができる。 ま た、導電層8、8としてTaを用いる場合は、Crの中間層6a、6aを設けることにより、Crの上に堆積するTaの結晶を、より低抵抗の体心立方構造としやすくする効果がある。
【0078】
また、上記のスピンバルブ型薄膜素子においては、上記ハードバイアス層6、6と上記積層体a1との間 および上記ハードバイアス層6、6と基板との間に は、図1の鎖線で示すように、Crからなるバイアス下地層6b、6b、6c、6cが設けられてなるものとしてもよい。
結晶構造が体心立方構造(bcc構造)であるCrからなるバイアス下地層を設けることにより、上記ハードバイアス層の保磁力および角形比が大きくなり、上記フリー磁性層の単磁区化に必要なバイアス磁界を増大させることができる。
【0079】
[第2の実施形態]
図6は、本発明の第2の実施形態のスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
本発明の第2の実施形態のスピンバルブ型薄膜素子は、フリー磁性層を中心として、 その上下に非磁性導電層、固定磁性層、反強磁性層が1層ずつ形成され た、いわゆるデュアルスピンバルブ型薄膜素子である。
このデュアルスピンバルブ型薄膜素子では、フリー磁性層/非磁性導電層/固定磁性層の3層の組合わせが2組存在するため、図1に示したシングルスピンバルブ型薄膜素子と比べて、大きな抵抗変化率(△MR)を期待でき、高密度記録化に対応できるものとなっている。
【0080】
図6に示すスピンバルブ型薄膜素子は、図示しない基板上に設けられ、下から下地層141、反強磁性層142、固定磁性層(下)143、非磁性導電層144、フリー磁性層145、非磁性導電層146、固定磁性層(上)147、反強磁性層148、保護層149の順で積層されている。なお、図3に示すように下地層141から保護層149までの積層体a2の両側には、ハードバイアス層132、132と導電層133、133が形成されている。
また、上記ハードバイアス層132、132が、図示X1方向に磁化されていることで、上記フリー磁性層145の磁化が、図示X1方向に揃えられている。
【0081】
本発明の第2の実施形態のスピンバルブ型薄膜素子では、下地層141、フリー磁性層145、非磁性導電層144、146、固定磁性層143、147、ハードバイアス層132、132、保護層149、導電層133、133の構成材料は、上述した第1の実施形態のスピンバルブ型薄膜素子と同等とされる。
【0082】
また、上記反強磁性層142、148は、PtMn合金で形成されていることが好ましい。PtMn合金は、従来から反強磁性層として使用されているNiMn合金やFeMn合金などに比べて耐食性に優れ、しかもブロッキング温度が高く、交換結合磁界(交換異方性磁界)も大きい。
また、上記PtMn合金に代えて、X−Mn(ただし、Xは、Pd、Ru、Ir、Rh、Osのうちから選択される1種の元素を示す。)の式で示される合金あるいはX’−Pt−Mn(ただし、X’は、Pd、Ru、Ir、Rh、Os、Au、Ag、Ne、Ar、Xe、Krのうちから選択される1種または2種以上の元素を示す。)の式で示される合金で形成されていてもよい。
【0083】
上記ハードバイアス層132、132は、上記フリー磁性層145と同じ階層位置に配置され、上記フリー磁性層145の膜厚方向に上記フリー磁性層145の膜厚よりも大きな膜厚とされる。また、上記ハードバイアス層132、132の上面132A、132Aは、上記フリー磁性層145の上面よりも基板から離れた位置に配置され、上記ハードバイアス層132、132の下面は、上記フリー磁性層145の下面よりも基板側の位置に配置されている。
また、上記ハードバイアス層132、132の上面132A、132Aと上記積層体a2の側面b2、b2との接合点c2、c2は、積層体a2の側面b2、b2の上端d2、d2より基板側の位置で、 かつ、上記ハードバイアス層13 2、132の最上位置より基板側の位置とされることが好ましい。
また、上記導電層133、133は、上記ハードバイアス層132、132上に、上記積層体a2の側面b2、b2に接合されて形成されることが好ましい。
【0084】
本発明の第2の実施形態のスピンバルブ型薄膜素子においても、上記ハードバイアス層132、132の上面132A、132Aは、上記積層体a2の側面b2、b2の上端d2、d2より基板K側の位置で上記積層体a2の側面b2、b2と接合され、図18に示す構造のように、積層体a10の側面上端に接合されている尖った断面形状の先端部126a、126aがないので、ハードバイアス層132、132からの漏れ磁束が、上部シールド層に吸われることによるフリー磁性層145に加わる有効磁界の減少が起こりにくいものとなり、フリー磁性層145が単磁区化されやすくなるため、上記フリー磁性層145の磁区制御を良好に行うことができる安定性に優れたスピンバルブ型薄膜素子とすることができる。
また、上記ハードバイアス層132、132が、上記フリー磁性層145と同じ階層位置に配置されているので、フリー磁性層145に対して、強いバイアス磁界を与えやすくなり、フリー磁性層145を単磁区化しやすく、バルクハウゼンノイズの発生を低減させることができる。
【0085】
また、このようなスピンバルブ型薄膜素子においては、上記ハードバイアス層132、132の上面132A、132Aが、上記ハードバイアス層132、132の最上位置よりも基板側の位置で上記積層体a2の側面b2、b2と接合され、図18に示す構造のように、積層体a10の側面上端に接合されている尖った断面形状の先端部126a、126aがないので、積層体a2の側面b2、b2の上端d2、d2付近でのフリー磁性層145の磁化の方向と反対の方向に磁場を作用させる磁界が生じにくいものとなり、フリー磁性層145が単磁区化されやすくなるため、上記フリー磁性層145の磁区制御をより一層良好に行うことができる優れたスピンバルブ型薄膜素子とすることができる。
【0086】
さらにまた、上記ハードバイアス層132、132は、上記フリー磁性層145の膜厚方向に上記フリー磁性層145の膜厚よりも大きな膜厚とされ、上記ハードバイアス層132、132の上面132A、132Aは、上記フリー磁性層145の上面よりも基板から離れた位置に配置されているので、フリー磁性層145に対して、より強いバイアス磁界を与えやすくなり、フリー磁性層145を単磁区化しやすくなるため、バルクハウゼンノイズの発生をより一層低減させることができる。
【0087】
さらに、上記ハードバイアス層132、132の下面が、上記フリー磁性層145の下面よりも基板側の位置に配置されているので、フリー磁性層145に対して、より一層強いバイアス磁界を与えやすくなり、フリー磁性層を単磁区化しやすくなるため、バルクハウゼンノイズの発生をより一層低減させることができる。
【0088】
[第3の実施形態]
図7は、本発明の第3の実施形態のスピンバルブ型薄膜素子を模式図的に示した横断面図であり、図8は、図7に示したスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
この例のスピンバルブ型薄膜素子は、 反強磁性層、固定磁性層、非磁性導電 層、フリー磁性層が一層ずつ形成された、いわゆるトップ型のシングルスピンバルブ型薄膜素子の一種である。
すなわち、図7および図8に示すスピンバルブ型薄膜素子は、図示しない基板上に設けられ、下からTaなどの非磁性材料で形成された下地層10、NiFe膜22、Co膜23 (NiFe膜22とCo膜23を合わせてフリー磁性層2 1)、非磁性導電層24、第2の固定磁性層25、非磁性中間層26、第1の固定磁性層27、反強磁性層28、および、Taなどで形成された保護層29の順で積層されている。
上記第1の固定磁性層27および第2の固定磁性層25は、例えば、Co膜、NiFe合金、CoNiFe合金、CoFe合金などで形成されている。
【0089】
本発明の第3の実施形態のスピンバルブ型薄膜素子において、上記反強磁性層28は、PtMn合金で形成されていることが好ましい。PtMn合金は、従来から反強磁性層として使用されているNiMn合金やFeMn合金などに比べて耐食性に優れ、 しかもブロッキング温度が高く、交換結合磁界(交換異方性磁 界)も大きい。
また、上記PtMn合金に代えて、X−Mn(ただし、Xは、Pd、Ru、Ir、Rh、Osのうちから選択される1種の元素を示す。)の式で示される合金あるいはX’−Pt−Mn(ただし、X’は、Pd、Ru、Ir、Rh、Os、Au、Ag、Ne、Ar、Xe、Krのうちから選択される1種または2種以上の元素を示す。)の式で示される合金で形成されていてもよい。
【0090】
ところで、図7に示す第1の固定磁性層27及び第2の固定磁性層25に示されている矢印は、 それぞれの磁気モーメントの大きさ及びその方向を表してお り、上記磁気モーメントの大きさは、飽和磁化(Ms)と膜厚(t)とをかけた値で選定される。
【0091】
図7および図8に示す第1の固定磁性層27と第2の固定磁性層25とは同じ材質で形成され、 しかも、第1の固定磁性層27の膜厚tP1が、第2の固定磁性層25の膜厚tP2よりも大きく形成されているために、第1の固定磁性層2 7の方が第2の固定磁性層25に比べ、磁気モーメントが大きくなっている。
また、第1の固定磁性層27および第2の固定磁性層25が異なる磁気モーメントを有することが望ましい。 したがって、第2の固定磁性層25の膜厚tP2が第1の固定磁性層27の膜厚tP1より厚く形成されていてもよい。
【0092】
第1の固定磁性層27は、図7および図8に示すように、図示Y方向、すなわち記録媒体から離れる方向(ハイト方向)に磁化されており、非磁性中間層26を介して対向する第2の固定磁性層25の磁化は、上記第1の固定磁性層27の磁化方向と反平行(フェリ状態)に磁化されている。
【0093】
第1の固定磁性層27は、反強磁性層28に接して形成され、磁場中アニール(熱処理)を施すことにより、上記第1の固定磁性層27と反強磁性層28との界面にて交換結合磁界(交換異方性磁界)が発生し、例えば、図7および図8に示すように、上記第1の固定磁性層27の磁化が、図示Y方向に固定される。上記第1の固定磁性層27の磁化が、図示Y方向に固定されると、非磁性中間層26を介して対向する第2の固定磁性層25の磁化は、第1の固定磁性層27の磁化と反平行の状態で固定される。
【0094】
このようなスピンバルブ型薄膜素子においては、交換結合磁界が大きいほど、第1の固定磁性層27の磁化と第2の固定磁性層25の磁化を安定して反平行状態に保つことが可能である。この例のスピンバルブ型薄膜素子では、反強磁性層28として、ブロッキング温度が高く、しかも第1の固定磁性層27との界面で大きい交換結合磁界(交換異方性磁界)を発生させる、PtMn合金、X−Mnの式で示される合金、X’−Pt−Mnの式で示される合金から選ばれる合金を使用することで、上記第1の固定磁性層27及び第2の固定磁性層25の磁化状態を熱的にも安定して保つことができる。
【0095】
以上のように、このようなスピンバルブ型薄膜素子では、第1の固定磁性層27と第2の固定磁性層25との膜厚比を適正な範囲内に収めることによって、交換結合磁界(Hex)を大きくでき、第1の固定磁性層27と第2の固定磁性層25の磁化を、熱的にも安定した反平行状態(フェリ状態)に保つことができ、しかも、良好な△MR(抵抗変化率)を得ることが可能である。
【0096】
次に、図7および図8に示す第1の固定磁性層27と第2の固定磁性層25との間に介在する非磁性中間層26について説明する。
本発明では、第1の固定磁性層27と第2の固定磁性層25との間に介在する非磁性中間層26は、Ru、Rh、Ir、Cr、Re、Cuのうちl種あるいは2種以上の合金で形成されていることが好ましい。
【0097】
図7および図8に示すように、フリー磁性層21の上には、Cuなどで形成された非磁性導電層24が形成され、さらに、上記非磁性導電層24の上には、第2の固定磁性層25が形成されている。図7および図8に示すように、フリー磁性層21は、2層で形成されており、上記非磁性導電層24に接する側に形成された符号23の層は、Co膜で形成されている。また、もう一方の層22は、NiFe合金や、CoFe合金、あるいは、CoNiFe合金などで形成されている。なお、非磁性導電層24に接する側にCo膜の層23を形成する理由は、Cuにより形成された上記非磁性導電層24との界面での金属元素等の拡散を防止でき、また、△MR(抵抗変化率)を大きくできるからである。
【0098】
また、図7および図8に示すように、下地層10から保護層29までの積層体a3の両側には、例えば、Co−Pt合金やCo−Cr−Pt合金などで形成されたハードバイアス層130、130と、例えば、Cr、Ta、Auなどで形成された導電層131、131が形成されており、上記ハードバイアス層130、130が図示X1方向に磁化されていることによって、フリー磁性層21の磁化が図示X1方向に揃えられている。
【0099】
上記ハードバイアス層130、130は、上記フリー磁性層21と同じ階層位置に配置され、上記フリー磁性層21の膜厚方向に上記フリー磁性層21の膜厚よりも大きな膜厚とされる。また、上記ハードバイアス層130、130の上面130A、130Aは、上記フリー磁性層21の上面よりも基板から離れた位置に配置され、上記ハードバイアス層130、130の下面は、上記フリー磁性層21の下面よりも基板側の位置に配置されている。
また、上記ハードバイアス層130、130の上面130A、130Aと上記積層体a3の側面b3、b3との接合点c3、c3は、積層体a3の側面b3、b3の上端d3、d3より基板側の位置で、 かつ、上記ハードバイアス層13 0、130の最上位置より基板側の位置とされることが好ましい。
また、上記導電層131、131は、 上記ハードバイアス層130、130 上に、 上記積層体a3の側面b3、b3に接合されて形成されることが好まし い。
【0100】
図7および図8におけるスピンバルブ型薄膜素子では、上記導電層131、131からフリー磁性層21、非磁性導電層24、及び第2の固定磁性層25にセンス電流が与えられる。記録媒体から図7および図8に示す図示Y方向に磁界が与えられると、フリー磁性層21の磁化は、図示X1方向からY方向に変動し、このときの非磁性導電層24とフリー磁性層21との界面、及び非磁性導電層24と第2の固定磁性層25との界面でスピンに依存した伝導電子の散乱が起こることにより、電気抵抗が変化し、記録媒体からの洩れ磁界が検出される。
【0101】
ところで上記センス電流は、実際には、第1の固定磁性層27と非磁性中間層26の界面などにも流れる。上記第2の固定磁性層25は、△MRに直接関与せず、上記第1の固定磁性層27は、△MRに関与する第2の固定磁性層25を適正な方向に固定するための、いわば補助的な役割を担った層となっている。このため、センス電流が、第1の固定磁性層27及び非磁性中間層26に流れることは、シャントロス(電流ロス)になるが、 このシャントロスの量は非常に少な く、第3の実施の形態では、従来とほぼ同程度の△MRを得ることが可能となっている。
【0102】
本発明の第3の実施形態のスピンバルブ型薄膜素子においても、上記ハードバイアス層130、130の上面130A、130Aは、上記積層体a3の側面b3、b3の上端d3、d3より基板側の位置で上記積層体a3の側面b3、b3と接合され、図18に示す構造のように、積層体a10の側面上端に接合されている尖った断面形状の先端部126a、126aがないので、ハードバイアス層130、130からの漏れ磁束が、上部シールド層に吸われることによるフリー磁性層21に加わる有効磁界の減少が起こりにくいものとなり、フリー磁性層21が単磁区化されやすくなるため、上記フリー磁性層21の磁区制御を良好に行うことができる安定性に優れたスピンバルブ型薄膜素子とすることができる。
また、上記ハードバイアス層130、130が、上記フリー磁性層21と同じ階層位置に配置されているので、フリー磁性層21に対して、強いバイアス磁界を与えやすくなり、フリー磁性層21を単磁区化しやすく、バルクハウゼンノイズの発生を低減させることができる。
【0103】
また、このようなスピンバルブ型薄膜素子においては、上記ハードバイアス層130、130の上面130A、130Aが、上記ハードバイアス層130、130の最上位置よりも基板側の位置で上記積層体a3の側面b3、b3と接合され、図18に示す構造のように、積層体a10の側面上端に接合されている尖った断面形状の先端部126a、126aがないので、積層体a3の側面b3、b3の上端d3、d3付近でのフリー磁性層21の磁化の方向と反対の方向に磁場を作用させる磁界が生じにくいものとなり、フリー磁性層21が単磁区化されやすくなるため、上記フリー磁性層21の磁区制御をより一層良好に行うことができる優れたスピンバルブ型薄膜素子とすることができる。
【0104】
[第4の実施形態]
図9は、本発明の第4の実施形態のスピンバルブ型薄膜素子を模式図的に示した横断面図であり、図10は、図9に示したスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
この例のスピンバルブ型薄膜素子は、フリー磁性層を中心として、その上下に非磁性導電層、固定磁性層、及び反強磁性層が1層ずつ形成された、いわゆるデュアルスピンバルブ型薄膜素子の一種である。
このデュアルスピンバルブ型薄膜素子では、フリー磁性層/非磁性導電層/固定磁性層の3層の組合わせが2組存在するため、シングルスピンバルブ型薄膜素子に比べて大きな△MRを期待でき、高密度記録化に対応できるものとなっている。
【0105】
図9および図10に示すスピンバルブ型薄膜素子は、下から下地層30、反強磁性層31、第1の固定磁性層(下)32、非磁性中問層(下)33、第2の固定磁性層(下)34、非磁性導電層35、フリー磁性層36(符号37,39はCo膜、符号38はNiFe合金膜)、非磁性導電層40、第2の固定磁性層(上)41、非磁性中間層(上)42、第1の固定磁性層(上)43、反強磁性層44、及び保護層45の順で積層されている。
また、図10に示すように、下地層30から保護層45までの積層体a4の両側には、ハードバイアス層62と導電層63が形成されている。
【0106】
本発明の第4の実施形態のスピンバルブ型薄膜素子において、上記反強磁性層31、44は、PtMn合金で形成されていることが好ましい。 PtMn合金 は、従来から反強磁性層として使用されているNiMn合金やFeMn合金などに比べて耐食性に優れ、しかもブロッキング温度が高く、交換結合磁界(交換異方性磁界)も大きい。
また、上記PtMn合金に代えて、X−Mn(ただし、Xは、Pd、Ru、Ir、Rh、Osのうちから選択される1種の元素を示す。)の式で示される合金あるいはX’−Pt−Mn(ただし、X’は、Pd、Ru、Ir、Rh、Os、Au、Ag、Ne、Ar、Xe、Krのうちから選択される1種または2種以上の元素を示す。)の式で示される合金で形成されていてもよい。
【0107】
また、図9および図10に示す第1の固定磁性層(下)32,(上)43と第2の固定磁性層、(下)34,(上)41との間に介在する非磁性中間層33,42は、Ru、Rh、Ir、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されていることが好ましい。
【0108】
上記ハードバイアス層62、62は、上記フリー磁性層36と同じ階層位置に配置され、上記フリー磁性層36の膜厚方向に上記フリー磁性層36の膜厚よりも大きな膜厚とされる。また、上記ハードバイアス層62、62の上面62A、62Aは、上記フリー磁性層36の上面よりも基板から離れた位置に配置され、上記ハードバイアス層62、62の下面は、上記フリー磁性層36の下面よりも基板側の位置に配置されている。
また、上記ハードバイアス層62、62の上面62A、62Aと上記積層体a4の側面b4、b4との接合点c4、c4は、積層体a4の側面b4、b4の上端d4、d4より基板側の位置で、かつ、上記ハードバイアス層62、62の最上位置より基板側の位置とされることが好ましい。
また、上記導電層63、63は、上記ハードバイアス層62、62上に、上記積層体a4の側面b4、b4に接合されて形成されることが好ましい。
【0109】
図9および図10に示すように、フリー磁性層36よりも下側に形成された第1の固定磁性層(下)32の膜厚TP1は、 非磁性中間層33を介して形成された第2の固定磁性層(下)34の膜厚tP2に比べて、薄く形成されている。一 方、フリー磁性層36よりも上側に形成されている第1の固定磁性層(上)43の膜厚tP1は、 非磁性中間層42を介して形成された第2の固定磁性層41(上)の膜厚tP2に比べ厚く形成されている。そして、第1の固定磁性層(下) 32,(上)43の磁化は、共に図示Y方向と反対方向に磁化されており、第2の固定磁性層(下)34,(上)41の磁化は、図示Y方向に磁化された状態になっている。
【0110】
図7および図8に示す本発明の第3の実施形態のシングルスピンバルブ型簿膜素子の場合にあっては、 第1の固定磁性層のMs・tP1と第2の固定磁性層のMs・tP2が異なるように膜厚などを調節し、第1の固定磁性層の磁化の向き は、図示Y方向あるいは図示Y方向と反対方向のどちらでもよい。
しかし、 図9および図10に示すデュアルスピンバルブ型薄膜素子にあって は、第1の固定磁性層(下)32,(上)43の磁化が、共に同じ方向に向くようにする必要性がある。そのため、本発明では、第1の固定磁性層(下)32,(上)43の磁気モーメントMs・tP1と、第2の固定磁性層(下)34,( 上)41の磁気モーメントMs・tP2との調整、及び熱処理中に印加する磁場 の方向及びその大きさを適正に調節することで、デュアルスピンバルブ型薄膜素子として満足に機能させることができる。
【0111】
ここで、第1の固定磁性層(下)32,(上)43の磁化を共に同じ方向に向けておくのは、上記第1の固定磁性層(下)32,(上)43の磁化と反平行になる第2の固定磁性層(下)34,(上)41の磁化を、共に同じ方向に向けておくためであり、その理由について以下に説明する。
【0112】
前述したように、スピンバルブ型薄膜素子の△MRは、固定磁性層の固定磁化とフリー磁性層の変動磁化との関係によって得られるものである。本発明のように、固定磁性層が第1の固定磁性層と第2の固定磁性層の2層に分断された場合にあっては、上記△MRに直接関与する固定磁性層の層は、第2の固定磁性層であり、第1の固定磁性層は、上記第2の固定磁性層の磁化を一定方向に固定しておくためのいわば補助的な役割を担っている。
【0113】
仮に図9および図10に示す第2の固定磁性層(下)34,(上)41の磁化が互いに反対方向に固定されているとすると、例えば、第2の固定磁性層(上)41の固定磁化とフリー磁性層36の変動磁化との関係では、抵抗が大きくなっても、第2の固定磁性層(下)34の固定磁化とフリー磁性層36の変動磁化との関係では、抵抗が非常に小さくなってしまい、結局、デュアルスピンバルブ型薄膜素子における△MRは、図7および図8に示す本発明の第3の実施形態のシングルスピンバルブ型簿膜素子の△MRよりも小さくなってしまう。
【0114】
この問題は、固定磁性層を非磁性中間層を介して2層に分断したデュアルスピンバルブ型薄膜素子に限ったことではなく、図6に示す第2の実施形態のデュアルスピンバルブ型薄膜素子などであっても同じことであり、シングルスピンバルブ型薄膜素子に比ベ△MRを大きくでき、大きな出力を得ることができるデュアルスピンパルブ型薄膜素子の特性を発揮させるには、フリー磁性層の上下に形成される固定磁性層を共に同じ方向に固定しておく必要がある。
【0115】
ところで、本発明では、図9および図10に示すように、フリー磁性層36よりも下側に形成された固定磁性層は、第2の固定磁性層(下)34のMs・tP2の方が、 第1の固定磁性層(下)32のMs・tP1に比べて大きくなってお り、Ms・tP2の大きい第2の固定磁性層(下)34の磁化が、図示Y方向に 固定されている。そして、第2の固定磁性層(下)34のMs・tP2と、第1 の固定磁性層(下)32のMs・tP1とを足し合わせた、いわゆる合成磁気モ ーメントは、Ms・tP2の大きい第2の固定磁性層(下)34の磁気モーメン トに支配され、図示Y方向に向けられている。
【0116】
一方、フリー磁性層36よりも上側に形成された固定磁性層は、第1の固定磁性層(上)43のMs・tP1の方が、 第2の固定磁性層(上)41のMs・tP2に比べて大きくなっており、Ms・tP1の大きい第1の固定磁性層(上)43の磁化が、図示Y方向と反対方向に固定されている。第1の固定磁性層(上)43のMs・tP1と、第2の固定磁性層(上)41のMs・tP2とを足した、いわゆる合成磁気モーメントは、第1の固定磁性層(上)43のMs・tP1に 支配され、図示Y方向と反対方向に向けられている。
【0117】
すなわち、図9および図10に示すデュアルスピンバルブ型薄膜素子では、フリー磁性層36の上下で、 第1の固定磁性層のMs・tP1と第2の固定磁性層のMs・tP2を足して求めることができる合成磁気モーメントの方向が、反対 方向になっているのである。このため、フリー磁性層36よりも下側で形成される図示Y方向に向けられた合成磁気モーメントと、上記フリー磁性層36よりも上側で形成される図示Y方向と反対方向に向けられた合成磁気モーメントとが、図示左周りの磁界を形成している。
従って、上記合成磁気モーメントによって形成される磁界により、第1の固定磁性層(下)32,(上)43の磁化と第2の固定磁性層(下)34,(上)41の磁化とがさらに安定したフェリ状態を保つことが可能である。
【0118】
更に、センス電流114は、主に比抵抗の小さい非磁性導電層35,40を中心にして流れ、センス電流114を流すことにより、右ネジの法則によってセンス電流磁界が形成されることになるが、センス電流114を図9の方向に流すことにより、フリー磁性層36の下側に形成された第1の固定磁性層(下)32/非磁性中間層(下)33/第2の固定磁性層(下)34の場所にセンス電流が作るセンス電流磁界の方向を、上記第1の固定磁性層(下)32/非磁性中間層(下)33/第2の固定磁性層(下)34の合成磁気モーメントの方向と一致させることができ、さらに、フリー磁性層36よりも上側に形成された第1の固定磁性層(上)43/非磁性中間層(上)42/第2の固定磁性層(上)41の場所にセンス電流が作るセンス電流磁界を、上記第1の固定磁性層(上)43/非磁性中間層(上)42/第2の固定磁性層(上)41の合成磁気モーメントの方向と一致させることができる。
【0119】
センス電流磁界の方向と合成磁気モーメントの方向を一致させることのメリットに関しては後で詳述するが、簡単に言えば、上記固定磁性層の熱的安定性を高めることができることと、大きなセンス電流を流せることができるので、再生出力を向上できるという、非常に大きいメリットがある。
センス電流磁界と合成磁気モーメントの方向に関するこれらの関係は、フリー磁性層36の上下に形成される固定磁性層の合成磁気モーメントが、図示左周りの磁界を形成しているからである。
【0120】
通常、ハードディスクなどの装置内の環境温度と、素子を流れるセンス電流によるジュール熱とにより、素子の温度は局所的には、最高で約200℃(473K)程度まで上昇し、さらに今後、記録媒体の回転数の増大による環境温度の上昇や、センス電流の増大によるジュール熱の増大などによって、素子温度がさらに上昇する傾向にある。このように素子温度が上昇すると、交換結合磁界は低下するが、本発明によれば、合成磁気モーメントで形成される磁界と、センス電流磁界により、熱的にも安定して第1の固定磁性層(下)32,(上)43の磁化と第2の固定磁性層(下)34,(上)41の磁化とをフェリ状態に保つことができる。
【0121】
前述した合成磁気モーメントによる磁界の形成、及び、合成磁気モーメントによる磁界とセンス電流磁界との方向関係は、本発明特有の構成であり、フリー磁性層の上下に単層で形成され、しかも、同じ方向に向けられ固定磁化された固定磁性層を有する従来のデュアルスピンバルブ型薄膜素子では、得ることができないものとなっている。
【0122】
また、第4の実施の形態では、フリー磁性層36よりも下側に形成された第1の固定磁性層(下)32のMs・tP1を、第2の固定磁性層34のMs・tP2よりも大きくし、且つ、上記フリー磁性層36よりも上側に形成された第1の固定磁性層(上)43のMs・tP1を第2の固定磁性層(上)41のMs・tP2よりも小さくしてもよい。
この場合においても、第1の固定磁性層(下)32,(上)43の磁化を得たい方向、すなわち図示Y方向あるいは図示Y方向と反対方向に400kA/m(5kOe)以上の磁界を印加することによって、フリー磁性層36の上下に形成された第2の固定磁性層(下)34,(上)41を同じ方向に向けて固定でき、しかも、図示右回りのあるいは左回りの合成磁気モーメントによる磁界を形成できる。
【0123】
以上、図7〜図10に示したスピンバルブ型薄膜素子によれば、固定磁性層を非磁性中間層を介して第1の固定磁性層と第2の固定磁性層との2層に分断し、この2層の固定磁性層間に発生する交換結合磁界(RKKY相互作用)によって上記2層の固定磁性層の磁化を反平行状態(フェリ状態)にすることにより、従来に比べて熱的にも安定した固定磁性層の磁化状態を保つことができる。
特に本実施の形態では、反強磁性層としてプロッキング温度が非常に高く、また第1の固定磁性層との界面で大きい交換結合磁界(交換異方性磁界)を発生するPtMn合金、X−Mnの式で示される合金、X’−Pt−Mnの式で示される合金から選ばれる合金を使用することにより、第1の固定磁性層と第2の固定磁性層との磁化状態を、より熱的安定性に優れたものにできる。
【0124】
さらに本実施の形態では、 第1の固定磁性層のMs・tP1と第2の固定磁性層のMs・tP2とを異なる値で形成し、さらに熱処理中の印加磁場の大きさ及 びその方向を適正に調節することによって、上記第1の固定磁性層(及び第2の固定磁性層)の磁化を得たい方向に磁化させることが可能である。
【0125】
特に図9および図10に示すデユアルスピンバルブ型薄膜素子にあっては、第1の固定磁性層(下)32,(上)43のMs・tP1と第2の固定磁性層(下)34,(上)41のMs・tP2を適正に調節し、 さらに熱処理中の印加磁場の大きさ及びその方向を適正に調節することによって、△MRに関与するフリー磁性層36の上下に形成された2つの第2の固定磁性層(下)34,(上)41の磁化を共に同じ方向に固定でき、且つフリー磁性層36の上下に形成される合成磁気モーメントを互いに反対方向に形成できることによって、上記合成磁気モーメントによる磁界の形成、及び、上記合成磁気モーメントによる磁界とセンス電流磁界との方向関係の形成ができ、固定磁性層の磁化の熱的安定性をさらに向上させることが可能である。
【0126】
本発明の第4の実施形態のスピンバルブ型薄膜素子においても、上記ハードバイアス層62、62の上面62A、62Aは、上記積層体a4の側面b4、b4の上端d4、d4より基板側の位置で上記積層体a4の側面b4、b4と接合され、図18に示す構造のように、積層体a10の側面上端に接合されている尖った断面形状の先端部126a、126aがないので、ハードバイアス層62、62からの漏れ磁束が、上部シールド層に吸われることによるフリー磁性層36に加わる有効磁界の減少が起こりにくいものとなり、フリー磁性層36が単磁区化されやすくなるため、上記フリー磁性層36の磁区制御を良好に行うことができる安定性に優れたスピンバルブ型薄膜素子とすることができる。
また、上記ハードバイアス層62、62が、上記フリー磁性層36と同じ階層位置に配置されているので、フリー磁性層36に対して、強いバイアス磁界を与えやすくなり、フリー磁性層36を単磁区化しやすく、バルクハウゼンノイズの発生を低減させることができる。
【0127】
また、このようなスピンバルブ型薄膜素子においては、上記ハードバイアス層62、62の上面62A、62Aが、上記ハードバイアス層62、62の最上位置よりも基板側の位置で上記積層体a4の側面b4、b4と接合され、図18に示す構造のように、積層体a10の側面上端に接合されている尖った断面形状の先端部126a、126aがないので、 積層体a4の側面b4、b4の上端d 4、d4付近でのフリー磁性層36の磁化の方向と反対の方向に磁場を作用させる磁界が生じにくいものとなり、フリー磁性層36が単磁区化されやすくなるため、上記フリー磁性層36の磁区制御をより一層良好に行うことができる優れたスピンバルブ型薄膜素子とすることができる。
【0128】
[第5の実施形態]
図11は、本発明の第5の実施形態のスピンバルブ型薄膜素子を模式図的に示した横断面図、図12は、図11に示すスピンバルブ型薄膜素子を記録媒体との対向面から見た場合の断面図である。
このスピンバルブ型薄膜素子においても、ハードディスクなどの磁気記録媒体の移動方向は、図示Z方向であり、磁気記録媒体からの洩れ磁界の方向は、Y方向である。
このスピンバルブ型薄膜素子は、固定磁性層のみならず、フリー磁性層も非磁性中間層を介して第1のフリー磁性層と第2のフリー磁性層の2層に分断されている。
【0129】
本発明の第5の実施形態のスピンバルブ型薄膜素子は、図11および図12に示すように、図示しない基板上に、下から、下地層70、第2のフリー磁性層71、非磁性中間層72、第1のフリー磁性層73、非磁性導電層76、第2の固定磁性層77、非磁性中間層78、第1の固定磁性層79、反強磁性層80、及び保護層81の順で積層されている。
【0130】
本発明の第5の実施形態のスピンバルブ型薄膜素子において、上記下地層70及び保護層81は、例えば、Taなどで形成されている。
また、上記反強磁性層80は、上述の第1の実施形態のスピンバルブ型薄膜素子と同様に、PtMn合金で形成されていることが好ましい。また、上記PtMn合金に代えて、X−Mn(ただし、Xは、Pd、Ru、Ir、Rh、Osのうちから選択される1種の元素を示す。)の式で示される合金あるいはX’−Pt−Mn(ただし、X’は、Pd、Ru、Ir、Rh、Os、Au、Ag、Ne、Ar、Xe、Krのうちから選択される1種または2種以上の元素を示す。)の式で示される合金で形成されていてもよい。
【0131】
第1の固定磁性層79及び第2の固定磁性層77は、Co膜、NiFe合金、CoFe合金、あるいはCoNiFe合金などで形成されている。
また、非磁性中問層78は、Ru、Rh、Ir、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されていることが好ましい。
さらに、非磁性導電層76はCuなどで形成されている。
【0132】
上記第1の固定磁性層79の磁化と第2の固定磁性層77の磁化は、互いに反平行に磁化されたフェリ状態となっており、例えば、第1の固定磁性層79の磁化は、図示Y方向に、第2の固定磁性層77の磁化は、図示Y方向と反対方向に固定されている。このフェリ状態の安定性を保つためには、大きい交換結合磁界が必要である。本実施の形態では、より大きな交換結合磁界を得るために、以下に示す種々の、適正化を行っている。
【0133】
図11および図12に示す第2のフリー磁性層71の上には、非磁性中間層72が形成されている。上記第2のフリー磁性層71は、例えば、NiFe合金、CoFe合金、あるいはCoNiFe合金などで形成されている。
また、上記非磁性中間層72の上には、第1のフリー磁性層73が形成されている。さらに、上記第1のフリー磁性層73の上には、非磁性導電層76が形成されている。
図11および図12に示すように、上記第1のフリー磁性層73は、NiFe合金膜74とCo膜75の2層で形成されており、非磁性導電層76に接する側にCo膜75が形成されている。非磁性導電層76に接する側にCo膜75を形成するのは、第1に△MRを大きくできるため、第2に上記非磁性導電層76との拡散を防止するためである。
【0134】
図11および図12に示す下地層70から保護層81までの積層体a5は、その側面が削られて側面b5、b5とされ、台形状に形成されている。上記積層体a5の両側には、ハードバイアス層82,82及び導電層83,83が形成されている。上記ハードバイアス層82、82は、Co一Pt合金やCo一Cr一Pt合金などで形成されている。また、上記導電層83、83は、例えば、Cr、Ta、Auなどで形成されている。
【0135】
上記ハードバイアス層82、82は、第1のフリー磁性層73と同じ階層位置に配置され、第1のフリー磁性層73の膜厚よりも大きな膜厚とされる。また、上記ハードバイアス層82、82の上面82A、82Aは、上記第1のフリー磁性層73の上面よりも基板から離れた位置に配置され、上記ハードバイアス層82、82の下面は、上記の第1のフリー磁性層73下面よりも基板側の位置に配置されている。
また、上記ハードバイアス層82、82の上面82A、82Aと上記積層体a5の側面b5、b5との接合点c5、c5は、積層体a5の側面b5、b5の上端d5、d5より基板側の位置で、かつ、上記ハードバイアス層82、82の最上位置より基板側の位置とされることが好ましい。
また、上記導電層83、83は、上記ハードバイアス層82、82上に、上記積層体a5の側面b5、b5に接合されて形成されることが好ましい。
【0136】
図11および図12に示す第1のフリー磁性層73と第2のフリー磁性層71の間には、非磁性中間層72が介在し、上記第1のフリー磁性層73と第2のフリー磁性層71間に発生する交換結合磁界(RKKY相互作用)によって、上記第1のフリー磁性層73の磁化と第2のフリー磁性層71の磁化は、反平行状態(フェリ状態)となっている。
【0137】
図11および図12に示すスピンバルブ型薄膜素子では、例えば、第1のフリー磁性層73の膜厚tF1は、第2のフリー磁性層71の膜厚tF2より大きく形成されている。
そして、上記第1のフリー磁性層73のMs・tF1は、 第2のフリー磁性層71のMs・tF2よりも大きくなるように設定されており、ハードバイアス層 82から図示X1方向にバイアス磁界が与えられると、Ms・tF1の大きい第 1のフリー磁性層73の磁化が、上記バイアス磁界の影響を受けて図示X1方向に揃えられ、 上記第1のフリー磁性層73との交換結合磁界(RKKY相互作 用)によって、Ms・tF2の小さい第2のフリー磁性層71の磁化は、図示X 1方向と反対方向に揃えられる。なお本発明では、第1のフリー磁性層73の膜厚tF1が、第2のフリー磁性層71の膜厚tF2よりも小さく形成され、上記第1のフリ一磁性層73のMS・tF1が第2のフリー磁性層71のMS・tF2よりも小さく設定されていてもよい。
【0138】
図示Y方向から外部磁界が侵入してくると、上記第1のフリー磁性層73と第2のフリー磁性層71の磁化はフェリ状態を保ちながら、上記外部磁界の影響を受けて回転する。そして、△MRに奇与する第1のフリー磁性層73の磁化方向と、第2の固定磁性層77の固定磁化との関係によって電気抵抗が変化し、外部磁界の信号が検出される。
また、本発明では、第1のフリー磁性層73と第2のフリー磁性層71との間に介在する非磁性中間層72は、Ru、Rh、Ir、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されていることが好ましい。
また、第1のフリー磁性層73のMs・tF1が第2のフリー磁性層72のMs・tF2よりも大きい場合には、底上げ層などを用いてハードバイアス層82,82の下面82b,82bは、波線82B’のようにフリー磁性層73の上面から下面までの間と同じ階層位置で積層体a5の側面と接合されている。これにより、積層体a5の側面上端付近でのフリー磁性層73に付与したい磁化の方向と反対の方向に磁場を作用させる双極子磁界(外部反磁界)が生じにくいものとなり、該双極子磁界に起因してフリー磁性層73の両端部の磁化の方向が乱れるのを改善でき、ハードバイアス層82からの漏れ磁束によりフリー磁性層73の磁化を揃えることができ、フリー磁性層73が単磁区化され易くなるため、フリー磁性層73の磁区制御を一層良好に行うことができ、また、トラック幅の両端の再生波形に異常が生じるのを防止でき、再生波形の安定性を向上できる。
さらに好ましくはハードバイアス層82,82の下面82b,82bは、波線82B’のようにフリー磁性層73の膜厚の半分の厚みの位置までの間と同じ階層位置で積層体a5の側面と接合されていることである。
これにより、上記双極子磁界に起因してフリー磁性層73の両端部の磁化の方向が乱れるのを改善できるうえ、フリー磁性層73に対して強いバイアス磁界を与え易くなり、フリー磁性層73をより単磁区化し易くなり、また、再生波形の安定性もより向上させることができる。
【0139】
第1のフリー磁性層73と第2のフリー磁性層71との合成磁気モーメントの絶対値を、第1の固定磁性層79と第2の固定磁性層77との合成磁気モーメントの絶対値よりも大きくすることにより、上記第1のフリー磁性層73と、第2のフリー磁性層77の磁化が、第1の固定磁性層79と第2の固定磁性層77との合成磁気モーメントの影響を受けにくくなり、上記第1のフリー磁性層73及び第2のフリー磁性層71の磁化が外部磁界に対して感度良く、回転し、出力を向上させることが可能になる。
【0140】
本発明の第5の実施形態のスピンバルブ型薄膜素子においても、上記ハードバイアス層82、82の上面は、上記積層体a5の側面b5、b5の上端d5、d5より基板側の位置で上記積層体a5の側面b5、b5と接合され、図18に示す構造のように、積層体a10の側面上端に接合されている尖った断面形状の先端部126a、126aがないので、ハードバイアス層82、82からの漏れ磁束が、上部シールド層に吸われることによる第1のフリー磁性層73に加わる有効磁界の減少が起こりにくいものとなり、第1のフリー磁性層73が単磁区化されやすくなるため、第1のフリー磁性層73および第2のフリー磁性層71の磁区制御を良好に行うことができる安定性に優れたスピンバルブ型薄膜素子とすることができる。
また、上記ハードバイアス層82、82が、第1のフリー磁性層73と同じ階層位置に配置されているので、第1のフリー磁性層73に対して、強いバイアス磁界を与えやすくなり、第1のフリー磁性層73を単磁区化しやすく、バルクハウゼンノイズの発生を低減させることができる。
【0141】
また、このようなスピンバルブ型薄膜素子においては、上記ハードバイアス層82、82の上面82A、82Aが、上記ハードバイアス層82、82の最上位置よりも基板側の位置で上記積層体a5の側面b5、b5と接合され、図18に示す構造のように、積層体a10の側面上端に接合されている尖った断面形状の先端部126a、126aがないので、 積層体a5の側面b5、b5の上端d 5、d5付近での第1のフリー磁性層73の磁化の方向と反対の方向に磁場を作用させる磁界が生じにくいものとなり、第1のフリー磁性層73が単磁区化されやすくなるため、上記第1のフリー磁性層73および第2のフリー磁性層71の磁区制御をより一層良好に行うことができる優れたスピンバルブ型薄膜素子とすることができる。
【0142】
[第6の実施形態]
図13は、本発明の第6の実施形態のスピンバルブ型薄膜素子の構造を表す横断面図であり、図14は、図13に示すスピンバルブ型薄膜素子を、記録媒体との対向面側から見た断面図である。
このスピンバルブ型薄膜素子は、フリー磁性層を中心にしてその上下に非磁性導電層、固定磁性層、及び反強磁性層が積層されたデュアルスピンバルブ型薄膜素子の一種であり、上記フリー磁性層、及び固定磁性層が、非磁性中間層を介して2層に分断されて形成されている。
【0143】
図13および図14に示す最も下側に形成されている層は、図示しない基板上に形成されている下地層91であり、この下地層91の上に反強磁性層92、第1の固定磁性層(下)93、非磁性中間層94(下)、第2の固定磁性層(下)95、非磁性導電層96、第2のフリー磁性層97、非磁性中間層100、第1のフリー磁性層101、非磁性導電層104、第2の固定磁性層(上)105、非磁性中間層(上)106、 第1の固定磁性層(上)107、反強磁性層10 8、及び保護層109が形成されている。
【0144】
まず、各層の材質について説明する。
上記反強磁性層92,108は、上述の第2の実施形態のスピンバルブ型薄膜素子と同様に、PtMn合金で形成されていることが好ましい。また、上記PtMn合金に代えて、X−Mn(ただし、Xは、Pd、Ru、Ir、Rh、Osのうちから選択される1種の元素を示す。)の式で示される合金あるいはX’−Pt−Mn (ただし、X’は、Pd、Ru、Ir、Rh、Os、Au、Ag、N e、 Ar、 Xe、 Krのうちから選択される1種または2種以上の元素を示 す。)の式で示される合金で形成されていてもよい。
【0145】
第1の固定磁性層(下)93,(上)107、及び第2の固定磁性層(下)95,(上)105は、Co膜、NiFe合金、CoFe合金、あるいは、CoNiFe合金などで形成されている。
また、第1の固定磁性層(下)93,(上)107と第2の固定磁性層(下)95,(上)105問に形成されている非磁性中間層(下)94,(上)106及び第1のフリー磁性層101と第2のフリー磁性層97間に形成されている非磁性中間層100は、Ru、Rh、Ir、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されていることが好ましい。
さらに、非磁性導電層96,104はCuなどで形成されている。
【0146】
図13および図14に示すように、第1のフリー磁性層101及び第2のフリー磁性層97は、2層で形成されている。非磁性導電層96,104に接する側に形成された第1のフリー磁性層101の層103及び第2のフリー磁性層97の層98は、Co膜で形成されている。また、非磁性中間層100を介して形成されている第1のフリー磁性層101の層102及び第2のフリー磁性層97の層99は、例えば、NiFe合金、CoFe合金、あるいはCoNiFe合金などで形成されている。非磁性導電層96,104側に接する層98,103をCo膜で形成することにより、△MRを大きくでき、しかも非磁性導電層96,104との拡散を防止することができる。
【0147】
図13および図14に示す下地層91から保護層109までの積層体a6は、その側面が削られて側面b6、b6とされ、台形状に形成されている。上記積層体a6の両側には、ハードバイアス層110、110及び導電層111、111が形成されている。上記ハードバイアス層110、110は、Co一Pt合金やCo一Cr一Pt合金などで形成されている。また、上記導電層111、111は、例えば、Cr、Ta、Auなどで形成されている。
【0148】
上記ハードバイアス層110、110は、第1のフリー磁性層101と同じ階層位置に配置され、 第1のフリー磁性層101の膜厚よりも大きな膜厚とされ る。また、上記ハードバイアス層110、110の上面110A、110Aは、上記第1のフリー磁性層101の上面よりも基板から離れた位置に配置され、上記ハードバイアス層110、110の下面は、上記の第1のフリー磁性層101下面よりも基板側の位置に配置されている。
また、上記ハードバイアス層110、110の上面110A、110Aと上記積層体a6の側面b6、b6との接合点c6、c6は、積層体a6の側面b6、b6の上端d6、d6より基板側の位置で、 かつ、上記ハードバイアス層11 0、110の最上位置より基板側の位置とされることが好ましい。
また、上記導電層111、111は、上記ハードバイアス層110、110上に、上記積層体a6の側面b6、b6に接合されて形成されることが好ましい。
また、ハードバイアス層110、110の上面または下面は、第1のフリー磁性層101と第2のフリー磁性層97のうち磁気モーメント(Ms×膜厚t)が大きい方のフリー磁性層の上面から下面の間と同じ階層位置で積層体a6の側面と接合された方が好ましい。より好ましくは磁気モーメントの大きい方のフリー磁性層の半分の厚みの位置で積層体a6の側面と接合されていることが好ましい。
【0149】
ところで、本実施の形態では、前述したように、反強磁性層92,108として、第1の固定磁性層(下)93,(上)107との界面で、交換結合磁界(交換異方性磁界)を発生させるために、アニールを施す反強磁性材料を使用している。
しかし、フリー磁性層よりも下側に形成されている反強磁性層92と第1の固定磁性層(下)93との界面では、金属元素の拡散などが発生しやすく、熱拡散層や飽和磁化が小さい初期成長層が形成されやすくなっているために、上記第1の固定磁性層(下)93として機能する磁気的な膜厚は、 実際の膜厚tP1よりも薄くなっている。
【0150】
従って、フリー磁性層よりも上側の積層膜で発生する交換結合磁界と、下側の積層膜から発生する交換結合磁界をほぼ等しくするには、フリー磁性層よりも下側に形成されている (第1の固定磁性層(下)93の膜厚tP1/第2の固定磁性層(下)95の膜厚tP2)が、フリー磁性層よりも上側に形成されている( 第1の固定磁性層(上)107の膜厚tP1/第2の固定磁性層(上)105の 膜厚tP2)よりも大きい方が好ましい。フリー磁性層よりも上側の積層膜から 発生する交換結合磁界と、下側の積層膜から発生する交換結合磁界とを等しくすることにより、上記交換結合磁界の製造プロセス劣化が少なく、磁気へッドの信頼性を向上させることができる。
【0151】
ところで、図13および図14に示すデュアルスピンバルブ型薄膜素子においては、 フリ一磁性層の上下に形成されている第2の固定磁性層(下)95,( 上)105の磁化を互いに反対方向に向けておく必要がある。これは、フリー磁性層が第1のフリー磁性層101と第2のフリー磁性層97の2層に分断されて形成されており、上記第1のフリー磁性層101の磁化と第2のフリー磁性層97の磁化とが反平行になっているからである。
【0152】
例えば、図13および図14に示すように、第1のフリー磁性層101の磁化が、図示X1方向と反対方向に磁化されているとすると、上記第1のフリー磁性層101との交換結合磁界(RKKY相互作用)によって、第2のフリー磁性層97の磁化は、図示X1方向に磁化された状態とされる。上記第1のフリー磁性層101及び第2のフリー磁性層97の磁化は、フェリ状態を保ちながら、外部磁界の影響を受けて反転するようになっている。
【0153】
図13および図14に示すデュアルスピンバルブ型薄膜素子にあっては、第1のフリー磁性層101の磁化及び第2のフリー磁性層97の磁化は、共に△MRに関与する層となっており、上記第1のフリー磁性層101及び第2のフリー磁性層97の変動磁化と、第2の固定磁性層(下)95,(上)105の固定磁化との関係で電気抵抗が変化する。シングルスピンバルブ型薄膜素子に比べ大きい△MRを期待できるデユアルスピンバルブ型薄膜素子としての機能を発揮させるには、第1のフリー磁性層101と第2の固定磁性層(上)105との抵抗変化及び、第2のフリー磁性層97と第2の固定磁性層(下)95との抵抗変化が、共に同じ変動を見せるように、上記第2の固定磁性層(下)95,(上)105の磁化方向を制御する必要性がある。すなわち、第1のフリー磁性層101と第2の固定磁性層(上)105との抵抗変化が最大になるとき、第2のフリー磁性層97と第2の固定磁性層(下)95との抵抗変化も最大になるようにし、第1のフリー磁性層101と第2の固定磁性層(上)105との抵抗変化が最小になるとき、第2のフリー磁性層97と第2の固定磁性層(下)95との抵抗変化も最小になるようにすればよいのである。
【0154】
よって、図13および図14に示すデュアルスピンバルブ型薄膜素子では、第1のフリー磁性層101と第2のフリー磁性層97の磁化が反平行に磁化されているため、第2の固定磁性層(上)105の磁化と第2の固定磁性層(下)95の磁化を互いに反対方向に磁化する必要性がある。
以上のようにして、フリー磁性層の上下に形成された第2の固定磁性層(下)95,(上)105を反対方向に磁化することで、従来のデュアルスピンバルブ型薄膜素子と同程度の△MRを得ることができる。
【0155】
本発明の第6の実施形態のスピンバルブ型薄膜素子においても、上記ハードバイアス層110、110の上面110A、110Aは、上記積層体a6の側面b6、b6の上端d6、d6より基板側の位置で上記積層体a6の側面b6、b6と接合され、図18に示す構造のように、積層体a10の側面上端に接合されている尖った断面形状の先端部126a、126aがないので、ハードバイアス層110、110からの漏れ磁束が、上部シールド層に吸われることによる第1のフリー磁性層101に加わる有効磁界の減少が起こりにくいものとなり、第1のフリー磁性層101が単磁区化されやすくなるため、第1のフリー磁性層101および第2のフリー磁性層97の磁区制御を良好に行うことができる安定性に優れたスピンバルブ型薄膜素子とすることができる。
また、上記ハードバイアス層110、110が、第1のフリー磁性層101と同じ階層位置に配置されているので、第1のフリー磁性層101に対して、強いバイアス磁界を与えやすくなり、 第1のフリー磁性層101を単磁区化しやす く、バルクハウゼンノイズの発生を低減させることができる。
【0156】
また、このようなスピンバルブ型薄膜素子においては、上記ハードバイアス層110、110の上面110A、110Aが、上記ハードバイアス層110、110の最上位置よりも基板側の位置で上記積層体a6の側面b6、b6と接合され、図18に示す構造のように、積層体a10の側面上端に接合されている尖った断面形状の先端部126a、126aがないので、積層体a6の側面b6、b6の上端d6、d6付近での第1のフリー磁性層101の磁化の方向と反対の方向に磁場を作用させる磁界が生じにくいものとなり、第1のフリー磁性層101が単磁区化されやすくなるため、上記第1のフリー磁性層101および第2のフリー磁性層97の磁区制御をより一層良好に行うことができる優れたスピンバルブ型薄膜素子とすることができる。
【0157】
以上、図11から図14に示すスピンバルブ型薄膜素子では、固定磁性層のみならず、フリー磁性層も、非磁性中間層を介して第1のフリー磁性層と第2のフリー磁性層の2層に分断し、この2層のフリー磁性層の間に発生する交換結合磁界(RKKY相互作用)によって、上記2層のフリー磁性層の磁化を反平行状態(フェリ状態)にすることにより、上記第1のフリー磁性層と第2のフリー磁性層の磁化を、外部磁界に対して感度良く反転できるようにしている。
【0158】
また、本発明では、第1のフリー磁性層と第2のフリー磁性層との膜厚比や、上記第1のフリー磁性層と第2のフリー磁性層との間に介在する非磁性中間層の膜厚、あるいは第1の固定磁性層と第2の固定磁性層との膜厚比や、上記第1の固定磁性層と第2の固定磁性層との間に介在する非磁性中間層の膜厚、及び反強磁性層の膜厚などを適正な範囲内で形成することによって、交換結合磁界を大きくすることができ、第1の固定磁性層と第2の固定磁性層との磁化状態を固定磁化として、第1のフリー磁性層と第2のフリー磁性層との磁化状態を変動磁化として、熱的にも安定したフェリ状態に保つことが可能であり、しかも従来と同程度の△MRを得ることが可能となっている。
本発明では、さらにセンス電流の方向を調節することで、第1の固定磁性層の磁化と第2の固定磁性層の磁化との反平行状態(フェリ状態)を、より熱的にも安定した状態に保つことが可能となっている。
【0159】
スピンバルブ型薄膜素子では、反強磁性層、固定磁性層、非磁性導電層、及びフリー磁性層から成る積層膜の両側に導電層が形成されており、この導電層からセンス電流が流される。 上記センス電流は、比抵抗の小さい上記非磁性導電層 と、上記非磁性導電層と固定磁性層との界面、及び非磁性導電層とフリー磁性層との界面に主に流れる。本発明では、上記固定磁性層は第1の固定磁性層と第2の固定磁性層とに分断されており、上記センス電流は、主に第2の固定磁性層と非磁性導電層との界面に流れている。
【0160】
上記センス電流を流すと、右ネジの法則によって、センス電流磁界が形成される。本発明では、上記センス電流磁界を第1の固定磁性層の磁気モーメントと第2の固定磁性層の磁気モーメントを足し合わせて求めることができる合成磁気モーメントの方向と同じ方向になるように、上記センス電流の流す方向を調節している。
【0161】
[センス電流磁界の作用]
次に、図7〜図14に示す第3〜第6の実施の形態の構造において、センス電流磁界の作用について説明する。
図7および図8に示すスピンバルブ型薄膜素子では、非磁性導電層24の上側に第2の固定磁性層25及び第1の固定磁性層27が形成されている。図7に示すように、第1の固定磁性層27の磁気モーメントの方が第2の固定磁性層25の磁気モーメントよりも大きくなっている。また、上記第1の固定磁性層27の磁気モーメントの方向は、図示Y方向(図示右方向)を向いている。
このため、上記第1の固定磁性層27の磁気モーメントと第2の固定磁性層25の磁気モーメントとを足し合わせた合成磁気モーメントは、図示右方向を向いている。
【0162】
図7に示すように、センス電流113は、図示X1方向に流される。センス電流は、 最も抵抗の低い非磁性導電層24に流れやすいため、右ネジの法則によ り、センス電流113を流すことによって形成されるセンス電流磁界は、紙面に対して右回りに形成される。非磁性導電層24よりも上側に第2の固定磁性層25及び第1の固定磁性層27が形成されているので、上記第2の固定磁性層25及び第1の固定磁性層27には、図示右方向(図示Y方向)のセンス電流磁界が侵入してくることになり、合成磁気モーメントの方向と一致し、従って、第1の固定磁性層27の磁化と第2の固定磁性層25の磁化との反平行状態は壊れ難くなっている。
【0163】
なお、上記合成磁気モーメントが図示左方向(図示Y方向と反対方向)に向いている場合には、センス電流113を図示X1方向と反対方向に流し、上記センス電流113を流すことによって、形成されるセンス電流磁界を紙面に対し左回りに発生させ、第1の固定磁性層27と第2の固定磁性層25の合成磁気モーメントの向きと、上記センス電流磁界との向きを一致させる必要がある。
【0164】
図9および図10に示すスピンバルブ型薄膜素子は、フリー磁性層36の上下に第1の固定磁性層(下)32,(上)43と第2の固定磁性層(下)34,(上)41が形成されたデュアルスピンバルブ型薄膜素子である。
このデユアルスピンバルブ型薄膜素子では、フリー磁性層36の上下に形成される合成磁気モーメントが互いに反対方向に向くように、上記第1の固定磁性層(下)32,(上)43の磁気モーメントの方向及びその大きさと第2の固定磁性層(下)34,(上)41の磁気モーメントの方向及びその大きさを制御する必要がある。
【0165】
図9に示すように、フリー磁性層36よりも下側に形成されている第2の固定磁性層(下)34の磁気モーメントは、第1の固定磁性層(下)32の磁気モーメントよりも大きく、また、上記第2の固定磁性層(下)34の磁気モーメントは、図示右方向(図示Y方向)を向いている。従って、上記第1の固定磁性層(下)32の磁気モーメントと第2の固定磁性層(下)34の磁気モーメントを足し合わせて求めることができる合成磁気モーメントは、 図示右方向(図示Y方 向)を向いている。
また、フリー磁性層36よりも上側に形成されている第1の固定磁性層(上)43の磁気モーメントは、第2の固定磁性層(上)41の磁気モーメントよりも大きく、また、上記第1の固定磁性層(上)43の磁気モーメントは、図示左方向(図示Y方向と反対方向)に向いている。このため、上記第1の固定磁性層(上)43の磁気モーメントと第2の固定磁性層(上)41の磁気モーメントを足し合わせて求めることができる合成磁気モーメントは、図示左方向(図示Y方向と反対方向)を向いている。このように本発明では、フリー磁性層36の上下に形成される合成磁気モーメントが互いに反対方向に向いている。
【0166】
本実施の形態では、図9に示すように、センス電流114は、図示X1方向と180゜反対方向に流される。これにより、上記センス電流114を流すことによって形成されるセンス電流磁界は、図9の矢印で示すように、紙面に対し左回りに形成される。
上記フリー磁性層36よりも下側で形成された合成磁気モーメントは、図示右方向(図示Y方向)に、フリー磁性層36よりも上側で形成された合成磁気モーメントは、図示左方向(図示Y方向と反対方向)に向いているので、上記2つの合成磁気モーメントの方向は、センス電流磁界の方向と一致しておりフリー磁性層36の下側に形成された第1の固定磁性層(下)32の磁化と第2の固定磁性層(下)34の磁化の反平行状態、及びフリー磁性層36の上側に形成された第1の固定磁性層(上)43の磁化と第2の固定磁性層(上)41の磁化の反平行状態を、熱的にも安定した状態で保つことが可能である。
【0167】
なお、フリー磁性層36よりも下側に形成された合成磁気モーメントが図示左方向に向いており、フリー磁性層36よりも上側に形成された合成磁気モーメントが図示右側に向いている場合には、センス電流114を図示X1方向に流し、上記センス電流を流すことによって形成されるセンス電流磁界の方向と、上記合成磁気モーメントの方向とを一致させる必要がある。
【0168】
また、図11および図12に示すスピンバルブ型薄膜素子のように、非磁性導電層76よりも上側に、第1の固定磁性層79と第2の固定磁性層77が形成されている場合にあっては、図7に示すスピンバルブ型薄膜素子の場合と同様のセンス電流方向の制御を行えばよい。
【0169】
以上のように、上述の各実施の形態によれば、センス電流を流すことによって形成されるセンス電流磁界の方向と、第1の固定磁性層の磁気モーメントと第2の固定磁性層の磁気モーメントを足し合わせることによって求めることができる合成磁気モーメントの方向とを一致させることにより、上記第1の固定磁性層と第2の固定磁性層間に作用する交換結合磁界 (RKKY相互作用)を安定化さ せ、上記第lの固定磁性層の磁化と第2の固定磁性層の磁化の反平行状態(フェリ状態)を熱的に安定した状態に保つことが可能である。
とくに、本実施の形態では、より熱的安定性を向上させるために、反強磁性層にブロッキング温度の高い反強磁性材料を使用しており、これによって、環境温度や素子温度が、従来に比べて大幅に上昇しても、上記第1の固定磁性層の磁化と第2の固定磁性層の磁化の反平行状態(フェリ状態)を壊れ難くすることができる。
【0170】
また、高記録密度化に対応するためにセンス電流量を大きくして再生出力を大きくしようとすると、それに従ってセンス電流磁界も大きくなるが、本発明の実施の形態では、上記センス電流磁界が、第1の固定磁性層と第2の固定磁性層の間に働く交換結合磁界を安定化させる作用をもたらしているので、センス電流磁界の増大により、第1の固定磁性層と第2の固定磁性層の磁化状態は、より安定したものとなる。
なお、このセンス電流方向の制御は、反強磁性層にどのような反強磁性材料を使用した場合であっても適用でき、例えば、反強磁性層と固定磁性層(第1の固定磁性層)との界面で交換結合磁界(交換異方性磁界)を発生させるために、熱処理が必要であるか、あるいは必要でないかを問わない。
さらに、図1〜図3に示す第1〜第3の実施の形態のように、固定磁性層が単層で形成されていたシングルスピンバルブ型薄膜素子の場合であっても、前述したセンス電流を流すことによって形成されるセンス電流磁界の方向と、固定磁性層の磁化方向とを一致させることにより、上記固定磁性層の磁化を熱的に安定化させることが可能である。
【0171】
[第7の実施形態]
図25は、本発明の第7の実施形態のスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
本発明の第7の実施形態のスピンバルブ型薄膜素子は、反強磁性層、2層の固定磁性層、非磁性導電層、フリー磁性層が形成されたボトム型(Bottom type )とされ、さらに、固定磁性層が、第1の固定磁性層と、上記第1の固定磁性層に非磁性中間層を介して形成され、上記第1の固定磁性層の磁化方向と反平行に磁化方向が揃えられた第2の固定磁性層と、を有し、固定磁性層が合成フェリ磁性状態とされてなる手段、いわゆる、シンセティックフェリピンド型(synthetic-ferri-pinned type )とされるシングルスピンバルブ型薄膜素子の一種である。
【0172】
図25において、符号311は、基板310上に設けられた反強磁性層である。この反強磁性層311の上には、固定磁性層312が形成されている。
この固定磁性層312は、第1の固定磁性層312Aと、第1の固定磁性層312Aの上に非磁性中間層312Bを介して形成され、第1の固定磁性層312Aの磁化方向と反平行に磁化方向が揃えられた第2の固定磁性層312Cとからなる。
この第2の固定磁性層312Cの上には、Cu(銅)等からなる非磁性導電層313が形成され、さらに、非磁性導電層313の上には、フリー磁性層314が形成されている。フリー磁性層314の上には、バックド層B1が設けられ、バックド層B1の上には、Taなどで形成された保護層315が形成され、この保護層315の上側が、酸化タンタル(Ta−Oxide )からなる酸化層315aとされている。
図25に示すように、上記反強磁性層311の一部から酸化層315aまでの各層により、略台形状の断面形状を有する積層体316が構成されている。
【0173】
また、符号317,317は、ハードバイアス層を、符号318,318は、導電層を示している。
これら、ハードバイアス層317,317は、積層体316の両側位置に張り出している反強磁性層311上にバイアス下地層317aを介して形成されている。このハードバイアス層317,317上には、TaまたはCrからなる中間層319を介して導電層318,318が形成されている。
【0174】
ここで、反強磁性層が上側に位置するトップタイプ(top type)においては、ハードバイアス層を経由して反強磁性層の下側に位置する第1,第2の固定磁性層、非磁性導電層、フリー磁性層付近、つまり積層体下側にセンス電流が直接流れ込む分流の成分が大きいのに対して、本実施形態のように、ボトムタイプ(Bottom type )としたものは、比抵抗の高い反強磁性層311を介さずに積層体316に与えるセンス電流の割合を向上することができる。このため、サイドリーディングを防止することができ、磁気記録密度の高密度化により一層対応することが可能となる。
さらに、後述するように、導電層318,318のオーバーレイ部318a,318aを、露出したバックド層B1に接触させるようにしたことでさらに、接触抵抗を減らし、ハードバイアス層317から積層体316下側に流れ込む分流の成分をさらに低減することができる。
【0175】
さらに詳細に説明すると、本発明の第7の実施形態のスピンバルブ型薄膜素子では、反強磁性層311は、積層体319中央部分において、8〜11nm(80〜110Å)程度の厚さとされ、第1の実施形態の反強磁性層2と同様にPtMn合金で形成されることが好ましい。
また、第1の実施形態の反強磁性層2と同様に、上記PtMn合金に代えて、X−Mn(ただし、Xは、Pd、Ru、Ir、Rh、Osのうちから選択される1種の元素を示す。)の式で示される合金、あるいは、X’−Pt−Mn(ただし、X’は、Pd、Ru、Ir、Rh、Os、Au、Ag、Cr、Ni、Ar、Ne、Xe、Krのうちから選択される1種または2種以上の元素を示す。)の式で示される合金で形成されていてもよい。
【0176】
第1および第2の固定磁性層312A,312Cは、強磁性体の薄膜からなり、例えば、Co、NiFe合金、CoNiFe合金、CoFe合金、CoNi合金などで形成され、40Å程度の厚さとされることが好ましく、第1の固定磁性層312Aは、例えばCoからなりその膜厚が1.3〜1.5nm(13〜15Å)に設定され。第2の固定磁性層312C、例えばCoからなりその膜厚が2〜2.5nm(20〜25Å)に設定される。
また、非磁性中間層312Bは、Ru、Rh、Ir、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されていることが好ましく、通常、0.8nm(8Å)程度の厚さに形成されている。
【0177】
この第1の固定磁性層312Aは、反強磁性層311に接して形成され、磁場中アニール(熱処理)を施すことにより、第1の固定磁性層312Aと反強磁性層311との界面にて交換結合磁界(交換異方性磁界)が発生し、例えば図25に示すように、第1の固定磁性層312Aの磁化が、図示Y方向と逆方向に固定される。第1の固定磁性層312Aの磁化が、図示Y方向の逆方向に固定されると、非磁性中間層312Bを介して対向する第2の固定磁性層312Cの磁化は、第1の固定磁性層312Aの磁化と反平行の状態、つまり、図示Y方向に固定される。
【0178】
交換結合磁界が大きいほど、第1の固定磁性層312Aの磁化と第2の固定磁性層312Cの磁化を安定して反平行状態に保つことが可能であり、特に、反強磁性層311としてブロッキング温度が高く、しかも第1の固定磁性層312Aとの界面で大きい交換結合磁界(交換異方性磁界)を発生させるPtMn合金を使用することで、第1の固定磁性層312Aおよび第2の固定磁性層312Cの磁化状態を熱的にも安定して保つことができる。
【0179】
本実施形態では、第1の固定磁性層312Aと第2の固定磁性層312Cとの膜厚比を適正な範囲内に収めることによって、交換結合磁界(Hex)を大きくでき、第1の固定磁性層312Aと第2の固定磁性層312Cとの磁化を、熱的にも安定した反平行状態(フェリ状態)に保つことができ、しかも、△R/R(抵抗変化率)を従来と同程度に確保することが可能である。さらに熱処理中の磁場の大きさおよびその方向を適正に制御することによって、第1の固定磁性層312Aおよび第2の固定磁性層312Cの磁化方向を、所望の方向に制御することが可能になる。
【0180】
非磁性導電層313は、Cu(銅)等からなり、その膜厚は、2〜2.5nm(20〜25Å)に設定される。
フリー磁性層314は、通常、20〜50Å程度の厚さとされ、第1、第2の固定磁性層312A、312Cと同様の材質などで形成されることが好ましい。バックド層B1は、Cu等の金属材料や、非磁性導電材料からなり、Au、Ag、Cuからなる群から選択された材料から構成されることができ、例えばその膜厚が1.2〜2nm(12〜20Å)に設定される。
保護層315は、Taからなり、その表面が、酸化された酸化層315aとされており、この保護層315は、トラック幅方向(図25においてX1方向)両端側が積層体316上面よりも短くなるよう形成されており、積層体316上面の両端においては、バックド層B1が露出した状態とされている。
【0181】
バイアス下地層317aは、緩衝膜および配向膜であり、Crなどで形成されることが好ましく、例えば、2〜5nm(20〜50Å)程度、好ましくは3.5nm(35Å)程度の厚さとされ、中間層319は、例えばTaからなり5nm(50Å)程度の膜厚とされる。
これらバイアス下地層317aおよび中間層319により、後工程のインダクティブヘッド(書込ヘッド)の製造プロセスでおこなう絶縁レジストの硬化工程(UVキュアまたはハードベーク)等で高温に曝される場合に、拡散バリアーとして機能し、ハードバイアス層317,317と周辺層の間で熱拡散がおこり、ハードバイアス層317,317の磁気特性が劣化することを防止することができる。
【0182】
ハードバイアス層317,317は、通常、20〜50nm(200〜500Å)程度の厚さとされ、例えば、Co−Pt合金やCo−Cr−Pt合金やCo−Cr−Ta(コバルト−クロム−タンタル)合金などで形成されることが好ましい。 また、ハードバイアス層317,317が、図示X1方向に磁化されていることで、フリー磁性層314の磁化が、図示X1方向に揃えられている。これにより、フリー磁性層314の変動磁化と第2の固定磁性層312Cの固定磁化とが90度で交差する関係となっている。
【0183】
これらハードバイアス層317,317は、フリー磁性層314と同じ階層位置に配置され、フリー磁性層314の膜厚方向にフリー磁性層314の膜厚よりも大きな膜厚とされることが好ましい。また、ハードバイアス層317,317の下面は、フリー磁性層314の下面よりも基板310側の位置に(すなわち、図25では下側に)配置されている。
【0184】
また、ハードバイアス層317,317の上面317b,317bと積層体316の側面との接合点C10、C10は、積層体316の側面の上端316a,316aより基板310側の位置(すなわち、図25では下側)で、かつ、積層体316から離間した位置におけるハードバイアス層317,317の最上位置より下側の位置とされることが好ましい。
これにより、ハードバイアス層317,317からフリー磁性層314に作用する磁界におけるフラックスコントロール、つまり、ハードバイアス層317,317からの漏れ磁束が、積層体316上部に位置する上部シールド層等に吸収されることによってフリー磁性層314に加わる有効磁界が減少することが起こりにくくなり、フリー磁性層314が単磁区化されやすくなるため、フリー磁性層314の磁区制御を良好に行うことができる。
【0185】
導電層318,318が、Cr、Au、Ta、Wから選択される1種またはそれ以上からなる単層膜もしくはその多層膜で形成されたことにより、抵抗値を低減することができる。ここでは、導電層318,318としてCrが選択されて、Taからなる中間層319上にエピタキシャル成長することにより形成されることにより電気抵抗値を低減することができる。
【0186】
導電層318,318は、積層体316の上面において、露出しているバックド層B1の上に延出してオーバーレイ部318a,318aを形成しており、このオーバーレイ部318a,318aが積層体316に被着形成されてバックド層B1に接続されている。
反強磁性層311、第1の固定磁性層312A、非磁性中間層312B、第2の固定磁性層312C、非磁性導電層313、フリー磁性層314、およびバックド層B1を積層して、形成された積層体316においては、実際には、この積層体全体が磁気抵抗効果を発揮するのではなく、その中央領域のみが、再生感度に優れ、実質的にこの中央領域のみが、磁気抵抗効果を発揮する感度領域である。 この再生感度に優れた積層体の領域を感度領域と呼び、上記感度領域の両側であって、再生感度の悪い領域を不感領域と呼ぶが、積層体に占める感度領域および不感領域は、マイクロトラックプロファイル法によって測定される。
以下、マイクロトラックプロファイル法について、図43に基づいて説明する

【0187】
図43に示すように、磁気抵抗効果を発揮する積層体と、その両側に形成されたハードバイアス層と、このハードバイアス層上に形成された導電層とを有するスピンバルブ型薄膜磁気素子(スピンバルブ型薄膜磁気素子)を基板上に形成する。上記導電層は、積層体の両側のみに形成され、オーバーレイ部を持たない構造となっている。
次に、光学顕微鏡によって、導電層が覆い被さっていない積層体の上面の幅寸法Aを測定する。この幅寸法Aは光学的方法によって測定されたトラック幅Tw(以下、光学的トラック幅寸法O−Twという)として定義される。
そして、磁気記録媒体上に、微小トラックとして、所定の信号を記録しておき、スピンバルブ型薄膜磁気素子を、この微小トラック上でトラック幅方向に走査させて積層体の幅寸法Aと、再生出力との関係を測定する。あるいは、微小トラックが形成された磁気記録媒体側を、スピンバルブ型薄膜磁気素子上にトラック幅方向に走査させて積層体の幅寸法Aと、再生出力との関係を測定してもよい。その測定結果は、図43の下側に示されている。
この測定結果によると、積層体の中央付近では、再生出力が高くなり、前記積層体の側部付近では、再生出力が低くなることがわかる。この結果から、積層体の中央付近では、良好に磁気抵抗効果が発揮され、再生機能に関与するが、その両側部付近においては、磁気抵抗効果が悪化して再生出力が低く、再生機能が低下している。
【0188】
本発明では、最大再生出力に対して50%以上の再生出力が発生する積層体上面の幅寸法Bで形成された領域を感度領域と定義し、最大再生出力に対して50%以下の再生出力しか発生しない積層体上面の幅寸法C1を有して形成された領域を不感領域として定義する。
【0189】
ここでの積層体316の感度領域は、導電層が積層体の両側のみ形成されたスピンバルブ型薄膜磁気素子(スピンバルブ型薄膜素子)を、ある信号が記録された微小トラック上にトラック幅方向で走査させた場合に、得られた再生出力のうち最大出力の50%以上の出力が得られた領域として定義され、また、積層体316の不感領域は、上記感度領域の両側であって、出力が最大出力の50%以下となる領域として定義されるものである。
上記導電層318、318は上記不感領域上まで延出して被着形成されているここで、積層体316の上面において、オーバーレイ部318a,318aの形成されていないトラック幅方向(図25ではX1方向)の寸法が、光学的トラック幅寸法O−Twであり、これにより感度領域の幅寸法で磁気的トラック幅寸法MーTwが規定される。本実施形態では、光学的トラック幅寸法O−Twと磁気的トラック幅寸法M−Twとは、ほぼ同じ寸法に設定されるか、あるいは、磁気的トラック幅寸法M−Twが、光学的トラック幅寸法O−Twよりやや大きい寸法に設定されている。
【0190】
これにより、導電層318,318から積層体316へ与えるセンス電流が、ハードバイアス層317,317を介して積層体316に流れにくくなり、このハードバイアス層317,317を介さずに、直接、積層体316にセンス電流を流す割合を多くできる。しかも、この場合、積層体316と導電層318,318との接合面積を増大できることにより、磁気抵抗効果に寄与しない接合抵抗を下げることができ、素子の再生特性を向上することができる。
【0191】
図25に示す構造のスピンバルブ型薄膜素子においては、導電層318,318から積層体316にセンス電流を与えられる。磁気記録媒体から図25に示す図示Y方向に磁界が与えられると、フリー磁性層314の磁化は、図示X1方向からY方向に変動する。このときの非磁性導電層313とフリー磁性層314との界面で、いわゆるGMR効果によってスピンに依存した伝導電子の散乱が起こることにより、電気抵抗が変化し、記録媒体からの洩れ磁界が検出される。
【0192】
ここで、バックド層B1によって、磁気抵抗効果に寄与する+スピン(上向きスピン:up spin )の電子における平均自由行程(mean free path)をのばし、いわゆるスピンフィルター効果(spin filter effect)によりスピンバルブ型薄膜素子において、大きな△R/R(抵抗変化率)が得られ、高密度記録化に対応できるものとすることができる。
【0193】
以下、スピンフィルター効果(spin filter effect)について説明する。
図38は、スピンバルブ型薄膜素子においてバックド層によるスピンフィルター効果への寄与を説明するための模式説明図である。
ここで、磁性材料で観測される巨大磁気抵抗GMR効果は、主として、電子の「スピンに依存した散乱」によるもの、つまり、磁性材料、ここではフリー磁性層314の磁化方向に平行なスピン(例えば+スピン(上向きスピン:up spin ))を持つ伝導電子の平均自由行程(mean free path:λ+ )と、磁性材料の磁化方向と逆平行なスピン(例えば−スピン(下向きスピン:down spin ))を持つ伝導電子の平均自由行程(λ- )との差を利用したものである。ここで、図においては、up spin を持つ伝導電子を上向き矢印で示し、down spin を持つ伝導電子を下向き矢印で示している。
【0194】
電子がフリー磁性層314を通り抜けようとする際において、この電子がフリー磁性層314の磁化方向に平行な+スピンを持てば自由に移動できるが、これと逆に、電磁が−スピンを持った場合には、直ちに散乱されてしまう。
これは、+スピンを持つ電子の平均自由行程λ+ が、例えば、5nm(50Å)程度であるのに対して、−スピンを持つ電子の平均自由行程λ- が0.6nm(6Å)程度であり、10分の1程度と極端に小さいためである。
【0195】
本実施形態においては、フリー磁性層314の膜厚は、6Å程度である−スピン電子の平均自由行程λ- よりも大きく、5nm(50Å)程度である+スピン電子の平均自由行程λ+ よりも小さく設定されている。
したがって、このフリー磁性層314を通り抜けようとする際において、−スピン伝導電子(少数キャリア;minority carrier)は、このフリー磁性層314によって有効にブロックされ(すなわちフィルタ・アウトされ)るが、+スピン伝導電子(多数キャリア;majority carrier)は、本質的に、このフリー磁性層314に対して透過的に移動する。
【0196】
第2の固定磁性層312Cで発生する多数キャリアおよび少数キャリア、つまり、第2の固定磁性層312Cの磁化方向に対応する+スピン電子および−スピン電子は、フリー磁性層314に向かって移動し、電荷の移動、つまり、キャリアとなる。
これらのキャリアは、フリー磁性層314の磁化が回転するときに、それぞれ異なった状態で散乱する、つまり、フリー磁性層314における通過状態が、それぞれ異なっているために、上記のGMRをもたらすことになる。
【0197】
フリー磁性層314から第2の固定磁性層312Cに向かって移動する電子もGMRに寄与するが、第2の固定磁性層312Cからフリー磁性層314へ向かう電子と、フリー磁性層314から第2の固定磁性層312Cへ向かう電子とを平均すると同じ方向に移動するので説明を省略する。また、非磁性導電層313で発生する電子は、+スピン電子の数と−スピン電子の数とが等しいので、平均自由行程の和は変化せず、これも説明を割愛する。
【0198】
第2の固定磁性層312Cで発生し、非磁性導電層313を通過する少数キャリア、つまり、−スピン電子の数は、第2の固定磁性層312Cと非磁性導電層313との界面で散乱した−スピン電子の数に等しい。この−スピン電子は、フリー磁性層314との界面に到達する遥か以前に非磁性導電層313と第2の固定磁性層312Cとの界面付近で散乱される。つまり、この−スピン電子はフリー磁性層314の磁化方向が回転しても、平均自由行程は変化せず、+スピン電子の平均自由行程に比べて非常に短いままであり、GMR効果となる抵抗変化率に寄与する抵抗値変化に影響しない。
したがって、GMR効果には、+スピン電子の挙動のみを考えればよい。
【0199】
第2の固定磁性層312Cで発生した多数キャリア、つまり、+スピン電子は、この+スピン電子の平均自由行程λ+ より短い非磁性導電層313中を移動し、フリー磁性層314に到達する。
フリー磁性層314に外部磁界が作用しておらず、フリー磁性層314の磁化方向が回転していない場合、多数キャリアは、この+スピン電子がフリー磁性層314の磁化方向に平行な+スピンを持っているため、このフリー磁性層314を自由に通過できる。
【0200】
さらに、図38(b)に示すように、フリー磁性層314を通過した+スピン電子は、バックド層B1において、このバックド層B1の材料で決定される追加平均自由行程λ+ bを移動した後散乱する。これは、図38(a)に示すバックド層B1が無い場合、+スピン電子は、フリー磁性層314中を移動し、その上面において散乱してしまうが、これに比べて、バックド層B1を設けた場合、追加平均自由行程λ+ b分だけ平均自由行程が延びたことを意味する。
したがって、比較的低い抵抗値(すなわち、長い平均自由行程)を有する導電材料を適用することにより、スピンバルブ型薄膜素子としての抵抗値は減少する。
【0201】
一方、外部磁界を印加することにより、フリー磁性層314の磁化方向を回転すると、この磁性材料の磁化方向とスピンの向きが異なるため、+スピン電子がフリー磁性層314中で散乱することになり、有効平均自由行程が急激に減少する。つまり、抵抗値が増大する。
これにより、バックド層B1が無い場合に比べて、△R/R(抵抗変化率)の大きなGMR効果を観測することができ、スピンバルブ型薄膜素子の再生出力特性を向上することができる。
【0202】
ここで、出力のアシンメトリーに影響するフリー磁性層314の変動磁化の方向について、図面に基づいて説明する。
図39は、フリー磁性層314の変動磁化Mf の方向の規定について説明する模式説明図である。
フリー磁性層314の変動磁化Mf の方向に影響を与えるのは、次の3つの磁界である。つまり、センス電流Jによるセンス電流磁界HJ と、固定磁性層312A,312B,312Cの固定磁化による反磁界(双極子)磁界Hd と、フリー磁性層314と固定磁性層312A,312B,312Cとの層間相互作用による相互作用磁界Hint と、である。ここで、これらの磁界からのフリー磁性層314の変動磁化Mf への寄与が少なければ、アシンメトリーが減少する。つまり、アシンメトリーを減少するためには、外部磁界が印加されない状態で、
J + Hd + Hint = 0
となることが望ましい。
【0203】
ここで、本実施形態のスピンバルブ型薄膜磁気素子(スピンバルブ型薄膜素子)においては、第1の固定磁性層312Aと、第1の固定磁性層312Aに非磁性中間層312Bを介して形成され、第1の固定磁性層312Aの磁化方向と反平行に磁化方向が揃えられた第2の固定磁性層312Cと、を積層体316に形成し固定磁性層を合成フェリ磁性状態とされてなる手段、いわゆる、シンセティックフェリピンド型(synthetic-ferri-pinned type )としたことにより、図39に示すように、上記反磁界(双極子)磁界Hd を、第1の固定磁性層312Aの静磁結合磁界HP1と第2の固定磁性層312Cの静磁結合磁界HP2とにより、相互に打ち消してキャンセルすることができる。
これにより、フリー磁性層314の変動磁化方向に影響を与えてしまう、この反磁界(双極子)磁界を、ほぼHd =0とすることができ、固定磁性層の固定磁化による反磁界(双極子)磁界Hd からの、フリー磁性層314の変動磁化Mf への寄与を激減することができる。
【0204】
さらに、アシンメトリーに影響するセンス電流Jによるセンス電流磁界HJ からの寄与の減少について説明する。
図40は、バックド層B1によって、センス電流Jによるセンス電流磁界HJ からフリー磁性層314の変動磁化Mf への寄与の減少について説明する図であり、図40(a)は、バックド層のないスピンバルブ型薄膜素子の例を示す媒体対向面(ABS面)に垂直な横断面図であり、図40(b)はバックド層を有する本実施形態におけるスピンバルブ型薄膜素子の例を示す媒体対向面(ABS面)に垂直な横断面図である。
図40(a)において、符号122乃至165は、図22に示した従来のバックド層のないシンセティックフェリピンド型(synthetic-ferri-pinned type )のピンバルブ型薄膜素子に対応するものである。
【0205】
図40(a)に示すように、このようなバックド層のないボトムタイプのスピンバルブ型薄膜素子においては、反強磁性層122、第1の固定磁性層155、非磁性中間層154、第2の固定磁性層156、非磁性導電層124、フリー磁性層165にセンス電流Jを与えた場合、センス電流Jが主に流れる位置が、これらの積層体の中心付近になろうとする傾向がある。
しかし、これらの層の下部には膜厚の大きな反強磁性層122が存在しているため、センス電流Jは、流れてほしいフリー磁性層165よりも下側、つまり、図40(a)に示すように、非磁性導電層124の下側付近に流れる傾向がある。 このため、フリー磁性層165の位置には、センス電流Jによるセンス電流磁界HJ が、図38(a)において右向きに、極めて大きい寄与を与えることになり、前述したように、アシンメトリーを小さくしようとして、フリー磁性層165の変動磁化Mf の方向を所望の方向に補正することに困難を生じていた。
【0206】
これに対して、本実施形態においては、図40(b)に示すように、積層体316の最上部にバックド層B1を設けたことにより、この積層体316の電流中心の位置がフリー磁性層314側に移動している。このため、センス電流Jの中心が、ほぼフリー磁性層314位置を流れることになる。したがって、フリー磁性層314に対する、センス電流磁界HJ からの図における左右方向への大きな寄与をなくすことができる。つまり、このセンス電流磁界を、ほぼHJ =0とすることができる。
【0207】
これは、言い換えれば、図40(b)に示すセンス電流Jが、非磁性導電層313とバックド層B1とにおいて、図40(c)に示すように、それぞれ同方向の分流J1,J2とに分流したものに相当する。この場合、フリー磁性層314において、分流J1の作る右向き磁界と、分流J2の作る左向き磁界とがキャンセルすることにより、フリー磁性層314におけるセンス電流磁界を、ほぼHJ =0とすることができるのである。
【0208】
したがって、図39に示した、上述したフリー磁性層314の変動磁化Mf の方向に影響を与える3つの磁界のうち、寄与の大きな2つまでをほぼキャンセルすることができる。
つまり、センス電流Jによるセンス電流磁界HJ と、固定磁性層312の固定磁化による反磁界(双極子)磁界Hd とをほぼキャンセルすることにより、アシンメトリーを減少するためには、外部磁界が印加されない状態で、最も寄与の小さなフリー磁性層314と固定磁性層312との層間相互作用による相互作用磁界Hint のみを考慮すればよいことになる。
【0209】
したがって、スピンバルブ型薄膜素子が作動していない状態、つまり、センス電流Jが与えられておらず、センス電流磁界HJ は発生していない状態で、ハードバイアス層317,317の磁化によって、フリー磁性層314の変動磁化Mf は、図25におけるX1に近い方向に揃えればよい。
つまり、センス電流Jが与えられていない場合、ハードバイアス層317,317により規定されるフリー磁性層314の変動磁化Mf は、第2の固定磁性層312Cの固定磁化Mp と直交すればよく、センス電流Jが流れて初めてこれらが直交するように、センス電流Jの寄与を見越して設定する必要がない。
このため、センス電流Jが与えられておらず、センス電流磁界HJ が発生していない場合、フリー磁性層314の変動磁化Mf が、第2の固定磁性層312Cの固定磁化Mp と反対側を向こうとすることがなくなる。
【0210】
ここで、このスピンバルブ型薄膜素子は、図25に示すように、ハードバイアス層317,317の上に形成された導電層318,318が積層体316の上側に延出したオーバーレイ部318a,318aを有している。このため、導電層318,318から、第2の固定磁性層312C、非磁性導電層313、フリー(Free)磁性層314、に検出電流(センス電流)Jを与えた場合、このセンス電流Jは、その大部分が、このオーバーレイ部318a,318aから積層体316に流入することになる。
このため、フリー磁性層314に、センス電流Jの流れる中央部分と、センス電流のほとんど流れない両側部分とが発生する。
【0211】
フリー磁性層314全体に亘ってセンス電流磁界HJ が非常に小さいため、後述の図41に示すように、センス電流Jが流れている中央部分314aとセンス電流のほとんど流れない両側部分314b,314bとにおいて、各磁界の寄与に大きな差を生じることが無くなり、フリー磁性層314全体において磁化方向のずれを生じることがない。
図41は、膜厚1.5nm(15Å)のCuからなるバックド層B1を備えたスピンバルブ型薄膜素子における、センス電流5mA印加時のマイクロマグネティックシュミレーションによるフリー磁性層314の磁化分布を示すベクトルマップである。この図からわかるように、素子中央部分314aの磁化方向と、電極オーバーレイ部318a,318a下側の両側部分314b,314bの磁化方向との相違は、図22に示すバックド層のない場合に比較して大幅に改善されている。
【0212】
したがって、フリー磁性層314内に、磁壁ができて単磁区化が妨げられることに起因して磁化の不均一が発生することが防止できる。このため、スピンバルブ型薄膜素子において、バルクハイゼンノイズ発生を防止し、磁気記録媒体からの信号処理における安定性(stability)の向上を図ることができる。
【0213】
以下、本実施形態におけるスピンバルブ型薄膜素子の製造方法を図面に基づいて説明する。
図26ないし図30は本実施形態におけるスピンバルブ型薄膜素子の製造方法を説明するための正断面図である。
【0214】
本実施形態においてスピンバルブ型薄膜素子の製造方法(第2の製造方法)は、概略説明すると、基板310上に、反強磁性層311と、この反強磁性層311と接して形成され、反強磁性層311との交換結合磁界により磁化方向が固定される第1の固定磁性層312Aと、第1の固定磁性層312Aに非磁性中間層312Bを介して形成され、第1の固定磁性層312Aの磁化方向と反平行に磁化方向が揃えられた第2の固定磁性層312Cと、第2の固定磁性層312Cに非磁性導電層313を介して形成され、第2の固定磁性層312Cの磁化方向と交差する方向へ磁化方向が揃えられたフリー磁性層314と、このフリー磁性層314の非磁性導電層313に対する逆側に接して形成された非磁性導電材料からなるバックド層B1とを少なくとも有する積層膜316’を形成する工程と、積層膜316’の上に積層膜316’に対向する下面に切り込み部372a,372aの形成されたリフトオフ用レジスト372を形成する工程と、リフトオフ用レジスト372に覆われていない部分を、反強磁性層311の一部を残してイオンミリングにより除去し、略台形状の積層体316を形成する工程と、積層体316の両側に、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、フリー磁性層314の磁化方向を第2の固定磁性層312Cの磁化方向と交差する方向へ揃えるためのハードバイアス層317,317を、フリー磁性層314と同じ階層位置に配置されるように形成する工程と、ハードバイアス層317,317上、および、リフトオフ用レジスト372の切り込み部372a,372aに対応する積層体316上に、ターゲット376と基板310との角度を傾斜させた状態で対向させ、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、積層体316に検出電流を与える導電層318,318を形成する工程と、を有する。
【0215】
さらに詳細に説明すると、まず、図26に示すように、基板310上に、反強磁性層311と、この反強磁性層311と接して形成され、反強磁性層311との交換結合磁界により磁化方向が固定される第1の固定磁性層312Aと、第1の固定磁性層312Aに非磁性中間層312Bを介して形成され、第1の固定磁性層312Aの磁化方向と反平行に磁化方向が揃えられた第2の固定磁性層312Cと、第2の固定磁性層312Cに非磁性導電層313を介して形成され、第2の固定磁性層312Cの磁化方向と交差する方向へ磁化方向が揃えられたフリー磁性層314と、このフリー磁性層314の非磁性導電層313に対する逆側に接して形成された非磁性導電材料からなるバックド層B1とを少なくとも有する積層膜316’を形成する。
【0216】
ここで、反強磁性層311をX−Mn(ただし、Xは、Pt、Pd、Ru、Ir、Rh、Osのうちから選択される1種の元素を示す。)の式で示される合金からなり、Xが37〜63原子%の範囲であることが望ましく、さらにまた、反強磁性層311が、X’−Pt−Mn(ただし、X’は、Pd、Cr、Ru、Ni、Ir、Rh、Os、Au、Ag、Ne、Ar、Xe、Krのうちから選択される1種または2種以上の元素を示す。)の式で示される合金からなり、X’+Ptが37〜63原子%の範囲であることが望ましい。反強磁性層311を上記の材質で形成する場合、第1の固定磁性層312Aとの界面で交換結合磁界を発生させるには、熱処理を施す必要がある。
【0217】
そして、あらかじめ、図26に示すように、積層体の両側のみにハードバイアス層と導電層とが形成されたタイプのスピンバルブ型薄膜素子を用い、前述のように、このスピンバルブ型薄膜素子を、ある信号が記録された微小トラック上で、トラック幅方向にて走査させ、再生出力を検出し、この再生出力のうち、最大出力の50%以上の再生出力を発する感度領域と、最大出力の50%以下の再生出力を発する不感領域とを定義する。
【0218】
次に、この結果に基づき、マイクロトラックプロファイル法によって、あらかじめわかっている不感領域の幅寸法を考慮しながら、積層膜316’上にリフトオフ用レジスト372を形成する。図26に示すように、このレジスト372は、トラック幅方向(図中X1方向)の幅寸法R1で平面視して積層膜316’を覆うとともに、このレジスト層372には、その下面に切り込み部372a,372aが形成されている。この切り込み部372a,372aは、積層膜316’のうち不感領域上に形成されるようにし、積層膜316’のうち感度領域の上は、レジスト372が幅寸法R2を有して、完全に覆われた状態にしておく。
上記の幅寸法R2により、形成される積層体26上面のトラック幅寸法が規定される。
【0219】
次に、図27に示す工程では、エッチングにより積層膜316’の両側を反強磁性層311の下側の一部を残して削り込んで積層体316を形成し、さらに、図28に示す工程では、積層体316の両側にバイアス下地層317a,317a、ハードバイアス層317,317、中間層319を成膜する。
本実施形態では、このハードバイアス層317,317の成膜および、後の工程で行われる導電層318,318の成膜の際に使用されるスパッタ法は、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法であることが好ましい。
【0220】
図28に示すように、本実施形態では、積層体316の形成された基板310を、ハードバイアス層317,317の組成で形成されたターゲット374から放出されるビームに対して略垂直方向に置き、これにより例えばイオンビームスパッタ法を用いることにより、積層体316に対して略垂直方向からハードバイアス層317,317を成膜することができるから、積層体316上に形成されたレジスト372の切り込み部372a内にハードバイアス層317,317が入り込んで形成されることがない。
また、バイアス下地層317a,317a上にターゲット374から叩き出された粒子を積層する際、上記粒子から構成されるハードバイアス層317,317の上面317b,317bがフリー磁性層314の上面から下面までの間と同じ階層位置で積層体316の側面と接合されるように上記粒子の積層厚を調製し、より好ましくは上記粒子から構成されるハードバイアス層317,317の上面317b,317bがフリー磁性層314の膜厚の半分の厚みの位置までの間と同じ階層位置で積層体316の側面と接合されるように上記粒子の積層厚が調製する。
なお、レジスト372上にも、バイアス下地層317a、ハードバイアス層317、中間層319と同じ組成の層317a’,317’,319’がそれぞれ形成される。
【0221】
つぎに、図29に示す工程では、積層体316に対して斜め方向から、Arによるイオンミリングや、逆スパッタ等を行い、切り込み部372a内に対応する積層体316表面の一部を除去する。これにより、酸化層315a、保護層315およびバックド層B1の一部を除去し、導電層318が直接積層体316に接触する部分を形成する。
【0222】
図30に示す工程では、積層体316に対して斜め方向から、ハードバイアス層317上に導電層318を成膜し、この際、導電層318を、積層体316上に設けられたレジスト膜372の切り込み部372a内にまで成膜する。
ここで、例えば、積層体316が形成された基板310に対し、導電層318の組成で形成されたターゲット376を斜めに傾けてターゲット376を基板310上で移動または回転させながら、イオンビームスパッタ法により導電層318をハードバイアス層317上に成膜する。
このとき、斜め方向からスパッタされる導電層318はハードバイアス層317上のみならず、積層体316の上に形成されたレジスト層372の切り込み部372a内部にも侵入して成膜され、オーバーレイ部318aを形成する。すなわち、切り込み部372a内に成膜された導電層318のオーバーレイ部318aは、積層体316の上記不感領域を覆う位置に成膜される。
【0223】
なお、図30では、基板310を固定してターゲット376をこの基板310に対して斜めに移動または回転させているが、ターゲット376を固定して基板310側をターゲット376に対して斜め方向に移動または回転させてもよい。また、図6に示すように、レジスト372の上の層319’には、導電層318と同じ組成の層318’が形成される。
【0224】
そして、次の工程では、図30に示すレジスト372を、レジスト剥離液を用いながらリフトオフによって除去し、これによって、図25に示す、積層体316のうち不感領域上まで導電層318が形成されたスピンバルブ型薄膜磁気素子(スピンバルブ型薄膜素子)が完成する。
ここで、本実施形態では、導電層318におけるオーバーレイ部318aのトラック幅方向長さ寸法を、レジスト372のトラック幅方向の幅寸法R1と幅寸法R2とにより切り込み部372aのトラック幅方向寸法を設定することにより、0.03μm〜0.10μmに設定することができる。
【0225】
本実施形態におけるスピンバルブ型薄膜素子の製造方法によれば、フォトレジスト372を一回形成するのみで、積層体316、ハードバイアス層317、および、導電層318を所望の形状に形成することができ、かつ、ターゲット374,376と基板310との角度を傾斜させないかまたは傾斜させた状態で対向させることを選択したスパッタ法により、ハードバイアス層317および導電層318を所望の形状に形成し、工程数の少ない状態で、図25に示す、スピンバルブ型薄膜素子を容易に得ることができる。
【0226】
なお、図25に示したスピンバルブ型薄膜素子では、導電層318,328のオーバーレイ部318a,318aが積層体316の上面の露出しているバックド層B1に接続されている場合について説明したが、導電層318とハードバイアス層317の間の中間層319、319が積層体316の上面両側まで延びており、この中間層319、319を介してオーバーレイ部318a,318aがバックド層B1に接続された構成であってもよい。
次に、このような構成のスピンバルブ型薄膜素子の製造方法(第3の製造方法)は図31乃至図 を用いて説明する。このスピンバルブ型薄膜素子の製造方法は、概略説明すると、先に述べた第2の製造方法と同様にして積層膜316’を形成する工程と、上記第2の製造方法と同様にして切り込み部372aの形成された第1のリフトオフ用レジスト370を形成する工程と、第1のリフトオフ用レジスト370に覆われていない部分を、反強磁性層311の一部を残してイオンミリング等により除去し、略台形状の積層体316を形成する工程と、積層体316の両側に、上記の第2の製造方法で用いたものと同様のスパッタ法によりハードバイアス層317,317をフリー磁性層314と同じ階層位置に配置されるように形成する工程と、第1のリフトオフ用レジスト370を剥離する工程と、積層体316に接する第1のリフトオフ用レジスト370の積層体316両側方向の寸法R3よりも、積層体316に接触している積層体316両側方向の寸法R4が幅狭に設定され、かつ、積層体316に対向する下面に切り込み部382aの形成された第2のリフトオフ用レジスト382を積層体316の上に形成する工程と、第2のリフトオフ用レジスト382に覆われていない部分に第2の製造方法で用いたものと同様のスパッタ法により導電層318、318を形成する工程と、を有する。
【0227】
さらに詳細に説明すると、まず、図26に示した第7の実施形態のスピンバルブ型薄膜素子の製造方法と同様にして、基板310上に、反強磁性層311と、第1の固定磁性層312Aと、非磁性中間層312Bと、第2の固定磁性層312Cと、非磁性導電層313と、フリー磁性層314と、バックド層B1を順次積層して積層膜316’を形成する。
ここで、反強磁性層311を上記X−Mnの式で示される合金、あるいは上記X’−Pt−Mnの式で示される合金で形成する場合、第1の固定磁性層312Aとの界面で交換結合磁界を発生させるには、熱処理を施す必要がある。
【0228】
次に、積層膜316’上に第1のリフトオフ用レジスト370を形成する。ここで、図31に示すように、このレジスト370は、トラック幅方向(図中X1方向)の幅寸法R1’で平面視して積層膜316’を覆うとともに、このレジスト370は、トラック幅方向(図中X1方向)幅寸法R3を有して、積層膜316’と接触した状態にしておく。
また、このレジスト層370には、その下面に切り込み部372a,372aが形成されており、この切り込み部372a,372aは、後述のリフトオフが可能な大きさであればよく、図26に示すレジスト372のX1方向幅寸法R2より幅寸法R3を大きく設定することも可能である。
【0229】
上記の幅寸法R1’により、形成される積層体316上面のトラック幅寸法が規定される。このレジスト層370幅寸法R1’は、図26に示すレジスト372のX1方向幅寸法R1より大きく設定するつまり、
R1<R1’
と設定することも可能である。
これは、オーバーレイ部328a,328aを不感領域のみならず感度領域にまで形成した場合でも、前述の第7の実施形態において説明したように、センス電流磁界の影響を低減し、素子の再生特性を向上可能なため、オーバーレイ部328a,328aのトラック幅方向の長さ寸法、即ち、オーバーレイ長に関わりなく、オーバーレイ部328a,328aの先端どうしの間隔の幅寸法により、スピンバルブ型薄膜素子の磁気的トラック幅を規定することが可能なためである。
同時に、これにより、オーバーレイ部328a,328aのトラック幅方向の長さ寸法、即ち、オーバーレイ長を長く設定することが可能となる。
【0230】
次に、図31に示す工程では、エッチングにより積層膜316’の両側を反強磁性層311の下側の一部を残して削り込んで積層体316を形成し、さらに、図32に示す工程では、積層体316の両側にバイアス下地層317a,317a、ハードバイアス層317,317を成膜する。
本実施形態では、このハードバイアス層317,317の成膜および、後の工程で行われる導電層318,318の成膜の際に使用されるスパッタ法は、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法であることが好ましい。
【0231】
図32に示すように、本実施形態では、積層体316の形成された基板310を、ハードバイアス層317,317の組成で形成されたターゲット374から放出されるビームに対して略垂直方向に置き、これにより例えばイオンビームスパッタ法を用いることにより、積層体316に対して略垂直方向からハードバイアス層317,317を成膜することができるから、積層体316上に形成されたレジスト370の切り込み部372a内にハードバイアス層317,317が入り込んで形成されることがない。
また、バイアス下地層317a,317a上にターゲット374から叩き出された粒子を積層する際、上記粒子から構成されるハードバイアス層317,317の上面317b,317bがフリー磁性層314の上面から下面までの間と同じ階層位置で積層体316の側面と接合されるように上記粒子の積層厚を調製し、より好ましくは上記粒子から構成されるハードバイアス層317,317の上面317b,317bがフリー磁性層314の膜厚の半分の厚みの位置までの間と同じ階層位置で積層体316の側面と接合されるように上記粒子の積層厚を調製する。
なお、レジスト370上にも、バイアス下地層317a、ハードバイアス層317と同じ組成の層327a’,327’がそれぞれ形成される。
【0232】
次に、第1のリフトオフ用レジスト370を、レジスト剥離液を用いながらリフトオフによって除去し、図33に示す工程では、積層体316上に第2のリフトオフ用レジスト382を形成する。
このフォトレジスト382は、図33に示すように、トラック幅方向(図中X1方向)の幅寸法R4で平面視して積層体316に接触するとともに、トラック幅方向(図中X1方向)の幅寸法R5で平面視して積層体316を覆う状態とされる。このレジスト層382には、その下面に切り込み部382a,382aが形成されている。
【0233】
ここで、第2のリフトオフ用レジスト282は、図33に示すように積層体311のトラック幅方向中央に位置するように設けられる。これにより、後の工程により形成される左右のオーバーレイ部318a,318aにおけるトラック幅方向長さ寸法をそれぞれ等しく設定する。
また、上記の幅寸法R4と幅寸法R5との差、つまり、トラック幅方向両端部における幅寸法の差を設定することにより、積層体316に対して形成される導電層318,318のうち一方の導電層318が、他方の導電層318に向かって積層体316の表面に延出する長さ、つまり、オーバーレイ部328aのトラック幅方向寸法即ちオーバーレイ長が規定されるとともに、幅寸法R4により、スピンバルブ型薄膜素子の磁気的トラック幅寸法を設定することができる。
【0234】
その後、図34の工程においては、積層体316に対して斜め方向から、Arによるイオンミリングや、逆スパッタ等を行い、第2のリフトオフ用レジスト382が形成されていない部分に対応する積層体316表面の一部を除去する。これにより、酸化層315a、保護層315およびバックド層B1の一部を除去して、導電層318と積層体316とが接続する部分を形成する。
図35に示す工程では、積層体316に対して、イオンビームスパッタ法などにより、ハードバイアス層317上にTaからなる中間層319を成膜し、同時に、露出したバックド層B1上にこの中間層319に連続した連続部319aを成膜する。
次いで、同様にしてイオンビームスパッタ法を行うことにより、この中間層319および連続部319a上に、Crからなる導電層318を、エピタキシャル成長させながら成膜する。
【0235】
なお、図35に示すように、レジスト382の上には、中間層319と同じ組成の層329’、および、導電層318と同じ組成の層328’が形成される。
そして、次の工程では、図35に示すレジスト382を、レジスト剥離液を用いながらリフトオフによって除去し、これによって、積層体316のうち不感領域上まで中間層319および導電層318が形成されたスピンバルブ型薄膜磁気素子(スピンバルブ型薄膜素子)が完成する。
【0236】
ここで、本実施形態では、上記のオーバーレイ部318aのトラック幅方向寸法を、第1のリフトオフ用レジスト370の積層体316両側方向(トラック幅方向)の寸法R1’と、第2のリフトオフ用レジスト382の積層体316両側方向における幅寸法R5との差を、0.2μm〜1.0μmに設定する、つまり、トラック幅方向両端部におけるレジスト70,82の幅寸法の差(R1’−R5)をそれぞれ、0.1μm〜0.5μmに設定することにより、0.1μm〜0.5μmに設定することができる。
【0237】
この第3のスピンバルブ型薄膜素子の製造方法によれば、形成した積層膜316’に、幅寸法が異なり、かつ、切り込み部の形成された2種類のリフトオフ用レジスト370,382を2回形成する2レジスト工程により、積層体316およびハードバイアス層317を形成し、かつ、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、ターゲット376と基板310との角度を傾斜させないかまたは傾斜させた状態で対向させることを選択して、中間層319,導電層318を所望の形状に形成し、上記のスピンバルブ型薄膜素子を容易に得ることができる。
【0238】
この場合、上述した第2の製造方法においてフォトレジスト372を一回形成する製造方法に比べて、導電層318のオーバーレイ部318a長さを大きく設定することができるとともに、切れ込み部382aのトラック幅方向寸法と関係なくオーバーレイ部318a,318aを形成することが可能なため、このオーバーレイ部318a,318aの厚み寸法、特にセンス電流が積層体316に流入する先端部分の厚み寸法を大きく設定することが可能となり、サイドリーディングの発生をより一層防止することが可能となる。
【0239】
[第8の実施形態]
図36は、本発明の第8実施形態のスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。図37は、このスピンバルブ型薄膜素子をトラック幅方向から見た断面図を示す。
本実施形態においても、ボトム型(Bottom type )のシンセティックフェリピンド型(synthetic-ferri-pinned spin-valves)とされ、図25に示した第7実施形態と異なるところは、フリー磁性層がシンセティックフェリフリー型(synthetic-ferri-free spin-valves)とされた点である。
【0240】
図36において、符号311は、基板310上に設けられた反強磁性層である。この反強磁性層311の上には、固定磁性層312が形成されている。
この固定磁性層312は、第1の固定磁性層312Aと、第1の固定磁性層312Aの上に非磁性中間層312Bを介して形成され、第1の固定磁性層312Aの磁化方向と反平行に磁化方向が揃えられた第2の固定磁性層312Cとからなる。
この第2の固定磁性層312Cの上には、Cu(銅)等からなる非磁性導電層313が形成され、さらに、非磁性導電層313の上には、シンセティックフェリフリー型のフリー磁性層444が形成されている。
フリー磁性層444は、第1、第2のフリー磁性層444A,444Cが非磁性中間層444Bを介して2つに分断されており、分断された層444A,444Cどうしで磁化の向きが180゜異なるフェリ磁性状態に形成されている。第1のフリー磁性層444Aは、バックド層B1側に設けられ、第2のフリー磁性層444Cは非磁性導電層313側に設けられている。
【0241】
第1,第2のフリー磁性層444A,444Cは、第7の実施形態のフリー磁性層314と同様の材質からなり、非磁性中間層444Bは、Ru、Rh、Ir、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されていることが好ましい。
また、第1のフリー磁性層444Aおよび第2のフリー磁性層444Cは、例えば、NiFe合金、CoFe合金、あるいはCoNiFe合金などで形成されることができる。ここで、第1のフリー磁性層444Aと第2のフリー磁性層444Cの厚さは異なって形成されている。
また、これら第1のフリー磁性層444Aおよび第2のフリー磁性層444Cはそれぞれ2層で形成されることもできる。
第1のフリー磁性層444Aの層および第2のフリー磁性層444Cの、非磁性中間層444Bおよびバックド層B1に接する側には、それぞれCo層が形成されているものとしてもよい。これにより抵抗変化率を大きくでき、しかも非磁性中間層444Bおよびバックド層B1との拡散を防止することができる。
第2のフリー磁性層444Cと第2の固定磁性層312Cの非磁性導電層313と接する側には、Co層を有することが好ましい。
【0242】
フリー磁性層444の上には、バックド層B1が設けられ、バックド層B1の上には、Taなどで形成された保護層315が形成され、この保護層315の上側が、酸化タンタル(Ta−Oxide )からなる酸化層315aとされている。
図36に示すように、上記反強磁性層311の一部から酸化層315aまでの各層により、略台形状の断面形状を有する積層体446が構成されている。
【0243】
また、符号317,317はハードバイアス層、318,318は導電層、319は中間層を示している。
ハードバイアス層317,317は、積層体446の両側位置に張り出している反強磁性層311上にバイアス下地層317aを介して形成されている。このハードバイアス層317,317上には、Taからなる中間層319を介して導電層318,318が形成されている。
ハードバイアス層317,317の上面317b,317bは、第2のフリー磁性層444Cの上面から下面までの間と同じ階層位置で積層体446の側面と接合されている。これによりハードバイアス317,317からの漏れ磁界を第2のフリー磁性層444Cのみにかけることができる。
また、ハードバイアス層317,317の上面317b,317bは、第2のフリー磁性層444Cの上面から第2のフリー磁性層444Cの膜厚の半分の厚みの位置までの間と同じ階層位置で積層体4446の側面と接合されていることが好ましい。これによりハードバイアス層317,317から強いバイアス磁界が第2のフリー磁性層444cに対してかけられる。
なお、ここで、非磁性中間層444Bおよび第1のフリー磁性層444Aは、第7の実施形態において図25に基づいて説明したバックド層B1を設けた場合と同様に、センス電流Jの流れる中心位置をフリー磁性層側に移動させ、フリー磁性層におけるセンス電流磁界H を弱める働きがあるため、バックド層B1を省略したシンセティックフェリフリー型の構造とすることもできる。
【0244】
フリー磁性層444においては、第2のフリー磁性層444Cの磁化方向がハードバイアス層317,317の磁束によって図示X1方向に固定され、第1のフリー磁性層444Aの磁化方向が図示X1方向と反対方向に固定されている。第1のフリー磁性層444Aは、交換結合磁界(RKKY相互作用)によって第2のフリー磁性層444Cと磁気的に結合されて、図示X1方向の反対方向に磁化された状態となっている。第1のフリー磁性層444Aおよび第2のフリー磁性層444Bの磁化は、フェリ状態を保ちながら、外部磁界の影響を受けて反転自在とされてる。即ち、第2のフリー磁性層444Cの磁化方向がハードバイアス層317,317により図示X1方向に揃えられると、第1のフリー磁性層444Aの磁化方向が図示X1方向の反対方向に揃えられる。
【0245】
また、第2のフリー磁性層444Cの厚さt2は、第1のフリー磁性層444Aの厚さt1よりも厚く形成されている。
また、第1のフリー磁性層444A及び第2のフリー磁性層444Cの飽和磁化をそれぞれM1、M2としたとき、第1のフリー磁性層444A及び第2のフリー磁性層444Cの磁気的膜厚はそれぞれM1・t1、M2・t2となる。
そしてフリー磁性層444は、第1のフリー磁性層444Aと第2のフリー磁性層444Cとの磁気的膜厚の関係を、M2・t2>M1・t1とするように構成されている。第1、第2のフリー磁性層444A,444Cの磁気的膜厚の関係がM2・t2>M1・t1とされていることから、第2のフリー磁性層444Cの磁化が残存した状態となり、フリー磁性層444全体の磁化方向が図示X1方向に揃えられる。このときのフリー磁性層444の実効膜厚は、(M2・t2−M1・t1)となる。
【0246】
また、第1のフリー磁性層444Aと第2のフリー磁性層444Cは、それぞれの磁化方向が反平行方向となるように反強磁性的に結合され、かつ磁気的膜厚の関係がM2・t2>M1・t1とされていることから、人工的なフェリ磁性状態とされている。
またこれにより、フリー磁性層444の磁化方向と固定磁性層312の磁化方向とが交差する関係となっている。
本実施形態のスピンバルブ型薄膜素子では、第2のフリー磁性層444Cの磁気的膜厚を、第1のフリー磁性層444Aの磁気的膜厚よりも大きくすることにより、これら第1、第2のフリー磁性層の磁気的膜厚の差分がフリー磁性層の磁気的な実効膜厚となる。従って、第1、第2のフリー磁性層444A,444Cの膜厚を適宜調整してフリー磁性層444の実効膜厚を薄くすることにより、フリー磁性層444の磁化方向を僅かな大きさの外部磁界により変動させることができ、スピンバルブ型薄膜磁気素子(スピンバルブ型薄膜素子)の感度を高くすることが可能となる。また、フリー磁性層444全体の厚さをある程度厚くできるので、抵抗変化率が極端に小さくなることがなく、スピンバルブ型薄膜素子の感度を高くすることが可能となる。
【0247】
また、ハードバイアス層317,317の上面317b,317bが、第2のフリー磁性層444Cの上面から下面までの間と同じ階層位置で積層体446の側面と接合されたことにより、第1のフリー磁性層444Aに付与したい磁化方向と逆向きの方向に作用させる強い磁場が積層体446の側面上端付近でのハードバイアス層の先端部からかかるのを回避でき、第1のフリー磁性層444Aの両端部の磁化の方向が乱れるのを改善でき、第1のフリー磁性層444Aの両端部の磁化の方向が乱れることに起因して磁化の向きが第1のフリー磁性層444Aの磁化の向きと逆向きに揃えられる第2のフリー磁性層444Cの両端部の磁化の方向が乱れることを防止でき、第1、第2のフリー磁性層444A,444Dの反強磁的な結合を安定して維持させてフリー磁性層444のフェリ磁性状態を保つことができ、従って、スピンバルブ型薄膜素子の感度を低下させることなく、トラック幅の両端の再生波形に異常が生じるのを防止でき、再生波形の安定性を向上できる。
また、ハードバイアス層317,317の上面317b,317bは、第2のフリー磁性層444Cの上面から第2のフリー磁性層444Cの膜厚の半分の厚みの位置までの間と同じ階層位置で積層体446の側面と接合されていることにより、第1のフリー磁性層の両端部の磁化の方向が乱れるのを改善でき、第1のフリー磁性層の両端部の磁化の方向が乱れることに起因して磁化の向きが第1のフリー磁性層の磁化の向きと逆向きに揃えられる第2のフリー磁性層の両端部の磁化の方向が乱れることを防止できるうえ、第2のフリー磁性層に対しては付与したい磁化方向と同じ向きに作用させる強い磁場が与えられ、スピンバルブ型薄膜素子の感度をより高くでき、しかもトラック幅の両端の再生波形に異常が生じるのを防止でき、再生波形の安定性を向上できる。
本実施形態のスピンバルブ型薄膜素子によれば、図1ないし図6に示す第1実施形態におけるスピンバルブ型薄膜素子と同等の効果を奏するとともに、さらに、シンセティックフェリフリー型(synthetic-ferri-free spin-valves)とされているため、大きな抵抗変化率(ΔR/R)を得ることが可能になる。
【0248】
本実施形態におけるスピンバルブ型薄膜素子の製造方法においては、
積層膜を形成する工程においてフリー磁性層を第2のフリー磁性層と非磁性中間層と第1のフリー磁性層から構成し、また、ハードバイアス層を形成する工程においてスパッタを行う際、上記ハードバイアス層の上面が、上記第2のフリー磁性層の上面から下面までの間と同じ階層位置で積層体の側面と接合されるようにハードバイアス層の厚みを調製するようにする以外は、図26ないし図30に示す第2の製造方法、または、図31乃至図35の第2の製造方法におけるスピンバルブ型薄膜素子の製造方法とほぼ同様にして行うことができる。
なお、第8の実施形態のスピンバルブ型薄膜素子においては、導電層318,318を積層体446の両側から該積層体446の中央部分に向けてこの積層体446の表面に延出して被着形成された場合について説明したが、導電層318,318が積層体446の表面に延出されていないタイプのものも本発明の範囲に含まれる。
【0249】
次に、本発明の薄膜磁気へッドについて詳しく説明する。
図17は、本発明の薄膜磁気ヘッドの一例を示した図である。
本発明の薄膜磁気へッドが従来の薄膜磁気ヘッドと異なるところは、磁気抵抗効果素子層245に、上述した本発明の実施形態のスピンバルブ型薄膜素子が備えられてなる薄膜磁気へッドであるところである。
上記スピンバルブ型薄膜素子は、薄膜磁気へッド(再生用ヘッド)を構成する最も重要な箇所である。
【0250】
本発明の薄膜磁気へッドを製造するには、まず、図16および図17に示す磁性材料製の下部シールド層253上に下部ギャップ層254を形成した後、磁気抵抗効果素子層245を形成する上述した本発明の実施形態のスピンバルブ型薄膜素子を成膜する。その後、上記スピンバルブ型薄膜素子の上に上部ギャップ層256を介して上部シールド層257を形成すると、MRヘッド(読出ヘッド)h1が完成する。
続いて、上記MRヘッドh1の上部シールド層257と兼用である下部コア層257の上に、ギャップ層264を形成し、 その上に螺旋状のコイル層266 を、第1の絶縁材料層267Aおよび第2の絶縁材料層267Bで囲むように形成する。さらに、第2絶縁材料層267Bの上に上部コア層268を形成し、上部コア層268の上に、保護層269を設けることによって薄膜磁気へッドとされる。
【0251】
このような薄膜磁気へッドは、上述した本発明の実施形態のスピンバルブ型薄膜素子が備えられてなる薄膜磁気へッドであるので、フリー磁性層の磁区制御を良好に行うことができる安定性に優れた薄膜磁気へッドとなる。
【0252】
なお、薄膜磁気ヘッドのスライダ部分の構成およびインダクティブヘッドの構成は、図16〜図18に示すものに限定されず、その他の種々の構造のスライダおよびインダクティブヘッドを採用することができるのは勿論である。
【0253】
(実験例1)
本発明では、スピンバルブ型薄膜磁気素子において、バックド層を形成したことによるアシンメトリーの改善の関係と、トラック幅と電極層オーバーレイ部と、再生出力/実行再生トラック幅比、および、ノイズとの関係について測定した。
実験に使用したスピンバルブ型薄膜磁気素子は、図31乃至図35に示す第3の製造方法と同様にして作製したスピンバルブ型薄膜素子であり、すなわち、積層体の表面に延出した導電層が中間層を介してバックド層に接続されている以外は図25に示したスピンバルブ型薄膜素子と同様のものである。
ここで、図25におけるトラック幅寸法O−Twを0.5μmとして形成し、オーバーレイ部の幅寸法T6を0.5μmとして形成した。
積層体における各層の膜厚は、下から
Ta30/PtMn150/Co20/Ru8/Co25/Cu* 27/Co5/NiFe30/Cu20/Ta20(各数字はそれぞれの膜厚のÅ単位に対応する)
に設定されている。
【0254】
まず、このスピンバルブ型薄膜磁気素子において、導電層から与えるセンス電流の大きさを変化させて、アシンメトリーを測定した。
その結果を、図42(b)に示す。
これに対し、図40(a)に模式的に示すようなバックド層(Cu* )がない点が異なる比較例のスピンバルブ型薄膜磁気素子を作成し、同様に、導電層から与えるセンス電流の大きさを変化させて、アシンメトリーを測定した。
その結果を、図42(a)に示す。
【0255】
図42に示すように、バックド層の存在によって、アシンメトリーが減少していることがわかる。特に、実使用状態のセンス電流5mA程度において、比較例においては15%以上であったアシンメトリーが、−3%程度に改善されていることが解る。
【0256】
(実験例2)
次に、このスピンバルブ型薄膜磁気素子において、素子高さを変化させて形成した複数のスピンバルブ型薄膜磁気素子を形成し、再生出力/実効再生トラック幅比を測定した。ここで、素子高さとは、図1におけるY方向の感度領域の幅寸法である。
それに対し、図22に模式的に示すような導電層のオーバーレイ部のない比較例のスピンバルブ型薄膜磁気素子において、素子高さを変化させて形成した複数のスピンバルブ型薄膜磁気素子を形成し、再生出力/実効再生トラック幅比を測定した。
その結果を、図44に示す。
【0257】
図44に示すように、導電層のオーバーレイ部を設けることにより、再生出力/実効再生トラック幅比が改善されていることが解る。特に、0.4μmの素子高さにおいて、比較すると、約1.6倍の出力が得られている。
ここで、上記の実施例において、マイクロトラックプロファイル法により再生出力を測定し、その結果を図45(a)に示す。同様に、比較例において、マイクロトラックプロファイル法により再生出力を測定し、その結果を図45(b)に示す。
図45によれば、オーバーレイ部のないクロストラック位置0±0.5μmにおいて、ほぼ出力が得られ、オーバーレイ部のあるクロストラック位置−0.5μm以下および0.5μm以上においては、ベースに等しい出力が得られていることが解る。つまり、電極層の位置と感度領域および不感領域の位置がほぼ一致していることが解る。ここで、実効再生トラック幅は0.6μm程度であることが解る。
さらに、図45(a)の実施例と図45(b)の比較例とを比べると、ベース出力に対して最大出力が相対的に増大していることが解る。
これにより、直流抵抗値を低減でき、かつ、再生出力に隣接トラック信号を読むサイドリーディングによるノイズを発生しないこと、かつ、実効トラック幅あたりの再生出力が大幅に向上することが解る。
【0258】
(実験例3)
次に、ボトムタイプのシンセティックフェリフリー型スピンバルブ型薄膜磁気素子において、ハードバイアス層の上面を第2のフリー磁性層の上面から下面までの間の同じ階層位置で積層体の側面と接合したことによる第1、第2のフリー磁性層の両端部の磁化の方向の乱れの改善の関係についてマイクロマグネティックシュミレーションにより調べた。実験に使用したスピンバルブ型薄膜磁気素子は、フリー磁性層と保護層との間にバックド層がなく、導電層が積層体の表面に延出していない以外は図36乃至図37に示すスピンバルブ型薄膜素子と同様の素子
(実施例のスピンバルブ型薄膜素子)である。その結果を図46に示す。図46(a)は実施例の素子の第1のフリー磁性層の磁化の分布を示す図であり、図46(b)は実施例の素子の第2のフリー磁性層の磁化の分布を示す図である。
【0259】
また、ここでの実施例のスピンバルブ型薄膜素子の光学トラック幅寸法は0.6μmとしたものである。
また、実施例のスピンバルブ型薄膜素子の積層体における各層の膜厚は、下からTa30/PtMn150/Co20/Ru8/Co25/Cu27/Co5/NiFe40/Ru8/NiFe25/Ta20(各数字はそれぞれの膜厚のÅ単位に対応する)に設定されている。第1のフリー磁性層の磁気的膜厚は、4.52×10-4(T・nm)、第2のフリー磁性層の磁気的膜厚は、7.16×10-4(T・nm)、第1と第2のフリー磁性層間の反平行結合磁界58.4kA/mとした。また、この積層体の両側のCoPtからなるハードバイアス層の厚みは、約30nm(300Å)、各ハードバイアス層上に設けられたCrからなる導電層の厚みは、2.5nm(25Å)とした。ハードバイアス層の磁気的膜厚は、1.88×10-3(T・nm)とした。また、ハードバイアス層の上面の積層体の側面との接合点は、第2のフリー磁性層の厚みの半分の位置とした。また、上記積層体の側面と、ハードバイアス層との間に介在されたバイアス下地層の厚みは、2nm(20Å)とした。また、ハードバイアス磁界の方向は、X1方向とした。
【0260】
それに対し図23に示すようなハードバイアス層の上面が積層体の上面より突出した(ハードバイアス層の上面が第2のフリー磁性層の上面より上方で接合された)比較例のスピンバルブ型薄膜磁気素子において、第1、第2のフリー磁性層の両端部の磁化の方向の乱れについてマイクロマグネティックシュミレーションにより調べた。その結果を、図47に示す。図47(a)は、比較例の素子の第1のフリー磁性層の磁化の分布を示す図であり、図47(b)は比較例の素子の第2のフリー磁性層の磁化の分布を示す図である。
また、ここでの比較例のスピンバルブ型薄膜素子の光学トラック幅寸法および積層体の各層の構成材料および膜厚、ハードバイアス層および導電層の構成材料、第1、第2のフリー磁性層の磁気的膜厚、ハードバイアス層の磁気的膜厚、上記積層体と上記ハードバイアス間に介在されたバイアス下地層の厚みは上記実施例と同様であるが、各ハードバイアス層の積層体との接合面の上面は上記積層体の第2のフリー磁性層の上面より約5.3nm(53Å)突出するように設定した。
【0261】
図47に示した結果からハードバイアス層の上面が積層体の上面より突出した比較例のスピンバルブ型薄膜素子においては、図47(a)に示すように第1のフリー磁性層の両端には、ハードバイアス層から強い逆方向磁界がかかり、第2のフリー磁性層との結合磁界と競合(フラストレーション)するために、両端の磁化方向が乱れ、X1方向と逆方向に揃っていない。また、第2のフリー磁性層の両端の磁化方向も乱れ、X1方向に揃っていないことがわかる。これに起因して比較例のスピンバルブ型薄膜素子では、バルクハウゼンノイズ等の再生波形が不安定となることが予測される。
図46に示した結果からハードバイアス層の上面の積層体の側面との接合点を下げて、第1のフリー磁性層と接合しないようにした実施例のスピンバルブ型薄膜素子においては、比較例のものに比べて、第1のフリー磁性層の両端の磁化方向の乱れが軽減されており、また、第2のフリー磁性層の両端の磁化方向の乱れも改善されていることがわかる。これにより実施例のスピンバルブ型薄膜素子では、再生波形の安定性を向上できることがわかる。
【0262】
【発明の効果】
以上説明したように、本発明のスピンバルブ型薄膜素子では、ハードバイアス層の上面は、上記積層体の側面上端より基板側の位置で上記積層体の側面と接合されているので、従来のハードバイアス層のように、積層体の側面上端に接合されている尖った断面形状の先端部がなく、ハードバイアス層からの漏れ磁束が、上部シールド層に吸われることによるフリー磁性層に加わる有効磁界の減少が起こりにくいものとなり、フリー磁性層が単磁区化されやすくなるため、上記フリー磁性層の磁区制御を良好に行うことができる安定性に優れたスピンバルブ型薄膜素子とすることができる。
また、上記ハードバイアス層が、上記フリー磁性層と同じ階層位置に配置されたスピンバルブ型薄膜素子であるので、フリー磁性層に対して、強いバイアス磁界を与えやすくなり、フリー磁性層を単磁区化しやすく、バルクハウゼンノイズの発生を低減させることができる。
【0263】
また、上記ハードバイアス層の上面が、上記ハードバイアス層の最上位置と同じまたは最上位置よりも基板側の位置で上記積層体の側面と接合されているものとすることで、積層体の側面上端に接合されている尖った断面形状の先端部を有する従来のハードバイアス層を有するものと比較して、 積層体の側面上端付近 で、フリー磁性層の磁化の方向と反対の方向に磁場を作用させる磁界が生じにくいものとなり、フリー磁性層が単磁区化されやすくなるため、上記フリー磁性層の磁区制御をより一層良好に行うことができる優れたスピンバルブ型薄膜素子とすることができる。
【0264】
また、本発明のスピンバルブ型薄膜素子では、上記ハードバイアス層を、上記フリー磁性層の膜厚方向に上記フリー磁性層の膜厚よりも大きな膜厚とし、上記ハードバイアス層の上面を、上記フリー磁性層の上面よりも基板から離れた位置に配置することで、フリー磁性層に対して、より一層強いバイアス磁界を与えやすくなり、フリー磁性層を単磁区化しやすくなるため、バルクハウゼンノイズの発生をより一層低減させることができる。
【0265】
さらにまた、上記ハードバイアス層の下面を、上記フリー磁性層の下面よりも基板側の位置に配置することで、さらにフリー磁性層に対して、強いバイアス磁界を与えやすくなり、フリー磁性層を単磁区化しやすくなるため、バルクハウゼンノイズの発生をより一層低減させることができる。
【0266】
また、上記のスピンバルブ型薄膜素子において、上記反強磁性層を、X−Mn(ただし、Xは、Pt、Pd、Ru、Ir、Rh、Osのうちから選択される1種の元素を示す。)の式で示される合金またはX’−Pt−Mn(ただし、X’は、Pd、Cr、Ru、Ni、Ir、Rh、Os、Au、Ag、Ne、Ar、Xe、Krのうちから選択される1種または2種以上の元素を示す。)の式で示される合金からなり、XまたはX’+Ptが37〜63原子%の範囲であるものとすることで、上記反強磁性層を従来から使用されているNiO合金、FeMn合金、NiMn合金などで形成したものと比較して、交換結合磁界が大きく、またブロッキング温度が高く、さらに耐食性に優れているなどの優れた特性を有するスピンバルブ型薄膜素子とすることができる。
【0267】
また、上記フリー磁性層の厚さ方向両側に、各々非磁性導電層と固定磁性層と反強磁性層とが形成されたデュアル型構造とされてなるスピンバルブ型薄膜素子とすることで、フリー磁性層/非磁性導電層/固定磁性層の3層の組合わせを2組有するものとなり、シングルスピンバルブ型薄膜素子と比較して、大きな△MR(抵抗変化率)が得られ、高密度記録化に対応できるスピンバルブ型薄膜素子とすることができる。
【0268】
また、少なくとも上記固定磁性層が非磁性中間層を介して2つに分断され、分断された層どうしで磁化の向きが反平行となるフェリ磁性状態とされてなるスピンバルブ型薄膜素子とすることで、2つに分断された固定磁性層のうち一方が他方の固定磁性層を適正な方向に固定する役割を担い、固定磁性層の状態を非常に安定した状態に保つことが可能となり、より優れたものとなる。
さらにまた、 少なくともフリー磁性層が非磁性中間層を介して2つに分断され、分断された層どうしで磁化の向きが反平行となるフェリ磁性状態とされてなるスピンバルブ型薄膜素子とすることで、2つに分断されたフリー磁性層どうしの間に交換結合磁界が発生し、フェリ磁性状態とされ、外部磁界に対して感度よく反転できるより一層優れたものとなる。
【0269】
また、導電層としてCrを用いた場合は、ハードバイアス層と上記導電層との間に、Taからなる中間層を設けることにより、後工程のレジスト硬化などの熱プロセスに対して拡散バリアーとして機能し、ハードバイアス層の磁気特性の劣化を防ぐことができる。
導電層としてTaを用いる場合は、ハードバイアス層と上記導電層との間に、Crからなる中間層を設けることにより、Crの上に堆積するTaの結晶を、より低抵抗の体心立方構造としやすくする効果がある。
【0270】
さらに、上記ハードバイアス層と上記積層体との間および上記ハードバイアス層と基板との間に、結晶構造が体心立方構造(bcc構造)であるCrからなるバイアス下地層を設けることにより、上記ハードバイアス層の保磁力および角形比が大きくなり、上記フリー磁性層の単磁区化に必要なバイアス磁界を増大させることができる。
【0271】
また、基板上に、下地層、フリー磁性層、非磁性導電層、固定磁性層、反強磁性層、保護層を順次成膜して積層膜を形成する工程と、上記積層膜上にリフトオフ用レジストを形成する工程と、上記リフトオフ用レジストに覆われていない部分をイオンミリングにより除去して台形状の積層体を形成する工程と、上記積層体の両側に、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、上記ハードバイアス層を、 上記フリー磁性層と同じ階層位置に配置されるように形成 し、かつ、上記ハードバイアス層の上面を、上記積層体の側面の上端より基板側の位置で上記積層体の側面と接合されるように形成する工程と、上記ハードバイアス層上に、通常のスパッタ法あるいはターゲットと基板との角度を傾斜させた状態で対向させ、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法のいずれかまたはそれらを組み合わせたスパッタ法により、導電層を形成する工程とを有するスピンバルブ型薄膜素子の製造方法によれば、上記のスピンバルブ型薄膜素子を容易に得ることができる。
【0272】
さらにまた、上記のスピンバルブ型薄膜素子が備えられてなる薄膜磁気ヘッドとすることで、フリー磁性層の磁区制御を良好に行うことができる安定性に優れた薄膜磁気へッドとすることができる。
【図面の簡単な説明】
【図1】 本発明における第1の実施形態のスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図2】 図1に示したスピンバルブ型薄膜素子の製造方法を説明するための図であって、基板上に積層体を形成し、その上にリフトオフ用のレジストを形成した状況を示した図である。
【図3】 図1に示したスピンバルブ型薄膜素子の製造方法を説明するための図であって、積層体を台形状に形成した状況を示した図である。
【図4】 図1に示したスピンバルブ型薄膜素子の製造方法を説明するための図であって、ハードバイアス層を形成した状況を示した図である。
【図5】 図1に示したスピンバルブ型薄膜素子の製造方法を説明するための図であって、導電層を形成した状況を示した図である。
【図6】 本発明における第2の実施形態のスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図7】 本発明における第3の実施形態のスピンバルブ型薄膜素子を模式図的に示した横断面図である。
【図8】 図7に示したスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図9】 本発明における第4の実施形態のスピンパルブ型薄膜素子を模式図的に示した横断面図である。
【図10】 図9に示したスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図11】 本発明における第5の実施形態のスピンパルブ型薄膜素子を模式図的に示した横断面図である。
【図12】 図11に示したスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図13】 本発明における第6の実施形態のスピンパルブ型薄膜素子を模式図的に示した横断面図である。
【図14】 図13に示したスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図15】 薄膜磁気ヘッドの一例を示す斜視図である。
【図16】 図15に示した薄膜磁気ヘッドの磁気コア部を示した断面図である。
【図17】 図16に示した薄膜磁気ヘッドを示した概略斜視図である。
【図18】 従来のスピンバルブ型薄膜素子を備えた薄膜磁気ヘッドの要部の一例を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図19】 本発明における第1の実施形態のスピンバルブ型薄膜素子の第2の例を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図20】 本発明における第1の実施形態のスピンバルブ型薄膜素子の第3の例を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図21】 本発明における第1の実施形態のスピンバルブ型薄膜素子の第4の例を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図22】 従来のその他の例のスピンバルブ型薄膜素子を備えた薄膜磁気ヘッドの要部の一例を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図23】 従来のその他の例のスピンバルブ型薄膜素子を備えた薄膜磁気ヘッドの要部の一例を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図24】 図23に示すスピンバルブ型薄膜素子のフリー磁性層のM−H曲線を示す図である。
【図25】 本発明の第7の実施形態のスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図26】 本発明に係るスピンバルブ型薄膜素子の製造方法(第2の製造方法)の実施形態を説明するための正断面図である。
【図27】 本発明に係るスピンバルブ型薄膜素子の製造方法(第2の製造方法)の実施形態を説明するための正断面図である。
【図28】 本発明に係るスピンバルブ型薄膜素子の製造方法(第2の製造方法)の実施形態を説明するための正断面図である。
【図29】 本発明に係るスピンバルブ型薄膜素子の製造方法(第2の製造方法)の実施形態を説明するための正断面図である。
【図30】 本発明に係るスピンバルブ型薄膜素子の製造方法(第2の製造方法)の実施形態を説明するための正断面図である。
【図31】 本発明に係るスピンバルブ型薄膜素子の製造方法(第3の製造方法)の実施形態を説明するための正断面図である。
【図32】 本発明に係るスピンバルブ型薄膜素子の製造方法(第3の製造方法)の実施形態を説明するための正断面図である。
【図33】 本発明に係るスピンバルブ型薄膜素子の製造方法(第3の製造方法)の実施形態を説明するための正断面図である。
【図34】 本発明に係るスピンバルブ型薄膜素子の製造方法(第3の製造方法)の実施形態を説明するための正断面図である。
【図35】 本発明に係るスピンバルブ型薄膜素子の製造方法(第3の製造方法)の実施形態を説明するための正断面図である。
【図36】 本発明の第8実施形態のスピンバルブ型薄膜素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図37】 図36のスピンバルブ型薄膜素子をトラック幅方向から見た断面図である。
【図38】 スピンバルブ型薄膜素子においてバックド層によるスピンフィルター効果への寄与を説明するための模式説明図である。
【図39】 スピンバルブ型薄膜磁気素子のフリー磁性層の変動磁化Mf の方向の規定について説明する模式説明図である。
【図40】 スピンバルブ型薄膜磁気素子のバックド層によって、センス電流磁界HJ からフリー磁性層の変動磁化Mf への寄与の減少について説明する図であり、図40(a)は、バックド層のないスピンバルブ型薄膜素子の例を示す媒体対向面(ABS面)に垂直な横断面図であり、図40(b)は本実施形態におけるスピンバルブ型薄膜素子の例を示す媒体対向面(ABS面)に垂直な横断面図である。
【図41】 本発明のスピンバルブ型薄膜磁気素子におけるフリー磁性層の磁化方向分布を示す図である。
【図42】 本発明におけるスピンバルブ型薄膜磁気素子のセンス電流値とアシンメトリーとの関係を示すグラフで、比較例(a)、実施例(b)を示すものである。
【図43】 スピンバルブ型薄膜磁気素子の積層体に占める感度領域と不感領域との測定方法を示す模式図である。
【図44】 本発明におけるスピンバルブ型薄膜磁気素子の素子高さと再生出力/実効再生トラック幅との関係を示すグラフである。
【図45】 本発明におけるスピンバルブ型薄膜磁気素子のクロストラック位置と相対出力との関係を示すグラフである。
【図46】 実施例のスピンバルブ型薄膜磁気素子の第1、第2のフリー磁性層の磁化の分布を示す図である。
【図47】 比較例のスピンバルブ型薄膜磁気素子の第1、第2のフリー磁性層の磁化の分布を示す図である。
【符号の説明】
1、10、30、70、91、121、141 下地層
2、28、31、44、80、92、108、122、142、148、311反強磁性層
3、123、312 固定磁性層
143 固定磁性層(下)
147 固定磁性層(上)
27、79、312A 第1の固定磁性層
26、33、42、72、78、94、100、106、312B、444B 非磁性中間層
25、77、312C 第2の固定磁性層
4、24、35、40、76、96、104、124、144、146、313非磁性導電層
5、21、36、125、145、314、444 フリー磁性層
7、29、45、81、109、127、149、269、315 保護層
32、93 第lの固定磁性層(下)
34、95 第2の固定磁性層(下)
41、105 第2の固定磁性層(上)
43、107 第1の固定磁性層(上)
73、101、444A 第1のフリー磁性層
71、97、444C 第2のフリー磁性層
6、62、82、110、126、130、132、600、601、602
、317 ハードバイアス層
8、63、83、111、128、131、133、318 導電層
113、114 センス電流
314a、317b、600A、601A 上面
316a 積層膜
318a オーバーレイ部
370 第1のリフトオフ用レジスト
372 リフトオフ用レジスト
372a、382a 切り込み部
374、376 ターゲット
382 第2のリフトオフ用レジスト
a1、a2、a3、a4、a5、a6、316、446 積層体
b1、b2、b3、b4、b5、b6 側面
c1、c2、c3、c4、c5、c6、C10 接合点
B1 バックド層

Claims (14)

  1. 基板上に、反強磁性層と、 この反強磁性層と接して形成され、 前記反強磁性層との交換結合磁界により磁化方向が固定される固定磁性層と、前記固定磁性層に非磁性導電層を介して形成されたフリー磁性層と、前記反強磁性層と前記固定磁性層と前記非磁性導電層と前記フリー磁性層とが少なくとも積層されてなる積層体の両側に形成され、前記フリー磁性層の磁化方向を前記固定磁性層の磁化方向と交差する方向へ揃えるためのハードバイアス層と、前記ハードバイアス層上に形成されて前記積層体に検出電流を与える導電層とを有するスピンバルブ型薄膜素子であり、
    前記反強磁性層と前記固定磁性層と前記非磁性導電層と前記フリー磁性層は、前記基板側から、反強磁性層、固定磁性層、非磁性導電層、フリー磁性層の順で積層され、
    前記ハードバイアス層は、前記フリー磁性層と同じ階層位置に配置され、前記ハードバイアス層の上面は、前記積層体の側面上端より基板側の位置で前記積層体の側面と接合され、
    前記フリー磁性層は非磁性中間層を介して2つに分断され、分断された層どうしで磁化の向きが反平行となるフェリ磁性状態とされ、前記非磁性中間層で分断された2つのフリー磁性層のうち前記非磁性導電層に接する方を第2のフリー磁性層とし、他方を第1のフリー磁性とした場合に、前記ハードバイアス層の上面は、前記第2のフリー磁性層の上面から下面までの間と同じ階層位置で前記積層体の側面と接合されていることを特徴とするスピンバルブ型薄膜素子。
  2. 前記ハードバイアス層の上面が、前記ハードバイアス層の最上位置と同じまたは前記最上位置よりも基板側の位置で前記積層体の側面と接合されていることを特徴とする請求項1に記載のスピンバルブ型薄膜素子。
  3. 前記第2のフリー磁性層の飽和磁化および厚さをそれぞれM、tとし、前記第1のフリー磁性層の飽和磁化および厚さをそれぞれM、tとし、前記第2のフリー磁性層の磁気的膜厚をM・t とし、前記第1のフリー磁性層の磁気的膜厚をM・t としたときに、M・t>M・tなる関係を満たすことを特徴とする請求項1または請求項2に記載のスピンバルブ型薄膜素子。
  4. 前記ハードバイアス層の下面は、前記フリー磁性層の下面よりも基板側の位置に配置されていることを特徴とする請求項1〜請求項3のいずれかに記載のスピンバルブ型薄膜素子。
  5. 前記反強磁性層は、X−Mn(ただし、Xは、Pt、Pd、Ru、Ir、Rh、Osのうちから選択される1種の元素を示す。)の式で示される合金からなり、Xが37〜63原子%の範囲であることを特徴とする請求項1〜請求項4のいずれかに記載のスピンバルブ型薄膜素子。
  6. 前記反強磁性層は、X’−Pt−Mn(ただし、X’は、Pd、Cr、Ru、Ni、Ir、Rh、Os、Au、Ag、Ne、Ar、Xr、Krのうちから選択される1種または2種以上の元素を示す。)の式で示される合金からなり、X’+Ptが37〜63原子%の範囲であることを特徴とする請求項1〜請求項5のいずれかに記載のスピンバルブ型薄膜素子。
  7. 前記ハードバイアス層と前記導電層との間に、TaまたはCrからなる中間層が設けられたことを特徴とする請求項1〜請求項6のいずれかに記載のスピンバルブ型薄膜素子。
  8. 前記ハードバイアス層と前記積層体との間および前記ハードバイアス層と基板との間に、Crからなるバイアス下地層が設けられたことを特徴とする請求項1〜請求項7のいずれかに記載のスピンバルブ型薄膜素子。
  9. 前記固定磁性層が非磁性中間層を介して2つに分断され、分断された層どうしで磁化の向きが反平行となるフェリ磁性状態とされたことを特徴とする請求項1乃至8のいずれかに記載のスピンバルブ型薄膜素子。
  10. 前記積層体は前記フリー磁性層の前記非磁性導電層に対する逆側に接する非磁性導電材料からなるバックド層を有することを特徴とする請求項1乃至9のいずれかに記載のスピンバルブ型薄膜素子。
  11. 前記導電層が、前記積層体の両側から前記積層体の中央部分に向けてこの積層体の表面に延出して被着形成されていることを特徴とする請求項1乃至10のいずれかに記載のスピンバルブ型薄膜素子。
  12. 前記ハードバイアス層の上面は、前記第2のフリー磁性 層の上面から前記第2のフリー磁性層の膜厚の半分の厚みの位置までの間と同じ階層位置で前記積層体の側面と接合されていることを特徴とする請求項1乃至11のいずれかに記載のスピンバルブ型薄膜素子。
  13. 前記第2のフリー磁性層の膜厚が前記第1のフリー磁性層の膜厚よりも大きいことを特徴とする請求項1記載のスピンバルブ型薄膜素子。
  14. 請求項1乃至請求項13のいずれかに記載のスピンバルブ型薄膜素子が備えられてなることを特徴とする薄膜磁気ヘッド。
JP34543499A 1999-01-27 1999-12-03 スピンバルブ型薄膜素子とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッド Expired - Fee Related JP3703348B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34543499A JP3703348B2 (ja) 1999-01-27 1999-12-03 スピンバルブ型薄膜素子とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッド
US09/491,397 US6538858B1 (en) 1999-01-27 2000-01-25 Spin-valve thin film element and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1911899 1999-01-27
JP11-19118 1999-01-27
JP34543499A JP3703348B2 (ja) 1999-01-27 1999-12-03 スピンバルブ型薄膜素子とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッド

Publications (2)

Publication Number Publication Date
JP2000285419A JP2000285419A (ja) 2000-10-13
JP3703348B2 true JP3703348B2 (ja) 2005-10-05

Family

ID=26355936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34543499A Expired - Fee Related JP3703348B2 (ja) 1999-01-27 1999-12-03 スピンバルブ型薄膜素子とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッド

Country Status (2)

Country Link
US (1) US6538858B1 (ja)
JP (1) JP3703348B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60139682D1 (de) * 2000-06-21 2009-10-08 Koninkl Philips Electronics Nv Magnetische mehrschichtstruktur mit verbessertem magnetfeldbereich
JP2002074621A (ja) * 2000-08-30 2002-03-15 Alps Electric Co Ltd スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及び浮上式磁気ヘッド並びにスピンバルブ型薄膜磁気素子の製造方法
US6724583B2 (en) * 2000-12-19 2004-04-20 Seagate Technology Llc Adjustable permanent magnet bias
US7059201B2 (en) * 2000-12-20 2006-06-13 Fidelica Microsystems, Inc. Use of multi-layer thin films as stress sensors
US6738237B2 (en) * 2001-01-04 2004-05-18 Hitachi Global Storage Technologies Netherlands B.V. AP-pinned spin valve design using very thin Pt-Mn AFM layer
JP2002319111A (ja) 2001-02-15 2002-10-31 Fujitsu Ltd 磁気抵抗効果型磁気ヘッド
JP3558996B2 (ja) * 2001-03-30 2004-08-25 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気再生装置及び磁気記憶装置
US6668443B2 (en) * 2001-07-30 2003-12-30 Headway Technologies, Inc. Process for manufacturing a spin valve recording head
US6826021B2 (en) * 2002-04-03 2004-11-30 International Business Machines Corporation Spin valve sensor having ultra-thin freelayers including nickel-iron, ruthenium, and a cobalt-iron nanolayer
US6934129B1 (en) * 2002-09-30 2005-08-23 Western Digital (Fremont), Inc. Magnetoresistive sensor with overlapping lead layers including alpha tantalum and conductive layers
US7230802B2 (en) * 2003-11-12 2007-06-12 Hitachi Global Storage Technologies Netherlands B.V. Method and apparatus for providing magnetostriction control in a freelayer of a magnetic memory device
US7382588B2 (en) * 2004-05-28 2008-06-03 Hitachi Global Storage Technologies Netherlands B.V. Read sensor having a self-pinned layer formed in both central and side regions for increased thermal stability
JP2006049639A (ja) * 2004-08-05 2006-02-16 Alps Electric Co Ltd 磁気検出素子
KR100648143B1 (ko) * 2004-11-03 2006-11-24 한국과학기술연구원 전류 인가 자기 저항 소자
JP4966526B2 (ja) * 2005-09-07 2012-07-04 日立オートモティブシステムズ株式会社 流量センサ
KR100950897B1 (ko) * 2005-09-13 2010-04-06 캐논 아네르바 가부시키가이샤 자기저항 효과 소자의 제조 방법 및 제조 장치
JP2008004223A (ja) * 2006-06-26 2008-01-10 Fujitsu Ltd 薄膜磁気ヘッドの製造方法
JP2008186496A (ja) * 2007-01-26 2008-08-14 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッド
AU2009201189A1 (en) * 2008-03-26 2009-10-15 Fisher & Paykel Appliances Limited An appliance
US8416540B1 (en) 2008-06-26 2013-04-09 Western Digital (Fremont), Llc Method for defining a magnetoresistive junction using multiple mills at a plurality of angles
WO2010038593A1 (ja) * 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 ハードバイアス積層体の成膜装置および成膜方法、並びに磁気センサ積層体の製造装置および製造方法
US10343120B2 (en) * 2016-05-28 2019-07-09 Dynamic Separation Technology, Llc Dynamic filtration technology

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079035A (en) 1989-10-10 1992-01-07 International Business Machines Corporation Method of making a magnetoresistive read transducer having hard magnetic bias
US5018037A (en) 1989-10-10 1991-05-21 Krounbi Mohamad T Magnetoresistive read transducer having hard magnetic bias
US5287238A (en) 1992-11-06 1994-02-15 International Business Machines Corporation Dual spin valve magnetoresistive sensor
US5465185A (en) 1993-10-15 1995-11-07 International Business Machines Corporation Magnetoresistive spin valve sensor with improved pinned ferromagnetic layer and magnetic recording system using the sensor
US5408377A (en) 1993-10-15 1995-04-18 International Business Machines Corporation Magnetoresistive sensor with improved ferromagnetic sensing layer and magnetic recording system using the sensor
JPH08221719A (ja) 1995-02-16 1996-08-30 Tdk Corp スピンバルブ磁気抵抗ヘッド及びその製造方法
JPH08235542A (ja) * 1995-02-28 1996-09-13 Sumitomo Metal Ind Ltd 磁気抵抗効果素子
JPH08293107A (ja) * 1995-04-21 1996-11-05 Hitachi Ltd 横バイアス膜を用いた磁気記録再生装置
JP3629309B2 (ja) * 1995-09-05 2005-03-16 アルプス電気株式会社 薄膜磁気ヘッド
SG46731A1 (en) 1995-06-30 1998-02-20 Ibm Spin valve magnetoresistive sensor with antiparallel pinned layer and improved exchange bias layer and magnetic recording system using the senor
US5768067A (en) 1995-09-19 1998-06-16 Alps Electric Co., Ltd. Magnetoresistive head using exchange anisotropic magnetic field with an antiferromagnetic layer
US5869963A (en) 1996-09-12 1999-02-09 Alps Electric Co., Ltd. Magnetoresistive sensor and head
US5751521A (en) 1996-09-23 1998-05-12 International Business Machines Corporation Differential spin valve sensor structure
US5793207A (en) * 1996-10-09 1998-08-11 International Business Machines Corporation Disk drive with a thermal asperity reduction circuitry using a spin valve sensor
JP3455037B2 (ja) 1996-11-22 2003-10-06 アルプス電気株式会社 スピンバルブ型薄膜素子、その製造方法、及びこのスピンバルブ型薄膜素子を用いた薄膜磁気ヘッド
US5883764A (en) * 1997-10-03 1999-03-16 International Business Machines Corporation Magnetoresistive sensor having multi-layered refractory metal conductor leads

Also Published As

Publication number Publication date
US6538858B1 (en) 2003-03-25
JP2000285419A (ja) 2000-10-13

Similar Documents

Publication Publication Date Title
JP3703348B2 (ja) スピンバルブ型薄膜素子とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッド
US6980403B2 (en) Magnetic sensing element with side shield layers
JP3607850B2 (ja) 磁気抵抗効果型薄膜磁気素子及びその製造方法と、その磁気抵抗効果型薄膜磁気素子を備えた薄膜磁気ヘッド
US6847508B2 (en) Spin valve thin film magnetic element and thin film magnetic head
US7719799B2 (en) Magnetoresistive element, magnetic head and magnetic recording/reproducing apparatus
JP3657487B2 (ja) スピンバルブ型薄膜磁気素子およびその製造方法、およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP2001216612A (ja) スピンバルブ型薄膜磁気素子およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP2002076472A (ja) スピンバルブ型薄膜磁気素子およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP3939503B2 (ja) 磁気検出素子及びその製造方法
KR100354687B1 (ko) 스핀밸브형 박막자기소자 및 그 제조방법
JP2002009365A (ja) スピンバルブ型薄膜磁気素子及びその製造方法並びにこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
US7079362B2 (en) Giant magnetoresistive element
US7443636B2 (en) Magnetic head having layered film with tilted crystalline grain structure
US20080218912A1 (en) CPP-type magnetoresistive element having spacer layer that includes semiconductor layer
JP2002305336A (ja) スピンバルブ型薄膜素子およびその製造方法
JP2001052315A (ja) スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
JP3859959B2 (ja) スピンバルブ型薄膜磁気素子およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP3502029B2 (ja) スピンバルブ型薄膜磁気素子及びその製造方法並びにこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
US7876537B2 (en) Magnetoresistive element incorporating conductive film disposed on peripheral surface of layered structure including spacer layer, free layer and pinned layer, the conductive film allowing conduction between the free layer and the pinned layer
JP3766600B2 (ja) 磁気検出素子及びその製造方法
JP2007048388A (ja) 磁気ヘッドおよび磁気ヘッド作製方法、並びに、磁気記録再生装置
JP3212565B2 (ja) スピンバルブ型薄膜素子およびこれを備えた薄膜磁気ヘッド
JP2002043655A (ja) スピンバルブ型薄膜磁気素子およびそのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP2000215424A (ja) スピンバルブ型薄膜磁気素子およびそのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP2000215423A (ja) スピンバルブ型薄膜素子およびそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッド

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees