JP2006153765A - 分光システム - Google Patents

分光システム Download PDF

Info

Publication number
JP2006153765A
JP2006153765A JP2004347673A JP2004347673A JP2006153765A JP 2006153765 A JP2006153765 A JP 2006153765A JP 2004347673 A JP2004347673 A JP 2004347673A JP 2004347673 A JP2004347673 A JP 2004347673A JP 2006153765 A JP2006153765 A JP 2006153765A
Authority
JP
Japan
Prior art keywords
light source
wavelength calibration
microscope
spectroscopic
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004347673A
Other languages
English (en)
Inventor
Ichiro Sase
一郎 佐瀬
Naoshi Aikawa
直志 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004347673A priority Critical patent/JP2006153765A/ja
Publication of JP2006153765A publication Critical patent/JP2006153765A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】 光学系のスペクトル強度補正を校正用の光源を用いて行えるようにする分光システムを提供。
【解決手段】 顕微鏡220と、共焦点ユニット230と、分光装置240とを備える分光システムであり、顕微鏡220内に、顕微鏡220の対物レンズ221と同軸の光学系上に配置され、波長校正用光束を対物レンズ221に入射させる波長校正用光源部225を有する。波長校正用光源部225では、光源駆動回路2255により、波長校正用光源2251に、一定電圧を印加して点灯させる。
【選択図】図1

Description

本発明は、分光システムにおいて用いられるスペクトル校正技術に関する。
分光装置を顕微鏡に装着して実験を行う場合に、顕微鏡の場合は、他の測定装置と異なり固有の問題がある。すなわち、顕微鏡による観察の場合、光路の途中の光学系(対物レンズやフィルタなど)を頻繁に交換するため、光学系毎に補正データを持つ必要がある。さらに日常の実験においても受光素子の劣化に伴い素子感度が変化し、スペクトル情報が正確に得られないという問題が生じる。
上記の問題を解決するためには、試料の発する蛍光・発光信号とは別に、スペクトル感度補正用の光源もしくは光学系を持つ必要がある。
特開平07−159240号公報 特開平11−125562号公報
顕微鏡のように光学部品の構成要素(対物レンズ・フィルターなど)が頻繁に変わる場合には、それぞれの条件での校正データが必要となる。そのために、各対物レンズ、フィルタ等の組合せに応じて、各々の個別透過率データが必要になる。
校正データの取得のためには、光学系の取り外しが必要なことが多い。しかし、標本の状態を変えずに、校正データを取得することは困難である。そのため、各実験の間での校正データの取得は容易にはできないという問題がある。
本発明の目的は、光学系のスペクトル強度補正を容易に行えるようにする分光システムを提供することにある。
前記目的を達成するため、本発明の第1の態様によれば、
顕微鏡と、共焦点ユニットと、分光装置とを備える分光システムにおいて、
前記顕微鏡は、波長校正用光束を対物レンズに入射させる波長校正用光源部を有し、
前記波長校正用光源部は、波長校正用光源と、この光源に一定電圧を印加して点灯させる光源駆動回路とを有すること、を特徴とする分光システムが提供される。
また、顕微鏡用の観察用光源をさらに有し、前記観察用光源は、試料観察時に、前記波長校正用光源部は、波長校正時に、それぞれ選択的に駆動される構成とすることもできる。
前記波長校正用光源は、前記対物レンズの光軸と同軸の光学系上に配置され留構成とすることができる。
さらに、波長校正用光源を用いたスペクトル補正時に取得される校正用スペクトルデータと予め記憶された参照用スペクトルデータとを比較し、比較した結果に基づき標本観察時に得られたスペクトルデータを補正する情報処理部を有する構成とすることができる。
以下、本発明の実施形態について、図面を参照して説明する。以下に説明する実施形態は、顕微鏡の透過光源であるハロゲンランプを標準光源として利用することにより、図1に示す、観察試料から受光素子までにおける分光特性を補正するためのデータを取得することができる
図1に、本発明の実施形態が適用される分光システムの一例を示す。本発明の実施形態に係る分光システムは、図1に示すように、観察用光源210と、顕微鏡220と、共焦点ユニット230と、分光装置240と、情報処理装置250とを有する。
観察用光源210は、波長の異なるレーザダイオード211,212を有し、これらのレーザダイオード211、212から出射される光束を、ダイクロイックミラー213を介して出力し、光ファイバ215を介して共焦点ユニット230に入射させる。
顕微鏡装置220は、主たる光学系として、試料Smを観察するための対物レンズ221を有し、さらに、波長校正用光源部225を有する。対物レンズ221は、共焦点ユニット230から送られる観察用光束を試料Smに投射すると共に、試料が発する蛍光等の光を集光して、共焦点ユニット230に導くものである。光源校正用光源部225は、波長校正用光源2251と、コンデンサレンズ(単にコンデンサと略称することもある)2252と、波長校正用光源を駆動する光源駆動回路2255とを有する。光源駆動回路2255は、定電圧駆動機能を備えている。図示していないフォトスイッチにより定電圧駆動モードを選択することができる。定電圧駆動モードでは、9Vでハロゲンランプが駆動される。このような一定電圧による駆動を行うことにより、同一波長(色温度)が得られる。従って、本実施形態では、色温度が変化しないので、このモードで駆動されるハロゲンランプからの放射光を波長校正用光源として利用する。
波長校正用光源部225は、それを構成する光学系が観察用対物レンズと同軸の光学系上に置かれる。このため、顕微鏡の観察試料Smを動かすことなく光源のみを点灯させることにより、スペクトル補正と蛍光信号の取得とを切替ることができる。従って、実験の間でのスペクトル補正が容易に行える。
ハロゲンランプは、400〜700nmのスペクトルを持つ。このため、分光システムの検出波長帯域を広くカバーすることができる。ハロゲンランプは、スペクトルが比較的滑らかであり、輝線を持たない。このため、複数の受光素子を並べ、さらにグレーティングを移動させながら分光を行うような本システムにおいては、校正光源としてハロゲンランプは、校正結果のばらつきを抑えることができる利点を有する。ただし、ハロゲンランプ側の光学系には、コンデンサレンズ2252が配置され、それらは使用する対物レンズによって変更される可能性がある。そのため、使用コンデンサ(照明側)のスペクトルはデータとして持つ必要がある。このデータは既知であるため、予めデータとして、記憶装置253に記憶させておき、演算装置252が演算の際に、参照することができるようにしておけばよい。
共焦点ユニット230は、観察用光源210からの照明光を顕微鏡220に向けると共に、顕微鏡220からの観測光(本実施形態の場合、蛍光)を分光装置240側に向けるダイクロイックミラー232と、照明光を試料上で2次元スキャンさせるガルバノ式光学スキャナ231と、ピンホール233aを有する遮光板233と、リレーレンズ234を、主たる要素として有する。リレーレンズ234から出射される光束は、光ファイバ235を介して、入射スリットとして機能するファイバ端部235aから分光装置240に導かれる。
分光装置240は、コリメート光学系241と、分光素子242と、集光光学系243と、受光素子配列により構成される受光器244とを有する。また、分光装置240には、受光器244により受光された信号を増幅すると共、ディジタル信号に変換する信号処理回路245を有する。信号処理回路245において処理された検出信号は、情報処理装置250に取り込まれる。
情報処理装置250は、信号処理回路245からの検出信号を蓄積するフレームメモリ251と、検出信号を処理して試料の分光特性を算出する演算装置252と、演算装置252のプログラム、データ等を記憶する記憶装置253と、情報の表示を行うモニタ254と、図示していない入力装置とを有する。
情報処理装置250は、校正処理および測定処理を行うためのプログラムを記憶装置253に有する。測定処理では、ガルバノ式光学スキャナ231を駆動させるスキャナ駆動装置(図示せず)と、受光器244とを動作させ、観察用光源210からの照明光を用いて試料をスキャンして、測定結果を取得する。一方、校正処理では、図示しない、対物レンズ221から受光素子244までの、使用する光学系のスペクトルのデータを収集する。このとき、波長校正光源部225により、波長校正モードにより波長校正用光源2251を駆動する。
次に、本実施形態の分光システムの動作について、図2から図5をさらに参照して説明する。
図2に、本実施形態の分光システムを用いて試料について観測する実験を行う場合の代表的な手順を示す。図2において、破線内は、情報処理装置において行われる測定処理である。一方、破線外の処理は、実験の準備段階での処理である。
まず、実際の実験において実験者は、分光測定をする直前に観察と同一光学系(同一フィルタ、同一対物レンズ、同一分光素子状態)において顕微鏡の透過光学系上に設置された透過光源用のハロゲンランプを一定電圧(9v)で点灯し、そのスペクトルを測定する。すなわち、試料Smを顕微鏡220のステージ(図示せず)に載置する(準備1)。次に、光源駆動回路2255の電源スイッチをオンすると共に、図示していないフォトスイッチをオンすることによって、校正モードにより、ハロゲンランプを点灯させる(準備2)。また、波長校正用光源部225において使用しているコンデンサレンズ2252の種類を、図示していない入力装置を介して情報処理装置250に入力する(準備11)。この後、情報処理装置250において、校正処理のためのプログラムを起動する指示を行う(準備3)。
なお、校正処理を行う際は、波長校正用光源部225における波長校正用光源2251を点灯させ、観察用光源210はオフにしておく。逆に、実験を行う際には、観察用光源210をオンし、波長校正用光源2251をオフにしておく。これらのオンオフ操作は、手動で行うほか、演算装置252によるシーケンスの中で、演算装置252による制御により行うようにしてもよい。
情報処理装置250は、校正処理プログラムの起動指示を受け付けると、記憶装置253から該当プログラムを演算装置252にロードし、校正処理を実行して、校正用スペクトルデータを取得する。波長校正用光源2251からの放射光束を、対物レンズ221を通して、共焦点ユニット230を経て、分光装置240に至らしめると共に、受光器244において検出された出力、すなわち、参照用スペクトルデータを得る。
次に、演算装置252は、入力されたコンデンサの種類から、予め記憶装置253にデータベースとして登録された参照用スペクトルデータ群から光学系の設定と一致したスペクトルを選択して、「参照用スペクトルデータ」を読み出す(処理21、22)。
次に、取得した校正用スペクトルデータについて、選択した参照用スペクトルデータと比較する(処理23)。参照スペクトルデータと実測校正用スペクトルデータとに基づいて、各光学素子について、補正のための係数を計算する(処理24)。実測された「校正用スペクトル」と「参照用スペクトルデータ」はそのままの絶対値同士にて割り算を行い、各波長でのそれぞれのスペクトルのずれを「割合」として計算し、これを係数とする。
校正用スペクトル(λ)/参照スペクトルデータ(λ)
= 係数(λ) … (式1)
計算された係数を各光学素子の出力について補正するため、これまでの係数を書き換える(処理25)。このデータは、情報処理装置250の記憶装置に253に保存される。このようにすることによって、波長校正用光源部におけるコンデンサに影響される部分が補正され、「参照用スペクトルデータ(図3参照)」は、校正用光源の「試料面」におけるスペクトルと一致することとなる。
図3はそれぞれのコンデンサレンズ毎における参照スペクトルの違いを示した例である。一般には、使用する硝材によって紫外光領域での透過特性が異なるため、各コンデンサレンズに対してその透過率を考慮したスペクトルが利用されるべきである。
次に、実験の生データを取得する(実験12)。補正スペクトルを取得した光学系構成と同様の光学系において、実験者は、例えば、試料Smとして、生物標本を顕微鏡にセットして、試料Smからの各種スペクトルを測定する。測定は、演算装置252が、プログラムに従って、ガルバノ式光学スキャナ231を制御して、測定点に、観察用光源210からの光を、試料Smにおける二次元の測定点に順次投射させ、それぞれの測定点での、観察光、例えば、蛍光を、共焦点ユニット230から分光装置240に導く、そして、受光器244で受光させる。このようにすることにより、実験の際、試料Smから出た光は、対物レンズ221/カルバノ式光学スキャナ231/ダイクロイックミラー232/ピンホール233a/光ファイバ235/分光素子242/受光器244に導かれる。試料で発せられた蛍光・発光信号は、それぞれの光学素子の透過特性によって歪められ受光器244に導入される。
演算装置252は、得られたスペクトルデータ(実験生データ)を一時的に記憶する。一般に、実験生データと、参照スペクトル(例えばコンデンサA)とは、強度の波長特性が相違している(図4参照)。そこで、実験生データに対し、前述の(式1)により計算された波長毎の参照係数(図5参照)を、(式2)において係数として用い、真値を算出する(図2に示す処理26)。
実験生データ(λ)/参照係数(λ)
=真のスペクトル(λ) … (式2)
一連の実験条件(光学系)に対しては同様の操作を行うことで、相対的な強度の比較も可能となる。また、実験する状態(対物レンズ・挿入フィルタ特性など)が変化する場合は、実験前に、使用コンデンサの登録および「校正用スペクトル」を取得することにより、一連の実験のスペクトル補正が可能となる。
このように、本実施形態では、ハロゲンランプを光源に利用することにより、受光子光学系の構成を変えることなく補正データの取得が可能である。その結果、次のような便益を期待することができる。
第1に、一般的な顕微鏡のハロゲン光源には「フォトスイッチ」と呼ばれるスイッチがあり、それを利用することによりハロゲンランプに印加する電圧を一定(9v)に保つことが可能となり、光源への印加電圧によるスペクトルの変化を抑えることができる。
第2に、対物レンズやフィルタなどの受光光学系を構成する素子に入替などがあった場合でも、顕微鏡の構成を変更することなく補正データを取得することができる。
第3に、対物レンズやフィルタなどの受光光学系を構成する光学素子の透過特性が事前に分かっていない場合でも全光路の測定によりスペクトル補正が可能である。
第4に、生物標本(培養細胞)はほとんど透明であるため(蛍光染色してあったとしても非常に微量である)、生物標本がある状態でも実験の直前などにデータの取得が可能である。
本発明の実施形態である、分光装置および波長校正用光源を含んだ共焦点顕微鏡を有する分光システムの構成を示すブロック図。 本発明の実施形態において行われる補正処理、実験処理の流れを示す説明図。 波長校正用光源側のコンデンサが異なる場合のスペクトル例を示すグラフ。 ハロゲンランプの参照及び実測スペクトルを示すグラフ。 参照スペクトルと実測スペクトルより得られる参照係数を示すグラフ。
符号の説明
210…観察用光源、220…顕微鏡、221…対物レンズ、225…波長校正用光源部、2252…コンデンサレンズ、2255…光源駆動回路、230…共焦点ユニット、231…ガルバノ式光学スキャナ、232…ダイクロイックミラー、233…遮光板、233a…ピンホール、235…光ファイバ、240…分光装置、242…分光素子、244…受光器、250…情報処理装置、252…演算装置、253…記憶装置。

Claims (4)

  1. 顕微鏡と、共焦点ユニットと、分光装置とを備える分光システムにおいて、
    前記顕微鏡は、波長校正用光束を対物レンズに入射させる波長校正用光源部を有し、
    前記波長校正用光源部は、波長校正用光源と、この光源に一定電圧を印加して点灯させる光源駆動回路とを有すること、を特徴とする分光システム。
  2. 請求項1に記載の分光システムにおいて、
    前記顕微鏡用の観察用光源をさらに有し、
    前記観察用光源は、試料観察時に、前記波長校正用光源部は、波長校正時に、それぞれ選択的に駆動されるものであること、を特徴とする分光システム。
  3. 請求項1に記載の分光システムにおいて、
    前記波長校正用光源は、前記対物レンズの光軸と同軸の光学系上に配置されていることを特徴とする分光システム。
  4. 請求項1に記載の分光システムは、前記波長校正用光源を用いたスペクトル補正時に取得される校正用スペクトルデータと予め記憶された参照用スペクトルデータとを比較し、比較した結果に基づき標本観察時に得られたスペクトルデータを補正する情報処理部を有することを特徴とする分光システム。
JP2004347673A 2004-11-30 2004-11-30 分光システム Pending JP2006153765A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004347673A JP2006153765A (ja) 2004-11-30 2004-11-30 分光システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347673A JP2006153765A (ja) 2004-11-30 2004-11-30 分光システム

Publications (1)

Publication Number Publication Date
JP2006153765A true JP2006153765A (ja) 2006-06-15

Family

ID=36632242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347673A Pending JP2006153765A (ja) 2004-11-30 2004-11-30 分光システム

Country Status (1)

Country Link
JP (1) JP2006153765A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139907A (ja) * 2016-02-04 2021-09-16 ノヴァ バイオメディカル コーポレイション 全血ヘモグロビンパラメータ又は全血ビリルビンパラメータを測定するCOOxシステムに搭載可能な較正光モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139907A (ja) * 2016-02-04 2021-09-16 ノヴァ バイオメディカル コーポレイション 全血ヘモグロビンパラメータ又は全血ビリルビンパラメータを測定するCOOxシステムに搭載可能な較正光モジュール
JP7256227B2 (ja) 2016-02-04 2023-04-11 ノヴァ バイオメディカル コーポレイション 全血ヘモグロビンパラメータ又は全血ビリルビンパラメータを測定するCOOxシステムに搭載可能な較正光モジュール

Similar Documents

Publication Publication Date Title
US11971355B2 (en) Fluorescence observation apparatus and fluorescence observation method
US20070145258A1 (en) Method and apparatus for automated spectral calibration
US9581499B2 (en) System and method for optical measurement of a target
JP5092104B2 (ja) 分光測定装置、及び分光測定方法
US7330257B2 (en) Spectroscope and spectrum laser microscope
US20110085164A1 (en) Method and apparatus for automated spectral calibration
US20070007444A1 (en) Apparatus and method for defining illumination parameters of a sample
US7319520B2 (en) Method for separating fluorescence spectra of dyes present in a sample
JP2007114764A (ja) 走査顕微鏡を用いた検出装置および方法
US11215806B2 (en) Method for imaging a sample by means of a microscope and microscope
JP2005140981A (ja) 顕微鏡装置
US6852967B2 (en) Scanning microscope and methods for wavelength-dependent detection
US11486828B2 (en) Fluorescence photometer and observation method
JPH09105673A (ja) 分光装置
US20060170916A1 (en) Method and apparatus for variable-field illumination
JP2006153765A (ja) 分光システム
US20220413275A1 (en) Microscope device, spectroscope, and microscope system
US7428043B2 (en) Apparatus for ascertaining the light power level of a light beam, and scanning microscope
JP2005180931A (ja) 分光処理装置
JPH11230829A (ja) 顕微分光装置および顕微分光装置による分光データ測定方法
JP4389445B2 (ja) レーザ顕微鏡
JP2012078151A (ja) 検査装置
CN116709963A (zh) 对模块化医学成像系统的系统组件进行光谱查验的方法
US7538941B2 (en) Method and arrangement for positioning a structure to be imaged
JP2010102264A (ja) 顕微鏡