KR102477340B1 - 전혈에서 헤모글로빈 파라미터들을 결정하기 위한 분석 시스템 및 방법 - Google Patents

전혈에서 헤모글로빈 파라미터들을 결정하기 위한 분석 시스템 및 방법 Download PDF

Info

Publication number
KR102477340B1
KR102477340B1 KR1020187025571A KR20187025571A KR102477340B1 KR 102477340 B1 KR102477340 B1 KR 102477340B1 KR 1020187025571 A KR1020187025571 A KR 1020187025571A KR 20187025571 A KR20187025571 A KR 20187025571A KR 102477340 B1 KR102477340 B1 KR 102477340B1
Authority
KR
South Korea
Prior art keywords
light
module
optical
cuvette
spectrometer
Prior art date
Application number
KR1020187025571A
Other languages
English (en)
Other versions
KR20180123023A (ko
Inventor
마이클 캐퍼티
스콧 피. 시오넥
Original Assignee
노바 바이오메디컬 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노바 바이오메디컬 코포레이션 filed Critical 노바 바이오메디컬 코포레이션
Publication of KR20180123023A publication Critical patent/KR20180123023A/ko
Application granted granted Critical
Publication of KR102477340B1 publication Critical patent/KR102477340B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14535Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring haematocrit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14557Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted to extracorporeal circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14558Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters by polarisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0202Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0286Constructional arrangements for compensating for fluctuations caused by temperature, humidity or pressure, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a spectrometer, e.g. vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/14Generating the spectrum; Monochromators using refracting elements, e.g. prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/492Determining multiple analytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0878Diffusers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N2021/216Polarisation-affecting properties using circular polarised light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0634Diffuse illumination

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Ecology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Optical Measuring Cells (AREA)

Abstract

본 발명은 광학 흡광도를 사용하여 전혈 샘플에서 헤모글로빈 및 빌리루빈 파라미터를 측정하는 시스템(10) 및 방법에 관한 것이다. 시스템(10)은 광학 샘플 모듈(20), 분광계 모듈(100), 광학 샘플 모듈(20)을 분광계 모듈 (100)에 광학적으로 연결하는 광섬유 조립체(90), 및 프로세서 모듈(150)을 포함한다. 광학 샘플 모듈(20)은 LED 광원(28)을 갖는 발광 모듈(22), 큐벳 조립체(40) 및 캘리브레이션 광 모듈(60)을 갖는다. 프로세서 모듈(150)은 분광계 모듈(100)로부터 전기 신호를 수신 및 처리하고, 전기 신호를 전혈 샘플에 대한 헤모글로빈 파라미터 값 또는 총 빌리루빈 파라미터 값을 표시 및 보고하는데 사용 가능한 출력 신호로 변환한다.

Description

전혈에서 헤모글로빈 파라미터들을 결정하기 위한 분석 시스템 및 방법
본 발명은 일반적으로 혈액 내의 헤모글로빈 파라미터의 식별 및 특성화를 위한 분광 시스템 및 방법에 관한 것이다.
자외선-가시 광 분광 시스템은 흡광 분광법 또는 반사 분광법을 포함한다. 이름에서 알 수 있듯이, 이러한 시스템은 샘플 분석을 위해 가시 광선 및 근 자외선 범위의 광을 사용한다. 파장 범위는 전형적으로 약 400 nm 내지 약 700 nm이다. 가시 광선의 흡광 또는 반사는 관련된 화학 물질의 지각된 색에 직접적으로 영향을 미친다. UV/Vis 분광법은 전이 금속 이온, 높은 공액 유기 화합물 및 생물학적 거대 분자와 같은, 다양한 분석물의 정량 분석을 위해 분석 화학에서 일상적으로 사용된다. 분광 분석은 일반적으로 용액에서 수행되지만 고체 및 가스에서도 연구할 수 있다.
근적외선 분광 시스템은 또한 흡수 분광 또는 반사 분광을 포함한다. 이러한 시스템은 샘플 분석을 위해 근적외선 범위의 광을 사용한다. 파장 범위는 전형적으로 약 700 nm 내지 2,500 nm 미만이다. 일반적인 응용 분야에는 기능적 신경 영상, 스포츠 의학 및 과학, 엘리트 스포츠 훈련, 인간 공학, 재활, 신생아 연구, 두뇌 컴퓨터 인터페이스, 비뇨기과(방광 수축), 및 신경학(신경 혈관 커플 링)의 연구뿐만 아니라, 제약, 의료 진단(혈당 및 맥박 산소 측정기 포함), 식품 및 농약 품질 관리, 및 연소 연구가 포함된다.
근적외선 (NIR) 분광학을 위한 장비는 UV-가시 및 중-IR 범위에 대한 장비와 유사하다. 분광 광도계의 기본 부분은 광원, 샘플용 홀더, 단색화장치의 회절 격자 또는 다른 파장의 빛을 분리하는 프리즘, 및 검출기이다. 방사선 소스는 흔히 텅스텐 필라멘트(300-2500 nm), 자외선 영역(190-400 nm)에 걸쳐 연속하는 중수소 아크 램프, 160-2,000 nm에서 연속하는 크세논 아크 램프, 또는 최근에는, 가시 파장 용 발광 다이오드(LED)이다. 검출기는 일반적으로 광전자 배증관 튜브, 포토다이오드, 포토다이오드 어레이 또는 전하 결합 장치(CCD)이다. 단일 광 다이오드 검출기와 광전자 배증관 튜브는 단일 파장의 광만이 한 번에 검출기에 도달하도록 광을 필터링하는 스캐닝 모노크로미터와 함께 사용된다. 스캐닝 모노크로미터는 회절 격자를 각 파장에서 "단계적으로" 이동시켜 그 강도가 파장의 함수로 측정될 수 있도록한다. 고정된 모노크로미터는 CCD 및 포토 다이오드 어레이와 함께 사용된다. 이들 장치는 모두 1 차원 또는 2 차원 어레이로 그룹화된 많은 탐지기로 구성되기 때문에 서로 다른 픽셀 또는 픽셀 그룹에서 서로 다른 파장의 빛을 동시에 수집 할 수 있다. 일반적인 백열등 또는 석영 할로겐 전구는 분석 응용 분야에 대한 근적외선 방사의 광대역 소스로 가장 많이 사용된다. 발광 다이오드(LED)도 사용된다. 사용되는 검출기의 유형은 주로 측정할 파장의 범위에 달려 있다.
인체에 대한 근적외선 분광학의 주요 적용은 인체 조직에서 근적외선의 투과 및 흡수가 헤모글로빈 농도 변화에 대한 정보를 포함한다는 사실을 이용한다. 몇 가지 파장과 시간 분해 (주파수 또는 시간 영역) 방법 또는 공간 분해 방법을 사용함으로써 혈류, 체적 및 절대 조직 포화도(StO2 또는 조직 채도 지수 (TSI))를 정량화할 수 있다. NIRS 방법에 의한 산소 측정법의 응용은, 신경 과학, 인간 공학, 재활, 두뇌 컴퓨터 인터페이스, 비뇨기과, 혈액 순환 (예 : 말초 혈관 질환)에 영향을 미치는 질병의 감지, 유방 종양의 검출 및 평가, 스포츠 의학에서의 훈련 최적화를 포함한다.
흡광 분광법과 관련하여, Beer-Lambert 법칙은 용액의 흡광도가 용액 중의 흡수 종의 농도 및 경로 길이에 직접 비례함을 나타낸다. 따라서, 고정 경로 길이의 경우 UV/Vis 및 근적외선 분광법을 사용하여 용액에서 흡수제의 농도를 결정할 수 있다. 이 방법은 Beer-Lambert 법칙을 사용하여 용액에서 흡수 된 종의 농도를 정량적으로 결정하는 데 가장 많이 사용된다: A = log10 (I0 / I) = εcL
여기서 A는 측정된 흡광도, 흡광도 단위(Absorbance Units, AU)이고,
I0는 주어진 파장에서의 입사광의 세기이고,
I는 투과된 감도이고,
L은 샘플을 통과하는 경로 길이이고,
c는 흡수 종(species)의 농도이다.
각 종과 파장에 대해, ε은 몰 흡광 계수(molar absorptivity) 또는 소광 계수(extinction coefficient)로 알려진 상수이다. 이 상수는 주어진 용매에서 특정 온도와 압력에서 기본적인 분자적 성질을 가지며 1/M*cm 단위 또는 종종 AU/M*cm 단위를 가진다. 흡광도 및 흡광도 ε는 때로 10 진수 대신 자연 대수로 정의된다.
Beer-Lambert 법칙은 많은 화합물을 특성화하는데 유용하지만, 모든 물질의 농도 및 흡수에 대한 보편적인 관계로는 유지하지 않는다.
당해 기술 분야의 당업자는 다양한 요인이 이들 분광 시스템에 영향을 미치는 것으로 인식한다. 이러한 요소에는 스펙트럼 대역폭, 파장 오차, 미광, Beer-Lambert 법칙의 편차 및 측정 불확도 요인이 포함된다.
미광은 분광 시스템에 영향을 미치는 중요한 요소이다. 미광은 검출기로 하여금 낮은 흡광도를 보고하게 한다.
Beer-Lambert 법칙으로부터의 편차는 농도에 기초하여 발생한다. 충분히 높은 농도에서, 흡수 밴드는 포화되어 흡수 평탄화를 나타낸다. 흡수 피크는 광의 100 %에 가깝게 흡수되기 때문에 평평해 보인다. 이것이 일어나는 농도는 측정되는 특정 화합물에 달려있다.
측정 불확도는 측정된 화합물 또는 용액의 성질로부터 불확실성 원천에 의해 결과가 추가로 영향을 받는 정량적 화학 분석에서 발생한다. 여기에는 흡수 밴드의 중첩, 흡수 종의 색의 변색 (분해 또는 반응으로 인한), 시료와 교정 용액 사이의 가능한 조성 불일치로 인한 스펙트럼 간섭이 포함된다.
사람의 헤모글로빈(HGB)은 적혈구의 산소 운반 단백질인 것으로 알려져 있다. 전혈에서 그 농도를 측정하는 것은 유용하고 중요한 임상 생화학 진단 도구이다. COOx 분석기는 광학 흡광도 측정법을 사용하여 총 헤모글로빈(tHb), 카복시헤모글로빈(COHb), 데옥시헤모글로빈(HHb), 옥시헤모글로빈(O2Hb), 메트헤모글로빈(MetHb), 태아성 헤모글로빈(FHb) 및 총 빌리루빈(tBil)과 같은, 혈액의 헤모글로빈 파라미터들을 측정하는데 사용된다. 실제로, 일반적인 COOx 분석기는 전혈의 분광 분석과 관련된 문제로 인해 전혈 대신 용혈된 혈액을 사용한다. 용해된 혈액의 측정은 용해 과정이 적혈구를 용해시키고 혈액을 거의 비 확산 매질로 바꾸기 때문에 상대적으로 간단하다. 흡광도는 산란으로 인한 광의 손실이 거의없는 큐벳을 통해 단순한 시준 빔으로 측정된다. 산란으로 인한 광의 손실이 적기 때문에, 직선적인 선형 분석을 사용하여 헤모글로빈 및 총 빌리루빈 파라미터를 찾을 수 있다.
전혈 샘플을 사용하여 헤모글로빈 및 총 빌리루빈 파라미터를 측정하는 것은 전혈의 강한 광학 산란으로 인해 매우 도전적이다. 이러한 문제는 주로 용해된 혈액과 비교하여 전혈의 증가된 광 산란 수준을 다루는 것과 관련이 있다. 이것은 광 손실과 비선형 흡광도를 측정에 도입한다.
프리즘 기반 분광계의 구성 요소는 자연적으로 낮은 미광 프로파일을 갖는다. 미광 성능에 주요한 영향을 미치는 요소는 구성 요소의 사용 방법과 관련된다.
문제점들은 주로 전혈의 증가된 광 산란 수준을 다루는 것과 관련되지만, 해결된다면 이러한 어려운 문제를 해결할 수 있는 단일 인자는 아니다. 발명자는 전혈에서 헤모글로빈 매개 변수를 측정하기 위하여 해결되어야 할 몇몇 요인을 확인 하였다. 전혈은 매우 산란 매질이기 때문에 가능한 한 많은 빛을 모아 흡광도 측정 범위를 줄이는 것이 필요하다. 또한 검출기 선형성 보정의 범위가 더 낮기 때문에 측정된 흡광도의 상한을 확장해야한다. 혈액 침전(settling) 효과는 전혈 스캔의 흡광도와 용해된 혈액 스캔의 흡광도의 부족한 상관 관계를 초래하는 또 다른 문제이다. 기본적으로, 혈액 세포는 덩어리 또는 연전상체(rouleaux)를 형성하고 있다. LED 백색 광원의 밝기도 증가시켜야한다. 마지막으로, 전혈의 광산란 효과를 극복하기 위해 선형 기반 알고리즘 이외의 새로운 알고리즘이 필요하다.
용해된 혈액을 사용하는 시스템에 대한 통상적인 수집 광학계는 약 +/- 0.7 도의 원뿔형으로 큐벳으로부터 광을 수집하도록 설계되고 1.5A.U(흡광도 단위)의 상한 측정 흡광도 한계를 갖는다. 본 발명자들은 전혈에 대해 시스템이 약 +/- 12 도의 원뿔형으로 큐벳으로부터 광을 수집할 필요가 있고, 상한 흡광도 한계가 약 3.5AU로 증가해야 한다는 것을 발견했다. 흡광도 스펙트럼(약 1 분)을 측정하는데 걸리는 일반적인 시간인 혈액 정착 효과에 관해서는, 큐벳의 전혈이 침전되고 혈액 세포가 덩어리 또는 연전상체를 형성한다. 따라서, 산란 효과 및 흡광도는 시간에 따라 변한다. 본 발명자들은 몇 번의 통합 시간에서의 스캔으로부터 함께 스티칭되는 복합 흡광도 스캔에서의 더 긴 기간 회피된 단계 함수에 대해 평균한 몇 번의 스캔보다는, 다수의 스캔을 자주 수집하기 위해 분광계 제어를 변경하는 것을 발견했다. 불행히도 흡광도 상한치를 확대하기 위해 스캔을 더 추가하면, 데이터 수집 시간이 길어진다. 이러한 딜레마를 해결하기 위해서, 데이터 수집 시간을 줄이도록 통합 시간이 5msec에서 1.2msec로 낮아졌다. 그러나 광의 수준이 해당 요소에 의해 증가되는 경우에만 작동한다는 것이 발견되었다. 따라서, LED 백색광의 밝기를 증가시켜야한다.
전혈과 같은 확산 샘플의 광학 흡광도 측정은 독특한 문제를 제시한다. 전혈 샘플의 확산 투과율은 광원의 전형적인 불균일성에 의해 야기되는 측정 시스템의 초기 공간 광 분포를 스크램블링한다. 따라서, "블랭크" 스캔의 공간 광 분포는 전혈 샘플 스캔과 상당히 다를 수 있다. 광학 검출기는 공간적으로 변화하는 응답을 가지므로 전반적인 감도가 변경되지 않은 경우에도 입사광의 공간 분포 변화로 인해 응답이 달라질 수 있다. 블랭크 스캔에 대한 전혈 샘플 스캔의 비율에 기초한 흡광도 스캔은 샘플 단독으로 인한 흡광도에 더하여 광원의 이러한 불균일성으로 인해 상당한 흡광도 성분을 가지게 된다. 이것은 coox미터기에 견딜 수 없는 전혈 샘플 흡광도의 상당한 측정 오차를 초래한다.
샘플 큐벳을 디퓨저들 사이에 위치시킴으로써, 공간 광 분포가 블랭크 및 샘플 스캔에 대해 동일하게 나타나며, 따라서 이러한 오류 영향을 제거하는 것이 발견되었다. 디퓨저는 입사 광을 광학 시스템의 전체 수용 콘으로 확산시키지만, 그 이상은 아니므로 가능한한 많은 광 처리량이 현장에서 광선을 완전히 스크램블하는 동안에 보존될 수 있도록 특별히 선택된다.
게다가, 태아성 헤모글로빈 파라미터의 측정은 추가적인 문제점을 제시한다. 여기에는 스펙트럼 획득 시간이 포함되며, 이 시간은 더 빨라야한다. 일반적인 12 초 대신 5 초 이하여야한다. 스펙트럼 획득 시간은 통합 시간에 다중 스펙트럼의 수를 곱한 값과 다음 요구 사항을 모두 충족하는 하나의 스펙트럼(전체 광, 어둡거나 샘플)을 생성하는 처리 시간을 포함한다. 절대 파장 정확도는 더 낮아야하는데; +0.1/-0.0nm와 비교하여 +0.03/-0.03nm 미만이다.
파장 캘리브레이션 유지(+ 0.06 / -0.0 nm 대 + 0.1 / -0.0 nm), 파장 캘리브레이션 이동(drift)(0.04 nm/℃ 에 비해 0.024 nm / ℃ 미만), 암흑 전류 레벨(최대 동적 범위는 0.06 %/℃, 최대 동적 범위는 0.1 %), 비선형성 응답(보정 후 0.06 % 미만, 동적 범위의 최저 및 최고 10 %에 대해 1.2 % 미만, 보정 후 0.1 % 및 동적 범위의 최저 및 최고 10 %에 대해 2.0 %), 산란된 광 레벨 (완전히 조명된 감지기 어레이의 최대 동적 범위의 0.02 % 대 완전 조명된 감지기 어레이의 최대 동적 범위의 0.1 %), 응답의 열 이동(최대 10 %의 강도 변화 및 스펙트럼 범위보다 10 %의 기울기 최대와 비교하여 스펙트럼 범위보다 최대 6 %의 강도 변화 및 기울기 최대 6 %), 및 측정 중에 허용되는 온도 편차(2℃와 비교하여 0.5℃ 미만)는 모두 덜해야한다. 본 발명은 태아성 헤모글로빈 매개 변수를 측정하는데 사용하기 위한 이들 부가적인 특징을 포함한다.
본 발명의 다른 양상에서, 상업적으로 이용가능한 콤팩트하고 저비용의 분광계는 일반적으로 광 입력을 분산시키기 위해 회절 격자(반사적인 또는 투과적인)를 사용한다. 회절 격자는 작은 체적에서 고도의 분산을 제공하고, 전형적인 사용자에 의해 선호되는 파장 대 비교적 일정한 대역폭(또는 해상도)을 생성한다. 그러나, 격자는 다중 회절 차수에 기인한 높은 미광(stray light)과 격자 표면을 생성하기 위해 에칭된 선들에 내재된 불완전성으로 인해 어려움을 겪는다. 따라서, 대량 생산되지만 값 비싼 마스터 홀로 그래픽 회절 격자가 통상적으로 이용가능한 복제 회절 격자보다 낮은 미광을 필요로하는 응용에 통상적으로 활용된다.
COOx 분석기에 대한 낮은 미광에 대한 요구는, 마스터 홀로그래픽 또는 개별적으로 정밀한 포토 에칭 격자를 생산하는 적합한 격자 제조자의 인구를 세계의 몇몇 곳으로 제한한다. 이는 저렴한 비용의 고성능 격자를 대량으로 얻는 것을 어렵게 만든다.
프리즘은 또한 분광계를 만드는데 사용된다. 프리즘은 다중 회절 차수에 아무런 문제가 없으며 그 표면은 회절 격자의 표면보다 훨씬 작은 불완전함을 가지고 있다. 프리즘 기반 분광계의 구성 요소는 자연적으로 낮은 미광 프로파일을 갖는다. 따라서, 프리즘 분광계에서의 미광은 다른 유사한 디자인의 격자 분광계보다 더 낮은 자릿수를 가지거나, 비교될 수 있다. 미광 성능에 주요 원이 되는 요소는 구성 요소의 사용 방법에서 비롯된다. 미광에는 세 가지 주요 원이 있다. 이것은 (1)분광계 개구 수의 과충전, (2)광 어레이 검출기로부터의 역 반사, 및 (3)초점 평면 이미지를 포함한다. 분광계의 개구 수를 완전히 조명하는 데 필요한 광을 초과하는 광은 분광계에서 반사되어 검출기에 도달 할 수 있다. 본 발명에서, 광섬유의 개구 수는 0.22이고, 프리즘 분광계의 개구 수는 0.1이다. 광섬유 입력 위에 놓인 스톱은 과도한 광 입력을 방지하기 위해 광섬유에서 광 입력 콘을 제한한다. 광 어레이 검출기는 그 위에 입사하는 모든 광을 흡수하지 않지만 일부는 역 반사한다. 이 역 반사는 그것이 검출기 위로 흩어지는 것을 방지하기 위해 흡수 표면 또는 빔 트랩으로 떨어지도록 제어되어야 한다. 광 어레이 검출기의 약간의 기울기를 부여하면 역 반사가 무해한 방향으로 되돌아간다. 검출기 초점면의 슬릿 이미지는 가능한 한 뚜렷해야(sharp) 한다. 디포커스 때문에 검출기가 과도하게 채워지면 미광의 잠재적인 원이될 수 있다. 이 광이 본드 와이어, 금속화 패드 등과 같은 검출기 구조에 부딪히면 검출기의 민감한 표면으로 다시 반사될 수 있다.
부가적으로, 프리즘 분광계는 회절 격자 분광계보다 많은 픽셀에 걸쳐 스펙트럼의 청색 단부를 확산시키고, 따라서 스펙트럼의 청색 단부는 픽셀 당 더 낮은 신호를 제공한다. 픽셀 당 더 낮은 신호를 보상하기 위해 더 높은 청색 전력을 갖는 LED 또는 차가운 백색 LED가 사용된다. 청색 신호는 적색 단부를 약간 감쇠시킨 LED 뒤에 저렴한 필터 유리를 추가하면 더욱 증폭 될 수 있다. 약 3mm 두께의 Kopp 필터 유리 타입 4309가 이러한 목적에 유용하다. 프리즘의 주된 단점은 격자에 비해 낮은 분산력과 파장에 따른 해상도의 변화이다. 본 발명에서, 프리즘이 사용될 때, 전자의 단점은 충분히 작은 광 어레이 검출기를 사용함으로써 완화되고; 후자는 전혈의 분석이 관심의 파장 대역에 걸쳐 균일하게 작은 해상도를 요구하지 않기 때문에 완화된다.
현재 이용 가능한 분광계는 전형적으로 455-660nm의 혈액 측정 스펙트럼 영역에 대해 균일한 1nm 해상도를 나타낸다. 본 발명에서, 스펙트럼 영역은 확장되어 422-695 mm의 스펙트럼 영역을 커버한다. 또한, 해상도는 저해상도가 요구되지 않는 영역(예를 들어, 600-695 nm 영역 및 422-455 nm 영역)에서 선택적으로 상향 변경된다. 본 발명에서, 이들 영역은 1 nm보다 큰 해상도를 갖는다. 전형적으로, 해상도는 약 3.0 내지 약 3.5 nm이다. 이 범위는 파장 캘리브레이션 및 유체 검출을 위한 추가 파장 캘리브레이션 피크를 포착하는데 사용된다. 본 발명의 더 큰 스펙트럼 영역은 프리즘으로부터의 분산된 스펙트럼을 고려할 필요가 있다. 분산된 스펙트럼은 광 배열 검출기 위로 펼쳐져 있어야하며, 충분히 정밀한 해상도로 스펙트럼을 샘플링하기에 충분한 픽셀을 커버해야 하지만 검출기 어레이 외부로 확장하는 것은 아니다. 더 넓은 스펙트럼 범위로 인해, 본 발명은 약 8.0 mm의 활성 영역 길이를 지닌 1024개의 픽셀을 갖는 광 어레이 검출기를 포함한다.
광학 분산 분광계에 대한 최소 부분 기준 디자인은, 광 분산 요소(즉, 프리즘 또는 격자) 및 이중 (소색) 렌즈의 두 개의 광학 구성 요소만을 필요로한다. 프리즘/회절 격자는 밑면에 반사 코팅이 있다. 용인할 수 있는 프리즘의 한 예시가 리트로(littrow) 프리즘이다. 리트로 프리즘은 본 발명의 소형 저비용 분광계에 사용할 수있는 구조를 갖는다. 프리즘 재료(분산 특성) 및 렌즈 초점 거리가 더 고려된다. 다른 프리즘 및 소색 렌즈가 사용될 수 있지만, 본 발명의 일 실시예는 Schott F5 유리 프리즘 및 80mm 초점 거리 렌즈를 포함한다. 이러한 특정 조합은 약 6.48 mm의 스펙트럼의 분산 길이를 제공한다. 이 분산 길이는 허용차 편차 및 암흑 교정 픽셀에 사용할 수 있는 광 어레이 검출기의 양 끝에 약 0.75mm를 남긴다.
스펙트럼 응답의 열적 이동이 고려되어야한다. 분광계의 스펙트럼 응답이 전체 광 스캔과 전체 혈액 스캔 사이의 특정 범위 내에 머무르는 것이 중요하다. 분광계 응답이 변경되면 흡광도 오차가 생긴다. 이 변경에 대한 주 예방책은 슬릿의 이미지가 픽셀을 가득채우게 하여 온도로 인한 이미지 이동이 검출기 픽셀에서 빛을 감소시키지 않도록하는 것이다. 200㎛ 직경 광섬유와 결합된 시스템의 1 : 1 이미징은 125㎛ 높이 픽셀을 가득채운다. 이미지 이동이 측정 간격 동안 검출기를 따라 어느 방향으로든 약 30㎛ 미만으로 국한되는 한 열 이동은 문제가 되지 않는다. 본 발명은 또한 스펙트럼 응답에 대한 열 이동 영향을 최소화하기 위한 다양한 메커니즘을 고려한다. 이러한 메커니즘은 분광계 하우징 외부의 온도 변화를 최소화하기 위해 분광계 하우징을 단열시키고, 온도 제어 열원을 사용하여 분광계 하우징 내부의 온도를 유지하거나, 또는 소색 렌즈 용 온도 보상 렌즈 마운트를 통합하는 것을 포함한다.
분광계로부터의 전기 신호를 변환시키는 본 발명의 프로세스가 이제 논의 될 것이다. 먼저, 흡광도를 측정하는데, 이 값은 혈액 샘플이 큐벳에 들어있을 때 수신된 전기 신호와 투명한 유체가 큐벳에 들어있을 때 수신된 전기 신호의 비율의 밑이 10인 음의 로그 값이다. 둘째로, 각 파장의 흡광도 값을, 전혈 샘플의 분석물 수준(COOx 파라미터 및 빌루빈)에 흡광도 값을 매핑하는 매핑 함수에 넣는다. 매핑 함수와 그 계수는 알려진 분석물 값을 가진 전혈 샘플에 대해 측정된 흡광도 값을 사용하고, 이러한 흡광도 값과 알려진 분석물 값 사이의 관계를 확립함으로써 설정된다.
본 발명은 소형의 저비용 COOx 분석기 서브 시스템을 제공함으로써 이들 및 다른 목적을 달성한다.
본 발명의 일 실시예에서, 전혈 헤모글로빈 파라미터를 측정하기 위한 시스템이 제공되는데, 이 시스템은 (a) 발광 모듈, 교체가능한 큐벳 조립체, 및 캘리브레이션 광 모듈을 갖는 광학 샘플 모듈, (b) 광섬유, (c) 분광계 모듈, 및 (d) 프로세서 모듈을 포함한다. 발광 모듈은 광학 경로를 따라 유도되는 광을 방출할 수 있는 LED 광원을 갖는다. 큐벳 조립체는 발광 모듈에 인접하는데, 여기서 큐벳 조립체는 전혈 샘플을 수용하는데 적합하며, 서로 정렬된 제1 큐벳 창과 제2 큐벳 창을 지닌 샘플 수용 챔버를 갖는다. 샘플 수용 챔버는 LED 광원으로부터 광을 수용하기 위해 광학 경로에 배치되고, 샘플 수용 챔버의 경로길이 값을 저장할 수 있는 전자 칩에 따라 제1 큐벳 창과 제2 큐벳 창 사이의 한정된 광학 경로 길이를 갖는다. 캘리브레이션 광 모듈은 광의 하나 이상의 알려진 파장을 지닌 캘리브레이션 광원을 갖지며, 여기서 캘리브레이션 광 모듈은 광학 경로에 캘리브레이션 광을 방출할 수 있다. 광섬유는 수광 단부 및 발광 단부를 갖는다. 수광 단부는 광학 샘플 모듈에 광학적으로 연결되며, 여기서 수광 단부는 광학 경로로부터 광을 수신하고 발광 단부에 광을 안내한다. 분광계 모듈은 광섬유의 발광단부로부터 광을 수신하고, 상이한 파장을 가진 복수의 광 빔으로 광을 분리하며, 복수의 광 빔을 전자 신호로 변환시킨다. 프로세서 모듈은 (1) 전자 칩으로부터 교체가능한 큐벳의 샘플 수용 챔버의 경로길이 값을 얻으며, (2) 전혈 샘플에 대해 생성된 분광계 모듈로부터 전자 신호를 수용하여 처리한다. 샘플 챔버의 경로길이 값은 전혈 샘플에 대한 헤모글로빈 파라미터 값 또는 총 빌리루빈 파라미터 값을 표시하고 보고하는데 사용가능 한 출력 신호로 전자 신호를 변형시키기 위해 사용된다.
본 발명의 다른 실시예에서, 발광 모듈은 LED 광원과 큐벳 조립체 사이의 광학 경로에 배치된 복수의 광학 구성 요소를 포함하며, 여기서 복수의 광학 구성 요소는 적어도 하나의 광학 디퓨저, 하나 이상의 시준 렌즈, 원형 편광자, 및 포커싱 렌즈를 포함한다.
본 발명의 또 다른 실시 예에서, 캘리브레이션 광 모듈은 광학 경로에서 큐벳 조립체의 하류에 배치되지만 빔 스플리터로부터 상류에 배치된 디퓨저를 포함한다.
본 발명의 또 다른 양상에 있어서, 전혈용 광학 흡광도 측정 시스템이 설명된다. 이 시스템은 광 샘플 모듈, 광섬유, 분광계 모듈 및 프로세서 모듈을 포함한다. 광학 샘플 모듈은 발광 모듈, 큐벳 모듈, 제 1 광학 디퓨저 및 제 2 광학 디퓨저를 포함한다. 큐벳 모듈은 제1 광학 디퓨저와 제2 광학 디퓨저 사이에 위치한다. 분광계 모듈은 광섬유의 발광 단부로부터 광을 수신하여 광을 복수의 광 빔으로 분리하고 복수의 광 빔을 전기 신호로 변환한다. 프로세서 모듈은 전혈 샘플에 대해 생성된 분광계 모듈로부터의 전기 신호를 수신 및 처리하고, 전기 신호를 전체 혈액 샘플에 대한 헤모글로빈 파라미터 값 또는 총 빌리루빈 파라미터 값을 표시하고 보고하는데 사용 가능한 출력 신호로 변환한다.
또 다른 실시예에서, 분광계 모듈은 광학 경로 내에 배치되어 광섬유의 발광 단부로부터 방출된 광을 수용하고 이를 통해 광을 투과시키는 입력 슬릿, 광학 경로에 배치되어, 입력 슬릿을 투과한 광을 수용하고, 상이한 파장을 가진 복수의 광 빔으로 광을 분리시키며, 입력 슬릿으로으로부터 오프셋되어 입력 슬릿을 향해 복수의 광 빔을 다시 재유도할 수 있는 광 분산 소자, 및 복수의 광 빔을 수용하여 추가 프로세스를 위해 복수의 광 빔을 전기 신호로 변환할 수 있는 광 어레이 검출기를 포함한다.
다른 실시 예에서, 분광계 모듈은 광 어레이 검출기 상에 복수의 광 빔의 위치를 유지하기위한 열 보상 수단을 갖는다. 열보상 수단은 분광계 하우징 둘레에 배치된 하나 이상의 절연체와, 분광계 하우징 상에 배치된 온도 제어기 어셈블리(온도 제어기 어셈블리는 예를 들어 서미스터 또는 다른 다른 온도 측정 구성요소를 지닌 가열 테이프 및 분광계 하우징 내의 온도에 따라 테이프의 가열을 제어하는 프로그램이 될 수 있음)와, 및 열 보정 렌즈 마운트를 포함한다.
다른 실시 예에서, 열-보상 렌즈 마운트는 고정된 마운트 단부 및 열-보상 렌즈 장착부의 열 팽창 및 수축을 허용하는 비고정된 마운트 단부를 갖는다. 고정된 마운트 단부는 분광계 하우징의 베이스 플레이트 또는 바닥에 고정식으로 부착된다. 렌즈 마운트는 렌즈 마운트가 부착되는 베이스 플레이트 또는 분광계 하우징의 팽창 계수보다 큰 팽창 계수를 갖는다. 열-보상 렌즈 마운트는 렌즈 마운트의 팽창 계수에 기초하여 광 입력 슬릿으로부터의 광의 광 경로에 대해 선형 및 횡 방향으로 움직인다. 렌즈 마운트의 이러한 온도 기반 움직임은 광 분산 소자로부터 광 어레이 검출기로의 분산된 광의 위치를 유지한다. 즉, 열 보정 렌즈 마운트에 의한 소색 렌즈의 열적 재배치는 광 분산 소자로부터의 분산된 광이 충돌 광으로부터 광 어레이 검출기에 의해 생성된 전기 신호에 영향을 주지 않으면서 광 어레이 검출기 상으로 충돌하게 한다. 광 빔의 이동은 광 분산 소자가 온도 변화에 반응함으로써 야기된다.
다른 실시 예에서, 전혈에서 헤모글로빈 파라미터를 측정하기 위한 소형 분광계가 개시되어있다. 분광계는 광 입력 단부/광 입사 포트를 갖는 광섬유 하우징 단부, 에워싸인 분광계 하우징에 배치된 전자 회로 기판 상에 배치되되 광 입구 포트에 인접하여 정렬되는 광 입력 슬릿, 광 입력 슬릿에 인접하여 회로 기판상에 배치된 광 어레이 검출기, 및 광 입력 슬릿으로부터 하류에 배치된 광 분산 소자와 광 입력 슬릿 및 광 분산 소자 사이에 배치된 구면 소색 렌즈로 구성되되 광 분산 소자는 소색 렌즈를 향해 다시 분산 광을 반사시키는 후면상에 반사 표면을 갖는 광학 부품 그룹을 포함한다. 소색 렌즈는 광 입력 슬릿으로부터의 광을 광 분산 소자로 전송하고, 광 분산 소자로부터 반사된 분산 광을 광 어레이 검출기로 전송한다. 이를 달성하기 위해, 소색 렌즈는 광 입력 슬릿으로부터 나오는 광에 대해 축으로부터 약간 벗어나서, 광 분산 소자로부터의 분산된 광이 광 입력 슬릿으로 다시 향하지 않고 광 어레이 검출기로 향하도록 한다.
또 다른 실시 예에서, 전혈에 의해 강한 광학 산란이 발생함에도 불구하고 전혈 헤모글로빈 파라미터를 측정하는 방법이 개시되어있다. 이 방법은, 약 422 nm 내지 약 695 nm의 스펙트럼 범위를 지닌 LED 광원과 같은 광원을 제공하는 단계와, 광학 경로를 따라 광원으로부터의 스펙트럼 범위를 갖는 광을 유도하는 단계와, 광학 경로에 배치된 제1 큐벳 창 및 제2 큐벳 창을 갖는 샘플 수용 챔버를 지닌 큐벳 모듈을 제공하는 단계로서, 여기서 큐벳 모듈의 제2 큐벳 창은 샘플 수용 챔버 및 제1 큐벳 창을 통해 광을 전달하고, 샘플 수용 챔버는 전체 혈액의 샘플을 함유하는 제공단계와, 광학 경로에 배치된 한 쌍의 제1 및 제2 광학 디퓨저를 제공하는 단계로서, 여기서 큐벳 모듈의 샘플 수용 챔버의 제1 큐벳 창 및 제2 큐벳 창은 한 쌍의 디퓨저 사이에 배치되는 제공단계와, 각 광 빔이 상이한 파장을 갖는 복수의 광 빔으로 광을 분리하여 복수의 광 빔을 전기 신호로 변환하는 광 분산 소자를 갖는 분광계로 큐벳 모듈로부터의 광을 가이드하는 단계와, 전혈의 샘플의 헤모글로빈 파라미터 값 또는 총 빌리루빈 파라미터 값을 표시하고 보고하는데 사용가능한 출력 신호로 전기 신호를 처리하는 단계를 포함한다.
이 방법의 다른 실시예에서, 처리 단계는 전기 신호를 분광 흡광도로 처리한 다음 연산 맵핑 함수를 사용하여 분광 흡광도를 헤모글로빈 파라미터 값 또는 총 빌리루빈 파라미터 값에 매핑하는 단계를 포함한다.
이 방법의 또 다른 실시예에서, 처리 단계는 연산 맵핑 함수로서의 잠재적 구조 매핑 함수에 커널 기반 직각 투영법을 사용하는 단계를 포함한다.
본 방법의 또 다른 실시 양상에서, 전혈 샘플에서 헤모글로빈 파라미터를 측정하는 방법이 개시된다.
이 방법은 (1) 알려진 광학 경로 길이를 지닌 광학 경로를 갖는 큐벳 모듈을 통해 광을 투과시킴으로써 측정 범위 내의 복수의 파장에 걸쳐 투과 광 감도 스캔을 측정하고 기록하는 단계로서, 여기서 큐벳 모듈은 투명 유체로 채워지며, (2) 알려진 광학 경로 길이를 지닌 광학 경로를 갖는 큐벳 모듈을 통해 광을 재차 투과시킴으로써 측정 범위 내의 복수의 파장에 걸쳐 투과 광 감도 스캔을 측정하고 기록하는 단계로서, 여기서 큐벳 모듈은 전체 혈액 샘플로 채워지며, 여기서 투명 유체 및 전체 혈액 샘플의 각 측정 및 기록 단계는, 큐벳 모듈을 통해 투과 광을 투과시키기 전에 투과 광을 확산 및 원 편광시키는 단계를 포함하고, 그 후 분광 흡광도를 결정하기 전에 큐벳 모듈로부터 방출되는 투과 광을 확산시키는 단계를 포함하며, (3) 분광계를 사용하여 투명 유체의 투과 광 감도 스캔에 대한 전체 혈액 샘플의 투과 광 감도 스캔의 비에 기반하여 측정 범위의 복수의 파장 중 각 파장에서의 분광 흡광도를 결정하는 단계, 및 (4) 연산 맵핑 함수를 사용하여 혈액 샘플의 헤모글로빈 파라미터 값 또는 빌리루빈 파라미터 값에 대한 측정 범위의 복수의 파장 중 각각의 파장에서의 흡광도를 상관시키는 단계를 포함한다.
본 발명에 따르면 전술한 목적을 달성할 수 있다.
도 1은 소형 COOx 서브 시스템을 보여주는 본 발명의 일 실시예의 간략화된 사시도이다.
도 2는 도 1에 도시된 광학 샘플 모듈의 일 실시예의 측면도이다.
도 3은 도 2에 도시된 광학 샘플 모듈의 발광 모듈의 일 실시예의 사시도이다.
도 3a는 도 3에 도시된 발광 모듈의 복수의 광학 구성 요소를 도시하는 정면 사시도이다.
도 3b는 도 3a에 도시된 광학 구성 요소의 확대된 측면도이다.
도 4는 도 1에 도시된 광학 샘플 모듈의 큐벳 조립체의 일 실시예의 전면 사시도이다.
도 5는 도 4에 도시된 큐벳 조립체의 후방 사시도이다.
도 6은 유체 입력 및 출력 포트, 샘플 수용 챔버, 샘플 창 및 전자 칩 어셈블리를 도시한 큐벳 어셈블리의 큐벳 모듈의 정면도이다.
도 7은 도 6의 샘플 수용 챔버의 후면 사시도로서, 큐벳 제 1 및 제 2 창을 도시한다.
도 8은 샘플 수용 챔버에 인접하게 배치된 전자 칩 어셈블리를 보여주는 샘플 수용 챔버의 후방 평면도이다.
도 9는 도 1의 광학 샘플 모듈의 캘리브레이션 광 모듈의 일 실시예의 사시도이다.
도 10은 캘리브레이션 광원을 도시하는 도 8의 캘리브레이션 광 모듈의 측 단면도이다.
도 11은 도 9의 캘리브레이션 광 모듈의 캘리브레이션 광원의 단순화된 측면도로서, 복수의 광학 구성 요소를 도시한다.
도 12는 도 1의 분광계 모듈의 일 실시예의 정면 사시도로서, 커버가 제거되어 내부 구성 요소를 도시한다.
도 13은 도 12의 분광계 모듈의 후면 투시도로서, 입력 광 슬릿 및 인접한 광 어레이 검출기를 도시한다.
도 14는 단일 회로 기판 및 입력 광 슬릿 및 광 어레이 검출기의 위치를 보여주는 도 12의 분광계 모듈의 후방 단면도이다.
도 15는 중첩된 광선 추적을 갖는 광학 구성 요소를 보여주는 도 12의 분광계 모듈의 평면도이다.
도 16은 입력 광 슬릿으로부터의 입력 광과 광 어레이 검출기로 굴절된 복수의 광 빔을 나타내는 광선 추적이다.
도 17a는 분광계 모듈 둘레에 감겨진 절연체를 보여주는 분광계 모듈 용 열 보상 수단의 일 실시예의 사시도이다.
도 17b는 온도 조절 어셈블리를 도시하는 분광계 모듈의 열 보상 수단의 다른 실시예의 사시도이다.
도 17c는 도 12의 분광계 모듈의 렌즈 장착부의 일 실시예의 단면도를 도시한다.
도 18은 도 12의 분광계 모듈의 렌즈 마운트의 일 실시예의 단면도로서, 고정 렌즈 마운트를 도시한다.
도 19는 K-OPLS 매핑 기능 및 방법을 사용하여 총 헤모글로빈에 대한 본 발명의 COOx 분석기 서브 시스템의 상관 결과를 나타내는 그래픽도이다.
도 20은 K-OPLS 매핑 기능 및 방법을 사용하여 옥시 헤모글로빈에 대한 본 발명의 COOx 분석기 서브 시스템의 상관 결과를 나타내는 그래픽도이다.
도 21은 K-OPLS 맵핑 기능 및 방법을 사용하여 카르복시 헤모글로빈에 대한 본 발명의 COOx 분석기 서브 시스템의 상관 결과를 나타내는 그래픽도이다.
도 22는 K-OPLS 매핑 기능 및 방법을 사용하는 데 옥시 헤모글로빈에 대한 본 발명의 COOx 분석기 서브 시스템의 상관 결과를 나타내는 그래픽도이다.
도 23은 K-OPLS 맵핑 기능 및 방법을 사용하여 메트 헤모글로빈에 대한 본 발명의 COOx 분석기 서브 시스템의 상관 결과를 나타내는 그래픽도이다.
도 24는 K-OPLS 맵핑 기능 및 방법을 사용하는 총 빌리루빈에 대한 본 발명의 COOx 분석기 서브 시스템의 상관 결과를 나타내는 그래픽도이다.
본 발명의 실시예가 도 1 내지 도 24에 도시된다. 도 1은 COOx 분석기 서브시스템(10)의 일 실시예를 보여준다. COOx 분석기 서브시스템(10)은 적어도 하나의 광학-샘플 모듈(20), 광섬유(90) 및 분광계 모듈(spectrometer module, 100)을 포함한다. COOx 분석기 서브 시스템(10)은 프로세서 모듈(150) 또는 COOx 분석기 서브시스템(10)이 일부인 진단 시스템(diagnostic system)의 전자 회로에 선택적으로 포함될 수 있는 프로세서 모듈(150)를 포함할 수 있다. 선(5)은 COOx 서브시스템(10)의 부분이 되거나 되지 않을 수 있는 프로세서 모듈(150)을 의미하기 위해 포함된다. 프로세서 모듈(150)은 마이크로 프로세서 모듈(152) 및 메모리 모듈(154)을 포함하지만 이에 한정되지는 않는다. 선택적으로, 프로세서 모듈 (150)은 또한 변환기 모듈(156) 또는 COOx 분석기 서브 시스템(10)의 외부에 있을 수도 있는 변환기 모듈(156)을 포함할 수 있다. COOx 분석기 서브 시스템(10)은 전체 헤모글로빈(total hemoglobin, tHb), 카복시헤모글로빈(carboxyhemoglobin, COHb), 데옥시헤모글로빈(deoxyhemoglobin, HHb), 옥시헤모글로빈(oxy hemoglobin, O2Hb), 메트헤모글로빈(methemoglobin, MetHb), 및 태아성 헤모글로빈(fetal hemoglobin, FHb) 뿐만 아니라, 광학 흡광도(optical absorbance)를 사용하는 전체 빌리루빈(total bilirubin, tBil)을 측정하는데 사용된다.
도 2는 광학-샘플 모듈(20)을 도시한다. 광학-샘플 모듈(20)은 발광 모듈(light-emitting module, 22), 큐벳 조립체(cuvette assembly, 40) 및 캘리브레이션-광 모듈(calibrating-light module, 60)을 포함한다. 용어로 암시된 바와 같이, 발광 모듈(22)은 가시 광 빔을 큐벳 조립체(40)를 향하여 방출하는데, 즉 캘리브레이션-광 모듈(60)에 의해 수신된 후에, 분광계 모듈(100)에 투과(전달, transmitted)된다. 광 빔(12)은 광학 경로(21)를 규정한다.
도 3 내지 3a는 도 2의 발광 모듈(22)의 실시예의 사시도이다. 발광 모듈(22)은 전자 회로(미도시)를 함유한 발광 모듈 기판(24) 및 발광 광학 조립체(25)를 포함한다. 발광 광학 조립체(25)는 광학 조립체 단부(26a)를 지닌 광학 조립체 하우징(26)을 구비한다. 가시 광의 빔(28a)은 발광 모듈(22)이 프로세서 모듈(15)로부터 받은 신호에 의해 동력을 공급받을 때, 발광 광학 조립체(25)의 광학 조립체 단부(26a)로부터 방출한다. 도 3a는 광학 조립체 하우징(26)이 제거되어 발광 조립체(25) 내에 함유된 복수의 광학 소자(B)를 노출하고 있는 발광 광학 조립체(25)를 도시한다.
이제 도 3b를 참조하면, 도 3a의 복수의 광학 소자(B)의 확대된 측면도가 도시된다. 이 실시예에서, 광학 소자(B)는 발광 다이오드 (LED) 광원(28), 시준 렌즈(collimating lens, 30), 제1 디퓨저(32), 원형 편광자(polarizer, 34), 포커싱 렌즈(36), 및 광학 보호창(38)을 포함한다. 원형 편광자(34)는 뚜렷한 이점을 제공한다. 이점은 시스템의 향상된 감도 및 정확도를 제공한다. 헤모글로빈은 광학 회전 특성을 구비하는데, 이는 비원형 편광 광이 헤모글로빈 흡광도(absorbance)를 측정하는데 사용되는 경우 분광계의 편광 감도가 흡광 오류를 야기하게 된다는 것을 의미한다. 다른 편광 상태의 광과는 달리, 원형 편광의 편광 광의 편광 상태는 헤모글로빈을 통과할 때 변경되지 않는다. 따라서, 분광계의 편광 응답은 투명한 유체로 채워진 큐벳으로 찍은 기준 스캔의 경우와 마찬가지로 헤모글로빈을 통과하는 원형 편광 광의 경우에도 동일하다.
도 4 및 5는 큐벳 조립체(40)의 일 실시예의 전방 및 후방 사시도를 도시한다. 큐벳 조립체(40)는 큐벳 기판(41) 및 큐벳 모듈(43)을 포함한다. 큐벳 기판(41)은 분석기 서브시스템(10) 내에 큐벳 조립체(40)를 고정하는 것(securing)에 대한 지원을 제공하고, 광학 경로(21) 내에 위치되어 발광 모듈(22)로부터 방출된 광 빔으로 정렬되는 큐벳 광 경로 개구(42)를 포함한다. 큐벳 모듈(43)은 샘플 수용 홈(45), 샘플 흡입 포트(inlet port, 46), 샘플 배기 포트(outlet port, 47), 전자 칩 조립체(48), 및 제1 큐벳 창(49)을 구비한 큐벳 제1 부분(44)과, 제1 큐벳 창(49)에 대향하여 정렬된 제2 큐벳 창(52)(윤곽(53)으로 묘사되어 도 6에 도시됨)을 구비한 큐벳 제2 부분(50)을 포함하며, 여기서 제1 및 제2 창(49, 52)은 광학 경로(21) 내에 분산(dispersed)되어 정렬된다. 큐벳 제1 부분(44) 및 큐벳 제2 부분(50)은 큐벳 제1 및 제2 부분(44, 50) 사이에 배치된 개스킷으로 또는 개스킷 없이 본딩 결합된다. 본딩은 접착제, 초음파 기술, 솔벤트 기반 기술 등을 사용하여 달성될 수 있다. 도 6에 도시된 바와 같이 조립될 때, 큐벳 제1 부분(44)의 샘플 수용 홈(45)은 큐벳 제2 부분(50)과 함께, 샘플 흡입 및 배기 포트(46, 47)와 유동적으로 소통하는 샘플 수용 챔버(54)를 형성한다. 샘플 수용 챔버(54)의 제1 및 제2 큐벳 창(49, 52) 사이의 거리는 큐벳 광학 경로 길이를 규정하는데, 이는 프로세서 모듈(150)에 의한 추후 회복(retrieval)을 위해 전자 칩(48) 내에서 정확하게 측정되고 저장된다. 본 발명의 이런 실시예에 사용된 통상적인 광학 경로 길이는 0.0035 인치(0.090mm)이다.
이제 도 7을 참조하면, 큐벳 제1 및 제2 부분(44, 50)의 확대된, 후방 사시도가 도시된다. 도시된 바와 같이, 큐벳 제1 부분(44)은 제1 큐벳 창(49)을 지닌 샘플 챔버 홈(45) 및 전자 침 조립체(48)를 수용하기 위한 전자 침 홈(48a)을 구비한다. 큐벳 제2 부분(50)은 큐벳 제1 부분(44)과 함께 조립될 때 샘플 수용 챔버(54)를 형성하는 제2 큐벳 창(52)을 구비한다. 큐벳 제2 부분(50) 상에 윤곽(53)으로 묘사된 것처럼 제2 큐벳 창(52)은 샘플 챔버 홈(45) 및 샘플 수용 챔버(54) 주위에 수밀 씰(water-tight seal)을 형성하는 돋아진 표면(raised surface)이다. 선택적으로, 얇은 개스킷은 수밀 씰을 더 용이하게 보장하도록 큐벳 제1 및 제2 부분(44, 50) 사이에 위치될 수 있다. 도 8은 전자 칩 홈(48a) 내에 배치된 전자 칩 조립체(48)를 지닌 큐벳 제1 부분(44)의 배면도를 도시한다. 전자 칩 조립체(48)는 특정한 큐벳 모듈(43)에 대해 큐벳 광학 경로 길이를 저장하는 칩 회로 보드(48b) 및 전자 칩(48c)을 포함한다. 제1 큐벳 창(49)은 광학 경로(21) 내에 배치되고, 샘플을 통과한 광 빔을 캘리브레이션 광 모듈(60)에 전달한 후, 광 빔을 분광계 모듈(100)로 보낸다.
이제 도 9를 참조하면, 캘리브레이션 광 모듈(60)의 일 실시예가 도시된다. 캘리브레이션 광 모듈(60)은 캘리브레이션 모듈 하우징(62), 광 빔 수용부(64), 캘리브레이션 광부(70), 및 광섬유부(80)를 포함하는데,여기서 캘리브레이션 모듈 하우징(62), 광 빔 수용부(64) 및 광섬유부(80)는 광학 경로(21)와 정렬된다. 캘리브레이션 광부(70)는 광학 경로(21)로부터 이격되어 가로놓인다.
도 10은 캘리브레이션 광 모듈(60)의 단면 정면도이다. 캘리브레이션 모듈 하우징(62)은 광 빔 입력 개구(62b) 및 광 빔 출력 개구(62c) 사이의 제1 튜브형 도관(62a) 뿐만 아니라, 일단부 상에 제1 튜브형 도관(62a)을 가로지르고 교차하며 대향단부 상에 캘리브레이션 광 빔 개구(62e)를 구비하는 제2 튜브형 도관(62d)을 포함한다.
광 빔 수용부(64)는 큐벳 모듈(43)로부터 광학 경로(21)를 따라 수용된 광 빔(28a)을 시준하는 시준 렌즈(66)를 하우징하고, 제1 튜브형 도관(62a)으로 광 빔(28a)을 지향시킨다. 캘리브레이션 모듈 하우징(62) 내에는 제1 튜브형 도관(62a)을 가로질러 배치된 광 스플리터 홀더 조립체(67)가 배치된다. 빔 스플리터 홀더 조립체(67)는 광학 경로(21) 내에서 캘리브레이션 광 빔 개구(62e) 및 광 빔 출력 개구(62c)를 향하는 상향 경사 표면(67a)를 구비한다. 빔 스플리터 홀더 조립체(67)는 캘리브레이션 광 빔(72a)을 수용하도록 위치되어, 이를 광학 경로(21) 및 제1 튜브형 도관(62a)을 따라 광 빔 출력 개구(62c)로 지향시키기 위해서, 제2 디퓨저(68) 및 제2 디퓨저(68)로부터 광학 경로(21)를 따라 하류에 배치된빔 스플리터(69)를 지지한다(도 11에 도시됨).
캘리브레이션 광부(70)는 빔 스플리터 홀더 조립체(67)를 향하여 광학 경로(21)를 가로지르는 캘리브레이션 광 개구(62e)를 통해 캘리브레이션 모듈 하우징(62) 안으로 캘리브레이션 광 빔(72a)을 지향시킬 수 있는, 광학 경로(21)에 인접하지만 이격되어 배치된 캘리브레이션 광원(72)을 포함한다. 캘리브레이션 광부(70) 내에는, 빔 스플리터 조립체(67)에 의해 빔 출력 개구(62c)를 향해 반사되기 전에 캘리브레이션 광 빔(72a)을 시준하는 시준 렌즈(74)가 존재한다.
광섬유부(80)는 광 빔 출력 개구(62c)의 근방에서 광학 경로(21) 내에 위치된다. 광섬유부(80)는 포커싱 렌즈(82) 및 광섬유 커넥터 조립체(84)를 포함하며, 이 조립체는 광섬유 조립체(90)를 수용하는데 적합한 커넥터 하우징(86)을 포함한다. 광섬유부(80)는 광 빔(28a)이 포커싱 렌즈(82)에 의해 광섬유 조립체(90)로 적절히 포커싱되는 것을 보장하는데 적합하다.
도 11은 광학 소자(66, 68, 69, 74, 82) 및 광 빔(28a, 72a) 뿐만 아니라 광섬유 조립체(90)와의 위치적인 관계를 도시하는 도 10의 개략도이다. 도 11에서 알 수 있는 바와 같이, 광 빔(28a)은 시준 렌즈(66)에 의해 수신되고, 제2 디퓨저(68) 및 빔 스플리터(69)를 통해 포커싱 렌즈(82)로 전달되어 광섬유 조립체(90)로 전달된다. 전술한 바와 같이, 한 쌍의 디퓨저(32, 68) 사이에 큐벳 모듈(43)을 지닌 한 쌍의 디퓨저(제1 디퓨저(32) 및 제2 데퓨저(68))의 사용의 중요성은 공간 광 분포(spatial ligth distribution)가 블랭크 스캔 및 전혈 샘플 스캔에서 동일하게 나타날 것이라는 점이다. 이러한 배열에서 디퓨저(32, 68)의 사용은 전체 감도가 변하지 않더라도, 광원의 불균일화 또는 입사광의 공간 광 분포 변화의 변형으로 야기된 오류 영향을 제거한다. 디퓨저(32, 68)는 그들이 분광계 모듈(100)의 광학 부품 그룹(120)의 전체 수용콘(acceptance cone) 안으로 입사광의 광선을 확산시키도록 선택된다. 이는 광 측정 필드를 완전히 가로질러 광선을 효과적으로 스크램블링한다.
작동될 때, 캘리브레이션 광 빔(72a)은 시준 렌즈(74)에 의해 수신되고, 빔 스플리터(69)에 전달되며, 광섬유 조립체(90)에 포커싱되는 곳인 포커싱 렌즈(82)에 유도(directed)된다. 캘리브레이션 광 빔(72a)은 분광계 모듈(100)의 파장 규모를 캘리브레이션 하는데 사용된 광의 특정한 파장을 구비한다. 수용가능한 캘리브레이션 광원(72)의 일 예시는 크립톤(krypton, Kr) 가스 방전 램프인데, 이는 7개의 Kr 라인 파장을 422 내지 695 nm의 범위를 커버하는 나노미터로 제공한다. 광 분산 소자의 프리즘(131)은 고차의 다항식 또는 다른 함수를 필요로 하는 파장 대 비선형 분산을 갖는다. 본 발명은 +/- 0.03 nm의 절대 파장 정확성 요건보다 충분히 낮은 잔류 오류를 제공하기 위해 Kr 라인 피크의 픽셀 위치에 대해 5차 다항식을 사용한다.
광섬유 조립체(90)는 광섬유(92), 제1 광섬유 커넥터(94) 및 제2 광섬유 커넥터(96)(도 12에 도시됨)를 포함한다. 제1 광섬유 커넥터(94)는 광섬유(92)의 수광(light-receiving ,광수용) 단부(92a)에 고정되고, 광섬유 커넥터 조립체(84)의 커넥터 하우징(86)에 직접 및 제거가능하게 연결된다. 광섬유(92)의 일 실시예는 0.22의 개구수(NA)를 지닌 200㎛ 실리카 코어 섬유를 포함한다.
이제 도 12 및 13을 참조하면, 광학계 모듈(100)의 일 실시예가 도시된다. 광학계 모듈(100)은 광학계 하우징(102), 광학계 베이스(104), 광학계 커버(106)(도 1에 도시됨), 광섬유 하우징 단부(108), 및 전기 신호 출력 커플러(103)를 포함한다. 광학계 모듈(100)은 11cm x 8cm x 2cm의 외부 엔벨로프 치수를 가지며, 후술되는 열 보상 구조를 선택적으로 포함한다. 광학계 하우징(102) 내에는 광학계 모듈(100)의 필수 구성요소가 포함된다. 이 구성요소들은 광수용 및 변환 조립체(110) 및 광학 부품 그룹(120)을 포함한다. 광학 부품 그룹(120)은 소색 렌즈(achromatic lens) 조립체(121) 및 광 분산 소자(130)를 포함한다. 광 분산 소자(130)는 프리즘(131) 또는 그레이팅(grating, 136)이 될 수 있다. 광섬유 조립체(90)는, 광섬유 조립체(90)가 광 빔(28a, 72a)을 광학계 모듈(100)에 전달하는 광 입구 포트(entrance port, 109)에서 광섬유 하우징 단부(108)에 제거가능하게 고정된다. 전술한 바와 같이, 광 빔(28a)은 큐벳 모듈(43)을 통해 발광모듈(22)로부터 전달된 광을 나타내지만, 광 빔(72a)은 광학계 모듈(100)을 캘리브레이션 광 모듈(60)로부터 전달된 캘리브레이션 광으로서, 이는 캘리브레이션 하는데 사용된다.
소색 렌즈 조립체(121)는 렌즈 마운트(122) 및 구면 소색 렌즈(124)를 포함한다. 소색 렌즈(14)는 광 빔(28a, 72a)을 수신하며, 경우에 따라, 본 실시예에서는 프리즘(131)인, 광 분산 소자(130)에 광 빔을 유도한다. 프리즘(131)은 광 빔(28a)을 굴절시키고, 소색 렌즈(124)를 통해 다시 광을 반사시킨다.
광-수용 및 변환 조립체(110)는 광섬유 하우징 단부(108)의 내부 표면(108a)에 인접하여 안정적으로 마운트된다. 광-수용 및 변환 조립체(110)는 광섬유(92)의 발광 단부(92b)(미도시)와 정렬된 광 입력 슬릿(114)이 마운트되는 회로 기판(circuit board substrate, 112)을 포함한다. 인접한 입력 슬릿(114)은 프리즘(131)으로부터 굴절된 광을 수신하는 광-어레이 검출기(116)이다. 광-어레이 검출기(116)는 굴절된 광을 전기 신호로 변환하며, 이는 출력 커넥터(118)를 통해 프로세서 모듈(150)에 출력된다. 회로 기판(112) 상에 서로 인접한 광 입력 슬릿(114) 및 광 어레이 검출기(116)를 제공하는 것은 몇 가지 이점을 갖는다. 이 특징은 구성을 크게 단순화하고 분광계 모듈(100)의 정밀도를 향상시킨다. 다른 분광계는 이들 아이템을 별도의 장착 구조를 갖는 별도의 평면 상에 위치시키고 독립적으로 조정해야한다. 회로 기판(112) 상에 서로 인접한 입력 슬릿 및 광 어레이 검출기를 장착하는 이러한 특징은, 각각의 구조체(즉, 슬릿 및 검출기)를 개별적으로 장착하고 위치시킬 필요성을 제거한다.
도 14는 광수용 및 변환 조립체(110)의 확대도이다. 광 입력 슬릭(114)은 직사각형 폭 15㎛ x 길이 1000㎛이며, 대략 폭 15㎛ x 높이 200㎛의 직사각형인 광섬유-슬릿 이미지를 광-어레이 검출기(116)에 투영한다(Hamamatsu S10226-10은 사용가능한 광 어레이 검출기의 예시임). 입력 슬릿(114)은 광-어레이 검출기(116)와 동일한 회로 기판(112) 상에 직접적으로 적용된다. 광 어레이 검출기(116)는 약 100 내지 약 150㎛ 사이의 픽셀 높이를 가지며, 이는 검출기상에 200㎛ 치수의 광섬유의 일대일 이미징을 허용한다. 이 실시예에서, 입력 슬릿(114)은 정렬을 덜 노동 집약형(labor intensive)으로 만드는 광 어레이 검출기(116)에 대해 정확한 위치에서 레이저 에칭된다. 입력 슬릿(114) 및 광어레이 검출기(116)는 소색 렌즈(124)의 중심축선에 대해 단지 약간 축-외이기 때문에, 최소의 탈선(aberration)이 존재하며, 광어레이 검출기(116)의 픽셀 높이에 맞추기 위해 광섬유 이미지(200㎛ 치수 섬유)를 수축시키는데 원통형 포커싱 렌즈가 필요하지 않도록 광어레이 검출기(116)에서 일대일 이미징이 가능하다.
이제 도 15를 참조하면, 도 13의 광학계 모듈(110)의 평면도가 존재한다. 도 15에 포개진 것은 광섬유(92)에 의해 분광계 모듈(100)에 전달된 광 빔의 광선 추적 다이어그램(140)이다. 도시된 바와 같이, 광 빔(28a)은 입력 슬릿(114)을 통해 소색 렌즈(124)를 향해 분광계 모듈(100) 안으로 진입한다. 소색 렌즈(124)는 축외로 사용되는데; 즉, 소색 렌즈는 광 빔(28a)에 대해 약간 벗어난다. 광 빔(28a)은 소색 렌즈(124)에 의해 프리즘(131)에 전달되며, 광 빔(28a)은 프리즘이 해야하는 바와 같이 상이한 파장의 복수의 광 빔들(138a, 138b, 138c) 안으로 굴절된다. 복수의 광 빔들(138a, 138b, 138c)은 소색 렌즈(124)를 통해 다시 프리즘(131)에 의해 굴절된다. 소색 렌즈(124)는 프리즘(131)으로부터 굴절되고 반사된 복수의 광빔들(138a, 138b, 138c)을 광어레이 검출기(116) 상에 유도하기 위해서 축-외로 사용된다.
도 16은 광 추적 다이어그램(140)의 확대도이다. 소색 렌즈(124)는 광 빔(28a)을 진입시키는 것에 대해 축외로 사용된다. 프리즘(131)의 베이스 상에 반사 코팅(132)을 갖는 프리즘(131)과 함께 소색 렌즈(124)를 축외로 사용함으로써, 전혈의 총 빌리루빈(bilirubin) 파라미터 또는 헤모글로빈 파라미터를 측정하는데 사용될 수 있는 콤팩트하고, 단순화된, 최소의 구성요소로 이루어진 분광계 모듈(100)이 달성된다.
온도의 변화는 회절격자(diffraction grating) 대신에 프리즘을 사용할 때, 빔 굴절 각도에 큰 영향을 갖는다. 본 발명에서, 광-분산 소자(130)에 의해 야기된 유입되는 광빔의 열 이동을 보상하기 위해 열-보상 수단(160)이 제공된다. 분광계 모듈(100) 내 온도 변화는, 분산 프리즘(131)의 굴절률(refractive index)의 열전 유도 변화(thermally-induced change)에 의해 차례차례 야기된, 광어레이 검출기(116) 상에 입력 슬릿(114)로부터 슬릿 이미지의 열전 유도 움직임을 야기한다. 도 16은 프리즘(131)의 열 굴절률 변화에 대한 광어레이 검출기(116) 상의 이미지의 움직임의 방향을 화살표 400으로 도시한다. 렌즈(124)가 화살표 402로 지시된 바와 같이 동일한 온도 인터벌에 걸쳐 반대 방향으로 움직이면, 슬릿 이미지는 광어레이 검출기(116) 상에 있어야 하는 곳으로 다시 움직이게 된다. 이런 이동을 방지하기 위해, 열-보상 수단(160)은 분광계 모듈(100)의 외부에서 발생하는 온도 변화로부터 분광계 모듈(100) 내의 온도 변화를 최소화하거나 분광계 모듈(100)을 온도 제어된 공간 내에 배치하기 위한 절연체(insulation)가 있는 심플한 랩핑(wrapping) 분광계 모듈(100)일 수 있다. 또 다른 수단은, 분광계 하우징(102)의 내부 표면 또는 외부 표면에 부착된 적어도 하나의 리본 히터(172) 및 분광계 하우징의 온도를 측정하기 위한 열전쌍(thermocouple) 또는 서미스터와 같은 온도 센서(174)를 포함하는 온도 컨트롤러 조립체(170), 및 기정된 일정한 온도를 유지하기 위한 히터 회로를 포함하는 것이다. 도 17a 및 도 17b는 이러한 가능성을 도시한다.
도 17c에 도시된 일 실시예에서, 소색 렌즈 마운트(122)는 열-보상 렌즈 마운트이다. 열-보상 렌즈 마운트(122)는 고정된 마운트 단부(122a) 및 비고정된 마운트 단부(122b)를 갖는다. 고정된 마운트 단부(122a)는 분광계 베이스(104) 또는 분광계 베이스(104)에 단단히 부착된 베이스플레이트(104a)에 확고하게 고정된다. 비고정된 마운트 단부(122b)는 전형적으로 렌즈 마운트(122)의 렌즈 마운트 슬롯(122c)을 통해 분광계 베이스(104) 또는 베이스플레이트(104a)로 연장되는 패스너(126)를 갖는다. 패스너(126)의 헤드(126a) 및 렌즈 마운트(122) 사이에는 홀드-다운 스프링(128)이 있다. 온도 변화에 의해 야기된 렌즈 마운트(122)의 팽창/수축을 허용하기 위해 렌즈 마운트 슬롯(122c) 및 패스너(126) 사이에 충분한 간격(spacing)이 존재한다. 렌즈 마운트(122)의 팽창 계수는 분광계 베이스(104) 또는 베이스플레이트(104a)의 팽창 계수보다 크므로, 비고정된 마운트 단부(122b)는 화살표(500)로 도시된 방향으로 열-보상 렌즈 마운트(122)의 열 팽창 및 수축을 허용하며, 이는 입력 슬릿(114)으로부터의 광 빔에 대해 선형 및 횡방향으로 이동한다. 이러한 구조는 소색 렌즈(124)가 베이스플레이트(104a) 또는 분광계 베이스(104) 상에 장착된 다른 구성 요소들에 대해 미끄러질 수 있게 한다. 열-보상 렌즈 마운트(122)는 분광계 하우징(102) 내의 온도 변화에도 불구하고 광-어레이 검출기(116)에 의해 형성된 전기 신호에 영향을 미치지 않으면서 복수의 광 빔(138a, 138b, 138c)이 광-어레이 검출기(116)에 항상 충분한 감도로 충돌하는 것을 보장한다. 렌즈 마운트(122)가 분광계 베이스(104) 또는 베이스플레이트(104a)(경우에 따라)보다 큰 팽창 계수를 갖는 요건을 충족시키는 그러한 재료 중 하나는, 폴리페닐렌 옥사이드(polyphenylene oxide, PPO) 폴리페닐렌 에테르(polyphenylene ether, PPE) 수지 및 등록상표 NORYL®으로 판매되는 폴리스티렌의 비정질 혼합(amorphous blend)으로 구성되는 변형된 폴리페닐렌 에테르(PPE) 수지이다.
도 18은 렌즈 마운트(122)의 대안적인 실시예를 도시한다. 본 실시예에서, 렌즈 마운트(122)는 두 개의 고정된 마운트 단부들(122a)을 갖는데, 여기서 각 단부(122a)는 패스너(126)에 의해 베이스플레이트(104a) 또는 분광계 베이스(104)에 고정된다. 렌즈 마운트(122)의 양 단부(122a)는 고정되기 때문에, 분광계 모듈(100) 내의 임의의 온도 변화는 광-어레이 검출기(116)에 충돌하는 복수의 광 빔(138a, 138b, 138c)의 각도에 영향을 주게 된다. 광-어레이 검출기(116)의 슬릿 이미지 및 길이에 관련하여 전술한 바와 같이, 0.5℃보다 더 큰 온도 변화는 광 빔들 중 하나의 감도가 광-어레이 검출기 상에 완벽하게 충돌하지 않게 야기함에 따라, 부정확한 판독을 야기한다. 이러한 잠재적 영향을 없애기 위해, 분광계 모듈(100)은 온도 컨트롤러 조립체(미도시)가 장착되어서 프리즘(131) 및 소색 렌즈 조립체(121)가 일정한 온도로 머무르게 된다. 일정한 온도로 분광계 모듈(100)의 내부를 유지하기 위해 이용가능한 여러 방법들이 있지만, 이를 성취하기 위한 그러한 온도 컨트롤러 조립체의 일 예시는, 분광계 모듈(100)의 내부 또는 외부에 접착가능하게 부착되는 서미스터(미도시)를 지닌 리본 히터이며, 이 리본 히터는 전자 조절 회로(미도시)에 의해 조절된다. 선택적으로, 분광계 모듈(100)은 또한 더 쉽게 분광계 모듈(100)을 둘러싸는 부근의 주어진 온도를 유지하고 온도의 변화에 대해 보호하기 위해서 내부나 외부 또는 양측에 절연처리될 수 있다. 다른 메커니즘은 온도 제어된 환경 내에 분광계 모듈(100)의 배치를 포함한다.
학습 데이터:
대략적으로 15개의 상이한 개체로부터 180개의 혈액 샘플로 된 데이터 세트가 개발되었다. 혈액 샘플들은 MetHb 값을 높이기 위해 소듐 니트라이트(sodium nitrite)를 사용하여 처리(manipulated)되고, COHb 값을 높이기 위해 CO 가스를 사용하여 처리되었다. 플라즈마는 tHb 레벨을 변화시키기 위해 샘플로부터 제거되거나 샘플에 첨가되었다. tBil 레벨을 변화시키기 위해 빌리루빈 스파이크 용액(bilirubin spiking solution)이 추가되었다. 옥시젠 레벨을 처리하는데 토노미터(tonometer)가 사용되었다. 혈액 샘플은 많은 범위의 분석물 값을 다루기 위해 처리되었다. 그 후 COOx 분석기 및 분석 소프트웨어가 장착된 표준 용해(reference lysing) pHOx 울트라 분석기에서 혈액 샘플을 측정하였다. 전혈 스펙트럼은 용해 공급 라인이 완전하게 분리되고 전혈 샘플이 용해 또는 다른 희석(dilution) 없이 큐벳 조립체(40) 내로 직접 흐르면서, 고-각도 수집 광학 및 전술된 바와 같은 다른 변형을 지닌 pHOx 울트라 분석기 상에서 수집되었다. 양 분석기는 각각의 큐벳에 Zeonex 창을 장착하였다. 이 데이터 세트는 Matlab 스크립트와 함께 사용하기 위해 Matlab 셀 배열 파일로 바뀌었다.
예측 모델:
계산의 다음 단계는 예측 모델을 형성하는 것이다. 세 개의 모델이 분석을 위해 개발되었다: 하나는 COOx 파라미터 tHb 및 COHb에 대한 것, 두번째는 HHb 및 MetHb에 대한 것, 세번째는 tBil에 대한 것이다. O2Hb의 양은 100%에서 COHb, HHb, 및 MetHB를 빼는 것에 의해 결정된다. X-데이터 배열은 462-650 nm, 1 nm 간격 사이의 파장에서 측정된 흡광도로부터 형성된 조건으로 구성된다. tBil 모델은 COOx 모델과 같이 동일한 데이터의 세트를 사용하여 개발되었으며, MetHb 값이 20% 이상인 샘플은 모델에서 제외되었다. 각 모델에 대해, O2Hb, HHb, COHb 및 MetHb에 대한 결과를 더하여 결정된 tHb를 지닌 5개의 Y-예측 값(O2Hb, HHb, COHb, MetHb, tBil)이 지정되었다. 필요한 Y-직교 값의 수는 맵핑 함수 혈액 예측의 상관 잔차(correlation residual)를 기준 분석기 값과 함께 수동으로 최적화하여 결정되었다.
초기 캘리브레이션 데이터 세트를 사용하여, 기계 학습 알고리즘의 보정 순서는 알려진 샘플 특성의 행렬(matrix)(Y 행렬)과, 여러 파장에서 측정된 흡광도 값의 행렬 및 잠재적으로 흡광도 대 파장에 기반하여 다른 측정된 값의 행렬(X 행렬) 사이의 관계를 확립한다. 일단 이런 관계가 확립되면, 분석기에 의해 전혈 샘플에서 X의 새로운 측정치로부터 미지의 Y 값을 예측하는 것이 사용된다.
표 1은 최적화된 모델에 사용된 세팅 및 입력을 요약한다. X-데이터는 흡광도 및 흡광도 대 파장에 기반한 다른 요건들로 구성된다. 모델을 최적화하는 프로세스에서, 흡광도 미분(derivative) 대 파장이 추가된다. 비선형 산란 영향에 좀 더 민감한 분석물에 대한 모델들은 흡광도와 그 미분의 제곱근 항으로 구축되었다. 산란에 좀 더 영향받는 분석물에 대한 모델은 파장의 4승에 비례하는 교정항(correction term)을 가진다. X-벡터 행은 각 모델에 대해 표에 표시된 세 개의 흡광도-기반 항(f, g, 및 h) 각각에 대해 각 파장에 대한 하나의 값을 가진다.
(표 1) : 알고리즘 모델을 구성하는데 사용된 파라미터 (KOPLS 방법)
Figure 112018087792039-pct00001
캘리브레이션 세트 Y 행렬은 용해된 혈액 샘플 n의 캘리브레이션 샘플 세트의 알려진 값으로부터 다음과같이 구축된다:
Figure 112018087792039-pct00002
여기서, tHb는 용해된 혈액 샘플의 총 헤모글리빈 값이고,
COHb는 용해된 혈액 샘플의 카복시헤모글로빈 값이고,
HHb는 용해된 혈액 샘플의 데옥시헤모글로빈 값이고,
MetHb는 용해된 혈액 샘플의 메트헤모글로빈 값이고,
tBil은 용해된 혈액 샘플의 총 빌루빈 값이다.
X 행렬은 다음과 같이 구성된다:
Figure 112018087792039-pct00003
여기서: f, g, h는 표 1에 열거된 흡광도기반 함수 대 파장, 각각이다.
행렬 X는 다양한 파장에서 흡광도로부터의 기여를 포함한다. 본 발명의 범주는 임의로 다른 측정치를 계산에 추가하여 간섭 효과를 감소시키는 것을 포함한다.
일단 이들 행렬이 형성되면, 이들은 캘리브레이션 세트로서 사용되며, 맵핑 함수는 선택된 기계 학습 알고리즘에 특정한 절차에 따라 계산된다.
전술한 바와 같이, 종래의 부분 최소 제곱법(partial least squares), 선형 회귀(regression), 선형 대수(algebra), 신경망(neural network), 다변수 적응 회귀 스플라인, 잠재 구조에 대한 투영, 잠재 구조에 대한 커널 기반 직각 투영 또는 기타 기계 학습 수학이, 흡광도 값과 헤모글로빈 파라미터 사이의 경험적 관계(또는 맵핑 함수)를 결정하기 위한 데이터의 캘리브레이션 세트로부터 얻은 결과와 함께 사용된다. 전형적으로, 수학 패키지는 결과물을 생성하는데 사용되며, 여기서 패키지는 일반적으로 당업자에게 알려진 기계 학습 수학 중 하나를 선택하는 옵션을 갖는다. 다양한 수학 패키지가 존재하며, 몇가지를 지명하기 위해, www.r-project.org의 인터넷을 통해 사용가능한 "R" by R Project for Statistical Computing에 의한 MA, MathWorks of Natick, Matlab을 포함하고, orange.biolab.si의 인터넷을 통해 사용가능한 Orange Bioinformatics로부터의 Orange data mining software를 결합하여 www.python.org의 인터넷을 통해 사용가능한 Python Software Foundation의 Python을 포함하지만, 이에 한정되진 않는다. Kernel-Based Orthogonal Projection to Latent Structures(KOPLS)의 방법이 매핑 기능을 생성하는 기계 학습 알고리즘의 한 유형으로 사용될 수 있음을 보여준다. KOPLS에 대한 해석과 설명은 다음의 참조문헌에 의해 잘 설명된다: Johan Trygg와 Svante Wold. "Orthogonal projections to latent structures (O-PLS)." J. Chemometrics 2002; 16 : 119-128; Mattias Rantalainen 외. "Kernel-based orthogonal projections to latent structures (K-OPLS)." J. Chemometrics 2007; 21: 376-385; 및 Max Bylesjo 외. “K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space.”BMC Bioinformatics 2008, 9 : 106, 여기서 참조문헌들은 본원에 참고로 포함된다. 커널 기반 수학은 고차원 공간에 매핑하기 위해 커널 함수를 사용함으로써 시스템에서의 비선형 동작을 처리하는 데 유용하다. 이전에 기술된 기계 학습 수학 중 임의의 것이 당해 분야의 당업자가 본 발명을 실시할 수 있게 하기 위해 사용될 수 있지만, KOPLS는 예를 들어, 결정되어야할 분석물 값 및 정량화된 변형 사이의 관계를 확립할 수 있을뿐만 아니라 원래의 데이터에서 아직 정량화되지는 않으나 일관되게 존재하는 변형을 제거할 수 있기 때문에, 종래의 부분 최소 제곱법과 같은 다른 계산보다 추가적인 이점을 갖는다. 이러한 정량화되지 않은 변형들은 명시적으로 측정되지 않은 산란 손실 및 기타 간섭 현상과 같은 혈액 영향 또는 분석기로 인한 것일 수 있다. 데이터로부터 이러한 정량화되지 않은 변형을 추출함으로써, 방법은 측정된 값을 예측하는데 사용된 정보를 데이터에 남겨둔다.
초기 트레이닝 데이터 세트를 사용하여, KOPLS 모델은 알려진 샘플 특성의 행렬(H 행렬)과, KOPLS 방법으로 지정된 바와 같이 커널 함수를 통해 처리되는, 여러 파장에서 측정된 흡광도 값 및 파장 대 흡광도에 따라 잠재적으로 다른 측정 값의 행렬(X 행렬) 사이의 관계(매핑 함수)를 확립한다. 일단 이 관계의 KOPLS 계수가 확립되면, 샘플의 흡광도의 새로운 측정으로부터 미지의 헤모글로빈 매개 변수 값을 예측하도록 분석기에 의해 커널 함수와 함께 사용된다.
본 예시에서 사용된 커널 함수는 단순 선형 커널 함수 Mattias Rantalainen 외. 위에 열거된 참조 문헌으로 나와 있으며 다음 방정식으로 표시된다:
Figure 112018087792039-pct00004
여기서, 측정된 값 X의 행렬은 KOPLS 트레이닝 계수를 생성하기 위해 전술 한 인용된 KOPLS 참조 문헌(참조로서 통합됨)에 명시된 바와 같이 커널 함수에 넣고 추가 처리를 받는다.
일단 트레이닝 계수의 세트 또는 맵핑 함수가 확립되면, 이는 미래 측정으로부터 혈액 샘플의 헤모글로빈 파라미터 값 또는 총 빌리루빈 파라미터 값을 예측하는데 사용된다. 단일-행 X 행렬이 새로운 측정치로부터 생성된 후, 이 단일-행 X 행렬로부터의 값은 이전에 설명된 KOPLS 참조문헌에 상세하게 설명된 KOPLS 절차에 따라 헤모글로빈 파라미터 값 또는 총 빌리루빈 파라미터 값을 생산하기 위해 커널 및 맵핑 함수를 통해 실행된다.
위에서 설명한 혈액 샘플로부터 수집된 데이터는 교차-검증 프로세스에서 KOPLS 방법을 통해 실행되었다. 교차-검증은 방법을 테스트하는 데이터 세트를 사용하기 위한 프로세스이다. 여러 데이터 행은 따로 설정(set aside)되고 나머지는 매핑 함수를 만드는 데 사용된다. 따로 설정된 값은 "새" 측정값으로 사용되며 해당 Y 행렬 값이 계산된다. 이 프로세스는 다른 측정 값을 따로 설정하고 다른 매핑 함수를 연산(computing)함으로써 반복된다. 혈액 데이터의 알려진 값과 계산된 값을 플로팅(plotting)함으로써, 방법의 효율성은 플롯을 검사함으로써 확인될 수 있다.
이제 도 18-23을 참조하면, KOPLS 방법을 사용하여 용해된 혈액의 다양한 헤모글로빈 파라미터를 전혈과 비교하는 상관 결과의 그래픽 플롯이 도시되어 있다. 혈액 샘플은 많은 범위의 분석물 값을 다루기 위해 처리되었다. 데이터를 테스트하기 위해 60배를 사용하는 n배 교차 검증의 기술이 사용된다. 이 기술에서, 데이터 세트는 n=60 개별 세트로 나누어지고, 모델은 n-1의 세트로 만들어지며, 잔여 세트는 모델을 사용하여 예측된다. 프로세스는 각 그룹당 60번 반복된다. 따라서 모든 데이터 지점은 모델에 포함되지 않고 대부분의 다른 데이터 지점으로 만들어진 모델을 사용하여 예측된다.
도 19는 K-OPLS 방법을 사용하여 tHb에 대한 상관 결과를 도시한다. 수평축은 용해된 혈액의 총 헤모글로빈을 데시리터(deciliter) 당 그램으로 표현하는 단위를 갖는다. 수직축은 전혈의 총 헤모글로빈을 데시리터 당 그램으로 표현하는 단위를 갖는다. 플롯에서 볼 수 있듯이, 전혈 샘플의 tHb를 결정하는 방법은 99% 이상의 상관관계를 갖는다.
도 20은 K-OPLS 방법을 사용하여 O2Hb에 대한 상관 결과를 도시한다. 수평축은 용해된 혈액의 옥시헤모글로빈 비율을 나타내는 단위를 갖는다. 수직축은 전혈의 옥시헤모글로빈 비율을 나타내는 단위를 갖는다. 플롯에서 볼 수 있듯이, 전혈 샘플의 O2Hb를 결정하는 방법은 99% 이상의 상관관계를 갖는다.
도 21은 K-OPLS 방법을 사용하여 카르복시헤모글로빈에 대한 상관 결과를 도시한다. 수평축은 용해된 혈액의 카르복시헤모글로빈 비율을 나타내는 단위를 갖는다. 수직축은 전혈의 카르복시헤모글로빈 비율을 나타내는 단위를 갖는다. 플롯에서 볼 수 있듯이, 전혈 샘플의 COHb를 결정하는 방법은 99% 이상의 상관관계를 갖는다.
도 22는 K-OPLS 방법을 사용하여 데옥시헤모글로빈에 대한 상관 결과를 도시한다. 수평축은 용해된 혈액의 데옥시헤모글로빈 비율을 나타내는 단위를 갖는다. 수직축은 전혈의 데옥시헤모글로빈 비율을 나타내는 단위를 갖는다. 플롯에서 볼 수 있듯이, 전혈 샘플의 HHb를 결정하는 방법은 99% 이상의 상관관계를 갖는다.
도 23은 K-OPLS 방법을 사용하여 메트헤모글로빈에 대한 상관 결과를 도시한다. 수평축은 용해된 혈액의 메트헤모글로빈 비율을 나타내는 단위를 갖는다. 수직축은 전혈의 메트헤모글로빈 비율을 나타내는 단위를 갖는다. 플롯에서 볼 수 있듯이, 전혈 샘플의 MetHb를 결정하는 방법은 99% 이상의 상관관계를 갖는다.
도 24는 K-OPLS 방법을 사용하여 tBil에 대한 상관 결과를 도시한다. 수평축은 용해된 혈액의 총 빌리루빈을 데시리터 당 그램으로 나타내는 단위를 갖는다. 수직축은 전혈의 총 빌리루빈을 데시리터 당 그램으로 나타내는 단위를 갖는다. 플롯에서 볼 수 있듯이, 전혈 샘플의 tBil를 결정하는 방법은 99% 이상의 상관관계를 갖는다.
이제 본 발명의 COOx 분석기 서브시스템(10)을 사용하여 전혈 측정을 만드는 방법을 설명한다. 흡광도 스캔은 먼저 "블랭크" 스캔으로 알려진 물 또는 분석기 세척 용액과 같은 투명 유체로 채워진 큐벳 모듈(43)로 투과 광 감도 스캔을 기록함으로써 측정된다. 그 다음 전혈 샘플로 채워진 큐벳 모듈(43)로 투과 광 감도 스캔이 기록된다. 분광계 암흑 응답(dark response) 및 검출기 선형성에 대한 보정 후, 분광 흡광도(spectral absorbance)는 측정 범위의 각 파장에서 연산된 투명한 유체 스캔에 대한 전혈 스캔의 비(ratio)의 밑이 10인(base-ten) 음의 로그(logarithm) 값이다.
좀 더 구체적으로, COOx 분석기 서브시스템의 구성요소의 묘사가 도 1 내지 18에 도시되어 있다. 이 서브시스템 실시예는 큐벳 모듈(43)에 도입된 액체의 광학 흡광도를 측정한다. 흡광도 측정을 수행하기 위해 사용된 광은 LED 광원(28)으로부터 발생되고, 시준 렌즈(30)에 의해 수집 및 전달되어, 큐벳 모듈(43)에 도달하기 전에 제1 디퓨저(32), 원형 편광자(34), 포커싱 렌즈(36), 및 선택적 보호창(38)을 통과한다. 절대 흡광도 측정에 있어 핵심은, 큐벳 경로 길이에 대한 지식이다. 큐벳 경로 길이는 각 개별 큐벳 모듈(43)에 대해 사전 측정되고, 큐벳 모듈(43) 상의 전자 칩(48c)에 프로그래밍된다. 경로 길이 정보는 필요할 때마다 분석기의 데이터 프로세서 모듈(130)에 의해 판독/검색된다.
큐벳 모듈(43)을 통과한 후에, 광은 렌즈(66)에 의해 수집되고, 시준화되어 제2 확산기(68) 및 빔 스플리터(69)를 통해 보내진다. 빔 스플리터(69)의 목적은 렌즈(74)에 의해 시준된, 광원(72)(예를 들어, 크립톤 가스 방전 램프)으로부터의 광이 광학 경로(21)에 들어가도록 허용하는 것이다. 캘리브레이션 광원(72)은 분광계 모듈(100)의 분광계 모듈(100)의 파장 스케일을 주기적으로 재조정하는데 사용되는 몇개의 알려진 파장으로 광을 제공한다. 빔 스플리터(69)를 통과 한 후에, 광은 렌즈(82)에 의해 광섬유(92) 상에 포커싱된다. 광섬유(92)는 광을 분광계 모듈(100)의 입력 슬릿(114)으로 안내한다. 광은 소색 렌즈(124)를 통과하고, 반사 백(132)을 지닌 광 분산 소자(130)를 통과한다. 광은, 예를 들어 프리즘(130)과 같은 광 분산 소자(130)를 통과함으로써 파장-분산된 후, 광을 광-어레이 검출기(116)의 픽셀 상에 재-포커싱하는 렌즈(124)를 통해 리턴 패스(return pass)를 만든다. 광-어레이 검출기(116)는 광 에너지를 광의 스펙트럼 감도를 나타내는 전기 신호로 변환한다. 전기 신호는 사용자에게 최종 결과의 추가 처리 및 표시를 위해 데이터 프로세서 모듈(150)로 전송된다. 광-수용 및 변환 조립체(110)는 입력 슬릿(114) 및 광 어레이 검출기(116)를 통합 유닛으로서 근접하게 유지하는 단일 보드이다.
입력 슬릿(114)은 광 어레이 검출기(116)와 근접하여 동일한 회로 기판 기판(112) 상에 직접 인가된다. 다른 종래의 분광계는 이러한 구성 요소를 개별적인 조정 및 정렬이 필요한 별도의 마운팅 구조를 가진 별도의 평면에 배치한다. 본 발명의 마운팅 방법은 분광계 모듈(100)의 비용과 사이즈를 낮추는 몇가지 이점을 갖는다: 1) 별도의 장착 구조물의 비용이 방지되고, 2) 입력 슬릿(114)이 광 어레이 검출기(116)에 대해 정확한 위치에서 레이저 에칭될 수 있어 정렬을 덜 노동 집약적으로 만들며, 3) 검출기상의 슬릿의 이미지가 광학 시스템의 중심 축으로부터 약간 벗어난 축에만 있기 때문에 저렴한 구면 표면 광학이 광학 시스템에서 사용될 수 있어, 수차(aberration)를 최소화하고, 4) 통일된 슬릿 및 검출기 조립체에 대한 단일 정렬 절차가 두 개의 개별 조립체에 대한 정렬 절차를 대체한다.
제1 확산기(32) 및 제2 확산기(68)는 각각 큐벳 모듈(43) 전후에 위치된다는 점에 유의하는 것이 중요하다. 확산 샘플의 광학 흡광도 측정은 고유한 문제를 제시한다. 샘플의 확산 투과율은 광원의 전형적인 불균일성에 의해 야기되는 측정 시스템의 초기 공간 광 분포를 스크램블링한다. 따라서 '블랭크' 스캔의 공간 광 분포는 전혈 샘플 스캔과 상당히 다를 수 있다. 광학 검출기는 공간적으로 변화하는 응답을 가지므로, 전반적인 감도가 변경되지 않은 경우에도 입사광의 공간 분포 변화로 인해 응답이 달라질 수 있다. 블랭크 스캔에 대한 샘플 스캔의 비율에 기초한 흡광도 스캔은 샘플 단독으로 인한 흡광도뿐만 아니라 이 효과로 인해 상당한 흡광도 성분을 가질 것이다. 이는 coox 측정기에 견딜 수 없는 샘플 흡광도의 상당한 측정 오류를 초래한다.
제1 및 제2 디퓨저(32, 68) 사이에 큐벳 모듈(43)을 배치하는 이점은, 블랭크 및 샘플 스캔에 대해 공간 광 분포가 동일하게 나타나서, 이런 오류 영향을 제거한다는 것이다. 디퓨저(32, 68)는 입사 광의 광선을 광학 시스템의 전체 수용콘으로 확산시키지만 그 이상은 아니며, 필드 전체에 걸쳐 광선을 완전히 스크램블링하는 동안 그와 동일한 광 처리량(throughput)을 보존할 수 있다.
본 발명의 바람직한 실시예가 본 명세서에 설명되었지만, 상기 설명은 단지 예시일 뿐이다. 본원에서 개시된 본 발명의 추가 변형은 각각의 기술 분야의 당업자에게 발생할 것이며 모든 그러한 변형은 첨부된 청구 범위에 의해 정의되는 본 발명의 범위 내에있는 것으로 간주된다.

Claims (43)

  1. 전혈 헤모글로빈 파라미터를 측정하기 위한 시스템(10)에 있어서, 시스템은,
    광학 샘플 모듈(20)로서: - 광이 유도되어 광학 경로(21)를 한정하는 광을 방출할 수있는 LED 광원(28)을 갖는 발광 모듈(22)과, - 전혈 샘플을 수용하기에 적합하고 제1 큐벳 창(49)과 제1 큐벳 창(49)에 정렬되는 제2 큐벳 창(52)을 지닌 샘플 수용 챔버(54)를 갖되, 샘플 수용 챔버(54)가 LED 광원(28)으로부터 광을 수용하기 위해 광학 경로(21)에 배치되고, 샘플 수용 챔버(54)가 제1 큐벳 창(49) 및 제2 큐벳 창(52) 사이의 한정된 광학 경로 길이(43a)를 가지고, 샘플 수용 챔버(54)가 샘플 수용 챔버(54)의 경로 길이 값을 저장할 수 있는 전자 칩(48c)을 갖는 교체가능한 큐벳 조립체(40)와, - 하나 이상의 알려진 광의 파장을 지닌 캘리브레이션 광원(72)을 가지며, 광학 경로(21)를 따라 배치된 빔 스플리터(69)를 향해 광학 경로에 대해 가로놓이는 광을 방출함으로써 광학 경로(21) 안으로 캘리브레이션 광을 방출하는 한편 교체가능한 큐벳 조립체(40)로부터 다운스트림인 광학 경로에 배치된 캘리브레이션 광 모듈(60)을 포함하는, 광학 샘플 모듈(20);
    수광 단부(92a) 및 발광 단부(92b)를 갖되, 수광 단부(92a)가 광학 샘플 모듈(20)에 광학적으로 연결되며, 여기서 수광 단부(92a)가 광학 경로(21)를 따라 방출된 광을 수용하여 발광 단부(92b)에 광을 안내하는 광섬유(92a);
    광섬유(92)의 발광 단부(92b)로부터 광을 수신할 수 있으며, 상이한 파장을 갖는 복수의 광 빔으로 광을 분리하여, 복수의 광 빔을 전기 신호로 변환하는 분광계 모듈(100); 및
    (1) 전자 칩(48c)으로부터 샘플 수용 챔버(54)의 경로 길이 값을 획득할 수 있고, (2) 샘플 수용 챔버(54)의 경로 길이 값을 지닌, 전혈 샘플에 대해 생성된 분광계 모듈(100)로부터의 전기 신호를 수신하여 처리할 수 있으며, 전혈 샘플에 대한 총 빌리루빈 파라미터 값 또는 헤모글로빈 파라미터 값을 표시하고 보고하는데 사용가능한 출력 신호로 전기 신호를 변화시키는 프로세서 모듈(150)을 포함하는 시스템.
  2. 청구항 1에 있어서,
    발광 모듈(22)은 LED 광원(28) 및 큐벳 어셈블리(40) 사이의 광학 경로(21)에 배치된 복수의 광학 소자(B)를 포함하고, 복수의 광학 소자(B)는 적어도 제1 광학 디퓨저(32), 하나 이상의 시준 렌즈(30), 원형 편광자(34), 및 포커싱 렌즈(36)를 포함하는 것을 특징으로 하는 시스템.
  3. 청구항 1에 있어서,
    캘리브레이션 광 모듈(60)은 큐벳 조립체(40)로부터 다운스트림이지만 빔 스플리터(69)로부터 업스트림인 광학 경로(21)에 배치된 제2 광학 디퓨저(68)를 포함하는 것을 특징으로 하는 시스템.
  4. 청구항 1에 있어서,
    분광계 모듈(100)은,
    광학 경로에 위치되며, 광섬유(92)의 발광 단부(92b)로부터 방출된 광을 수용하여 광을 전달하는 입력 슬릿(114);
    소색 렌즈(124) 및 광학 경로(21)에 배치된 광 분산 소자(130)를 가지되, 여기서 광 분산 소자(130)는 입력 슬릿(11)과 소색 렌즈(124)를 통해 전달된 광을 수용하고, 상이한 파장을 갖는 복수의 광 빔으로 광을 분리하며, 소색 렌즈(124)를 통해 입력 슬릿(114)으로부터 오프셋 되어 입력 슬릿(114)을 향해 복수의 광 빔을 다시 재-유도할 수 있는, 광학 부품 그룹(120); 및
    복수의 광 빔을 수용하여 전기 신호로 복수의 광 빔을 변환할 수 있는 광 어레이 검출기(116)를 포함하는 것을 특징으로 하는 시스템.
  5. 청구항 1에 있어서,
    분광계 모듈(100)은,
    베이스플레이트(104a) 및 광섬유 하우징 단부(108)를 갖는 분광계 하우징(102);
    분광계 하우징(102)의 광섬유 하우징 단부(108)와 인접하게 위치된 수광 입력 슬릿(114);
    분광계 하우징(102)의 광섬유 하우징 단부(108)로부터 이격되어 베이스플레이트(104a)에 마운트되고, 광이 수광 입력 슬릿(114)으로부터 이동하는 광 경로(21) 내에 위치되는 광 분산 소자(130)로서, 입력 슬릿(114)을 통해 전달되는 광을 수용하고, 상이한 파장을 갖는 복수의 광 빔으로 광을 분리하며, 복수의 광 빔을 재유도할 수 있는 광 분산 소자(130);
    수광 입력 슬릿(114)의 옆에 위치되며, 복수의 광 빔을 수용하여 전기 신호로 복수의 광 빔을 변환할 수 있는 광 어레이 검출기(116);
    광 분산 소자(130) 및 수광 입력 슬릿(114) 사이에 위치되고, 렌즈 마운트(122), 및 입력 슬릿(114)에서 광 분산 소자(130)까지 광을 유도하고 광 분산 소자(130)로부터 반사된 복수의 광 빔을 수용하기 위해 광학 경로(21)에 위치되어서 렌즈 마운트(122)에 마운트된 소색 렌즈(124)를 가지며, 복수의 광 빔을 광 어레이 검출기(116) 상으로 유도하는 소색 렌즈 조립체(121); 및
    광 어레이 검출기(116) 상에 복수의 광 빔의 위치를 유지하기 위한 열-보상 수단으로서, 분광계 하우징(102) 주위에 배치된 하나 이상의 절연재, 온도 컨트롤러 조립체, 및 열-보상 렌즈 마운트(122)를 포함하는 열-보상 수단을 포함하는 시스템.
  6. 청구항 5에 있어서,
    열-보상 렌즈 마운트(122)는 고정 마운트 단부(122a) 및 열-보상 렌즈 마운트(122)의 열 팽창 및 수축을 허용하는 비고정 마운트 단부(122b)를 가지며, 고정 마운트 단부(122a)는 베이스플레이트(104)에 고정식으로 부착되고, 렌즈 마운트(122)는 베이스플레이트(104a)의 팽창 계수보다 더 큰 계수를 갖는 것을 특징으로 하는 시스템.
  7. 청구항 5에 있어서,
    열-보상 렌즈 마운트(122)는 광 분산 소자(130)로부터 광 어레이 검출기(116) 상에 분산된 광의 위치를 유지하도록 렌즈 마운트(122)의 팽창 계수에 기반한 광 입력 슬릿(114)으로부터의 광의 광학 경로에 대해 선형으로 가로로 움직이는 것을 특징으로 하는 시스템.
  8. 청구항 4에 있어서,
    광 입력 슬릿(114)은 에워싸인 분광계 하우징(102)에 배치된 회로 기판(112)에 배치되되, 광 입구 포트(109)와 인접하게 정렬되고,
    광어레이 검출기(116)는 광 입력 슬릿(114)에 인접하여 회로 기판(112)에 배치되며,
    광학 부품 그룹(120)은 광 입력 슬릿(114)으로부터 하류에 배치된 광 분산 소자(130)와, 광 입력 슬릿(114) 및 광 분산 소자(130) 사이에 배치된 구면 소색 렌즈(124)로 구성되되, 광 분산 소자(130)는 반사 표면(132)을 가지고, 소색 렌즈(124)는 광 입력 슬릿(114)에서 광 분산 소자(130)까지 광을 전달하며 광 분산 소자(130)에서 광 어레이 검출기(116)까지 반사된 분산 광을 전달하는 시스템.
  9. 청구항 8에 있어서,
    분광계 하우징(102) 주위에 배치된 하나 이상의 절연재, 온도 컨트롤러 조립체, 및 열-보상 렌즈 마운트(122)를 포함하여, 광어레이 검출기(116) 상에 복수의 광 빔의 위치를 유지하기 위한 열-보상 수단(160)을 더 포함하는 시스템.
  10. 청구항 9에 있어서,
    열-보상 렌즈 마운트(122)는 고정 마운트 단부(122a) 및 열-보상 렌즈 마운트(122)의 열 팽창 및 수축을 허용하는 비고정 마운트 단부(122b)를 포함하고, 고정 마운트 단부(122a)는 베이스플레이트(104a)에 고정식으로 부착되며, 렌즈마운트(122)는 베이스플레이트의 팽창 계수보다 큰 팽창 계수를 갖는 것을 특징으로 하는 시스템.
  11. 전혈에 의해 야기된 강한 광학 산란에도 불구하고 전혈 헤모글로빈 파라미터를 측정하기 위한 방법에 있어서, 방법은,
    422nm 내지 695nm의 스펙트럼 범위를 지닌 LED 광원(28)을 제공하는 단계;
    광학 경로(21)를 따라 LED 광원(28)으로부터 스펙트럼 범위를 갖는 광을 가이드하는 단계;
    광학 경로에 배치된 제1 큐벳 창(49) 및 제2 큐벳 창(52)을 갖는 샘플 수용 챔버(54)를 지닌 큐벳 모듈(43)을 제공하는 단계로서, 큐벳 모듈(43)의 제2 큐벳 창(52)은 샘플 수용 챔버(54) 및 제1 큐벳 창(49)을 통해 광을 전달하고, 샘플 수용 챔버(54)는 전혈의 샘플을 함유하는, 큐벳 모듈을 제공하는 단계;
    광학 경로(21)에 배치된 한 쌍의 제1 및 제2 광학 디퓨저(32, 68)를 제공하는 단계로서, 큐벳 모듈(43)의 샘플 수용 챔버(54)의 제1 큐벳 창(49) 및 제2 큐벳 창(52)은 한 쌍의 제1 및 제2 광학 디퓨저(32, 68) 사이에 배치되는, 한 쌍의 제1 및 제2 광학 디퓨저를 제공하는 단계;
    각 광 빔이 상이한 파장을 갖는 복수의 광 빔으로 광을 분리하여 복수의 광 빔을 전기 신호로 변환하는 광 분산 소자(130)를 갖는 분광계(100)로 큐벳 모듈(43)로부터의 광을 가이드하는 단계;
    전혈의 샘플의 총 빌리루빈 파라미터 값 또는 헤모글로빈 파라미터 값을 표시하고 보고하는데 사용가능한 출력 신호로 전기 신호를 처리하는 단계를 포함하는 방법.
  12. 청구항 11에 있어서,
    처리 단계는, 전기 신호를 분광 흡광도로 처리한 다음 연산 맵핑 함수를 사용하여 분광 흡광도를 헤모글로빈 파라미터 값 또는 총 빌리루빈 파라미터 값에 매핑하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  13. 청구항 12에 있어서,
    처리 단계는, 연산 맵핑 함수로서의 잠재적 구조 매핑 함수에 커널 기반 직각 투영법을 사용하는 단계를 포함는 것을 특징으로 하는 방법.
  14. 광학 흡광도를 사용하여 전혈 샘플의 헤모글로빈 파라미터를 측정하는 방법에 있어서, 방법은,
    알려진 광학 경로 길이를 지닌 광학 경로(21)를 갖는 큐벳 모듈(43)을 통해 광을 투과시킴으로써 측정 범위 내의 복수의 파장에 걸쳐 투과 광 감도 스캔을 측정하고 기록하는 단계로서, 알려진 광학 경로 길이는 큐벳 모듈(43)의 전자 칩(48c)에 저장되고, 큐벳 모듈(43)은 투명 유체로 채워지는 것을 특징으로 하는 단계;
    알려진 광학 경로 길이를 지닌 광학 경로(21)를 갖는 전혈 샘플로 채워진 큐벳 모듈(43)을 통해 광을 재차 투과시킴으로써 측정 범위 내의 복수의 파장에 걸쳐 투과 광 감도 스캔을 측정하고 기록하는 단계로서, 투명 유체 및 전혈 샘플의 각 측정 및 기록 단계는, 큐벳 모듈(43)을 통해 투과 광을 투과시키기 전에 투과 광을 확산 및 원 편광시키는 단계를 포함하고, 그 후 분광 흡광도를 결정하기 전에 큐벳 모듈(43)로부터 방출되는 투과 광을 확산시키는 단계를 포함하는 측정 및 기록하는 단계;
    분광계(100)를 사용하여 투명 유체의 투과 광 감도 스캔에 대한 전혈 샘플의 투과 광 감도 스캔의 비에 기반하여 측정 범위의 복수의 파장 중 각 파장에서의 분광 흡광도를 결정하는 단계;
    연산 맵핑 함수를 사용하여 혈액 샘플의 헤모글로빈 파라미터 값 또는 빌리루빈 파라미터 값의 목록에 대한 측정 범위의 복수의 파장 중 각각의 파장에서의 흡광도를 상관시키는 단계를 포함하는 방법.
  15. 청구항 14에 있어서,
    분광계(100)의 절연, 분광계(100)의 제어된 가열 또는 분광계(100) 내의 온도-보상 렌즈 마운트(122)의 통합 중 하나 이상의 단계에 의해, 분광계(100) 내의 투과 광의 온도로 인한 이동을 제어하는 단계를 더 포함하는 방법.
  16. 청구항 15에 있어서,
    온도-보상 렌즈 마운트(122)를 통합시키는 단계는, 광-어레이 검출기(116) 상에 광분산 소자(130)로부터 투과된 광의 위치를 유지하도록 렌즈 마운트(122)의 팽창 계수에 기반하여 광 입력 슬릿(114)으로부터의 광의 광학 경로(21)에 대해 열-보상 렌즈 마운트(122)가 선형으로 가로로 움직이는 단계를 포함하는 것을 특징으로 하는 방법.
  17. 광학 경로(21)를 포함하는 시스템으로서 전혈 헤모글로빈 파라미터 또는 전혈 빌리루빈 파라미터를 측정하기 위한 시스템의 분광계 모듈(100)에 사용되는 광학 부품 그룹(120)에 있어서, 광학 부품 그룹은,
    광 분산 소자(130); 및
    광 분산 소자(130), 및 광학 경로(21) 내에 배치된 분광계 모듈(100)의 광 입구 포트(109) 사이에 배치되는 소색 렌즈 조립체(121)를 포함하고, 여기서 소색 렌즈 조립체(121)는 광 입구 포트(109)로부터 광 빔에 가로 놓인 선형인 방향으로 열 팽창 및 수축을 허용하는 열 보상 수단인 것을 특징으로 하는 광학 부품 그룹.
  18. 청구항 17에 있어서,
    소색 렌즈 조립체(121)는 구면 소색 렌즈(124)를 포함하는 것을 특징으로 하는 광학 부품 그룹.
  19. 청구항 18에 있어서,
    소색 렌즈 조립체(121)는 구면 소색 렌즈(124)를 고정식으로 함유하는 렌즈 마운트(122)를 포함하고, 여기서 렌즈 마운트(122)는 광학계 베이스(104) 또는 베이스플레이트(104a) 중 하나에 고정식으로 연결된 고정 마운트 단부(122a)와, 고정 마운트 단부(122a) 쪽으로 선형으로 또는 고정 마운트 단부(122a)로부터 떠나는 방향으로 열팽창 및 수축을 허용하는 비고정 마운트 단부(122b)를 구비하는 것을 특징으로 하는 광학 부품 그룹.
  20. 청구항 19에 있어서,
    비고정 마운트 단부(122b)는 렌즈 마운트 슬롯(122c) 및 렌즈 마운트 슬롯(122c)을 통해 연장되는 패스너(126)를 구비하고, 여기서 패스너(126)의 헤드(126a)는 렌즈 마운트 슬롯으로부터 이격되어 렌즈 마운트 슬롯(122c)의 방향으로 렌즈 마운트(122)의 열 팽창을 허용하는 것을 특징으로 하는 광학 부품 그룹.
  21. 청구항 19에 있어서,
    렌즈 마운트(122)는 광학계 베이스(104) 또는 베이스플레이트(104a)의 팽창 계수보다 큰 팽창 계수를 갖는 것을 특징으로 하는 광학 부품 그룹.
  22. 청구항 20에 있어서,
    패스너(126)의 헤드(126a) 및 렌즈 마운트(122) 사이에 배치되는 홀드다운 스프링(128)을 더 포함하는 것을 특징으로 하는 광학 부품 그룹.
  23. 청구항 17에 있어서,
    광 분산 소자(130)는 격자 또는 리트로 프리즘인 것을 특징으로 하는 광학 부품 그룹.
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
KR1020187025571A 2016-02-04 2016-02-04 전혈에서 헤모글로빈 파라미터들을 결정하기 위한 분석 시스템 및 방법 KR102477340B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2016/016560 WO2017135952A1 (en) 2016-02-04 2016-02-04 Analyte system and method for determining hemoglobin parameters in whole blood

Publications (2)

Publication Number Publication Date
KR20180123023A KR20180123023A (ko) 2018-11-14
KR102477340B1 true KR102477340B1 (ko) 2022-12-13

Family

ID=59499943

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187025571A KR102477340B1 (ko) 2016-02-04 2016-02-04 전혈에서 헤모글로빈 파라미터들을 결정하기 위한 분석 시스템 및 방법

Country Status (10)

Country Link
EP (5) EP4067868A1 (ko)
JP (6) JP6886473B2 (ko)
KR (1) KR102477340B1 (ko)
CN (1) CN108885166B (ko)
BR (1) BR112018015948B1 (ko)
CA (5) CA3220750A1 (ko)
ES (1) ES2923758T3 (ko)
MX (1) MX2018009526A (ko)
RU (1) RU2730366C2 (ko)
WO (1) WO2017135952A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505266B (zh) * 2017-08-14 2023-08-25 重庆电子工程职业学院 半自动光学检测分析系统
US10883925B2 (en) * 2018-09-24 2021-01-05 Hf Scientific, Inc. Spectrophotometer for use in explosive atmospheres
US11125738B2 (en) 2018-11-06 2021-09-21 Thermo Finnigan Llc Blood sample analysis systems and methods
KR102278503B1 (ko) * 2019-10-31 2021-07-16 주식회사 엠젠 분광반사 측정장치
CN111537409B (zh) * 2020-05-06 2022-10-14 南京邮电大学 一种高精度血沉温度补偿测量方法与装置
CN111781171A (zh) * 2020-06-12 2020-10-16 迈克医疗电子有限公司 体外检测样本中对象参数的测量方法、装置及设备
CN111707589A (zh) * 2020-07-10 2020-09-25 基蛋生物科技股份有限公司 一种hct测量装置及方法以及装有该装置的化学发光仪器
CN116235039A (zh) * 2020-08-14 2023-06-06 深圳迈瑞生物医疗电子股份有限公司 一种血液分析仪及血红蛋白检测方法
CN114755194B (zh) * 2022-04-15 2023-06-06 苏州赛分医疗器械有限公司 一种糖化血红蛋白检测器及其信号产生和处理方法
CN115120249B (zh) * 2022-05-19 2023-08-15 深圳未来脑律科技有限公司 一种双模态脑功能成像装置
CN116359132B (zh) * 2023-05-19 2023-08-15 无锡迅杰光远科技有限公司 多功能在线光谱采集装置
CN116746917B (zh) * 2023-05-24 2024-02-23 深圳京柏医疗科技股份有限公司 黄疸测试仪校准装置
KR102623539B1 (ko) * 2023-08-21 2024-01-11 코리아스펙트랄프로덕츠(주) 가축분뇨 액비의 성분 분석장치 및 분석방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053029A (ja) 2007-08-27 2009-03-12 Olympus Corp 自動分析装置
US20150316471A1 (en) 2012-12-20 2015-11-05 Radiometer Medical Aps An apparatus for detecting a component in a sample

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1143675A (en) * 1914-06-19 1915-06-22 James L Whitney Hemoglobinometer.
US2850941A (en) * 1955-08-10 1958-09-09 Welch Allyn Inc Device for measuring light transmission
US3552865A (en) * 1968-04-01 1971-01-05 Beckman Instruments Inc High pressure flow-through cuvette
US3569721A (en) * 1969-01-13 1971-03-09 American Optical Corp Measuring bilirubin in blood using light at two wavelengths
US4057734A (en) * 1975-08-28 1977-11-08 Barringer Research Limited Spectroscopic apparatus with balanced dual detectors
US4172663A (en) * 1977-04-27 1979-10-30 Board of Trustees Leland Stanford Jr., University Optical wavelength meter
US4310249A (en) * 1979-10-09 1982-01-12 Miles Laboratories, Inc. Spectrophotometer
JPS5928642A (ja) * 1982-08-11 1984-02-15 Hitachi Ltd 散乱光度計
DK163194C (da) * 1988-12-22 1992-06-22 Radiometer As Fremgangsmaade ved fotometrisk in vitro bestemmelse af en blodgasparameter i en blodproeve
JP2837868B2 (ja) * 1988-05-24 1998-12-16 アンリツ株式会社 分光装置
US5351686A (en) * 1990-10-06 1994-10-04 In-Line Diagnostics Corporation Disposable extracorporeal conduit for blood constituent monitoring
JPH0534275A (ja) * 1991-07-31 1993-02-09 Jasco Corp 流体成分測定装置
US5371020A (en) * 1991-09-19 1994-12-06 Radiometer A/S Method of photometric in vitro determination of the content of an analyte in a sample
JP2942654B2 (ja) * 1992-03-06 1999-08-30 アンリツ株式会社 光スペクトラムアナライザ
WO1994013199A1 (en) * 1992-12-10 1994-06-23 Sunshine Medical Instruments, Inc. Non-invasive blood glucose measurement
JPH06300952A (ja) * 1993-04-13 1994-10-28 Canon Inc 走査レンズの保持構造
EP0653625B1 (en) * 1993-11-12 2002-09-11 Inverness Medical Switzerland GmbH Reading devices for teststrips
US5428558A (en) * 1993-12-17 1995-06-27 The Perkin-Elmer Corporation Correction of spectra for stray radiation
JP3364323B2 (ja) * 1994-05-17 2003-01-08 謙 石原 非侵襲血液分析装置
US5644396A (en) * 1995-06-20 1997-07-01 Hewlett-Packard Company Spectrograph with low focal ratio
JPH09269299A (ja) * 1996-03-29 1997-10-14 Kirin Techno Syst:Kk ペットボトル検査装置
JP2000515778A (ja) * 1996-07-08 2000-11-28 アニマス コーポレーシヨン 体液成分レベルの生体内測定および制御のための埋込可能センサーおよびシステム
CA2231305C (en) * 1997-03-11 2007-03-20 Merrit Nyles Jacobs Improved analyzer throughput featuring through-the-tip analysis
US5944660A (en) * 1997-07-08 1999-08-31 Optical Sensors Incorporated Disposable cartridge assembly with optional integrated temperature control system, and systems containing same
JPH1184199A (ja) * 1997-07-16 1999-03-26 Nikon Corp 鏡筒支持機構
US5905824A (en) * 1997-12-09 1999-05-18 Delisle; Vincent Temperature compensated insensitive optical multiplexor/demultiplexor
JP3731784B2 (ja) * 1997-12-25 2006-01-05 富士写真フイルム株式会社 グルコース濃度測定方法および装置
EP0980518B1 (en) * 1998-02-10 2007-03-14 Daedalus I, LLC APPARATUS FOR DETERMINATION OF pH, pCO2, HEMOGLOBIN AND HEMOGLOBIN OXYGEN SATURATION
US6128519A (en) * 1998-12-16 2000-10-03 Pepex Biomedical, Llc System and method for measuring a bioanalyte such as lactate
US6091502A (en) * 1998-12-23 2000-07-18 Micronics, Inc. Device and method for performing spectral measurements in flow cells with spatial resolution
US6650412B1 (en) * 1999-09-10 2003-11-18 Kaiser Optical Systems Thermal compensation for optical apparatus
US6215597B1 (en) * 1999-11-17 2001-04-10 Duncan Technologies, Inc. Apparatus for forming a plurality of subimages having different characteristics
US20050037505A1 (en) * 2000-05-11 2005-02-17 James Samsoondar Spectroscopic method and apparatus for analyte measurement
US6545826B2 (en) * 2000-12-20 2003-04-08 Finisar Corporation Thermally compensated wavelength division demultiplexer and multiplexer and method of fabrication thereof
US6774368B2 (en) * 2001-03-08 2004-08-10 Baylor University Dispersive near-infrared spectrometer with automatic wavelength calibration
US6989891B2 (en) * 2001-11-08 2006-01-24 Optiscan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
KR100994306B1 (ko) * 2002-03-15 2010-11-12 소니 주식회사 바이오 어세이용 기판, 바이오 어세이 방법, 바이오 어세이 장치 및 기판 기록 정보의 판독 장치
KR20050071640A (ko) * 2002-10-30 2005-07-07 도판 인사츠 가부시키가이샤 배선패턴의 검사장치, 검사방법, 검출장치, 검출방법
CN1268916C (zh) * 2002-12-12 2006-08-09 上海交通大学 用于十二指肠胃返流检测的传感器
JP2004361289A (ja) * 2003-06-05 2004-12-24 Olympus Corp グルコース濃度測定装置
US7671974B2 (en) * 2003-10-29 2010-03-02 Chf Solutions Inc. Cuvette apparatus and system for measuring optical properties of a liquid such as blood
US7333212B2 (en) 2004-01-23 2008-02-19 Chien Chou Method and apparatus for measuring the absorption coefficient and the reduced scattering coefficient of a multiple scattering medium
US7245373B2 (en) * 2004-04-26 2007-07-17 University Of Massachusetts Spectrometer system for optical reflectance measurements
JP2006091008A (ja) * 2004-08-25 2006-04-06 Ceratec Japan Co Ltd 光学成分計
US20060170917A1 (en) * 2004-08-30 2006-08-03 Daryoosh Vakhshoori Use of free-space coupling between laser assembly, optical probe head assembly, spectrometer assembly and/or other optical elements for portable optical applications such as Raman instruments
US20060045151A1 (en) * 2004-08-30 2006-03-02 Daryoosh Vakhshoori External cavity wavelength stabilized Raman lasers insensitive to temperature and/or external mechanical stresses, and Raman analyzer utilizing the same
JP2006084446A (ja) * 2004-09-17 2006-03-30 Toppan Printing Co Ltd 配線パターンの検出装置、検出方法、検査装置、及び検査方法
US7491546B2 (en) * 2004-09-27 2009-02-17 Industrial Test Systems, Inc. Reagent delivery and photometric chlorine analysis
JP2006153765A (ja) * 2004-11-30 2006-06-15 Nikon Corp 分光システム
US7456957B2 (en) * 2005-08-03 2008-11-25 Carl Zeiss Meditec, Inc. Littrow spectrometer and a spectral domain optical coherence tomography system with a Littrow spectrometer
US9597024B2 (en) * 2005-02-09 2017-03-21 Medici Instruments Llc Methods and apparatuses for noninvasive determinations of analytes
SE530896C2 (sv) * 2005-04-01 2008-10-14 Diaspect Medical Ab Anordning för att fastställa en hemoglobinkoncentration i blod
JP2006350044A (ja) * 2005-06-17 2006-12-28 Yokogawa Electric Corp 光チャネルモニタ
WO2007033318A2 (en) * 2005-09-13 2007-03-22 Edwards Lifesciences Corporation Continuous spectroscopic measurement of total hemoglobin
EP1987762A1 (de) * 2007-05-03 2008-11-05 F.Hoffmann-La Roche Ag Oximeter
JP4811380B2 (ja) * 2007-09-28 2011-11-09 パナソニック株式会社 バイオセンサを用いた測定方法
JP5288768B2 (ja) 2007-10-18 2013-09-11 パナソニック株式会社 分析容器と分析装置
JP2009121986A (ja) * 2007-11-15 2009-06-04 Omron Corp 分光装置
JP5453730B2 (ja) 2008-04-18 2014-03-26 横河電機株式会社 分光器
JP5556370B2 (ja) * 2010-05-25 2014-07-23 横河電機株式会社 分光器およびこれを用いた光スペクトラムアナライザ
EP2415393B1 (en) * 2010-08-05 2016-07-27 Nidek Co., Ltd. Ophthalmic apparatus
US9194792B2 (en) * 2010-09-07 2015-11-24 Fresenius Medical Care Holdings, Inc. Blood chamber for an optical blood monitoring system
US20120206714A1 (en) * 2011-02-10 2012-08-16 DIRAmed Shutter Assembly with Calibration Material
CN103796709B (zh) * 2011-02-25 2016-10-19 费森尤斯医疗控股股份有限公司 光学血液监测系统的有罩传感器夹组件和血液腔室
KR101275742B1 (ko) 2011-06-23 2013-06-17 주식회사 아이센스 광학 분석용 셀
DE102012205311B4 (de) * 2012-03-30 2013-10-17 Anton Paar Gmbh Optische Vorrichtung, insbesondere Polarimeter, zur Detektion von Inhomogenitäten in einer Probe
US9068933B2 (en) * 2012-06-08 2015-06-30 Ut-Battelle, Llc EGR distribution and fluctuation probe based on CO2 measurements
US9568362B2 (en) * 2012-12-19 2017-02-14 Viavi Solutions Inc. Spectroscopic assembly and method
JP6107254B2 (ja) * 2013-03-14 2017-04-05 セイコーエプソン株式会社 光学フィルターデバイス、光学モジュール、及び電子機器
JP2014202555A (ja) 2013-04-03 2014-10-27 独立行政法人産業技術総合研究所 耐熱性を備えた集光系
US8858886B1 (en) * 2013-05-08 2014-10-14 Agilent Technologies, Inc. Scanning system with interchangeable optical cartridges for fluorescence measurements
DE102013209819B4 (de) * 2013-05-27 2018-01-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Struktur mit daran angeordneten Stegen und Verfahren zur Herstellung derselben
US9689744B2 (en) * 2013-07-17 2017-06-27 Massachusetts Institute Of Technology Visible-infrared plane grating imaging spectrometer
JP2015097664A (ja) * 2013-11-19 2015-05-28 株式会社アライ・メッドフォトン研究所 医療用具及び光線治療装置
MX2016013984A (es) * 2014-05-23 2017-04-06 Nova Biomedical Corp Sistema y metodo de deteccion de hemolisis.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053029A (ja) 2007-08-27 2009-03-12 Olympus Corp 自動分析装置
US20150316471A1 (en) 2012-12-20 2015-11-05 Radiometer Medical Aps An apparatus for detecting a component in a sample

Also Published As

Publication number Publication date
JP2023099529A (ja) 2023-07-13
CA3013694A1 (en) 2017-08-10
EP4067869B1 (en) 2024-01-10
EP4067868A1 (en) 2022-10-05
EP3411689B1 (en) 2022-07-06
CA3220750A1 (en) 2017-08-10
EP4067869A1 (en) 2022-10-05
CN108885166A (zh) 2018-11-23
EP4067867A1 (en) 2022-10-05
JP2021139908A (ja) 2021-09-16
KR20180123023A (ko) 2018-11-14
ES2923758T3 (es) 2022-09-30
JP2019506607A (ja) 2019-03-07
CA3220899A1 (en) 2017-08-10
CA3220701A1 (en) 2017-08-10
BR112018015948B1 (pt) 2023-02-23
JP2021139906A (ja) 2021-09-16
CN108885166B (zh) 2022-03-08
JP2021131393A (ja) 2021-09-09
JP2021139907A (ja) 2021-09-16
WO2017135952A1 (en) 2017-08-10
JP7245284B2 (ja) 2023-03-23
CA3220706A1 (en) 2017-08-10
MX2018009526A (es) 2019-05-30
RU2018128410A (ru) 2020-03-04
JP7256227B2 (ja) 2023-04-11
JP7256228B2 (ja) 2023-04-11
EP3411689A4 (en) 2020-01-22
JP6886473B2 (ja) 2021-06-16
CA3013694C (en) 2024-01-09
EP3411689A1 (en) 2018-12-12
RU2018128410A3 (ko) 2020-03-04
EP4071460A1 (en) 2022-10-12
BR112018015948A2 (pt) 2018-12-18
RU2730366C2 (ru) 2020-08-21
JP7266063B2 (ja) 2023-04-27

Similar Documents

Publication Publication Date Title
KR102477340B1 (ko) 전혈에서 헤모글로빈 파라미터들을 결정하기 위한 분석 시스템 및 방법
US10338058B2 (en) Analyte system and method for determining hemoglobin parameters in whole blood
US10088360B2 (en) Spectroscopic analyte system and method for determining hemoglobin parameters in whole blood
US9535053B1 (en) Analyte system and method for determining hemoglobin parameters in whole blood
US9638686B1 (en) Analyte system and method for determining hemoglobin parameters in whole blood
US10151630B2 (en) Analyte system and method for determining hemoglobin parameters in whole blood
US9933411B2 (en) Analyte system and method for determining hemoglobin parameters in whole blood

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant