KR102344384B1 - 유리 물품의 위조-방지 방법 - Google Patents
유리 물품의 위조-방지 방법 Download PDFInfo
- Publication number
- KR102344384B1 KR102344384B1 KR1020187036785A KR20187036785A KR102344384B1 KR 102344384 B1 KR102344384 B1 KR 102344384B1 KR 1020187036785 A KR1020187036785 A KR 1020187036785A KR 20187036785 A KR20187036785 A KR 20187036785A KR 102344384 B1 KR102344384 B1 KR 102344384B1
- Authority
- KR
- South Korea
- Prior art keywords
- glass
- marking
- mol
- delete delete
- laser
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/30—Identification or security features, e.g. for preventing forgery
- B42D25/328—Diffraction gratings; Holograms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D23/00—Details of bottles or jars not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/14—Details; Accessories therefor
- A61J1/18—Arrangements for indicating condition of container contents, e.g. sterile condition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0006—Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/361—Removing material for deburring or mechanical trimming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/362—Laser etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M3/00—Printing processes to produce particular kinds of printed work, e.g. patterns
- B41M3/14—Security printing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/262—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used recording or marking of inorganic surfaces or materials, e.g. glass, metal, or ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/40—Manufacture
- B42D25/405—Marking
- B42D25/41—Marking using electromagnetic radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0207—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0207—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
- B65D1/0215—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C15/00—Surface treatment of glass, not in the form of fibres or filaments, by etching
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/28—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0005—Other surface treatment of glass not in the form of fibres or filaments by irradiation
- C03C23/0025—Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K1/00—Methods or arrangements for marking the record carrier in digital fashion
- G06K1/12—Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/06009—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
- G06K19/06037—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/06009—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
- G06K19/06046—Constructional details
- G06K19/06178—Constructional details the marking having a feature size being smaller than can be seen by the unaided human eye
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/08—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means
- G06K19/10—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards
- G06K19/16—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards the marking being a hologram or diffraction grating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/80—Recognising image objects characterised by unique random patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/54—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/24—Ablative recording, e.g. by burning marks; Spark recording
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2203/00—Decoration means, markings, information elements, contents indicators
- B65D2203/06—Arrangements on packages concerning bar-codes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/30—Aspects of methods for coating glass not covered above
- C03C2218/32—After-treatment
- C03C2218/328—Partly or completely removing a coating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/95—Pattern authentication; Markers therefor; Forgery detection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/131—Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Ceramic Engineering (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Multimedia (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Glass Compositions (AREA)
- Surface Treatment Of Glass (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Laser Beam Processing (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Auxiliary Devices For And Details Of Packaging Control (AREA)
- Wrappers (AREA)
Abstract
10 이하의 박리 지수 및 적어도 하나의 마킹을 갖는 몸체를 포함하는 유리 용기는 기재된다. 상기 몸체는 내부 표면, 외부 표면, 및 상기 외부 표면과 내부 표면 사이에서 연장되는 벽 두께를 갖는다. 상기 마킹은 벽 두께 내에 위치된다. 특히, 상기 마킹은, 몸체의 마킹되지 않은 부분의 굴절률과 다른 굴절률을 갖는 몸체의 부분이다. 상기 몸체 내에 마킹을 형성하는 방법은 또한 기재된다.
Description
본 출원은, 2016년 5월 31일자로 출원된, 발명의 명칭이 "Anti-Counterfeiting Measures for Glass Articles"인, 미국 가 특허출원 제62/343,289호, 및 2016년 11월 28일자로 출원된, 발명의 명칭이 "Anti-Counterfeiting Measures for Glass Articles"인, 미국 가 특허출원 제62/426,745호의 우선권을 주장하며, 이들의 전체적인 내용은 참조로서 여기에 혼입된다.
본 명세서는 일반적으로 유리 물품 (glass articles)에 관한 것으로, 좀 더 구체적으로는, 유리 물품 내에 형성된 위조-방지 피처 (anti-counterfeiting features)을 갖는 유리 물품에 관한 것이다.
개발도상국에서 의약품의 30%까지가 위조되어, 최종 사용자에게 규제 및 건강 위험들을 제기하는 것으로 추정된다. 위조를 방지하기 위하여, 규제 기관은, 제약 회사가 공급망을 통해 제품의 뒤를 쫓고 및 제품을 추적하도록 요구할 수 있다.
개별 투여량 및/또는 제품의 추적은, 코버트 마커 (covert marker) 및/또는 오버트 마커 (overt marker)에 의해 달성될 수 있다. 소비자 및 잠재적인 위조자에게 가시적인, 오버트 마커는, 위조를 방지하거나 단념시키고 및 추적 가능성 (traceability)을 개선할 수 있지만, 육안으로 관찰하기 어려운 코버트 마커는, 마크의 심문 (interrogation)을 제한할 수 있고, 및 마크 복제의 어려움을 증가시킬 수 있다.
따라서, 위조-방지 피처를 포함하는 대체 유리 물품은 요구된다.
하나의 구체 예에 따르면, 유리 용기 (glass container)는, 10 이하의 박리 지수 (delamination factor) 및 적어도 하나의 마킹 (marking)을 갖는 몸체를 포함한다. 상기 몸체는, 내부 표면, 외부 표면, 및 상기 외부 표면과 내부 표면 사이에서 연장되는 벽 두께를 갖는다. 상기 마킹은 벽 두께 내에 위치된다. 특히, 상기 마킹은, 몸체의 마킹되지 않은 부분의 굴절률과 다른 굴절률을 갖는 몸체의 부분이다.
다른 구체 예에 따르면, 유리 용기에 위조-방지 마킹을 형성하는 방법은 제공된다. 상기 방법은, 알칼리-알루미노실리케이트 (alkali-aluminosilicate) 유리 조성물로부터 형성된 몸체의 벽 두께 내의 지점에 펄스 레이저 빔 (pulsed laser beam)을 초점 조정하는 단계 (focusing) 및 상기 벽 두께 내에 주사 경로 (scan path)를 따라 상기 펄스 레이저 빔을 이동시켜 상기 펄스 레이저 빔에 노출되지 않은 몸체의 부분의 굴절률에 대해 상기 주사 경로를 따라 굴절률에서 변화를 유도하는, 이동 단계 (translating)를 포함한다.
또 다른 구체 예에 따르면, 유리 물품에 위조-방지 마킹을 형성하는 방법은 제공된다. 상기 방법은, 알칼리-알루미노실리케이트 유리 조성물로부터 형성된 유리 몸체의 표면상의 지점에 펄스 레이저 빔을 초점 조정하는 단계 및 상기 표면을 따라서 주사 경로를 따라 상기 펄스 레이저 빔을 이동시켜 유리 몸체의 표면으로부터 고분자-계 코팅 (polymer-based coating)을 제거하고, 이에 의해 유리 물품 상에 위조-방지 마킹을 형성하는, 이동 단계를 포함한다.
또 다른 구체 예에 따르면, 유리 물품 상에 위조-방지 마킹을 검출하는 방법은 제공된다. 상기 방법은, 약 0° 내지 약 45°의 투사각 (projection angle)으로 위조-방지 마킹을 함유하는 표면을 향해 광원 (light source)을 향하게 하는 단계, 및 상기 위조-방지 마킹을 검출용 이미지 평면 (image plane) 상으로 투사하는 단계를 포함한다. 다양한 구체 예에서, 상기 위조-방지 마킹은, 상기 광원을 이용한 직접 조명에 의하거나 또는 직접 검사를 통해 검출 가능하지 않다.
또 다른 구체 예에 따르면, 유리 물품은 10 이하의 박리 지수를 갖는 몸체를 포함한다. 상기 몸체는 내부 표면, 외부 표면, 및 상기 외부 표면과 내부 표면 사이에서 연장되는 벽 두께를 갖는다. 상기 유리 물품은 몸체의 외부 표면의 적어도 일부분에 배열된 고분자-계 코팅 및 상기 고분자-계 코팅 내에 마킹을 더욱 포함한다. 상기 마킹은, 몸체의 외부 표면으로부터 제거된 고분자-계 코팅의 적어도 일부분을 포함한다.
또 다른 구체 예에서, 유리 물품에 위조-방지 마킹을 형성하는 방법은 제공된다. 상기 방법은, 0.3 내지 0.7의 개구수 (numerical aperture)를 갖는 렌즈를 사용하여, 유리 몸체를 어닐링 (annealing) 전에 알칼리-알루미노실리케이트 유리 조성물로부터 형성된 유리 몸체의 벽 두께 내의 지점에 레이저를 초점 조정하는 단계를 포함한다. 상기 방법은 또한 약 80kHz 내지 약 300kHz의 반복률 (repetition rate)로 레이저를 작동시키는 단계 및 상기 레이저를 주사 경로를 따라 이동시키고, 이에 의해 유리 물품에 위조-방지 마킹을 형성하는, 이동 단계를 포함한다.
부가적인 특색 및 장점은 하기 상세한 설명에서 서술될 것이고, 부분적으로 하기 상세한 설명으로부터 기술분야의 당업자에게 명백하거나, 또는 하기 상세한 설명, 청구항뿐만 아니라 첨부된 도면을 포함하는, 여기에 기재된 구체 예를 실행시켜 용이하게 인지될 것이다.
전술한 배경기술 및 하기 상세한 설명 모두는 다양한 구체 예를 설명하고, 청구된 주제의 본질 및 특징을 이해하기 위한 개요 또는 틀거리를 제공하도록 의도된 것으로 이해될 것이다. 수반되는 도면은 다양한 구체 예의 또 다른 이해를 제공하기 위해 포함되고, 본 명세서에 혼입되며, 본 명세서의 일부를 구성한다. 도면은 여기에 기재된 다양한 구체 예를 예시하고, 상세한 설명과 함께 청구된 주제의 원리 및 작동을 설명하는 역할을 한다.
도 1은, 여기에 기재된 하나 이상의 구체 예에 따른 유리 용기의 단면을 개략적으로 도시한다;
도 2는, 도 1의 유리 용기의 측벽 부분에 압축 응력 층 (compressively stressed layer)을 개략적으로 도시한다;
도 3은, 지속적인 층 균질성 (persistent layer homogeneity)을 갖는 유리 용기의 측벽 부분을 개략적으로 도시한다;
도 4는, 지속적인 표면 균질성을 갖는 유리 용기의 측벽 부분을 개략적으로 도시한다;
도 5는, 여기에 기재된 하나 이상의 구체 예에 따라 유리 용기를 형성하는 공정을 개략적으로 도시한다;
도 6은, 여기에 기재된 하나 이상의 구체 예에 따라 마킹을 발생하기 위한 레이저 묘화 시스템 (laser writing system)을 개략적으로 도시한다;
도 7은, 여기에 기재된 하나 이상의 구체 예에 따라 마킹을 발생하기 위한 또 다른 레이저 묘화 시스템을 개략적으로 도시한다;
도 8a는, 여기에 기재된 하나 이상의 구체 예에 따라 어닐링 이전에 마킹의 일 실시 예를 도시한다;
도 8b는, 여기에 기재된 하나 이상의 구체 예에 따라 어닐링 이후에, 도 8a의 마킹의 실시 예를 도시한다;
도 8c는, 여기에 기재된 하나 이상의 구체 예에 따라 어닐링 이전에 마킹의 또 다른 실시 예를 도시한다;
도 8d는, 여기에 기재된 하나 이상의 구체 예에 따라 어닐링 이후에, 도 8c의 마킹의 실시 예를 도시한다;
도 9는, 여기에 기재된 하나 이상의 구체 예에 따라 마킹에 인코딩된 (encoded) 정보를 디코딩 (decoding)하기 위한 광학 이미징 시스템 (optical imaging system)을 개략적으로 도시한다;
도 10은, 여기에 기재된 하나 이상의 구체 예에 따른 미세구조의 형태의 대표적인 마킹을 도시한다;
도 11은, 여기에 기재된 하나 이상의 구체 예에 따라 마킹을 검출하기 위한 자외선 광센서 (ultraviolet light sensor)를 개략적으로 도시한다;
도 12a는, 여기에 기재된 하나 이상의 구체 예에 따라 마킹의 일 실시 예를 도시한다; 및
도 12b는, 여기에 기재된 하나 이상의 구체 예에 따라 마킹의 또 다른 실시 예를 도시한다.
도 2는, 도 1의 유리 용기의 측벽 부분에 압축 응력 층 (compressively stressed layer)을 개략적으로 도시한다;
도 3은, 지속적인 층 균질성 (persistent layer homogeneity)을 갖는 유리 용기의 측벽 부분을 개략적으로 도시한다;
도 4는, 지속적인 표면 균질성을 갖는 유리 용기의 측벽 부분을 개략적으로 도시한다;
도 5는, 여기에 기재된 하나 이상의 구체 예에 따라 유리 용기를 형성하는 공정을 개략적으로 도시한다;
도 6은, 여기에 기재된 하나 이상의 구체 예에 따라 마킹을 발생하기 위한 레이저 묘화 시스템 (laser writing system)을 개략적으로 도시한다;
도 7은, 여기에 기재된 하나 이상의 구체 예에 따라 마킹을 발생하기 위한 또 다른 레이저 묘화 시스템을 개략적으로 도시한다;
도 8a는, 여기에 기재된 하나 이상의 구체 예에 따라 어닐링 이전에 마킹의 일 실시 예를 도시한다;
도 8b는, 여기에 기재된 하나 이상의 구체 예에 따라 어닐링 이후에, 도 8a의 마킹의 실시 예를 도시한다;
도 8c는, 여기에 기재된 하나 이상의 구체 예에 따라 어닐링 이전에 마킹의 또 다른 실시 예를 도시한다;
도 8d는, 여기에 기재된 하나 이상의 구체 예에 따라 어닐링 이후에, 도 8c의 마킹의 실시 예를 도시한다;
도 9는, 여기에 기재된 하나 이상의 구체 예에 따라 마킹에 인코딩된 (encoded) 정보를 디코딩 (decoding)하기 위한 광학 이미징 시스템 (optical imaging system)을 개략적으로 도시한다;
도 10은, 여기에 기재된 하나 이상의 구체 예에 따른 미세구조의 형태의 대표적인 마킹을 도시한다;
도 11은, 여기에 기재된 하나 이상의 구체 예에 따라 마킹을 검출하기 위한 자외선 광센서 (ultraviolet light sensor)를 개략적으로 도시한다;
도 12a는, 여기에 기재된 하나 이상의 구체 예에 따라 마킹의 일 실시 예를 도시한다; 및
도 12b는, 여기에 기재된 하나 이상의 구체 예에 따라 마킹의 또 다른 실시 예를 도시한다.
이하, 언급은, 위조-방지 마킹을 포함하는 유리 용기의 및 유리 용기 내에 위조-방지 마킹을 형성하는 방법의 다양한 구체 예에 대해 상세히 언급될 것이며, 이의 실시 예들은 수반되는 도면에 예시된다. 위조-방지 마킹을 갖는 유리 용기의 일 실시 예는, 도 1에 개략적으로 도시된다. 여기에 기재된 유리 용기는, 박리 및 손상에 대해 내성을 갖는 강화된 유리 용기이다. 유리 용기에 포함되는 여기에 기재된 마킹은, 오버트, 코버트, 또는 오버트 및 코버트의 조합일 수 있어, 유리 용기가 진품으로 유효하거나 또는 추적되는 것을 가능하게 한다. 특히, 상기 마킹은, 유리 용기의 벽 두께 내에 포함되며, 및 강도, 내박리성, 및/또는 내손상성에 최소한의 영향을 미친다. 위조-방지 마킹을 갖는 유리 용기의 다양한 구체 예 및 이를 제조하는 방법은, 첨부된 도면을 특별히 참조하여 여기에서 더욱 상세하게 설명될 것이다.
여기에 기재된 유리 조성물의 구체 예에서, 구성 성분 (예를 들어, SiO2, Al2O3, B2O3, 및 이와 유사한 것)의 농도는, 별도로 명시하지 않는 한, 산화물 기초에 대한 몰 퍼센트 (mol%)로 명시된다.
유리 조성물에서 특정 구성 성분의 농도 및/또는 부재를 설명하는데 사용되는 경우, 용어 "실질적으로 없는"은, 구성 성분이 유리 조성물에 의도적으로 첨가되지 않는다는 것을 의미한다. 그러나, 유리 조성물은, 오염물 또는 떠돌이 물질 (tramp)로서 0.1 mol% 미만의 양으로 미량의 구성 성분을 함유할 수 있다.
이하, 도 1 및 도 2를 참조하면, 약학 제제 (pharmaceutical formulation)을 저장하기 위한 유리 용기 (100)의 하나의 구체 예는, 단면으로 개략적으로 도시된다. 비록 여기에 기재된 다양한 구체 예가 유리 용기를 사용하지만, 기재된 방법론은, 플라스틱 용기 또는 이와 유사한 것과 같은, 다른 타입의 용기에서 구현될 수 있는 것으로 더욱 고려된다. 유리 용기 (100)는, 일반적으로 몸체 (102)를 포함한다. 몸체 (102)는, 내부 표면 (104)과 외부 표면 (106) 사이에서 연장되고, 일반적으로 내부 체적 (108)을 둘러싼다. 도 1에 나타낸 유리 용기 (100)의 구체 예에서, 몸체 (102)는 일반적으로 벽 부분 (110) 및 바닥 부분 (112)을 포함한다. 벽 부분 (110)은 힐 부분 (heel portion: 114)을 통해 바닥 부분 (112)으로 전환된다. 몸체 (102)는, 도 1에 도시된 바와 같이, 내부 표면 (104)과 외부 표면 (106) 사이에서 연장되는 벽 두께 (Tw)를 갖는다.
유리 용기 (100)는, 또한 벽 두께 (Tw) 내에 적어도 하나의 마킹 (116)을 포함한다. 이하, 좀 더 상세히 기재되는 바와 같이, 마킹 (116)은, 몸체 (102)의 마킹되지 않은 부분의 굴절률과 다른 굴절률을 갖는다. 마킹은, (특수 장비 또는 이와 유사한 것의 사용 없이 사람의 눈에 가시적인) 오버트, (특수 장비의 사용 없이 사람 눈으로 관찰할 수 없거나 또는 관찰하기 어려운) 코버트, 또는 특정 구체 예에 의존하여, 오버트 및 코버트의 조합일 수 있다. 다양한 구체 예에서, 마킹 (116)은, 로트 (lot), 제품, 제조사, 또는 개별 패키지, 1-차원 또는 2-차원 바코드 (barcode)를 식별하기 위한 고유한 식별을 포함할 수 있거나, 또는 이것은, 디자인, 패턴, 또는 다른 형태의 마킹일 수 있다. 하나의 특정 구체 예에서, 마킹 (116)은, 마킹의 복잡성을 증가시키고, 및 복제를 더욱 단념시키기 위해 적용된 라벨 (applied label)과 상승적으로 작용하도록 위치될 수 있다. 예를 들어, 마킹 (116)은, 라벨에 가시적으로 관찰 가능한 변화를 유발할 수 있거나, 또는 라벨은 마킹 (116)의 전부 또는 부분을 흐릿하게 하여, 사람의 눈에 의한 관찰의 가능성을 감소시킬 수 있다.
도 1에서, 마킹 (116)은 유리 용기의 벽 부분 (110)에 위치된 것으로 도시된다. 그러나, 다른 위치가 고려되고 가능한 것으로 이해되어야 한다. 예를 들어, 몇몇 구체 예에서, 마킹 (116)은, 유리 용기 (100)의 힐 부분 (114), 바닥 부분 (112), 또는 플랜지 (flange) 또는 목에 위치될 수 있다. 몇몇 구체 예에서, 마킹 (116)은, 응력 및 손상에 덜 민감한 유리 용기 (100)의 구역에 위치된다. 예를 들어, 이러한 구체 예에서, 마킹 (116)은, 유리 용기 (100)의 바닥 부분 (112) 이외의 구역에 위치될 수 있다.
도 1에서 유리 용기 (100)가 특정 모양의 형태 (즉, 바이알)를 갖는 것으로 도시되었지만, 유리 용기 (100)는, Vacutainers®, 카트리지, 시린지 (syringes), 앰플, 병, 플라스크, 약병, 튜브, 비커 (beakers), 또는 이와 유사한 것을, 제한 없이, 포함하는, 다른 모양의 형태를 가질 수 있는 것으로 이해되어야 한다. 더욱이, 여기에 기재된 유리 용기는, 약학 패키지 (pharmaceutical package), 음료 용기, 또는 이와 유사한 것을, 제한 없이, 포함하는 다양한 적용에 대해 사용될 수 있는 것으로 이해되어야 한다.
도 1 및 도 2를 참조하면, 유리 용기 (100)의 몸체 (102)는, 몸체 (102)의 적어도 외부 표면 (106)으로부터 벽 두께 (Tw) 내로, 몸체의 외부 표면 (106)으로부터 층의 깊이 (DOL)까지 연장되는 압축 응력 층 (202)을 포함한다. 상기 압축 응력 층 (202)은 일반적으로 유리 용기 (100)의 강도를 증가시키고, 또한 유리 용기 (100)의 내손상성을 향상시킨다. 구체적으로, 압축 응력 층 (202)을 갖는 유리 용기는, 압축 응력 층 (202) 내에 표면 손상으로부터 균열의 전파를 압축 응력 층 (202)이 완화시킴에 따라, 강화되지 않은 유리 용기에 비해 파손 없이, 스크래치, 칩, 또는 이와 유사한 것과 같은, 더 큰 정도의 표면 손상을 일반적으로 견딜 수 있다.
여기에 기재된 구체 예에서, 압축 응력 층의, 층의 깊이는 약 3㎛ 이상일 수 있다. 몇몇 구체 예에서, 층의 깊이는, 약 25㎛ 이상이거나 또는 심지어 약 30㎛ 이상일 수 있다. 예를 들어, 몇몇 구체 예에서, 층의 깊이는 약 25㎛ 이상 및 약 150㎛ 이하일 수 있다. 몇몇 다른 구체 예에서, 층의 깊이는 약 30㎛ 이상 및 약 150㎛ 이하일 수 있다. 또 다른 구체 예에서, 층의 깊이는 약 30㎛ 이상 및 약 80㎛ 이하일 수 있다. 몇몇 다른 구체 예에서, 층의 깊이는 약 35㎛ 이상 및 약 50㎛ 이하일 수 있다.
압축 응력 층 (202)은 일반적으로 150MPa 이상의 표면 압축 응력 (즉, 외부 표면 (106)에서 측정된 바와 같은 압축 응력)을 갖는다. 몇몇 구체 예에서, 표면 압축 응력은, 200MPa 이상, 또는 심지어 250MPa 이상일 수 있다. 몇몇 구체 예에서, 표면 압축 응력은 300MPa 이상, 또는 심지어 350MPa 이상일 수 있다. 예를 들어, 몇몇 구체 예에서, 표면 압축 응력은 약 300MPa 이상 및 약 750MPa 이하일 수 있다. 몇몇 다른 구체 예에서, 표면 압축 응력은 약 400MPa 이상 및 약 700MPa 이하일 수 있다. 또 다른 구체 예에서, 표면 압축 응력은 약 500MPa 이상 및 약 650MPa 이하일 수 있다. 이온-교환된 유리 물품에서 응력은 FSM (Fundamental Stress Meter) 기구로 측정될 수 있다. 이 기구는, 복굴절 유리 표면 안과 밖으로 광을 결합시킨다. 측정된 복굴절은, 그 다음 물질 상수 (material constant), 응력-광학 또는 광탄성 계수 (photoelastic coefficient) (SOC 또는 PEC)를 통해 응력과 관련된다. 두 개의 파라미터: 최대 표면 압축 응력 (CS) 및 층의 교환 깊이 (DOL)는 얻어진다.
당 업계에 알려진 다양한 기술 중 어느 하나는, 유리 용기 (100)의 몸체 (102) 내에 압축 응력 층 (202)을 형성하는데 활용될 수 있다. 예를 들어, 압축 응력 층 (202)은, 이온 교환, 열 템퍼링 (tempering)에 의해, 또는 적층 유리로부터 유리 용기를 형성시켜 몸체 (102) 내에 형성될 수 있다.
압축 응력 층 (202)이 외부 표면 (106)으로부터 몸체 (102)의 벽 두께 (Tw) 내로 연장되는 것으로 여기에서 나타내고 기재되었지만, 몇몇 구체 예에서, 몸체 (102)는, 내부 표면 (104)으로부터 몸체 (102)의 벽 두께 (Tw)로 연장되는 제2 압축 응력 층 (102)을 더욱 포함할 수 있는 것으로 이해되어야 한다. 이러한 구체 예에서, 제2 압축 응력 층의 표면 압축 응력 및 층의 깊이는, 몸체 (102)의 벽 두께 (Tw)의 중심선에 반대의 위치로 압축 응력 층 (202)의 것을 반영할 수 있다.
도 2에 도시된 구체 예와 같은, 다양한 구체 예에서, 마킹 (116)은 압축 응력 층 (202) 내에 없다. 다시 말하면, 마킹 (116)은, 압축 응력 층 (202)의 외부에 및 층의 깊이를 포함하지 않는 벽 두께 (Tw)의 부분 내에 있을 수 있다. 층의 깊이에 의존하여, 몇몇 구체 예에서, 마킹 (116)은, 벽 두께의 중간 80%, 벽 두께의 중간 75%, 벽 두께의 중간 50%, 또는 심지어 벽 두께의 중간 30% 내에 있을 수 있다. 예를 들어, 마킹 (116)이 벽 두께의 중간 80% 내에 있는 경우, 벽 두께의 10%는, 마킹 (116)의 각 측면 상에 있다. 그러나, 몇몇 구체 예에서, 마킹 (116)은 전체 벽 두께를 통하여 실질적으로 연장되지만, 표면까지는 연장되지 않는다. 또 다른 구체 예에서, 마킹 (116)은, 압축 응력 층 (202) 내에 있을 수 있다.
다양한 구체 예에서, 유리 용기 (100)는 또한, 용기에 저장된 어떤 화학적 조성물에 장기간 노출된 후에 내박리성이 있다. 박리는, 일련의 침출, 부식, 및/또는 풍화 반응 후에 유리 입자가 유리의 표면으로부터 유리되는 현상을 지칭한다. 유리 용기의 박리를 평가하기에 적합한 시험을 포함하는, 박리에 대한 부가적인 세부 사항은, 예를 들어, 2015년 9월 4일자로 출원되고, 발명의 명칭이 "Delamination Resistant Pharmaceutical Glass Containers Containing Active Pharmaceutical Ingredients"인 미국 공개특허 제2015/0366756호에서 확인될 수 있으며, 이의 전체적인 내용은 여기에 참조로서 혼입된다. 일반적으로, 유리 입자는, 패키지 내에 함유된 용액으로 수식제 이온 (modifier ions)의 침출의 결과로서 패키지의 내부 표면에서 비롯되는 유리의 실리카-풍부 플레이크 (silica-rich flakes)이다. 이들 플레이크는 일반적으로 약 1㎚ 내지 2㎛의 두께일 수 있고, 약 50㎛를 초과하는 폭을 가질 수 있다.
지금까지는, 박리는 형성된-대로의 조건에서 유리 용기의 조성적 특징에 기인하는 것으로 가정되어 왔다. 구체적으로, 알칼리 보로실리케이트 유리의 높은 실리카 함량은, 유리의 용융 온도를 증가시킨다. 그러나, 유리 조성물 내에 알칼리 및 붕산염 성분은, 훨씬 낮은 온도에서 용융 및/또는 기화한다. 특히, 유리 내에 붕산염 종 (borate species)은, 휘발성이 높으며, 유리를 녹이고 형성하는데 필요한 고온에서 유리 표면으로부터 증발한다. 고온은, 휘발성 붕산염 종을 유리의 표면의 일부분으로부터 증발시킨다. 이러한 증발이 유리 용기의 내부 체적 내에서 일어나는 경우, 휘발된 붕산염 종은 유리의 다른 구역에 재-침착되어, 유리 용기에서, 특히 유리 용기의 벌크에 대하여 조성적 불균질성을 야기한다. 예를 들어, 유리 튜브의 일 측 말단이 밀폐되어 용기의 버텀 또는 바닥을 형성함에 따라, 붕산염 종은 튜브의 버텀 부분으로부터 증발할 수 있고 및 튜브 내에 다른 곳으로 재-침착될 수 있다. 결과적으로, 더 높은 온도에 노출된 용기의 구역은, 실리카-풍부 표면을 갖는다. 붕소 침착을 잘 받아드리는 용기의 다른 구역은, 표면 아래에 붕소-풍부 층을 갖는 실리카-풍부 표면을 가질 수 있다. 붕소 침착을 잘 받아드리는 구역은, 유리 조성물의 어닐링 점보다 높은 온도이지만, 붕소가 유리의 표면 내로 혼입될 때 유리가 재형성 (reformation) 동안 받는 가장 높은 온도보다 낮은 온도이다. 용기 내에 함유된 용액은, 붕소-풍부 층으로부터 붕소를 침출할 수 있다. 붕소-풍부 층이 유리로부터 침출됨에 따라, 실리카-풍부 표면은 쪼개지기 시작하여, 실리카-풍부 플레이크를 용액 안으로 탈락시킨다.
내박리성은, 특정 조건하에서 용액에 노출된 후에, 유리 용기 (100) 내에 함유된 용액에 존재하는 유리 미립자의 수를 특징으로 할 수 있다. 박리에 대한 유리 용기 (100)의 장기 내성을 평가하기 위해, 2013년 6월 7일자로 출원되고, 발명의 명칭이 "Delamination Resistant Glass Containers"인, 미국 공개특허 제2013/0327740호에 기재된 것과 같은, 가속 박리 시험 (accelerated delamination test)은, 활용될 수 있으며, 이의 전체적인 내용은 참조로서 여기에 혼입된다.
용액과 유리 사이에 반응의 결과로서 유리 용기 내에 밀폐된 용액으로부터 침전되는 입자들 또는 형성 공정으로부터 용기 내에 존재하는 떠돌이 입자 (tramp particles)가 아닌 박리에 기인하여 유리 용기의 내부 벽(들)으로부터 탈락하는 입자들을 확인하기 위해 가속 박리 시험이 사용될 수 있는 것으로 이해되어야 한다. 구체적으로, 박리 입자는 입자의 종횡비 (aspect ratio) (즉, 입자의 폭 대 입자의 두께의 비)에 기초하여 떠돌이 유리 입자와 구별될 수 있다. 박리는 불규칙한 모양의 미립자 플레이크 또는 얇은 판 (lamellae)을 생성하며 및 통상적으로 직경이 >50㎛이지만, 종종 >200㎛이다. 플레이크의 두께는 보통 약 100nm를 초과하며, 약 1㎛ 정도로 클 수 있다. 따라서, 플레이크의 최소 종횡비는 통상적으로 >50이다. 종횡비는 100을 초과할 수 있고, 때때로 1000을 초과할 수 있다. 박리 공정으로부터 결과하는 미립자는 일반적으로 약 50을 초과하는 종횡비를 갖는다. 대조적으로, 떠돌이 유리 입자는, 일반적으로 약 3 미만의 낮은 종횡비를 가질 것이다. 따라서, 박리로부터 결과하는 미립자는, 현미경으로 관찰하는 동안 종횡비에 기초하여 떠돌이 입자와 구별될 수 있다. 검증 결과는, 시험된 용기의 힐 영역을 평가하여 달성될 수 있다.
여기에 기재된 다양한 구체 예에서, 가속 박리 시험 이후에, 시험당 약 50을 초과하는 종횡비 및 약 50㎛의 최소 길이를 갖는 10 미만의 유리 입자를 평균으로 하는 유리 용기는, 10의 박리 지수를 갖는 것으로 고려된다. 몇몇 구체 예에서, 가속 박리 시험 이후에, 시험당 약 50을 초과하는 종횡비 및 약 50㎛의 최소 길이를 갖는 9 미만의 유리 입자를 평균으로 하는 유리 용기는, 9의 박리 지수를 갖는 것으로 고려된다. 다른 구체 예에서, 가속 박리 시험 이후에, 시험당 약 50을 초과하는 종횡비 및 약 50㎛의 최소 길이를 갖는 8 미만의 유리 입자를 평균으로 하는 유리 용기는, 8의 박리 지수를 갖는 것으로 고려된다. 여기에 기재된 다양한 구체 예에서, 가속 박리 시험 이후에, 시험당 약 50을 초과하는 종횡비 및 약 50㎛의 최소 길이를 갖는 7 미만의 유리 입자를 평균으로 하는 유리 용기는, 7의 박리 지수를 갖는 것으로 고려된다. 여기에 기재된 또 다른 구체 예에서, 가속 박리 시험 이후에, 시험당 약 50을 초과하는 종횡비 및 약 50㎛의 최소 길이를 갖는 6 미만의 유리 입자를 평균으로 하는 유리 용기는, 6의 박리 지수를 갖는 것으로 고려된다.
여기에 기재된 몇몇 구체 예에서, 가속 박리 시험 이후에, 시험당 약 50을 초과하는 종횡비 및 약 50㎛의 최소 길이를 갖는 5 미만의 유리 입자를 평균으로 하는 유리 용기는, 5의 박리 지수를 갖는 것으로 고려된다. 여기에 기재된 다른 구체 예에서, 가속 박리 시험 이후에, 시험당 약 50을 초과하는 종횡비 및 약 50㎛의 최소 길이를 갖는 4 미만의 유리 입자를 평균으로 하는 유리 용기는, 4의 박리 지수를 갖는 것으로 고려된다. 여기에 기재된 구체 예에서, 가속 박리 시험 이후에, 시험당 약 50을 초과하는 종횡비 및 약 50㎛의 최소 길이를 갖는 3 미만의 유리 입자를 평균으로 하는 유리 용기는, 3의 박리 지수를 갖는 것으로 고려된다. 여기에 기재된 구체 예에서, 가속 박리 시험 이후에, 시험당 약 50을 초과하는 종횡비 및 약 50㎛의 최소 길이를 갖는 2 미만의 유리 입자를 평균으로 하는 유리 용기는, 2의 박리 지수를 갖는 것으로 고려된다. 여기에 기재된 구체 예에서, 가속 박리 시험 이후에, 시험당 약 50을 초과하는 종횡비 및 약 50㎛의 최소 길이를 갖는 1 미만의 유리 입자를 평균으로 하는 유리 용기는, 1의 박리 지수를 갖는 것으로 고려된다. 여기에 기재된 구체 예에서, 가속 박리 시험 이후에, 시험당 약 50을 초과하는 종횡비 및 약 50㎛의 최소 길이를 갖는 0 미만의 유리 입자를 평균으로 하는 유리 용기는, 0의 박리 지수를 갖는 것으로 고려된다. 따라서, 박리 지수가 낮을수록, 박리에 대한 유리 용기의 내성이 우수한 것으로 이해되어야 한다. 여기에 기재된 다양한 구체 예에서, 유리 용기는 10 이하의 박리 지수, 5 이하의 박리 지수, 또는 심지어 3 이하의 박리 지수 (즉, 3, 2, 1, 또는 0의 박리 지수)를 갖는다.
10 이하의 박리 지수를 갖는 유리 용기는, 다양한 기술에 따라 얻어질 수 있다. 예를 들어, 유리 용기가 균질한 조성적 특징을 가져서, 결국, 박리에 대한 유리 용기의 민감성 (susceptibility)이 감소하도록 유리 용기는 형성될 수 있거나 또는 유리 용기는 몸체의 내부 표면상에 배리어 코팅 (barrier coating)으로 형성될 수 있다. 균질한 조성적 특징을 갖는 유리 용기는, 지속적인 층 균질성 또는 지속적인 표면 균질성을 가질 수 있다.
여기에 기재된 구체 예에서, 문구 "지속적인 층 균질성"은, 내부 영역의 유리 조성물의 구성 성분 (예를 들어, SiO2, Al2O3, Na2O, 등)의 농도가, 용기 내에 함유된 용액에 장기간 노출시 몸체의 박리를 결과할 수 있는 양에 의해 몸체의 두께의 중간점에서 (즉, 내부 표면 (104)과 외부 표면 (106) 사이에서 몸체를 고르게 이등분하는 중간점 (MP)을 따르는 지점에서) 동일한 구성 성분의 농도를 벗어나지 않는 것을 의미한다. 예를 들어, 도 3에 나타낸 바와 같이, 유리 용기 (100)의 벽 부분 (110)의 부분 단면은 도시된다. 유리 용기 (100)의 몸체 (102)는, 유리 용기 (100)의 내부 표면 (104) 아래로부터 벽 부분 (110)의 벽 두께 (Tw) 내로 유리 용기의 내부 표면 (104)으로부터 깊이 (DLR)까지 연장되는 내부 영역 (120)을 갖는다. 내부 영역 (120) 내에 유리 조성물은, 내부 영역의 깊이 (DLR)와 관련하여, 유리 용기의 내부 체적에 함유된 용액에 장기간 노출된 후에 몸체 (102)의 내부 표면 (104)의 박리를 방지하기에 충분한 지속적인 층 균질성을 갖는다. 다양한 구체 예에서, 조성이 균질한 내부 영역 (즉, 내부 영역에서 구성 성분의 농도의 극한치가 몸체의 두께의 중간점에서 동일한 구성 성분의 +/- 20%)을 제공하는 것은, 침출에 민감할 수 있는 유리 조성물의 구성 성분의 국부적인 농축을 피하고, 결국, 이러한 구성 성분이 유리 표면으로부터 침출되는 경우에, 유리 용기의 내부 표면으로부터 유리 입자의 손실을 완화시킨다.
여기에 기재된 구체 예에서, 문구 "지속적인 표면 균질성"은, 표면 영역 내에 개별 지점에서 유리 조성물의 구성 성분 (예를 들어, SiO2, Al2O3, Na2O, 등)의 농도가, 용기 내에 함유된 용액에 장기간 노출시 몸체의 박리를 결과할 수 있는 양에 의해 표면 영역 내에 임의의 제2 개별 지점에서 동일한 구성 성분의 농도를 벗어나지 않는 것을 의미한다. 예를 들어, 도 4에 나타낸 바와 같이, 유리 용기 (100)의 벽 부분 (110)의 부분 단면은 도시된다. 유리 용기 (100)의 몸체 (102)는, 유리 용기 (100)의 내부 표면 (104) 위로 연장되는 표면 영역 (130)을 갖는다. 몇몇 구체 예에서, 표면 영역 (130)은, 벽 부분 (110)의 벽 두께 (Tw) 내로 유리 용기의 내부 표면 (104)으로부터 깊이 (DSR)까지 연장될 수 있다. 표면 영역 (130)은, 내부 영역 (120)보다 더 얕은 깊이로 연장된다. 내부 표면 (104) 및 표면 영역 (130)의 유리 조성물은, 표면 영역의 깊이 (DSR)와 관련하여, 유리 용기의 내부 체적에 함유된 용액에 장기간 노출된 후에 몸체의 박리를 방지하기에 충분한 지속적인 표면 균질성을 갖는다. 표면 영역에서 유리 구성 성분의 표면 농도의 균질성은, 일반적으로 유리 용기 (100)의 내부 표면 (104)으로부터 유리 입자를 박리 및 탈락시키는 유리 조성물의 경향의 지표이다. 유리 조성물이 표면 영역에서 지속적인 표면 균질성을 갖는 경우 (즉, 내부 표면 (104) 상에 개별 지점 (A)에서 표면 영역 내에 유리 구성 성분의 표면 농도의 극한치가, 내부 표면 (104) 상에 임의의 제2 개별 지점 (B 또는 C)에서 표면 영역 내에 동일한 구성 성분의 +/- 30% 내에 있는 경우), 유리 조성물은 박리에 대해 개선된 내성을 갖는다.
지속적인 층 균질성 및/또는 지속적인 표면 균질성을 갖는 유리 용기는, 유리 용기 (100)의 몸체 (102)의 적어도 내부 표면 (104)을 산 에칭하거나, 또는 유리 조성물의 구성 성분이 유리 스톡 (glass stock)으로부터 원하는 용기 형상으로 유리 용기를 재형성시키는데 요구된 온도에서 상대적으로 낮은 증기압을 갖는 종 (즉, 낮은 휘발성을 갖는 종)을 형성하는 유리 조성물로부터 유리 용기를 형성하는 것을 포함하는, 그러나 이에 제한받지 않는, 다양한 기술을 사용하여 달성될 수 있다. 이들 구성 성분이 재형성 온도에서 상대적으로 낮은 증기압을 갖는 종을 형성하기 때문에, 구성 성분은 유리의 표면으로부터 휘발 및 증발할 가능성이 덜하며, 이에 의해, 유리 용기의 두께를 통하여 및 유리 용기의 내부 표면에 걸쳐 조성적으로 균질한 표면을 갖는 유리 용기를 형성한다.
유리 조성물의 구성 성분 중 특정 종은, 유리 형성 및 재형성 온도에서 휘발성일 수 있으며, 이는, 결국, 조성적 불균질 및 후속 박리를 초래할 수 있다. 유리 조성물의 형성 및 재형성 온도는, 일반적으로 유리 조성물이 약 200 poise 내지 약 20 kilopoise 또는 약 1 kilopoise 내지 약 10 kilopoise의 범위에서 점도를 갖는 온도에 상응한다. 따라서, 몇몇 구체 예에서, 유리 용기를 형성하는 유리 조성물은, 약 200 poise 내지 약 100 kilopoise의 범위 내에 점도에 상응하는 온도에서 휘발하는 종을 형성하는 구성 성분이 없다. 몇몇 구체 예에서, 유리 조성물은 약 200 poise 내지 약 50 kilopoise의 범위 내에 점도에 상응하는 온도에서 휘발하는 종을 형성하는 구성 성분이 없다. 몇몇 다른 구체 예에서, 유리 조성물은, 약 1 kilopoise 내지 약 10 kilopoise의 범위 내에 점도에 상응하는 온도에서 휘발하는 종을 형성하는 구성 성분이 없다.
여기에 기재된 몇몇 구체 예에서, 유리 용기는, 알칼리 알루미노실리케이트 유리 조성물 또는 알칼리-토 (alkaline-earth) 알루미노실리케이트 유리 조성물로부터 형성된다. 부가적으로, 여기에 기재된 다양한 구체 예에서, 유리 용기를 형성하는 유리 조성물 내에 붕소 농도는, 박리 및 상 분리 (phase separation) 모두를 완화시키기 위해 제한된다. 유리에서 붕소-함유 종은, 유리 형성 및 재형성을 위해 사용된 상승 온도에서 매우 휘발성이어서, 그 결과로 생긴 유리 용기의 박리를 초래한다. 여기에 기재된 다양한 구체 예에서, 유리 조성물은, B2O3를, 제한 없이, 포함하는, 붕소를 함유하는 화합물 및/또는 붕소의 산화물을 0.3 mol% 이하로 포함한다. 이들 구체 예들 중 몇몇에서, 유리 조성물에서 붕소를 함유하는 화합물 및/또는 붕소의 산화물의 농도는, 0.2 mol% 이하 또는 심지어 0.1 mol% 이하일 수 있다. 몇몇 다른 구체 예에서, 유리 조성물은, 붕소 및 붕소를 함유하는 화합물이 실질적으로 없다.
붕소와 같이, 인, 아연, 납, 비스무트, 염소, 불소, 및 주석의 산화물은, 일반적으로 유리 형성 및 재형성을 위해 사용된 상승 온도에서 매우 휘발성인 유리 조성물 내에 종을 형성한다. 이로써, 이들 구성 성분은, 완성된 유리 용기에서 조성적 불균질을 초래할 수 있어, 결국, 박리를 초래할 수 있다. 따라서, 여기에 기재된 몇몇 구체 예에서, 인, 아연, 납, 비스무트, 염소, 불소, 주석의 산화물, 및 인, 아연, 납, 비스무트, 염소, 불소, 및 주석의 산화물을 함유하는 화합물 (예컨대, P2O5, ZnO, 및 이와 유사한 것)은, 박리를 완화시키기 위해 제한된다. 몇몇 구체 예에서, 유리 용기가 제조되는 유리 조성물은, 0.5 mol% 이하, 0.3 mol% 이하, 0.2 mol% 이하, 심지어 0.1 mol% 이하의 인, 아연, 납, 비스무트, 염소, 불소, 주석의 산화물, 및 인, 아연, 납, 비스무트, 염소, 불소, 또는 주석의 산화물을 함유하는 화합물을 포함한다. 몇몇 다른 구체 예에서, 유리 조성물은, 인, 아연, 납, 비스무스, 염소, 불소, 주석의 산화물, 및 인, 아연, 납, 비스무스, 염소, 불소, 및 주석의 산화물을 함유하는 화합물 중 하나 이상이 실질적으로 없다.
하나의 대표적인 구체 예에서, 유리 용기는, 2012년 10월 25일에 출원되고, 발명의 명칭이 "Alkaline Earth Alumino-Silicate Glass Compositions with Improved Chemical and Mechanical Durability"인, 미국 특허 제9,145,329호, 또는 2013년 4월 25일자로 출원되고, 발명의 명칭이 "Glass Compositions with Improved Chemical and Mechanical Durability"인, 미국 특허 제8,551,898호에 기재된, 알칼리토 알루미노실리케이트 유리 조성물과 같은 내박리성 유리 조성물로부터 형성되며, 상기 특허들 각각의 전체적인 내용은 참조로서 여기에 혼입된다. 이러한 대표적인 유리 조성물은, 일반적으로 SiO2, Al2O3, 적어도 하나의 알칼리토 산화물, 및 적어도 Na2O 및 K2O를 포함하는 적어도 두 개의 알칼리 산화물의 조합을 포함한다. 몇몇 구체 예에서, 유리 조성물은 또한 붕소 및 붕소를 함유하는 화합물이 없을 수 있다. 이들 성분의 조합은, 화학적 분해에 내성이 있고 및 이온 교환에 의한 화학적 강화에도 적합한 유리 조성물을 가능하게 한다. 몇몇 구체 예에서, 유리 조성물은, 제한 없는 예로서, SnO2, ZrO2, ZnO, 또는 이와 유사한 것과 같은, 하나 이상의 부가적인 산화물을 소량으로 더욱 포함할 수 있다. 이들 성분은 청징제 (fining agents)로서 첨가되거나 및/또는 유리 조성물의 화학적 내구성을 더욱 향상시키기 위해 첨가될 수 있다.
제1 대표적인 유리 조성물의 다양한 구체 예에서, 유리 조성물은 일반적으로 약 65 mol% 이상 및 약 75 mol% 이하의 양으로 SiO2를 포함한다. 몇몇 구체 예에서, SiO2는, 유리 조성물 중에 약 67 mol% 이상 또는 약 75 mol% 이하의 양으로 존재한다. 몇몇 다른 구체 예에서, SiO2는, 약 67 mol% 이상 또는 약 73 mol% 이하의 양으로 존재한다. 각각의 이들 구체 예에서, SiO2의 양은, 약 70 mol% 이상 또는 심지어 약 72 mol% 이상일 수 있다.
제1 대표적인 유리 조성물은 또한 Al2O3를 포함한다. Al2O3는, 유리 조성물에 존재하는 Na2O 또는 이와 유사한 것과 같은, 알칼리 산화물과 함께, 이온 교환 강화에 대한 유리의 민감성을 개선시킨다. 게다가, 조성물에 Al2O3의 첨가는, 유리 밖으로 침출하는 (Na 및 K와 같은) 알칼리 구성분의 경향을 감소시키고, 이로써, 가수분해 (hydrolytic degradation)에 대한 조성물의 내성을 증가시킨다. 게다가, 약 12.5 mol%를 초과하는 Al2O3의 첨가는, 또한 유리의 연화점을 증가시킬 수 있으며, 이에 의해 유리의 성형성 (formability)을 감소시킨다. 따라서, 여기에 기재된 다양한 유리 조성물은, 약 6 mol% 이상 및 약 12.5 mol% 이하의 양으로 Al2O3를 포함한다. 몇몇 구체 예에서, 유리 조성물에서 Al2O3의 양은, 약 6 mol% 이상 및 약 10 mol% 이하이다. 몇몇 다른 구체 예에서, 유리 조성물에서 Al2O3의 양은, 약 7 mol% 이상 및 약 10 mol% 이하이다.
제1 대표적인 유리 조성물의 다양한 구체 예는, 적어도 2개의 알칼리 산화물을 더욱 포함한다. 알칼리 산화물은 유리 조성물의 이온 교환능력 (ion exchangeability)을 용이하게 하며, 따라서, 유리의 화학적 강화를 촉진하고 및 유리의 연화점을 낮추며, 이에 의해 유리 조성물에서 더 높은 농도의 SiO2에 기인한 연화점의 증가를 상쇄시킨다. 알칼리 산화물은 또한 유리 조성물의 화학적 내구성을 개선시키는데 도움을 준다. 알칼리 산화물은 일반적으로 유리 조성물에서 약 5 mol% 이상 및 약 12 mol% 이하의 양으로 존재한다. 몇몇 구체 예에서, 알칼리 산화물의 양은, 약 5 mol% 이상 및 약 10 mol% 이하일 수 있다. 몇몇 다른 구체 예에서, 알칼리 산화물의 양은, 약 5 mol% 이상 및 약 8 mol% 이하일 수 있다. 여기에 기재된 모든 유리 조성물에서, 알칼리 산화물은, 적어도 Na2O 및 K2O를 포함한다. 몇몇 구체 예는 Li2O를 더욱 포함한다.
유리 조성물의 이온 교환능력은, 이온 교환 전의 유리 조성물에 처음에 존재하는 Na2O의 양에 의해 유리 조성물에 주로 부여된다. 구체적으로, 이온 교환 강화시 유리 조성물에서 원하는 압축 응력 및 층의 깊이를 달성하기 위해, 유리 조성물의 다양한 구체 예는, 상기 유리 조성물의 분자량에 기초하여 약 2.5 mol% 이상 및 약 10 mol% 이하의 양으로 Na2O를 포함한다. 몇몇 구체 예에서, 유리 조성물은 Na2O를 약 3.5 mol% 이상 및 약 8 mol% 이하 또는 심지어 약 6 mol% 이상 및 약 8 mol% 이하의 양으로 포함한다.
K2O의 양은 또한 유리 조성물의 이온 교환능력과 관련된다. 특히, 유리 조성물에 존재하는 K2O의 양이 증가함에 따라, 이온 교환을 통해 얻을 수 있는 압축 응력은 감소한다. 따라서, 몇몇 구체 예에서, K2O의 양은, 유리 조성물의 분자량에 기초하여 0 mol% 초과 및 약 2.5 mol% 이하이다. 이들 구체 예들 중 몇몇에서, 유리 조성물에 존재하는 K2O의 양은, 0 mol% 초과 및 약 0.5 mol% 이하이다.
Li2O를 포함하는 구체 예에서, Li2O는 유리 조성물의 분자량에 기초하여 약 1 mol% 이상 및 약 3 mol% 이하의 양으로 존재할 수 있다. 몇몇 구체 예에서, Li2O는 유리 조성물에 약 2 mol% 초과 및 약 3 mol% 이하의 양으로 존재할 수 있다. 그러나, 전술된 바와 같이, 몇몇 구체 예에서, 유리 조성물은, 리튬 함유 화합물 및 리튬이 실질적으로 없을 수 있다.
전술된 바와 같이, 제1 대표적인 유리 조성물은 적어도 하나의 알칼리토 산화물을 포함한다. 알칼리토 산화물은, 박리에 대한 유리의 민감성을 감소시키는 것에 부가하여, 유리 배치 물질 (glass batch materials)의 용융력 (meltability)을 개선하고 및 유리 조성물의 화학적 내구성을 증가시킨다. 여기에 기재된 유리 조성물에서, 유리 조성물은 일반적으로 약 8 mol% 이상, 또는 심지어 8.5 mol% 이상 및 약 15 mol% 이하의 농도로 적어도 하나의 알칼리토 산화물을 포함한다. 몇몇 구체 예에서, 유리 조성물은, 약 9 mol% 내지 약 15 mol%의 알칼리토 산화물 또는 약 10 mol% 내지 약 14 mol%의 알칼리토 산화물을 포함한다.
알칼리토 산화물은, 예를 들어, MgO, CaO, SrO, BaO, 또는 이들의 조합을 포함할 수 있다. 예를 들어, MgO는, 유리 조성물의 분자량에 기초하여, 약 2 mol% 이상 및 약 7 mol% 이하, 또는 심지어 3 mol% 초과 및 5 mol% 이하의 양으로 유리 조성물에 존재할 수 있다.
다른 실시 예로서, CaO는, 유리 조성물의 분자량에 기초하여, 약 2 mol% 내지 7 mol% 이하, 약 3 mol% 내지 약 7 mol% 이하, 약 4 mol% 이상 내지 약 7 mol% 이하, 또는 심지어 약 5 mol% 이상 내지 약 6 mol% 이하의 양으로, 유리 조성물에 존재할 수 있다. 또 다른 구체 예에서, CaO는, 약 2 mol% 이상 및 약 5 mol% 이하의 양으로 존재할 수 있다.
몇몇 구체 예에서, SrO는, 0 mol% 초과 및 약 6 mol% 이하, 0 mol% 초과 및 약 5 mol% 이하, 약 2 mol% 이상 및 약 4 mol% 이하, 또는 심지어 약 1 mol% 내지 약 2 mol%의 양으로 유리 조성물에 포함될 수 있다. 또 다른 구체 예에서, SrO는, 유리 조성물에 약 3 mol% 이상 및 약 6 mol% 이하의 양으로 존재할 수 있다.
BaO를 포함하는 구체 예에서, BaO는, 약 0 mol% 초과 및 약 2 mol% 미만의 양으로 존재할 수 있다. 이들 구체 예들 중 몇몇에서, BaO는, 유리 조성물에 약 1.5 mol% 이하 또는 심지어 약 0.5 mol% 이하의 양으로 존재할 수 있다.
SiO2, Al2O3, 알칼리 산화물 및 알칼리토 산화물에 부가하여, 여기에 기재된 제1 대표적인 유리 조성물은, 선택적으로, 제한 없는 예로서, SnO2, As2O3, 및/또는 (NaCl 또는 이와 유사한 것에서 유래한) Cl-와 같은, 하나 이상의 청징제를 포함할 수 있다. 청징제가 유리 조성물에 존재하는 경우, 청징제는 약 1 mol% 이하 또는 심지어 약 0.5 mol% 이하의 양으로 존재할 수 있다. 예를 들어, 특정 구체 예에서, SnO2는 청징제로서 약 0 mol% 초과 및 약 0.3 mol% 이하의 양으로 포함된다.
부가적인 금속 산화물은 다양한 구체 예의 유리 조성물에 부가적으로 포함될 수 있다. 예를 들어, 유리 조성물은 ZnO 또는 ZrO2를 더욱 포함할 수 있으며, 이들 각각은 화학적 공격에 대한 유리 조성물의 내성을 개선시킨다. 이러한 구체 예에서, 부가적인 금속 산화물은, 약 0 mol% 이상 및 약 2.0 mol% 이하의 양으로 존재할 수 있다. 예를 들어, 유리 조성물은, 약 1.5 mol% 이하의 양으로 ZrO2를 포함할 수 있다. 선택적으로 또는 부가적으로, ZnO는, 약 2.0 mol% 이하의 양으로 포함될 수 있다. 몇몇 구체 예에서, ZnO는, 하나 이상의 알칼리토 산화물에 대한 대체물, 예컨대, MgO의 부분 대체물 또는 CaO 또는 SrO 중 적어도 하나에 부가하여 또는 대체하는 대체물로서 포함될 수 있다.
하나의 구체 예에서, 제1 대표적인 유리 조성물은, 약 65 mol% 내지 약 75 mol%의 SiO2; 약 6 mol% 내지 약 12.5 mol%의 Al2O3; 및 약 5 mol% 내지 약 12 mol%의 알칼리 산화물을 포함할 수 있으며, 여기서 알칼리 산화물은 Na2O 및 K2O를 포함한다. K2O는 0.5 mol% 이하의 양으로 존재할 수 있다. 유리 조성물은 또한 약 8.0 mol% 내지 약 15 mol%의 알칼리토 산화물을 포함할 수 있다.
또 다른 구체 예에서, 제1 대표적인 유리 조성물은, 약 67 mol% 내지 약 75 mol%의 SiO2; 약 6 mol% 내지 약 10 mol% Al2O3; 약 5 mol% 내지 약 12 mol%의 알칼리 산화물; 및 약 9 mol% 내지 약 15 mol%의 알칼리토 산화물을 포함한다. 알칼리 산화물은 적어도 Na2O 및 K2O를 포함한다. K2O는 0.5 mol% 이하의 양으로 존재할 수 있다. 유리 조성물은 붕소 및 붕소 화합물이 없다.
또 다른 구체 예에서, 제1 대표적인 유리 조성물은, 약 67 mol% 내지 약 75 mol%의 SiO2; 약 6 mol% 내지 약 10 mol% Al2O3; 약 5 mol% 내지 약 12 mol%의 알칼리 산화물; 및 약 9 mol% 내지 약 15 mol%의 알칼리토 산화물을 포함한다. 알칼리토 산화물은 SrO 및 BaO 중 적어도 하나를 포함한다. 유리 조성물은 붕소 및 붕소 함유 화합물이 없다.
제2 대표적인 구체 예에서, 유리 용기는 SiO2, Al2O3, 적어도 하나의 알칼리토 산화물, 및 Na2O 및/또는 K2O와 같은, 하나 이상의 알칼리 산화물의 조합을 포함하는 알칼리 알루미노실리케이트 유리 조성물로부터 형성된다. 유리 조성물은 0.3 mol% 이하의 붕소 및 붕소 함유 화합물, 및 0.5 mol% 이하의 ZnO 및 ZnO 함유 화합물을 포함한다.
일반적으로, 이러한 제2 대표적인 유리 조성물은, 67 mol% 이상 및 약 74.5 mol% 이하의 양으로 SiO2를 포함한다. Al2O3는, 제2 대표적인 유리 조성물의 다양한 구체 예에서, 약 6.5 mol% 이상 및 약 10.5 mol% 이하의 양으로 존재할 수 있다. Na2O를 포함하는 구체 예에서, Na2O는, 약 0 mol% 내지 약 8 mol% 또는 약 0.1 mol% 이상 내지 약 8 mol% 이하의 양으로 존재할 수 있다. K2O가 존재하는 경우, K2O는 0 mol% 이상 및 1.5 mol% 이하의 양으로 포함될 수 있다.
제2 대표적인 유리 조성물에 존재하는 알칼리토 산화물은, 적어도 MgO 및 CaO를 포함할 수 있다. 예를 들어, 제2 대표적인 유리 조성물의 구체 예에서, 알칼리토 산화물은 MgO를 포함한다. MgO는 약 4.5 mol% 이상 및 약 12.5 mol% 이하의 양으로 존재한다. CaO는, 약 4.4 mol% 내지 13.5 mol% 이하의 양으로 존재할 수 있다.
제2 대표적인 유리 조성물의 다양한 구체 예에서, ZnO는 0 mol% 이상 및 0.5 mol% 이하의 농도로 존재한다. 몇몇 구체 예에서, ZnO의 농도는, 0 mol% 이상 및 0.3 mol% 이하, 0 mol% 이상 및 0.2 mol% 이하, 또는 심지어 0 mol% 이상 및 0.1 mol% 이하이다. 몇몇 구체 예에서, 유리 조성물은 실질적으로 ZnO가 없다.
제2 대표적인 유리 조성물의 몇몇 구체 예는, 0 mol% 이상 및 0.3 mol% 이하의 농도로 B2O3를 더욱 포함한다. 몇몇 구체 예에서, B2O3의 농도는, 0 mol% 이상 및 0.2 mol% 이하, 또는 심지어 0 mol% 이상 및 0.1 mol% 이하이다. 몇몇 구체 예에서, 유리 조성물은 B2O3가 실질적으로 없다.
제2 대표적인 유리 조성물의 몇몇 구체 예는, 제한 없는 예로서, SnO2, ZrO2, TiO2, As2O3, 또는 이와 유사한 것과 같은, 소량의 하나 이상의 부가적인 산화물을 더욱 포함한다. 이들 성분은 청징제로서 첨가될 수 있거나 및/또는 유리 조성물의 화학적 내구성을 더욱 향상시키기 첨가될 수 있다.
하나의 구체 예에서, 제2 대표적인 유리 조성물은, 약 67 mol% 내지 약 74.5 mol%의 SiO2; 약 6.5 mol% 내지 약 10.5 mol%의 Al2O3; 약 0 mol% 내지 약 8 mol%의 Na2O; 약 0 mol% 내지 약 1.5 mol%의 K2O; 약 4.5 mol% 내지 약 12.5 mol%의 MgO; 약 4.4 mol% 내지 약 13.5 mol%의 CaO; 약 0 mol% 내지 약 0.5 mol%의 ZnO; 및 약 0 mol% 내지 약 0.3 mol%의 B2O3를 포함한다.
몇몇 다른 구체 예에서, 유리 용기는, 알칼리 산화물이 실질적으로 없는 유리 조성물로부터 형성된다. 예를 들어, 몇몇 구체 예에서, 유리 조성물은, 붕소, 알칼리 산화물, 또는 알칼리토 산화물보다는, 희토류 산화물 (예컨대, Y2O3, La2O3, Ga2O3, GeO2), Al2O3, TiO2, 및/또는 ZrO2로 플럭스화된 (fluxed) 높은 실리카 농도 (즉, 약 75 mol% 이상)를 갖는 유리 조성물로부터 형성될 수 있다. 희토류 산화물은 실리카의 용융 온도를 감소시키지만, 소다 라임 실리케이트 또는 알칼리 보로실리케이트와 동일한 방식으로 유리의 내가수분해성에 악영향을 미치지 않는다. 게다가, 이러한 유리는 일반적으로 이들이 휘발성 종을 함유하지 않기 때문에 재형성시 균질하게 유지되며, 따라서, 박리 및 표면 화학 (surface chemistry)에서 변화를 겪지 않을 것이다.
더욱이, 몇몇 구체 예에서, 유리 용기 (100)는, DIN 12116 표준, ISO 695 표준, ISO 719 표준, 및 ISO 720 표준에 의해 결정되는 바와 같은 화학적 내구성 및 열화에 내성이 있는 유리 조성물로부터 형성될 수 있다.
구체적으로, DIN 12116 표준은, 산성 용액에 넣을 경우 분해에 대한 유리의 내성의 척도이다. DIN 12116 표준은 개별 클래스 (individual classes)로 나누어진다. 클래스 S1은 최대 0.7㎎/d㎡의 중량 손실을 나타내고; 클래스 S2는 0.7㎎/d㎡에서 1.5㎎/d㎡까지의 중량 손실을 나타내며; 클래스 S3은 1.5㎎/d㎡에서 15㎎/d㎡까지의 중량 손실을 나타내고; 및 클래스 S4는 15㎎/d㎡를 초과하는 중량 손실을 나타낸다. 다양한 구체 예에서, 유리 용기를 형성하는 유리 조성물은, DIN 12116에 따른 클래스 S3 이상의 내산성 (acid resistance)을 가지며, 몇몇 구체 예에서, 적어도 클래스 S2 이상 또는 심지어 클래스 S1의 내산성을 갖는다. 더 낮은 클래스의 순위는 개선된 내산성 성능을 갖는 것으로 이해되어야 한다. 따라서, 클래스 S1으로 등급화된 조성물은, 클래스 S2로 등급화된 조성물보다 우수한 내산성을 갖는다.
ISO 695 표준은, 기초 용액 (basic solution)에 넣는 경우, 분해에 대한 유리의 내성의 척도이다. ISO 695 표준은 개별 클래스로 나누어진다. 클래스 A1은 최대 75㎎/d㎡의 중량 손실을 나타내고; 클래스 A2는 75㎎/d㎡에서 175㎎/d㎡까지의 중량 손실을 나타내며; 및 클래스 A3은 175㎎/d㎡를 초과하는 중량 손실을 나타낸다. 다양한 구체 예에서, 유리 용기를 형성하는 유리 조성물은, 클래스 A2 이상의 ISO 695에 따른 내염기성 (base resistance)을 가지며, 몇몇 구체 예에서, 클래스 A1의 내염기성을 갖는다. 더 낮은 클래스의 순위는, 개선된 내염기성 성능을 갖는 것으로 이해되어야 한다. 따라서, 클래스 A1으로 등급화된 조성물은, 클래스 A2로 등급화된 조성물보다 우수한 내염기성을 갖는다.
다양한 구체 예에서, 유리 용기를 형성하는 유리 조성물은, ISO 720 표준에 의해 결정되는 바와 같은 분해에 내성 및 화학적 내구성이 있다. ISO 720 표준은, 증류수에서 분해에 대한 유리의 내성 (즉, 유리의 내가수분해성)의 척도이다. ISO 720 표준은 개별 타입 (types)으로 나누어진다. 타입 HGA1은 Na2O의 62㎍까지의 추출 당량 (extracted equivalent)을 나타내고; 타입 HGA2는, Na2O의 62㎍ 초과 및 527㎍까지의 추출 당량을 나타내며; 및 타입 HGA3는, Na2O의 527㎍ 초과 및 930㎍까지의 추출 당량을 나타낸다. 다양한 구체 예에서, 유리 용기를 형성하는 유리 조성물은, 타입 HGA2 이상의 ISO 720 내가수분해성을 가지며, 몇몇 구체 예에서, 타입 HGA1 이상의 내가수분해성을 갖는다. 더 낮은 클래스의 순위는, 개선된 내가수분해성 성능을 갖는 것으로 이해되어야 한다. 따라서, HGA1으로 등급화된 조성물은 HGA2로 등급화된 조성물보다 우수한 내가수분해성을 갖는다.
다양한 구체 예에서, 유리 용기를 형성하는 유리 조성물은, ISO 719 표준에 의해 결정되는 바와 같은 분해에 내성 및 화학적 내구성이 있다. ISO 719 표준은, 증류수에서 분해에 대한 유리의 내성 (즉, 유리의 내가수분해성)의 척도이다. ISO 719 표준은 개별 타입으로 나누어진다. 타입 HGB1은, Na2O의 31㎍까지의 추출 당량을 나타내고; 타입 HGB2은, Na2O의 31㎍ 초과 및 62㎍까지의 추출 당량을 나타내며; 타입 HGB3는, Na2O의 62㎍ 초과 및 264㎍까지 추출 당량을 나타내고; 타입 HGB4는, Na2O의 264㎍ 초과 및 620㎍까지의 추출 당량을 나타내며; 및 타입 HGB5는, Na2O의 620㎍ 초과 및 1085㎍까지의 추출 당량을 나타낸다. 다양한 구체 예에서, 유리 용기를 형성하는 유리 조성물은, 타입 HGB2 이상의 ISO 719 내가수분해성을 가지며, 몇몇 구체 예에서, 타입 HGB1 이상의 내가수분해성을 갖는다. 더 낮은 클래스의 순위는, 개선된 내가수분해성 성능을 갖는 것으로 이해되어야 한다. 따라서, HGB1로 등급화된 조성물은, HGB2로 등급화된 조성물보다 우수한 내가수분해성을 갖는다.
ISO 719, ISO 720, ISO 605, 및 DIN 12116에 따른 전술된 분류 (classification)를 언급하는 경우, 명시된 분류 "이상"을 갖는 유리 조성물 또는 유리 물품은, 유리 조성물의 성능이 명시된 분류와 마찬가지거나 또는 더 우수한 것으로 이해되어야 한다. 예를 들어, "HGB2" 이상의 ISO 719 내가수분해성을 갖는 유리 물품은, HGB2 또는 HGB1의 ISO 719 분류를 가질 수 있다.
도 5는, 여기에 기재된 다양한 구체 예에 따라 유리 용기를 형성하는 대표적인 방법 (500)을 도시한다. 도 5에 도시된 바와 같이, 여기에 기재된 유리 조성물은, 유리 원료 (예를 들어, SiO2, Al2O3, 알칼리 산화물, 알칼리토 산화물, 및 이와 유사한 것의 분말)의 배치 (batch)가 원하는 조성을 갖도록 유리 원료의 배치를 혼합시켜 형성된다 (502). 그 후, 유리 원료의 배치는 가열되어 (504) 용융된 유리 조성물을 형성하고, 이어서 냉각되고 응고되어 유리 조성물을 형성한다. 응고 동안 (즉, 유리 조성물이 소성적으로 변형 가능할 때), 유리 조성물은, 시트, 튜브 또는 이와 유사한 것과 같은, 스톡 형태 (stock form)로 형상화될 수 있고 (506), 나중에 유리 용기 (100)로 전환된다 (예를 들어, 재가열 및 형성된다) (508). 그러나, 유리 조성물의 화학적 내구성을 고려하면, 여기에 기재된 유리 조성물은 특히, 액체, 분말, 및 이와 유사한 것과 같은, 약학 제제를 담기 위한 약학 패키지의 형성에 사용하기에 매우 적합하다. 예를 들어, 유리 용기는, 바이알, 앰플, 카트리지, 시린지 몸체, 및/또는 약학 제제를 저장하기 위한 임의의 다른 유리 용기의 형태일 수 있다.
유리 용기 (100)로 전환 후에, 유리 용기 (100)는 어닐링된다 (510). 그 다음, 유리 용기 (100)는 마킹된다 (512). 이하 좀 더 상세히 기재되는 바와 같이, 다양한 구체 예들에서, 위조-방지 마킹은, 유리 용기의 몸체의 벽 두께 내에 지점에 펄스 레이저 빔을 초점 조정하는 단계 및 상기 벽 두께 내에 주사 경로를 따라 상기 펄스 레이저 빔을 이동시켜 상기 펄스 레이저 빔에 노출되지 않은 몸체의 부분의 굴절률에 대해 상기 주사 경로를 따라 유리의 굴절률에서 변화를 유도하는, 이동 단계에 의해 유리 용기 내에 형성된다.
다음, 몇몇 구체 예에서, 유리 용기가 마킹된 후에, 유리 용기 (100)는, 그 다음 이온-교환 강화되고 (514), 세척되며 (516), 및/또는 코팅 및 경화 (518)될 수 있다. 예를 들어, 유리 용기는, KNO3 및 NaNO3의 혼합물 또는 KNO3의 용융염 욕조에 침지되어 유리 용기를 이온-교환 강화시킬 수 있고, 지속적인 층 균질성 및/또는 지속적인 표면 균질성을 보장하기 위해 산 세척될 수 있으며, 및/또는 내박리성 및/또는 내손상성을 제공하거나 강화시키기 위해 코팅으로 코팅될 수 있다.
몇몇 구체 예에서, 유리 용기는, 고분자 화학 조성물 및 커플링제 (coupling agent)를 포함할 수 있는 저-마찰 코팅 (low-friction coating)으로 외부 표면 (106)의 적어도 일부 상에 코팅된다. 구체 예에서, 고분자 및 커플링제는 혼합될 수 있고, 및 유리 용기 상에 단일 코팅층으로 적용될 수 있거나, 또는 고분자 및 커플링제는 층으로 이루어질 수 있다. 예를 들어, 고분자층이 커플링제층 및 유리 벽에 대해 외부 층이 되도록 커플링제 층 위에 고분자층은 위치될 수 있다.
폴리이미드-계 코팅을 포함하는, 적절한 코팅에 대한 부가적인 상세는, 2013년 2월 28일자로 출원되고, 발명의 명칭이 "Glass Articles with Low-Friction Coatings"인, 미국 공개특허 제2013/0171456호, 2013년 2월 28일자로 출원되고, 발명의 명칭이 "Glass Articles with Low-Friction Coatings"인, 미국 공개특허 제2013/0224407호, 2013년 3월 14일자로 출원되고, 발명의 명칭이 "Delamination Resistant Glass Containers with Heat-Tolerant Coatings"인, 미국 공개특허 제2014/0001076호, 2013년 6월 28일자에 출원되고, 발명의 명칭이 "Delamination Resistant Glass Containers with Heat-Tolerant Coatings"인, 미국 공개특허 제2014/0001143호, 2013년 11월 8일자에 출원되고, 발명의 명칭이 "Glass Containers with Delamination Resistance and Improved Damage Tolerance"인, 미국 공개특허 제2014/0151320호, 2013년 11월 8일자에 출원되고, 발명의 명칭이 "Glass Containers with Improved Strength and Improved Damage Tolerance"인, 미국 공개특허 제2014/0151321호, 2013년 11월 8일자에 출원되고, 발명의 명칭이 "Strengthened Glass Containers Resistant to Delamination and Damage"인, 미국 공개특허 제2014/0151370호, 2015년 7월 29일자에 출원되고, 발명의 명칭이 "Glass Articles with Low-Friction Coatings"인, 미국 공개특허 제2015/0329416호, 2015년 7월 29일자에 출원되고, 발명의 명칭이 "Glass Articles with Low-Friction Coatings"인, 미국 공개특허 제2015/0360999호, 2013년 10월 11일자에 출원되고, 발명의 명칭이 "Strengthened Borosilicate Glass Containers with Improved Damage Tolerance"인, 미국 특허 제9,034,442호, 및 2013년 10월 18일자에 출원되고, 발명의 명칭이 "Delamination Resistant Glass Containers with Heat-Tolerant Coatings"인, 미국 특허 제9,428,302호에서 확인될 수 있으며, 이들 각각의 전체적인 내용은 참조로서 여기에 혼입된다.
비록 도 5가 유리의 마킹 (512)이 어닐링 단계 (510) 이후에 발생하는 것으로 도시하지만, 위조-방지 마킹은, 구체 예에 의존하여, 유리 용기 형성 공정 동안 임의의 적절한 시간에서 유리 내에 형성될 수 있는 것으로 이해되어야 한다. 예를 들어, 유리 용기가 이온-교환 강화된 구체 예에서, 마킹은, 유리 용기의 이온-교환 강화 이전 또는 이후 (예를 들어, 도 5에 도시된 방법 (500)에서 단계 (514) 이전 또는 이후)에 벽 두께 내에 형성될 수 있다. 다시 말하면, 유리는, 유리 용기에 위조-방지 마킹을 형성하기 전 또는 유리 용기에 위조-방지 마킹을 형성한 후에, 이온-강화될 수 있다.
게다가, 몇몇 구체 예에서, 위조-방지 마킹은, 유리 용기 자체가 형성되기 전에 벽 두께 내에 형성될 수 있다. 예를 들어, 위조-방지 마킹은, 방법 (500)에서 단계 (506)과 단계 (508) 사이에서 형성될 수 있다. 선택적으로, 위조-방지 마킹은, 유리를 유리 용기로 전환한 후, 그러나 어닐링 전에 (예를 들어, 방법 (500)에서 단계 (508)와 단계 (510) 사이에서) 형성될 수 있다.
전술한 바와 같이, 다양한 구체 예에서, 유리 용기 (100)는, 화학적 내구성 및 내분해성을 가지므로, 특히 약학 패키지의 형성에 사용하기에 적합하다. 따라서, 다양한 구체 예에서, 벽 두께 (Tw) 내에 마킹 (116)의 포함은, 제품 강도에 최소한으로 영향을 미치고, 및 유리 용기 (100)의 표면에 무시할 수 있는 손상을 결과한다. 이론에 구속됨이 없이, 벽 두께 (Tw) 내에 마킹 (116)의 포함은, 굽힘 시, 벽 두께 (Tw)의 중심부가 실질적으로 0의 인장 응력 (zero tensile stress)을 갖는 중립 축 (neutral axis)이기 때문에, 유리 용기 (100)의 강도에 크게 영향을 미치지 않는다. 증가된 응력을 가져서, 강도 감소에 대한 마킹의 영향을 증가시키는, (유리의 압축 응력 층에서) 표면을 향하여 위치된 마킹과는 대조적이다. 유리 용기 (100)의 표면의 손상에 또는 제품 강도에 최소한의 영향으로 마킹 (116)을 도입하기 위해, 다양한 구체 예에서, 마킹 (116)은, 몸체 (102)의 마킹된 부분에서 굴절률의 변화로부터 결과하는 하나 이상의 포토닉 미세구조 (photonic microstructures)를 포함할 수 있다. 마킹 (116)은, 예를 들어, 펨토초 (femtosecond) 또는 UV 레이저를 사용하여 생성될 수 있다.
다양한 구체 예에서, 마킹 (116)은, 펨토초 레이저에 노출로부터 결과하는 유리의 굴절률에서 주기적인 변화를 갖는 회절격자 (diffraction grating)로서 생성될 수 있다. 특히, 레이저 에너지는, 물질 내에서 국부적인 밀도 변화를 결과할 수 있으며, 이는, 결국, 유리의 굴절률에서 변화를 일으킨다. 굴절률에서 주기 변화는 다른 파장의 광의 다른 회절 각을 결과할 수 있다. 몇몇 구체 예에서, 이들 회절격자는 육안에 가시적일 수 있거나, 광학 조명 셋업 (optical lighting setup)에 가시적일 수 있거나, 또는 특별히-고안된 장비에 가시적일 수 있다. 몇몇 구체 예에서, 마킹 (116)의 형상은, 제조사 식별자 (manufacturer identifier)를 형성할 수 있는 반면, 마킹 (116)의 공진 주파수 (resonant frequency)는 부품 또는 로트 (lots)를 개별적으로 식별하는데 사용될 수 있다.
다른 구체 예에서, 마킹 (116)은, 미세구조의 패턴을 포함할 수 있다. 패턴은 제조사, 제품, 또는 로트를 고유하게 식별하는데 사용될 수 있다. 이들 구체 예들 중 몇몇에서, 마킹 (116)의 패턴은, 광원으로 패턴을 광학적으로 정렬시켜 조명될 수 있다. 광원과 패턴을 광학적으로 정렬시키면, 마킹 (116)은 가시적으로 검출될 수 있다.
마킹 (116)의 형태에 관계없이, 다양한 구체 예에서, 마킹 (116)은, 도 6에 도시된 레이저 묘화 시스템 (600)과 같은, 레이저 묘화 시스템을 이용한 유리 용기 (100)의 노출의 결과이다. 하나의 구체 예에서, 레이저 묘화 시스템 (600)은, 현미경 대물렌즈 (604)를 통해 유리 용기 (100)의 벽 두께 (Tw) 내로 초점 조정된 펨토초 펄스 빔을 제공하는 펨토초 레이저 (602)를 사용한다. 두께 (Tw) 내에 마킹 (116)의 발생은, 광학적 변화로 이어지는 상호작용의 강도 의존성 (intensity dependence)의 함수이다. 구체적으로, 강도에 대한 의존성이 폼 Im (form Im)인 경우, 여기서, m은 공정의 차수, 빔의 초점에서만 상호작용이 발생하는 것이 가능하다. 이는, 초점까지의 입구 원뿔 (entrance cone)에서 강도가 너무 약해 상호작용을 달성할 수 없기 때문인 경우이다. m의 값이 클수록, 주어진 초점 렌즈 (focusing lens)의 경우, 이는 더 커질 것이고, 스폿 (spot)은 더 작아질 것이다. 묘화를 할 수 있는 최대 깊이는, 묘화 강도 (writing intensity)에 따른, 묘화 렌즈 (writing lens)의 작동 거리에 의해 궁극적으로 제한된다.
다양한 구체 예에서, 상호작용의 강도는, 2-광자 흡수 공정 (two-photon absorption process)을 통한 초점에서 굴절률 변화로 이어진다. 구체적으로, 레이저 빔이 펄싱되는 경우, 레이저 빔 유래의 광자는, 레이저 빔의 초점에서 유리에 의해 흡수된다. 유리에 의한 광자의 흡수의 결과로서, 유리에서 굴절률 변화는 발생된다. 유리와 펨토초-레이저의 상호작용의 메커니즘이 명확하지 않지만, 펄스 지속 기간이 짧기 때문에, 펄스 지속 기간이 격자 열화 시간 (lattice thermalization time)보다 짧기 때문에, 여기된 광-전자는 열적으로 완화될 수 없는 것으로 믿어진다. 충분히 높은 강도 및 전자가 완화되지 못함으로, 상대적으로 높은 전자 밀도는 형성될 수 있다. 그것은 플라스마 (plasma)로 고려되기에 충분히 높다. 이의 결과로서 어떻게 구조가 영구적으로 변화되는지는 알려지지 않았다. 이것은, 감마-선 또는 UV-엑시머 레이저와 같은, 높은 에너지 여기 후에 물질에서 발생하는 것으로 보고된 것과 유사한 치밀화 (densification)와 관련되었을 가능성이 있다.
측정 가능한 굴절률 변화를 유도하는데 요구된 노출 에너지는, 특정 유리 조성물에 의존하여 그 규모만큼 변할 수 있다. 상호작용에 영향을 미치는 중요한 요소는, 유리의 고유 흡수 (λg)와 관련된 펨토초-소스 (femtosecond-source)의 여기 파장 (λex)이다. 여기 파장이 고유 흡수 에지 (intrinsic absorption edge)의 2-광자 여기 범위 내에 있다면, 상기 식에서 설명된 바와 같이, 그 다음 이것은, 10 nJ 미만, 예를 들어, 1 nJ 정도의 펄스 에너지로 대략 10-4 또는 10-3의 굴절률 변화를 유도하는 것이 실현 가능하다. 이는, 여기 파장이 고유 흡수 에지로부터 멀리 떨어져 있는 경우, 비슷한 굴절률 변화를 생성하는데 요구된 (1000배 더 클 수 있는) 에너지와는 대조적이다.
다양한 구체 예들에서, 펨토초 레이저 (602)는, 레이저 펄스 폭이 약 500ps 미만이 되도록 작동된다. 몇몇 구체 예에서, 레이저 펄스 폭은, 약 400ps 미만, 약 300ps 미만, 약 200ps 미만, 약 100ps 미만, 약 50ps 미만, 또는 심지어 약 30ps 미만이다. 레이저 펄스 폭은, 약 0.001ps를 초과, 약 0.01ps를 초과, 약 0.1ps를 초과, 약 1ps를 초과, 약 5ps를 초과, 약 10ps를 초과, 또는 약 20ps를 초과할 수 있다. 특정 구체 예에서, 레이저 펄스 폭은, 약 0.001ps 내지 약 500ps, 약 1ps 내지 약 450ps, 약 5ps 내지 약 400ps, 약 10ps 내지 약 300ps, 약 20ps 내지 약 200ps, 또는 약 30ps 내지 약 100ps일 수 있다. 구체 예에서, 레이저 펄스 폭은, 약 10fs 내지 약 1,000fs 또는 약 100fs 내지 약 300fs일 수 있다.
레이저 펄스의 반복률은 약 50kHz 내지 약 1,000kHz (즉, 약 0.05MHz 내지 약 1MHz)일 수 있다. 몇몇 구체 예에서, 레이저 펄스의 반복률은, 약 50kHz 내지 약 500kHz (즉, 약 0.05MHz 내지 약 0.5MHz) 또는 약 100kHz 내지 약 500kHz (즉, 약 0.1MHz 내지 약 0.5MHz)이다.
펨토초 레이저는, 특정 구체 예에 의존하여, 약 515㎚ 내지 약 1030㎚, 약 700㎚ 내지 약 1600㎚, 약 800㎚ 내지 약 1550㎚, 또는 심지어 약 1030㎚ 내지 약 1060㎚의 파장을 가질 수 있다. 몇몇 구체 예에서, 펨토초 레이저는, 약 515㎚ 내지 약 1600㎚ 또는 약 900㎚ 내지 약 1600㎚의 파장을 갖는다. 그러나, 이것은, 다른 파장, 및 다른 레이저 타입이 사용될 수 있는 것으로 고려된다. 예를 들어, 펨토초 Ti-사파이어 레이저 (femtosecond Ti-Sapphire laser)를 사용하는 구체 예에서, 펨토초 레이저는, 약 400㎚ 내지 약 1600㎚ 또는 약 450㎚ 내지 약 1600㎚의 파장, 또는 이의 제2 고조파 (second harmonics)를 가질 수 있다.
다양한 구체 예에서, 펨토초 레이저의 펄스 에너지는, 약 1,000 nJ 내지 약 5,000 nJ, 약 1,500 nJ 내지 약 4,500 nJ, 또는 심지어 약 2,000 nJ 내지 약 4,000 nJ일 수 있다. 펨토초 레이저는, 약 200㎽ 내지 약 8,000㎽, 약 500㎽ 내지 약 4,000㎽, 또는 약 1,000㎽ 내지 약 1,500㎽의 전력 (power)을 가질 수 있다.
도 6에 도시된 구체 예에서, 원하는 파장 밖의 잔여 광 (residual light)은, 색선별 거울 (dichroic mirror) (예를 들어, 빔 스플리터)와 같은, 필터 (606)에 의해 시스템 밖으로 필터링된다. 필터 (606)는, 레이저 빔을 유리 용기 (100)의 벽 두께 내에 초점 조정되는 부분 및 반사될 부분으로 선택적으로 분할할 수 있다. 구체 예에서, 레이저 빔은, 특정 구체 예에 의존하여, 약 0.5㎛ 내지 약 40㎛, 약 1㎛ 내지 약 20㎛, 약 1㎛ 내지 약 10㎛, 또는 약 1㎛ 내지 약 2㎛의 스폿 크기로 초점 조정될 수 있다. 사용된 스폿 크기는, 이동 속도 및 기타 레이저 파라미터에 의존하여 변할 수 있는 것으로 이해되어야 한다.
도 6에서, 유리 용기 (100)는, 모션 스테이지 (motion stage: 608) 상에 위치된다. 모션 스테이지 (608)는, 레이저 빔에 대해 유리 용기 (100)의 이동을 원하는 이동 또는 스캔 속도로 달성하고, 및 레이저 빔의 초점의 위치를 유리 용기 (100)의 벽 두께 (Tw) 내에서 변화되게 한다. 다양한 구체 예에서, 모션 스테이지 (608)는, x-방향, y-방향, 및 z-방향 중 하나 이상으로 유리 용기 (100)를 이동시키도록 구성된 컴퓨터 제어형 XYZ 스테이지이다. 고강도의 초점 조정된 레이저 빔은, 이것이 유리 용기 (100)를 통해 이동됨에 따라, 초점 조정된 빔에 의해 추적되는 경로를 따라 유리의 굴절률에서 증가를 달성한다. 그 결과로 생긴 증가된 굴절률의 영역은, 예를 들어, 광을 안내할 수 있고, 따라서 광도파관 (optical waveguide) 또는 마킹 (116)으로 기능할 수 있는, 패턴을 형성한다. 다양한 구체 예에서, 마킹 (116)의 굴절률은, 몸체 (102)의 마킹되지 않은 부분의 굴절률과 약 0.2% 내지 약 5%, 또는 약 0.2% 내지 약 0.8%만큼 차이가 있다. 특정 구체 예에서, 마킹 (116)의 굴절률은, 몸체 (102)의 마킹되지 않은 부분의 굴절률과 약 0.3% 내지 약 0.5%, 또는 약 1% 내지 약 5%만큼 차이가 있다. 이론에 구속됨이 없이, 약 0.5%를 초과하는 몸체 (102)의 마킹되지 않은 부분과 마킹의 굴절률에서 차이는 육안으로 가시적일 수 있어, 오버트 마킹을 결과하고, 및 약 0.5% 미만의 몸체 (102)의 마킹되지 않은 부분과 마킹의 굴절률의 차이는, 육안으로는 비가시적일 수 있어, 코버트 마킹을 결과한다. 몇몇 구체 예에서, 마킹 (116)의 굴절률은, 몸체 (102)의 마킹되지 않은 부분의 굴절률과 약 1×10-4를 초과, 약 5×10-4를 초과, 약 10×10-4를 초과, 또는 약 15×10-4를 초과하는 만큼 차이가 있다. 이론에 구속됨이 없이, 약 1×10-4를 초과하는 몸체 (102)의 마킹되지 않은 부분 및 마킹의 굴절률에서 차이는, 레이저 광의 조명 (illumination)을 사용하여 비교적 쉽게 검출될 수 있다. 몇몇 구체 예에서, 마킹 (116)은, 약 10㎜/s 내지 약 1,000㎜/s, 약 10㎜/s 내지 약 50㎜/s, 또는 약 150㎜/s 내지 약 200㎜/s의 속도로 묘화될 수 있다.
도 6에 도시된 구체 예는, 또한 CCD 카메라 (610) 및 빔 형상화 시스템 (612)을 포함한다. 다양한 구체 예에서, CCD 카메라 (610)는, 공정을 모니터링하는 것과 같은, 레이저 묘화 시스템 (600)의 실시간 보기를 얻는데 사용될 수 있다. 예를 들어, CCD 카메라 (610)는, 필터 (606)에 의해 반사된 광을 수신하도록 위치될 수 있으며, 이 광은 유리 용기 내에 묘화되는 패턴을 나타낼 수 있다. 선택적인 빔 형상화 시스템 (612)은, 묘화용 원하는 빔 형상을 생성하는데 사용될 수 있다. 예를 들어, 빔 형상화 시스템 (612)은, 유리에 입사시 가늘고 긴 형상을 갖는 빔을 형성하는데 사용될 수 있다. 빔 형상화 시스템 (612)은, 레이저에 의해 방출된 빔을 형상화할 수 있는 하나 이상의 원통형 렌즈 또는 기타 광학 요소를 포함할 수 있다. 빔 형상은, 빔 이동 속도, 유리 시트의 두께, 레이저 전력, 및 이와 유사한 것에 의존하여 변할 수 있어, 원하는 효과를 달성한다.
비록 다양한 구체 예가 펨토초 레이저를 사용하지만, UV 레이저와 같은, 다른 타입의 레이저가 사용될 수 있는 것으로 이해되어야 한다. 예를 들어, 몇몇 구체 예에서, UV 레이저는, 유리의 일부분을 치밀화하는데 사용되어, 마킹 (116)을 형성할 수 있다. UV 레이저는, 예를 들어, 약 300㎚ 이하의 파장 및 약 5ns 초과 내지 약 60ns 미만의 펄스 지속 기간을 갖는 레이저일 수 있다. UV 레이저는, 약 1㎛/s 내지 약 1㎜/s의 스캔 속도를 갖도록 이동될 수 있다. 몇몇 구체 예에서, 초점 조정된 레이저 빔은, 약 10mJ/㎠ 내지 약 150mJ/㎠의 범위에서 강도를 갖는다. 펨토초 레이저에서와 같이, 사용된 특정 파라미터는, 유리 용기의 특정 유리 조성에 의존하여 변할 수 있는 것으로 이해되어야 한다.
몇몇 구체 예에서, 나노초 (nanosecond) 펄스 빔을 제공하는 나노초 UV 레이저는, 도 7에 도시된 바와 같이, 렌즈 (704)를 사용하여 몸체 (102)의 두께 (Tw) 내에 레이저 빔 (702)을 초점 조정하여 유리 내에 마킹 (116)을 형성하는데 사용될 수 있다. 다양한 구체 예에서, 마킹 (116)은, 어닐링 단계 (510) 이전에 몸체 (102)에 형성된다. 특히, 나노초 UV 레이저는, 약 355㎚의 파장에서 작동되는 Nd-계 레이저 (Nd-based laser)일 수 있다. 나노초 UV 레이저는, 특정 구체 예에 의존하여, 다른 파장에서 작동될 수 있는 것으로 고려된다. 다양한 구체 예에서, 레이저는, 약 2W 내지 약 4W, 약 2.5W 내지 약 3.5W, 또는 약 3W의 전력을 갖는다. 몇몇 구체 예에서, 레이저는, 다른 펄스 지속 기간이 사용될 수 있을지라도, 약 25ns 내지 약 50ns, 또는 약 30ns 내지 약 40ns의 펄스 지속 기간을 가질 수 있다. 레이저는, 약 80kHz 내지 약 300kHz, 또는 약 100kHz 내지 약 200kHz의 반복률로 작동될 수 있다. 다양한 구체 예에서, 반복률은, 유리에서, 목표 응력 (target stress), 또는 응력 임계값 (stress threshold)에 기초하여 선택된다. 예를 들어, 반복률은 유리에 도입된 응력을 최소화하도록 선택될 수 있다.
렌즈 (704)는, 0.3 내지 0.7, 또는 0.4 내지 0.6의 범위에서, 또는 약 0.5의 개구수 (numerical aperture)를 갖는 비구면 렌즈 (aspherical lens)일 수 있다. 이론에 구속됨이 없이, 이 범위의 개구수는, 레이저 빔 (702)이 유리의 외부 표면 (106)에서의 전력 밀도 (power density)를 유리 몸체 (102)의 두께 (Tw) 내에 초점 (706)에서의 전력 밀도보다 훨씬 낮게 하는 충분한 각도로 유리 몸체 (102)에 진입하고, 이는, 결국, 레이저가 유리 내에 틈 공간 (interstitial void)의 형태로 마킹을 생성하면서 유리의 표면에 최소한의 영향을 결과할 수 있는 것으로 믿어진다.
레이저 빔 (702)은, 몇몇 구체 예에서, 약 20㎜/s 내지 약 3㎜/s, 약 10㎜/s 내지 약 4㎜/s, 약 9㎜/s 내지 약 5㎜/s, 또는 약 7㎜/s의 속도로 유리 벽에 대하여 이동될 수 있다. 몇몇 구체 예에서, 레이저 빔 (702)은, 몸체 (102)에 대해 이동될 수 있는 반면, 다른 구체 예에서, 몸체 (102)는 레이저에 대해 이동될 수 있다. 예를 들어, 몇몇 구체 예에서, 유리 몸체 (102)는, 유리 벽에 대하여 레이저 빔의 이동을 일으키기 위해 레이저 빔에 대해 약 3㎜/s 내지 약 20㎜/s의 선형 속도 (linear speed)로 회전될 수 있다. 몇몇 특정 구체 예에서, 레이저 빔 (702) 및/또는 유리의 이동은, 도 6에 따라 전술된 모션 스테이지 (608)와 같은, 컴퓨터 제어형 XYZ 스테이지를 사용하여 달성될 수 있다. 몇몇 구체 예에서, 마킹은, 유리가 상승 온도에서 유지되는 동안 유리 내에 형성될 수 있다. 예를 들어, 레이저 빔 (702)은, 유리가 약 실온 (즉, 약 23℃) 내지 유리의 용융점보다 약 0.5℃ 낮은 온도로 유지되는 동안 유리 내에 마킹을 형성하는데 사용될 수 있다.
예로서, 355㎚ 레이저는, 0.5의 개구수를 갖는 비구면 렌즈로 유리 벽의 두께의 대략 중심에 초점 조정된다. 레이저 전력은 3W로 설정되고, 및 반복률은 100kHz이다. 유리는 어닐링 이전, 및 이온-교환 전의 16㎜ 직경을 갖는 유리 바이알의 형태이다. 유리는 약 95%를 초과하는 내부 투과율 (internal transmission)로 투명하다. 유리 바이알은, 7㎜/s 및 5㎜/s의 선형 속도로 회전되고, 그 결과는, 도 8a 및 도 8c에 각각 도시된다. 유리 바이알은 그 다음 627℃에서 어닐링 단계에 적용되고, 어닐링 후에 마킹을 포함하는 유리 바이알은, 도 8b 및 도 8d에 각각 도시된다. 도 8a 및 도 8c에 나타낸 바와 같이, 어닐링 전에, 마킹은, 반-투명 영역에 의해 둘러싸인 가시적인 기포와 같은 중앙 섹션 (visible bubble-like central section)을 가지며, 이는 어닐링 후에 적어도 부분적으로 사라진다 (도 8b 및 도 8d). 낮은 이동 속도 (도 8c 및 도 8d)에서 형성된 마킹은, 이들이 어닐링 후에 완전히 사라지지 않을지라도 (도 8d), 더 얇고 반-투명 영역은 더 균일하게 나타난다. 이론에 구속됨이 없이, 이러한 마킹은, 가시적인 미세-균열을 포함하지 않으며, 상당한 양의 응력을 유도하지 않는 것으로 믿어진다. 따라서, 임의의 유도된 응력은, 어닐링에 의해 더욱 감소되거나 또는 심지어 제거될 수 있는 것으로 믿어진다. 게다가, 이온 교환이 어닐링 온도 아래의 온도에서 수행되기 때문에, 마킹은 이온 교환 후에 열화되지 않을 것으로 믿어진다.
몇몇 구체 예에서, 고유 식별자 (unique identifier)는 마킹으로 코딩된다. 고유 식별자는, 제한 없는 예로서, 수십억의 고유 식별 (unique identifications)의 수준에서 해상도 (resolution)를 제공하기에 적합할 수 있으며, 및 마크의 형상, 구조, 또는 공명 (resonance)을 통해 마킹으로 코딩될 수 있다. 고유 식별자는 인코딩된 제품 정보, 로트 번호, 선적 정보, 또는 이와 유사한 것에 상응할 수 있다. 선택적으로 또는 부가적으로, 고유 식별자는, 제조일자, 원산지의 공장, 및 이와 유사한 것과 같은, 부품 제조 정보를 직접 인코딩할 수 있다. 임의의 특정 바코드 마크에서 인코딩되는 것으로 요구되는 정보의 양은, 사용될 특정 추적 시스템의 요구조건에 의존하여 변할 것이다. 그러나, 하나의 예로서, 고유 식별자는, 1-차원 (1-D) 또는 2-차원 (2-D) 바코드의 형태일 수 있다. 10자리 이하의 숫자 내지 36자리 이상의 문자와 숫자의 조합을 인코딩하는 2-차원 마크는, 의약품의 추적에 유용하며, 통상적으로 16자리의 문자와 숫자의 조합을 인코딩하는 마크는 고려된다. 16-자리 패턴은, 대부분의 제조 목적을 위한 충분한 정보를 혼입할 수 있으며, 유리 내에서 기계-판독 가능한 크기로 쉽게 인쇄 가능하다.
따라서, 이러한 구체 예에서, 코드 판독기 (code reader)는, 마킹을 관찰하고 디코딩하는데 사용될 수 있다.
전술한 바와 같이, 다양한 구체 예는, 유리 용기의 벽 두께 (Tw) 내에 형성되는 미세구조의 형태의 마킹을 가능하게 한다. 몇몇 구체 예에서, 마킹은 부가적인 장비의 사용 없이 사람의 눈에 가시적이다. 그러나, 몇몇 다른 구체 예에서, 마킹을 관찰하기 위해 및/또는 마킹 내에 인코딩된 정보를 디코딩하기 위해, 특수-설계된 광학 이미징 시스템은 요구될 수 있다. 도 9는, 마킹을 관찰하는데 사용될 수 있는 대표적인 코드 판독기를 개략적으로 도시한다. 예를 들어, 대표적인 코드 판독기는 마킹 (116)에 인코딩된 정보를 디코딩하는데 사용될 수 있다.
도 9에 도시된 바와 같이, 시스템 (900)은, 마킹 (116)으로부터 반사된 광에 의존하여 인코딩된 정보 (encoded information)를 재구성한다. 다양한 구체 예들에서, 전술된 구체 예들에 기재된 것과 같은, 제품 정보를 인코딩하기 위해, 마킹 (116)은, 검출 광원 (902)의 파장보다 적은 피처 크기를 갖는다. 예를 들어, 600㎚의 파장을 갖는 검출 광원 (902)에 대하여, 마킹 (116)은 600㎚보다 적은 피처를 포함해야 한다. 미세구조의 형태의 대표적인 마킹 (116)은 도 10에 도시된다.
몇몇 구체 예에서, 제품 정보는, 강도 및 위상 정보 (phase information)를 사용하여 마킹 (116)에서 인코딩된다. 따라서, 마킹 (116)에서 인코딩된 정보는, 강도 정보만을 볼 수 있는 종래의 광학 현미경으로는 보이게 할 수 없다. 따라서, 미세구조에서 인코딩된 정보는, 레이저 파장 및 위상 (즉, 위치 및 각도)이 미세구조를 발생하는데 사용된 레이저 파장 및 위상과 일치할 때만 디코딩될 수 있다. 구체적으로, 인코딩된 정보를 디코딩하기 위해, 검출 광원 (902) 유래의 광은, 검출 표면 (surface under detection: 904) (예를 들어, 유리 용기 (100)의 벽 부분 (110)) 상으로 향하게 된다. 검출 표면 (904), 및 특히, 마킹 (116)은, 시스템 (900)에 의해 이미지 평면 (906) 상에 재구성된, 광을 반사시켜 인코딩된 정보를 보이게 한다.
몇몇 구체 예에서, 검출 표면 (904)은, 마킹 (116)이 배경 조명 (backlighting)에 의해 이미지 평면 (906) 상에 투사되도록, 광원 (902)과 이미지 평면 (906) 사이에 위치된다. 구체 예에서, 검출 표면 (904) 내에 마킹 (116)은, 직접 검사를 통해 또는 백색광, UV 광, 또는 UV 레이저로의 직접 조명에 의해 비가시적일 수 있다 (예를 들어, 검출되지 않거나 또는 가시적이지 않을 수 있다). 몇몇 구체 예에서, 마킹 (116)은, 백색광, UV 광, 또는 UV 레이저를 사용하는 배경 조명시 더욱 비가시적일 수 있다. 따라서, 다양한 구체 예의 마킹 (116)은, 특정 광원 및 구성을 사용하는 투사를 통해서만 검출될 수 있다.
다양한 구체 예에서, 광원 (902)은, 헬륨-네온 (HeNe) 레이저와 같은, 레이저일 수 있다. 그러나, 레이저는, 다이오드 펌프 레이저 소스 (diode pump laser source), 고체 레이저 소스, 또는 가스 레이저 소스를 포함하는, 임의의 타입의 레이저일 수 있는 것으로 이해되어야 한다. HeNe 레이저를 사용하는 구체 예에서, 레이저는, 약 400㎚ 내지 약 1,000㎚의 파장을 가질 수 있고, 및 약 1㎼ 내지 약 100㎽의 전력으로 작동될 수 있다.
광원 (902)은, 검출 표면 (904) 내에 마킹 (116)을 이미지 평면 (906) 상으로 약 0° 내지 약 45°의 투사각 (θ)으로 투사할 수 있다. 구체 예에서, 투사각 (θ)은, 0° 초과 내지 약 45°, 약 1° 내지 약 40°, 약 1° 내지 약 20°, 약 5° 내지 약 45°, 또는 약 1° 내지 약 5°일 수 있다. 여기에 사용된 바와 같은, "투사각" (θ)은, 광의 확산 각도 (angular spread)를 지칭하며, 및 중심축 (908)으로부터 광원 (902)에서 방출된 광의 발산의 척도이다. 예를 들어, 0°의 투사각 (θ)은, 마킹 (116)에서 뻗어나온 평행한 광 빔 (collimated light beam)을 결과한다.
작동시, 광원 (902)은, 투사각 (θ)으로 검출 표면 (904)을 향하여 지향되고, 및 마킹 (116)은 이미지 평면 (906) 상으로 투사된다. 이미지 평면 (906)은, 예를 들어, 프로젝션 스크린, 고체 표면, 또는 검출 시스템에 연결된 표면일 수 있다. 검출 시스템은, 예를 들어, 이미지 처리 능력을 갖는 카메라일 수 있다.
몇몇 구체 예에서, 마킹 (116)은 복합 마킹 (composite marking)일 수 있다. 여기서 사용된 바와 같은, "복합 마킹"은, 적절하게 디스플레이되는 경우, 최종 코히렌트 마킹 (coherent marking)을 생성하는 대립 표면상에 또는 그 내에 위치된 둘 이상의 마킹을 포함한다. 예를 들어, 복합 마킹은, 유리 용기의 제1표면 내에 위치된 제1 마킹 (종종 "마킹의 제1부분"으로 여기에서 지칭됨) 및 유리 용기의 제2, 대립 표면 내에 위치된 제2 마킹 (종종 "마킹의 제2부분"으로 여기에서 지칭됨)을 포함할 수 있다. 비록 "제1" 및 "제2" 표면이 언급되었지만, 제1 및 제2 마킹은, 마킹이 서로 대립하도록 다른 위치에서 유리 용기의 동일 표면상에 또는 표면 내에 위치될 수 있는 것으로 이해되어야 한다. 마킹 (116)이 2개의 대립 마킹을 포함하는 복합 마킹인 구체 예에서, 유리 용기가 미리 결정된 투사각으로 광원 (902)을 사용하여 배경 조명된 경우, 복합 마킹은 이미지 평면 (906) 상으로 투사된다. 투사각이 부정확하거나, 또는 복합 마킹의 제1 및 제2 부분이, 위조된 유리 용기인 경우일 수 있는 바와 같이, 적절하게 위치되지 않는 경우, 이미지 평면 (906) 상으로 투사된 복합 마킹은, 정확하게 나타나지 않을 것이다. 다시 말하면, 복합 마킹의 제1 및 제2부분 모두는, 코히렌트 복합 마킹을 생성하는 데 필요하다. 따라서, 몇몇 구체 예들에서, 미리 결정된 투사각에서 복합 마킹이 적절히 투사되도록, 복합 마킹의 제1부분은, 복합 마킹의 제2부분과 크기 또는 두께가 다를 수 있다.
예를 들어, 문자 "C", "R", "I", 및 "G"는, 마킹 (116)의 제1부분을 구성할 수 있는 반면, 문자 "O", "N", 및 "N"은, 마킹 (116)의 제2부분을 구성할 수 있다. 적절하게 정렬되고 투사되는 경우, 마킹 (116)은, 이미지 평면 (906) 상에 "CORNING"을 나타낼 수 있다. 그러나, 적절한 배경 조명시 겹침 문자, 문자 누락, 또는 문자의 크기에서 변화는, 위조 용기를 밝혀낼 수 있다. 또 다른 실시 예로서, 2D 바코드의 일부분은, 마킹 (116)의 제1부분을 구성할 수 있고, 및 2D 바코드의 다른 부분은, 마킹 (116)의 제2부분을 구성할 수 있어, 적절히 조명받는 경우, 2D 바코드는 이미지 평면 (906) 상으로 투사된다.
특정 구체 예에 의존하여, 다른 검출 시스템은 사용될 수 있다. 예를 들어, 몇몇 구체 예에서, 차등 간섭 대비 (DIC) 현미경, 또는 노말스키 (Nomarski) 현미경은, 마킹 (116)을 검출하는데 사용될 수 있다. DIC 현미경에서, 조명 광 빔 (illumination light beam)은, 다른 편광이 부여되고, 다르게 상 시프트되며 (phase shifted), 및 약간 다른 양만큼 횡 방향으로 시프트된, 2개의 빔으로 분할된다. 2개의 빔은, 시편을 통하여 통과하며, 여기서, 이들은 굴절률이 다른 구역 (예를 들어, 유리 몸체의 마킹된 부분 및 마킹되지 않은 부분)에서 다른 광학 경로 길이를 경험한다. 시편 (예를 들어, 유리 용기)을 통해 통과한 후에, 2개의 빔 부분은 간섭되어, 횡단 시프트에서 차이의 방향으로 광 경로 길이의 도함수의 이미지 (image of the derivative)를 제공하며, 이에 의해 마킹 (116)을 가시적으로 만든다. DIC 현미경에 대한 부가적인 세부 사항은, Fundamental of Light Microscopy and Digital Imaging (New York: Wiley-Liss, pp 153-168)의 "Differential interference contrast (DIC) microscopy and modulation contrast microscopy"에서 확인될 수 있고, 이는 여기에 참조로서 혼입된다.
다양한 구체 예에서, 마킹의 검출은, 유리 조성물 또는 유리에 대해 수행된 기타 공정에 의해 향상된다. 예를 들어, 몇몇 구체 예에서, 유리 조성물에 Sn의 포함은, 마킹 (116)의 UV 검출을 향상시킬 수 있다. 다른 구체 예에서, 마킹 (116)의 검출은, 유리를 강화시켜 부여된 응력장 (stress field)에 의해 또는 유리의 표면에 적용된 낮은 계수 마찰 (COF) 코팅에 의해 향상될 수 있다. 유리는, 특정 구체 예에 의존하여, 마킹 (116)의 검출을 향상시키기 위해 다른 공정 단계를 거칠 수 있다.
따라서, 여기에 기재된 다양한 구체 예는, 유리 용기의 벽 두께 내에 마킹을 생성하는데 사용될 수 있다. 다양한 구체 예는, 약학 패키지의 형성에 특히 적합한 유리 용기 내에 코버트 마킹, 오버트 마킹, 및 코버트 및 오버트 마킹의 조합이 형성되는 것을 가능하게 한다. 따라서, 마킹은, 개별 포장, 제품, 로트, 또는 제조사를 추적하거나 및/또는 제품의 진위 (authenticity)를 나타내는데 사용될 수 있다. 여기에 기재된 다양한 구체 예는, 그 존재에 의해 위조를 방지할 수 있다. 예를 들어, 유리 내에 마킹은, 라벨 위 마커 또는 접착 라벨보다 복제하기가 훨씬 어려울 수 있으며, 및/또는 고비용의 레이저는, 마크를 위조하는데 또는 불법 복제에 대한 방해물로 작용할 수 있다.
부가적으로, 여기의 다양한 구체 예에 기재된 바와 같은 유리에 마킹을 형성하는 방법은 또한, 마킹이 표면 위가 아니라 유리의 두께 내에 새겨지기 때문에, (이온 교환과 같은) 표면 강화 방법과 좀 더 양립할 수 있다. 게다가, 마킹이 유리의 두께 내에 새겨지기 때문에, 유리 물품의 열처리 공정과 양립 가능하다. 특정 유리 조성물 또는 이온 교환된 유리 조성물은, 효율을 위해 (최대화되어야 하는) 적어도 약 10-4의 굴절률 변화를 결과하는 벌크 손상 및 (최소화되어야 하는) 표면 손상의 도입과 관련된 고유한 이점을 제공할 수 있다. 예를 들어, 여기에 기재된 다양한 구체 예에서, 마킹은, 벌크 기판 내에서 마킹의 위치로 인해 유리 강도에 최소로 영향을 미치고 및 표면에 대해 무시할 수 있는 손상을 결과한다. 따라서, 다양한 구체 예에서, 유리 용기에 마킹의 포함은, 내박리성 또는 내손상성과 같은, 유리 강도 또는 표면 효과 (surface effects)에 영향을 미치지 않는다. 서브-표면 결함은, 여기에 기재된 몇몇 구체 예에서, 진위의 확인을 제공하거나 또는 마크를 검출하는데 사용될 수 있는 제품에 고유 특성을 제공할 수 있는 균열 전파 속도 및 방향에 영향을 미칠 수 있다. 예를 들어, 몇몇 구체 예에서, 유리의 강화에 의해 부여된 응력장은, 마크의 검출을 향상시킬 수 있다.
비록 여기에 기재된 다양한 구체 예가 유리 용기의 벽의 두께 내에 위치되는 마킹을 포함하지만, 다른 구체 예는, 레이저를 활용하여 유리 용기의 표면으로부터 코팅을 선택적으로 제거하여 마킹을 생성할 수 있다. 이론에 구속됨이 없이, 이온-교환 강화된 유리는, UV 파장, 구체적으로 UVC 파장에 의해 여기될 때 UV 형광성 (UV fluorescent)인 반면, 위에서 보다 상세하게 기재된 것과 같은, 유리 용기의 표면에 포함될 수 있는 고분자 (예를 들어, 폴리이미드) 코팅과 같은, 코팅은, UV 흡수 코팅이다. 유리가 유리 결함 또는 불순물의 존재로 인해 UV 형광 (UV fluorescence)을 나타낼 수 있고, 및 이온-교환 공정은, 유리에 부가적인 불-균질성의 형성 때문에, 형광의 강도를 증가시킬 수 있는 것으로 믿어진다. 따라서, 코팅은, 이온-교환 강화된 유리 또는 비-이온-교환된 유리를 다른 방법으로 여기시킬 수 있는 자외선을 흡수할 수 있고, 이에 의해 유리의 자외선 여기를 차단하며, 따라서, 유리의 자외선 형광을 감소시키거나 또는 제거할 수 있다. 고분자에 의한 UV 흡수 및 형광 여기 강도 모두가 최대화되는, UV 여기 파장의 적절한 선택은, 형광 강도 이미지에서 가장 높은 대비 (highest contrast)를 생성할 것이다. 따라서, 몇몇 구체 예에서, 레이저는 코팅을 제거하는데 사용되어, 정상 조명에서는 보이지 않지만, UV 광을 사용하여 검출 가능한 마킹 (116)을 생성할 수 있다.
고분자 및 유리에 대한 레이저 어블레이션 임계값 (laser ablation threshold)은 10배 이상 차이가 날 수 있다. 따라서, 적절한 초점 조정 조건 및 레이저 강도를 선택하여 원하지 않는 균열을 생성하지 않고 및 유리 표면에 영향을 미치지 않으면서 고분자를 제거하는 것은 가능하다. 이러한 구체 예에서, 레이저는, 제한 없는 예로서, UV Q-스위치 레이저와 같은, 펄스 레이저일 수 있다. 레이저는, 약 1W 미만의 평균 전력으로 작동될 수 있다. 예를 들어, 레이저는, 표면에서 직경이 약 200㎛ 내지 약 300㎛인 초점 스폿으로 약 20㎽ 내지 약 500㎽, 약 75㎽ 내지 약 250㎽, 또는 약 100㎽ 내지 약 200㎽의 평균 전력을 가질 수 있다. 몇몇 구체 예에서, 레이저는 약 200㎽ 미만 또는 약 100㎽ 미만의 평균 전력을 가질 수 있다. 레이저는, 약 193㎚ 내지 약 2000㎚, 또는 약 355㎚ 내지 약 1064㎚의 파장을 가질 수 있다. 예를 들어, 레이저는, 약 193nm, 266nm, 355nm, 532nm, 1064nm, 1550nm 또는 이와 유사한 파장을 가질 수 있다. 특정 구체 예에서, 파장은, 약 248㎚ 내지 약 355㎚이다. 레이저의 묘화 속도는, 2㎜/s 내지 50㎜/s, 약 50㎜/s 초과, 약 100㎜/s 초과, 약 500㎜/s 초과, 약 1m/s 초과, 또는 심지어 약 2m/s를 초과할 수 있다. 몇몇 구체 예에서, 레이저의 묘화 속도는, 약 10㎜/s 내지 1,000㎜/s이다. 반복률은, 100Hz 내지 10,000kHz 또는 1kHz 내지 2,000kHz일 수 있다. 몇몇 구체 예들에서, 예를 들어, 반복률은, 약 30kHz이지만, 다른 반복률들이 고려된다. 레이저는, 약 2㎛ 미만 또는 약 1㎛ 미만의 스폿 크기로 초점 조정될 수 있다. 몇몇 구체 예에서, 비록 다른 해상도가 묘화 속도, 레이저 파장, 및 원하는 마킹 크기에 의존하여 가능할지라도, 레이저는, 약 0.5㎛ 내지 약 1㎛의 스폿 크기로 초점 조정된다. 비록 몇몇 구체 예가 렌즈를 포함하지 않을지라도, 레이저는 초점 조정을 위해 렌즈를 통해 지향될 수 있다.
레이저가 코팅 어블레이션 (coating ablation)을 위한 펄스 임계값에 대한 전력 밀도를 초과하는 펄스당 전력 밀도를 갖는다면, 요구되는 특정 스폿 및 사용된 레이저에 의존하여, 다른 레이저 파라미터는 사용될 수 있다. 예를 들어, 코팅이 폴리이미드-계 코팅인 구체 예에서, 레이저는, 10ns 펄스 지속 기간으로 대략 0.025 J/㎠ 이상의 폴리이미드 어블레이션을 위한 펄스 임계값에 대한 전력 밀도를 초과하는 펄스당 전력 밀도를 가져야 한다. 펄스 임계값에 대한 전력 밀도는, 사용된 특정 코팅에 의존하여 변할 수 있다. 이론에 구속됨이 없이, 코팅 및 유리의 어블레이션 임계값에서 차이는, 마킹이 유리 용기의 회전 없이 곡면상에서 형성되는 것을 가능하게 할 수 있다. 예를 들어, 레이저는, 약 0.5㎜의 초점 심도 (depth of focus)를 가질 수 있어, 유리 표면에 비-균질성의 생성 없이 유리를 통해 코팅을 제거하는데 레이저가 사용되는 것을 가능하게 한다.
몇몇 구체 예에서, 레이저는, 어블레이션에 의해 유리 용기 (100)의 표면으로부터 코팅을 완전히 제거하여 마킹 (116)을 형성할 수 있다. 그러나, 다른 구체 예에서, 마킹 (116)은, 유리 용기 (100)의 형광을 변경하기 위해 코팅을 부분적으로 제거하거나 또는 코팅에 패턴을 별도로 생성하여 형성될 수 있다. 몇몇 구체 예에서, 코팅은, 약 10%를 초과하는 유리 용기 (100)의 마킹되지 않은 부분과 마킹된 부분 사이에 UV 흡수에서 차이를 발생하도록 제거된다. 따라서, 코팅은, 약 5% 내지 100%, 약 10% 내지 100%, 약 15% 내지 약 90%, 약 20% 내지 약 80%, 약 50% 내지 약 75%, 또는 약 60% 내지 약 70%의 유리 용기 (100)의 마킹되지 않은 부분과 마킹된 부분 사이에 자외선 흡수에서 차이를 발생시키도록 제거될 수 있다. 몇몇 구체 예에서, 코팅은, 약 10%를 초과하는 유리 용기 (100)의 마킹되지 않은 부분과 마킹된 부분 사이에 UV-유도 형광에서 차이를 발생하도록 제거된다. 따라서, 코팅은, 약 10% 내지 100%, 약 15% 내지 약 90%, 약 20% 내지 약 80%, 약 50% 내지 약 75%, 또는 약 60% 내지 약 70%의 유리 용기 (100)의 마킹되지 않은 부분과 마킹된 부분 사이에 UV-유도 형광에서 차이를 발생하도록 제거될 수 있다.
마킹 (116)이 유리 용기 (100) 상에 코팅을 제거하여 생성되는 구체 예에서, 마킹 (116)은, 마킹 (116)의 UV 형광을 관찰하여 검출될 수 있다. 구체 예에서, 유리 용기 (100)는, 약 400㎚ 이하의 파장에서 UV 광으로 조명될 수 있고, 및 고분자-계 코팅으로 코팅되지 않은 부분에서 400㎚ 이상의 파장에서 형광을 나타낸다. 예를 들어, 도 11에 도시된 것과 같은, UV 광센서 (1100)는, 사용될 수 있다.
이하, 도 11을 참조하면, UV 광센서 (1100)는, 좀 더 상세히 도시된다. 다양한 구체 예에서, UV 광센서 (1100)는, UV 광을 방출하고 및 유리 몸체 (102)와 같은, 인광 물질과 UV 광의 상호작용에 의해 야기된 그 결과로 생긴 가시적 발광을 검출하는 발광 센서 (luminescence sensor)이다. 특히, UV 광센서 (1100)는, 코팅 (1103)이 제거되거나, 얇아지거나, 또는 그렇지 않으면 변경되어, 코팅 (1103)을 통해 UV 광의 통과가 가능한 경우, 유리 몸체 (102)의 영역에서 UV 광의 상호작용에 의해 야기된 그 결과로 생긴 가시적 발광을 검출한다. UV 광센서 (1100)는, 약 400㎚ 미만, 약 350㎚ 미만, 또는 약 318㎚ 미만의 하나 이상의 파장에서 UV 광을 방출할 수 있다. 예를 들어, UV 광센서 (1100)는, 약 150nm 내지 약 400nm, 약 175nm 내지 약 350nm, 약 200nm 내지 약 318nm, 또는 약 225nm 내지 약 275nm의 파장에서 광을 방출할 수 있다. 하나의 특정 구체 예에서, UV 광센서 (1100)는, 약 250㎚의 파장에서 광을 방출한다.
다양한 구체 예에서, UV 광센서 (1100)는, UV 광 (1102)을 방출하는 UV 광원 (1101), UV 광 (1102)이 타겟 (예를 들어, 유리 몸체 (102)) 상에 입사시 타겟에 의해 방출된 가시광 (1106)을 검출하는 (포토 다이오드 (photo diode) 또는 이와 유사한 것과 같은) 광검출기 (1104), 및 UV 광 (1102)을 타겟 (예를 들어, 유리 몸체 (102))으로 향하게 하는 렌즈 (1108)를 포함한다. UV 광원 (1101)은, 예를 들어, UV 필터 또는 UV LED를 갖는 수은 램프일 수 있다. UV 광센서 (1100)는, UV 광원 (1101) 및 광검출기 (1104)에 전력을 제공하고 및 검출된 광을 나타내는 출력을 생성하는 전자 회로 (1110)를 더욱 포함할 수 있다. 구체 예에서, UV 광센서 (1100)는, 반사된 광 (1114)을 광검출기 (1104)로부터 멀리 향하는, UV 광 (1116), 및 광검출기 (1104)를 향하는, 가시광 (1106)으로 분리하는 색선별 거울 (1112)를 더욱 포함한다.
도 11의 UV 광센서 (1100)를 사용하는 것에 대안으로서, 몇몇 구체 예에서, UV 광원은, 마킹 (116)을 조명하는데 사용될 수 있고, 및 형광은 사람의 눈으로 또는 또 다른 타입의 카메라 또는 광학 검출기의 사용을 통해 검출될 수 있다. 몇몇 구체 예에서, 검출기가 코팅과 유리 용기 사이에 형광에서 차이를 검출할 수 있다면, 마킹 (116)은, FDA의 CD-3 핸드헬드 장치 (handheld device), 또는 이와 유사한 것과 같은, 기존의 휴대용 위조-방지 장비를 사용하여 검출될 수 있다.
하나의 실시 예로서, UV 펄스 레이저는, 렌즈를 통해 폴리이미드 코팅 (1103)을 표면상에 포함하는 유리 몸체 (102) 내로 초점 조정된다. 레이저는 355nm의 파장을 갖는 Q-스위치 UV 레이저 (Q-switch UV laser)이다. 레이저 펄스의 반복률은, 30kHz이고, 및 레이저의 평균 에너지는 100㎽이다. 폴리이미드 코팅 (1103)을 제거하여 유리 몸체 (102)의 표면상에 만들어지는 마킹 (116)은, 코팅이 어블레이션에 의해 레이저로 유리로부터 제거되는, 유리 몸체 (102)의 표면상에 특정 위치로 레이저를 향하게 하는 레이저 스캐너로 프로그램된다. 레이저의 처리 속도는, 50㎜/s이고, 및 초점 렌즈는 150mm의 초점 길이를 갖는다.
유리 몸체 (102)를 마킹한 후에, 250nm 파장 및 6W 전력 램프를 사용하는 광학 이미징 시스템을 사용하여 유리 몸체 (102)에서 형광을 여기시킨다. 유리 몸체 (102)로부터 폴리이미드 코팅 (1103)이 제거된 구역은, 약 2:1을 초과하는 형광 강도 대비 (fluorescence intensity contrast)를 나타낸다. 도 12a 및 도 12b는, 유리 몸체 (102)에 대한 마킹의 형광을 도시한다. 특히, 도 12a에서, 마킹 (116)인 "Corning"은, UV 광에 노출시 가시적이다. 도 12b에서, 마킹 (116)은, UV 광에 노출시 가시적인 바코드의 형태이다.
코팅에서, 글자와 숫자를 쓴 마킹과 같은, 마킹을 생성하기 위해 어블레이션이 사용되는 다양한 구체 예가 기재되었지만, 몇몇 구체 예에서, 마킹은, 코팅에 형성된 패턴의 형태일 수 있다. 패턴은, 예를 들어, 1-차원 또는 2-차원 바코드, 또는 또 다른 미리 결정된 패턴일 수 있다. 전술한 바와 같이, 코팅은, 몇몇 구체 예에서, 완전히 제거될 필요는 없다. 따라서, 마킹은, 유리의 표면으로부터 다른 양의 코팅의 제거로부터 생성된 패턴일 수 있다. 예를 들어, 마킹은 증가하는 양의 코팅이 특정 거리에 걸쳐 제거되는 패턴일 수 있거나 또는 마킹은 다른 양의 제거된 코팅을 갖는 스폿의 교번 패턴 (alternating pattern)일 수 있다. 따라서, 여기에 기재된 구체 예에서, 마킹은, 예를 들어, 이미지, 패턴, 형상, 또는 구배의 형태일 수 있다.
유리 용기 상에 마킹을 생성하는 것에 부가적으로, 몇몇 구체 예에서, 고분자 코팅의 레이저 제거는, 공정 제어 (process control)를 위해 사용될 수 있다. 예를 들어, 다양한 구체 예에서, 고분자 코팅은, 스프레이 공정 (spray process)을 사용하여 유리 용기에 도포될 수 있는데, 여기서, 오버-스프레이 (over-spray)는 코팅 물질을 유리 용기 내에 및 유리 용기 상에 원하지 않는 위치에 침착시킬 수 있다. 예를 들어, 코팅 물질은, 의도하지 않게 밀봉 표면 (sealing surface) 또는 용기의 내부에 침착될 수 있다. 따라서, 레이저 어블레이션은, 코팅이 다우스트림 공정을 방해하지 않거나 또는 잠재적인 오염원이 되지 않는 것을 보장하도록 확실한 제거 방법을 제공할 수 있다.
게다가, 고분자 코팅의 선택적 제거는, 광학적 또는 기계적 프로필로메트리 (profilometry)와 함께 사용되어 코팅 두께를 결정할 수 있다. 이론에 구속됨이 없이, 얇은, 다-층이거나, 또는 커버리지 (coverage) 및/또는 두께에서 변화 가능한 코팅은, 종래의 간섭법 (interferometry) 또는 프로필로메트리에 의해 측정하는 것이 어려울 수 있다. 따라서, 코팅의 일부를 제거하기 위해 레이저를 사용함으로써, 단계 변화 (step change)는, 예컨대, 제조 동안에 온-라인 광학 검사 내에서 측정될 수 있다.
여기에 기재된 다양한 구체 예에서, 마킹이 레이저에 의해 이루어지기 때문에, 마킹은, 제품, 로트, 또는 제조사를 쉽고 고유하게 표시하기 위해, 다른 형상, 패턴에 대해 쉽게 조정될 수 있다. 부가적으로, 마킹을 발생하는데 레이저의 사용은, 다양한 응력에 덜 민감한 구역에 마킹이 위치되는 것을 가능하게 한다.
여기에 기재된 다양한 구체 예는 또한 기판을 제품에 채워 넣기 전에 기판을 마킹하여 제품 수명 주기를 통한 추적 가능성을 확장할 수 있다. 특히, 고유한 개별 부품 식별자를 이용한 기판의 두께 내에 위치된 코버트 또는 오버트 위조-방지 마킹은, 제조 공정에서 및 약제 충전 및 포장 작업에서 개선된 추적 가능성을 가능하게 하고, 및 현장에서 조사 목적을 위해 개선된 추적 가능성을 가능하게 한다. 여기에 기재된 다양한 구체 예는, 규제 '추적' 요건 (regulatory 'track and trace' requirements)을 더욱 준수한다.
고유한 로트, 제품, 또는 제조사로 인코딩된 기판의 두께 내에 위치된 코버트 마킹은, 질의 (interrogation), 복제를 더욱 방지할 수 있으며 및 위조 제품의 조사를 도울 수 있다. 예를 들어, 몇몇 구체 예에 따르면, 포토닉 미세구조는, 질의/정보에 대한 접근 제어 (access control)를 가능하게 하거나 또는 심지어 그 존재를 알 수 있는 특수 장비로만 가시화될 수 있다.
다양한 변형 및 변화가 청구된 주제의 사상 및 범주를 벗어나지 않고 여기에 개시된 구체 예에 대해 이루어질 수 있음은 당업자에게 명백할 것이다. 따라서, 이러한 변형 및 변화가 첨부된 청구항 및 이들의 균등물의 범주 내에 속한다면, 본 명세서는, 여기에 개시된 다양한 구체 예의 변형 및 변화를 포함하는 것으로 의도된다.
Claims (30)
- 내부 표면, 외부 표면, 및 상기 외부 표면과 내부 표면 사이에서 연장되는 벽 두께를 가지며, 10 이하의 박리 지수를 갖는 유리 몸체, 상기 박리 지수는 가속 박리 시험 이후에 적어도 50㎛의 최소 길이를 갖는 용액 내의 입자의 수를 나타내고, 여기서 상기 유리 몸체는 유리 몸체의 외부 표면으로부터 벽 두께로 연장되는 압축 응력 층을 포함하며, 상기 압축 응력 층은 150MPa 이상의 표면 압축 응력을 갖고; 및
상기 벽 두께 내에 광자성 구조를 포함하는 적어도 하나의 마킹을 포함하고, 상기 마킹은 상기 유리 몸체의 마킹되지 않은 부분의 굴절률과 다른 굴절률을 갖는 유리 몸체의 부분을 포함하며, 상기 적어도 하나의 마킹은 상기 압축 응력 층 내에 있지 않으며, 유리 몸체의 강도, 유리 몸체의 내손상성, 또는 유리 몸체의 박리 지수에 영향을 미치지 않는, 약학 패키지. - 삭제
- 청구항 1에 있어서,
상기 마킹은, 코버트 마킹인, 약학 패키지. - 청구항 1에 있어서,
상기 마킹은, 벽 두께의 중간 80% 내에 있는, 약학 패키지. - 청구항 1에 있어서,
상기 마킹의 굴절률은, 유리 몸체의 마킹되지 않은 부분의 굴절률과 0.3% 내지 0.5%만큼 차이 나는, 약학 패키지. - 청구항 1에 있어서,
상기 약학 패키지는, 약학 패키지의 조성물에 기인하는 UV-유도된 형광색, 응력장, 또는 마킹의 검출을 향상시키는 낮은 마찰 계수의 코팅을 포함하는, 약학 패키지. - 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662343289P | 2016-05-31 | 2016-05-31 | |
US62/343,289 | 2016-05-31 | ||
US201662426745P | 2016-11-28 | 2016-11-28 | |
US62/426,745 | 2016-11-28 | ||
PCT/US2017/035246 WO2017210315A1 (en) | 2016-05-31 | 2017-05-31 | Anti-counterfeiting measures for glass articles |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190013849A KR20190013849A (ko) | 2019-02-11 |
KR102344384B1 true KR102344384B1 (ko) | 2021-12-28 |
Family
ID=59258338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187036785A KR102344384B1 (ko) | 2016-05-31 | 2017-05-31 | 유리 물품의 위조-방지 방법 |
Country Status (10)
Country | Link |
---|---|
US (4) | US10676240B2 (ko) |
EP (1) | EP3455085B1 (ko) |
JP (1) | JP6948349B2 (ko) |
KR (1) | KR102344384B1 (ko) |
CN (1) | CN109219526A (ko) |
CA (1) | CA3025663A1 (ko) |
MX (1) | MX2018014811A (ko) |
RU (1) | RU2746048C2 (ko) |
TW (1) | TWI739843B (ko) |
WO (1) | WO2017210315A1 (ko) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3455085B1 (en) | 2016-05-31 | 2021-12-01 | Corning Incorporated | Anti-counterfeiting measures for glass articles |
US11419231B1 (en) | 2016-09-22 | 2022-08-16 | Apple Inc. | Forming glass covers for electronic devices |
US10800141B2 (en) | 2016-09-23 | 2020-10-13 | Apple Inc. | Electronic device having a glass component with crack hindering internal stress regions |
US11535551B2 (en) * | 2016-09-23 | 2022-12-27 | Apple Inc. | Thermoformed cover glass for an electronic device |
US11565506B2 (en) | 2016-09-23 | 2023-01-31 | Apple Inc. | Thermoformed cover glass for an electronic device |
DE202019005936U1 (de) | 2018-06-15 | 2023-06-30 | Vkr Holding A/S | Vakuum-Isolierglaseinheit mit lasergraviertem Code |
DE102018114973A1 (de) * | 2018-06-21 | 2019-12-24 | Schott Ag | Flachglas mit wenigstens einer Sollbruchstelle |
CN109242509B (zh) * | 2018-08-20 | 2021-09-14 | 同济大学 | 用于商品外包装的点阵字符信息编解码方法 |
US11420900B2 (en) | 2018-09-26 | 2022-08-23 | Apple Inc. | Localized control of bulk material properties |
US10810394B2 (en) | 2019-03-06 | 2020-10-20 | Owens-Brockway Glass Container Inc. | Authentication of a container and/or product packaged therein |
CN111805101A (zh) * | 2019-04-11 | 2020-10-23 | 中国科学院上海光学精密机械研究所 | 一种在含羟基的玻璃内部制备发光防伪图案的方法 |
US11713268B2 (en) | 2019-05-30 | 2023-08-01 | Owens-Brockway Glass Container Inc. | Period-coded containers with a traceable material composition |
CN110335532A (zh) * | 2019-05-30 | 2019-10-15 | 南京萃智激光应用技术研究院有限公司 | 一种利用长磷光防伪的方法 |
CA3141073A1 (en) * | 2019-06-26 | 2020-12-30 | Charles Douglas Macpherson | Diffractive structures within polymer substrates, their manufacture and use |
US11680010B2 (en) | 2019-07-09 | 2023-06-20 | Apple Inc. | Evaluation of transparent components for electronic devices |
EP3815916A1 (en) * | 2019-11-04 | 2021-05-05 | Schott AG | Container comprising a body with a marking element and a method for producing a container |
EP3815915B1 (en) | 2019-11-04 | 2024-07-03 | SCHOTT Pharma AG & Co. KGaA | Substrate having a marking element, container comprising such a substrate and method for producing a substrate having a marking element |
US11460892B2 (en) | 2020-03-28 | 2022-10-04 | Apple Inc. | Glass cover member for an electronic device enclosure |
CN115955798A (zh) | 2020-03-28 | 2023-04-11 | 苹果公司 | 用于电子设备壳体的玻璃覆盖构件 |
US11666273B2 (en) | 2020-05-20 | 2023-06-06 | Apple Inc. | Electronic device enclosure including a glass ceramic region |
CN116209641A (zh) | 2020-07-20 | 2023-06-02 | 康宁股份有限公司 | 用于玻璃容器中的裂纹改向和保护的应力特征 |
CN112258975B (zh) * | 2020-09-30 | 2023-03-31 | 北京石榴果科技有限公司 | 一种透明介质的防伪信息加工、读取、检测方法及装置 |
CN112289171B (zh) * | 2020-09-30 | 2022-09-27 | 北京德弦科技有限公司 | 一种透明介质的数据标识加工、读取、检测方法及装置 |
CN112296511B (zh) * | 2020-09-30 | 2023-06-20 | 北京石榴果科技有限公司 | 宝石的微缩标识加工、读取、检测方法及加工装置 |
EP3995249B1 (en) * | 2020-10-16 | 2024-04-17 | Ricoh Company, Ltd. | Pattern formation apparatus for base material and pattern formation method |
WO2022133136A1 (en) | 2020-12-17 | 2022-06-23 | Apple Inc. | Fluid forming a glass component for a portable electronic device |
CN116783152A (zh) | 2020-12-23 | 2023-09-19 | 苹果公司 | 用于电子设备的透明部件的基于激光的切割 |
CN112828481B (zh) * | 2020-12-31 | 2022-05-03 | 武汉华工激光工程有限责任公司 | 一种在透明材料内部加工和读取二维码的方法及系统 |
DE102021117068A1 (de) | 2021-07-02 | 2023-01-05 | INTERLAS GmbH & Co. KG | Verfahren zum Einbringen von Kennzeichnungsmarken in Glasbehältnisse |
US20230121045A1 (en) * | 2021-10-19 | 2023-04-20 | Femtika, UAB | Aluminum surface treatment method to increase adhesion with polyurethane coating |
CN114925756B (zh) * | 2022-05-07 | 2022-11-11 | 上海燕龙基再生资源利用有限公司 | 一种基于精细化管理的废玻璃分类回收方法及装置 |
WO2024118413A1 (en) | 2022-11-30 | 2024-06-06 | Corning Incorporated | Reusable pharmaceutical containers and processes of reusing the same |
US20240265226A1 (en) * | 2023-02-07 | 2024-08-08 | T-Mobile Innovations Llc | System and Method of Controlling Lifecycles of Ambient Electromagnetic Power Harvesting Chips |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012174545A1 (en) * | 2011-06-17 | 2012-12-20 | I-Property Holding Corp. | 3d laser coding in glass |
US20130327740A1 (en) * | 2012-06-07 | 2013-12-12 | Corning Incorporated | Delamination resistant glass containers |
Family Cites Families (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1349396A (en) | 1919-10-18 | 1920-08-10 | Ray Alan Van Clief | Label |
US2262492A (en) * | 1939-06-06 | 1941-11-11 | Plymouth Cordage Co | Label |
US2318089A (en) | 1942-07-22 | 1943-05-04 | Mearl Corp | Luminescent material |
US2763785A (en) | 1943-02-25 | 1956-09-18 | Switzer Brothers Inc | Latent fluorescent inks |
US2929931A (en) * | 1955-10-14 | 1960-03-22 | American Cyanamid Co | Fluorescent glass container marking |
BE760067A (fr) | 1969-12-09 | 1971-06-09 | Applied Display Services | Procede et appareil pour la fabrication de plaques en relief ainsi que plaques pour impression ainsi obtenues |
FR2197495A5 (ko) | 1972-08-25 | 1974-03-22 | Thomson Csf | |
US4092518A (en) | 1976-12-07 | 1978-05-30 | Laser Technique S.A. | Method of decorating a transparent plastics material article by means of a laser beam |
US4264658A (en) * | 1978-07-10 | 1981-04-28 | Owens-Illinois, Inc. | Three-component polymeric coating for glass substrate |
SE422553B (sv) | 1979-04-23 | 1982-03-15 | Volvo Bm | Fordon med boggimonterade hjul och lyftanordning for ett hjulpar |
US4323317A (en) * | 1980-05-07 | 1982-04-06 | Shibuya Kogyo Company, Ltd. | Pattern controlling device for laser marker |
US4515867A (en) * | 1982-09-20 | 1985-05-07 | Rca Corporation | Method for ablating a coded marking into a glass workpiece and product thereof |
US4621193A (en) | 1984-11-21 | 1986-11-04 | Michael Van Hoye | Fluorescent penetrant crack detection |
GB2189800B (en) * | 1986-04-07 | 1990-03-14 | Michael Anthony West | Marking of articles |
CH676644A5 (ko) * | 1988-08-09 | 1991-02-15 | Elpatronic Ag | |
US5003600A (en) | 1989-08-03 | 1991-03-26 | The United States Of America As Represented By The Department Of Energy | Diffraction gratings used as identifying markers |
US5061341A (en) * | 1990-01-25 | 1991-10-29 | Eastman Kodak Company | Laser-ablating a marking in a coating on plastic articles |
IL99170A0 (en) * | 1990-08-15 | 1992-07-15 | United Distillers Plc | Method and apparatus for sub-surface marking |
DK0495647T3 (da) * | 1991-01-17 | 1997-11-03 | United Distillers Plc | Dynamisk mærkning med laser |
FR2679477B1 (fr) * | 1991-07-26 | 1995-11-17 | Aerospatiale | Procede de decoupe par faisceau laser d'un materiau recouvrant un substrat et dispositifs pour sa mise en óoeuvre. |
US5432329A (en) | 1992-02-07 | 1995-07-11 | American Bank Note Holographics | Automated holographic optical recognition and decoding system for verification |
US5480722A (en) * | 1992-07-03 | 1996-01-02 | Asahi Glass Company Ltd. | Ultraviolet ray absorbent glass and method for preparing the same |
US5445923A (en) * | 1992-09-30 | 1995-08-29 | Somar Corporation | Laser beam absorbing resin composition and laser beam marking method |
US5637244A (en) | 1993-05-13 | 1997-06-10 | Podarok International, Inc. | Method and apparatus for creating an image by a pulsed laser beam inside a transparent material |
US5516362A (en) | 1993-05-28 | 1996-05-14 | Nocopi Technologies, Inc. | Security marking method and composition |
GB2281129B (en) * | 1993-08-19 | 1997-04-09 | United Distillers Plc | Method of marking a body of glass |
EP0701201B1 (de) | 1994-08-31 | 2000-10-18 | Siemens Aktiengesellschaft | Verfahren zur Verwaltung dynamischer Objekte in einer objektorientiert programmierten Einrichtung |
US5762377A (en) * | 1995-03-23 | 1998-06-09 | Esselte Meto International Gmbh | Method of authenticating an item and an apparatus for authenticating an item |
US6154593A (en) * | 1996-03-18 | 2000-11-28 | Japan Science & Technology Corp | Optical device and formation of optical waveguide using light-induced effect on refractive index |
US5683786A (en) * | 1996-04-25 | 1997-11-04 | Health Card Technologies, Inc. | Microscope slide having bar code indicia inscribed thereon |
US6392683B1 (en) | 1997-09-26 | 2002-05-21 | Sumitomo Heavy Industries, Ltd. | Method for making marks in a transparent material by using a laser |
US6238847B1 (en) | 1997-10-16 | 2001-05-29 | Dmc Degussa Metals Catalysts Cerdec Ag | Laser marking method and apparatus |
US6746053B1 (en) | 1998-10-29 | 2004-06-08 | International Business Machines Corporation | Method and system for preventing parallel marketing of wholesale and retail items |
DE19855623C1 (de) | 1998-12-02 | 2000-02-24 | Lpkf Laser & Electronics Ag | Verfahren zur Erzeugung einer Markierung in einem Glaskörper |
US6573026B1 (en) * | 1999-07-29 | 2003-06-03 | Corning Incorporated | Femtosecond laser writing of glass, including borosilicate, sulfide, and lead glasses |
US6372293B1 (en) * | 1999-09-20 | 2002-04-16 | Matrix Technologies Corporation | Test tube with data matrix code markings |
US6796148B1 (en) | 1999-09-30 | 2004-09-28 | Corning Incorporated | Deep UV laser internally induced densification in silica glasses |
US6780012B1 (en) | 1999-12-20 | 2004-08-24 | 3M Innovative Properties Company | Article with laser engraved identification mark |
EP1168253A1 (en) * | 2000-06-28 | 2002-01-02 | Sicpa Holding S.A. | Use of communication equipment and method for authenticating an item, specifically documents, in particular security documents, communication equipment for authenticating items, and items to be authenticated by communication equipment |
TW503188B (en) * | 2000-08-29 | 2002-09-21 | Sumitomo Heavy Industries | Marking method, device the optical member marked |
JP2003089553A (ja) | 2001-09-13 | 2003-03-28 | Shin Etsu Chem Co Ltd | 内部マーキングされた石英ガラス、光学部材用石英ガラス基板及びマーキング方法 |
US7675001B2 (en) * | 2002-06-19 | 2010-03-09 | Frewitt Printing Sa | Method and a device for depositing a wipe-proof and rub-proof marking onto transparent glass |
US7619819B2 (en) * | 2002-08-20 | 2009-11-17 | Illumina, Inc. | Method and apparatus for drug product tracking using encoded optical identification elements |
US7441703B2 (en) | 2002-08-20 | 2008-10-28 | Illumina, Inc. | Optical reader for diffraction grating-based encoded optical identification elements |
EP1641572B1 (en) * | 2003-07-08 | 2011-12-28 | Spectrum Technologies PLC | Laser removal of layer or coating from a substrate |
US7055691B2 (en) * | 2004-02-27 | 2006-06-06 | Owens-Illinois Healthcare Packaging Inc. | Plastic packaging having embedded micro-particle taggants |
US7253422B2 (en) * | 2004-03-03 | 2007-08-07 | Owens-Illinois Healthcare Packaging Inc. | Container having irradiated indicia |
JP2005279659A (ja) | 2004-03-26 | 2005-10-13 | Toshiba Corp | レーザマーキング方法、レーザマーキング装置、マーク読取方法 |
FR2885071B1 (fr) | 2005-04-28 | 2010-02-12 | Becton Dickinson France | Procede d'identification d'un contenant et/ou d'un article fini obtenu a partir dudit contenant, en particulier a usage medical |
FR2885248B1 (fr) | 2005-04-28 | 2007-08-10 | Becton Dickinson France Soc Pa | Procede d'identification d'une multiplicite de contenants et/ou d'articles finis obtenus a partir desdits contenants |
GB0511132D0 (en) * | 2005-06-01 | 2005-07-06 | Plastic Logic Ltd | Layer-selective laser ablation patterning |
US20080026319A1 (en) * | 2006-06-15 | 2008-01-31 | Stroh Lawrence J Iii | Laser marking of coated articles and laser-markable coating composition |
US7705734B2 (en) * | 2006-12-21 | 2010-04-27 | Martinelli Lawrence G | Secure product packaging |
US8344286B2 (en) | 2007-01-18 | 2013-01-01 | International Business Machines Corporation | Enhanced quality of laser ablation by controlling laser repetition rate |
DE102008004995B3 (de) | 2008-01-17 | 2008-12-04 | Schott Ag | Lasermarkierte Glasscheiben und deren Verwendung als Beleuchtungselemente |
WO2009115611A2 (en) | 2008-03-20 | 2009-09-24 | Universite De Geneve | Secure item identification and authentication system and method based on unclonable features |
EP2108625B1 (de) | 2008-04-09 | 2013-03-27 | Zwiesel Kristallglas AG | Verfahren zum Erzeugen von erhabenen bzw. eingezogenen Strukturen an Hohlkörpern vorzugsweise aus Glas |
US20100119808A1 (en) * | 2008-11-10 | 2010-05-13 | Xinghua Li | Method of making subsurface marks in glass |
FR2941399B1 (fr) | 2009-01-23 | 2014-06-06 | Jean Denis Borras | Procede de dispositif de marquage d'objets |
EP2430430B1 (en) | 2009-05-11 | 2020-02-12 | Smiths Detection Inc. | Method for reducing loss of electromagnetic radiation in detection applications |
US9884342B2 (en) | 2009-05-19 | 2018-02-06 | Apple Inc. | Techniques for marking product housings |
US9173336B2 (en) | 2009-05-19 | 2015-10-27 | Apple Inc. | Techniques for marking product housings |
EP2444826B1 (en) | 2009-06-18 | 2019-05-22 | Toppan Printing Co., Ltd. | Optical device and method of manufacturing the same |
MX2012002159A (es) | 2009-08-21 | 2012-07-04 | Momentive Performance Mat Inc | Tuberia de cuarzo fundido para empacado farmaceutico. |
US8809733B2 (en) * | 2009-10-16 | 2014-08-19 | Apple Inc. | Sub-surface marking of product housings |
JP5731633B2 (ja) | 2010-04-30 | 2015-06-10 | ベクトン ディキンソン フランス | 透明コンテナのマーキング方法 |
DE102010037273A1 (de) | 2010-09-02 | 2012-03-08 | Schott Ag | Verfahren und Vorrichtung zum Markieren von Glas |
CN103402693B (zh) | 2011-03-04 | 2015-07-22 | 3M创新有限公司 | 激光打标方法和制品 |
JP5589939B2 (ja) | 2011-04-12 | 2014-09-17 | 大日本印刷株式会社 | 微粒子、粒子群、偽造防止用インク、偽造防止用トナー、偽造防止用シートおよび偽造防止媒体 |
WO2012164489A1 (en) | 2011-06-01 | 2012-12-06 | Swisslog Italia S.P.A. | Inspection device and method for a single - dose casing for a transparent container for a transparent liquid |
DE102011051740A1 (de) | 2011-07-11 | 2013-01-17 | Verprosys Gmbh | Identifikation von gefälschten Waren |
DE102011115256A1 (de) | 2011-09-27 | 2013-03-28 | Bernd Hansen | Verfahren zum Einbringen mindestens einer Struktur in ein Kunststoffbehältererzeugnis |
GB201117523D0 (en) * | 2011-10-11 | 2011-11-23 | Rue De Int Ltd | Security devices and methods of manufacture thereof |
WO2013053864A2 (de) | 2011-10-14 | 2013-04-18 | Ivoclar Vivadent Ag | Lithiumsilikat-glaskeramik und -glas mit zweiwertigem metalloxid |
MX351161B (es) | 2011-10-14 | 2017-10-04 | Ivoclar Vivadent Ag | Vidrio y cerámica de vidrio de silicato de litio con óxido de metal pentavalente. |
CN104066695B (zh) | 2011-10-25 | 2019-02-12 | 康宁股份有限公司 | 具有改善的化学和机械耐久性的碱土金属铝硅酸盐玻璃组合物 |
SG11201401736QA (en) | 2011-10-25 | 2014-05-29 | Corning Inc | Glass compositions with improved chemical and mechanical durability |
US11707408B2 (en) * | 2011-10-25 | 2023-07-25 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
EP3342759B1 (en) * | 2011-11-16 | 2021-08-25 | Corning Incorporated | Ion exchangeable glass with high crack initiation threshold |
DE102011119821A1 (de) * | 2011-12-01 | 2013-06-06 | Bundesdruckerei Gmbh | Elektrooptisches Sicherheitselement |
EP3919457A1 (en) | 2012-02-28 | 2021-12-08 | Corning Incorporated | Glass articles with low-friction coatings |
CN202656617U (zh) | 2012-04-19 | 2013-01-09 | 东莞市力星激光科技有限公司 | 自动化激光打标机 |
US9047499B2 (en) | 2012-06-01 | 2015-06-02 | Panduit Corp. | Anti-counterfeiting methods |
US10273048B2 (en) | 2012-06-07 | 2019-04-30 | Corning Incorporated | Delamination resistant glass containers with heat-tolerant coatings |
US8997522B2 (en) | 2012-06-26 | 2015-04-07 | Owens-Brockway Glass Container Inc. | Glass container having a graphic data carrier |
US9034442B2 (en) * | 2012-11-30 | 2015-05-19 | Corning Incorporated | Strengthened borosilicate glass containers with improved damage tolerance |
US20140001181A1 (en) | 2012-07-02 | 2014-01-02 | Pramod K. Sharma | UV-Cured Strengthening Coating For Glass Containers |
US10117806B2 (en) | 2012-11-30 | 2018-11-06 | Corning Incorporated | Strengthened glass containers resistant to delamination and damage |
CN102967441B (zh) | 2012-12-19 | 2015-04-29 | 王振廷 | 镜片防伪标记检测装置 |
WO2014142099A1 (ja) | 2013-03-12 | 2014-09-18 | 日本電気株式会社 | 識別方法、識別システム、識別装置及びプログラム |
US9713572B2 (en) * | 2013-04-24 | 2017-07-25 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9707155B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US20140342464A1 (en) | 2013-05-20 | 2014-11-20 | Scott Cooper | Package Including an Anti-Counterfeit Indicator |
JP6455799B2 (ja) | 2013-06-06 | 2019-01-23 | 日本電気硝子株式会社 | 医薬品容器用ガラス管及び医薬品容器 |
GB201313362D0 (en) | 2013-07-26 | 2013-09-11 | Rue De Int Ltd | Security Devices and Methods of Manufacture |
US20150028110A1 (en) | 2013-07-29 | 2015-01-29 | Owens-Brockway Glass Container Inc. | Container with a Data Matrix Disposed Thereon |
EP3077150A4 (en) * | 2013-12-03 | 2017-07-12 | Polyvalor, Limited Partnership | Low loss optical waveguides inscribed in media glass substrates, associated optical devices and femtosecond laser-based systems and methods for inscribing the waveguides |
US20150165560A1 (en) * | 2013-12-17 | 2015-06-18 | Corning Incorporated | Laser processing of slots and holes |
US20150183257A1 (en) * | 2013-12-31 | 2015-07-02 | I-Property Holding Corp. | Verification Of Pharmaceutical Product Packaging To Prevent Counterfeits, Using Hidden Security Features Revealed With A Laser Pointer |
US20160343002A1 (en) | 2014-01-16 | 2016-11-24 | Carlos Moises Hernandez Suarez | Improvements to method and system for detecting counterfeit consumable products |
FR3017483B1 (fr) | 2014-02-11 | 2018-05-18 | Saint-Gobain Glass France | Feuille de verre avec code d'identification |
FR3017971A1 (fr) | 2014-02-27 | 2015-08-28 | Commissariat Energie Atomique | Procede de controle de l'authenticite d'un produit contenu dans un emballage |
DE102014205066A1 (de) * | 2014-03-19 | 2015-10-08 | Schott Ag | Vorgespannter Glasartikel mit Laserinnengravur und Herstellverfahren |
BR112016029011B1 (pt) | 2014-06-10 | 2022-08-09 | Sicpa Holding Sa | Substrato tendo em si uma marcação, método de provê-lo e método de melhorar a proteção de um artigo tendo em si uma marcação contra falsificação |
CA2968536C (en) * | 2014-11-26 | 2021-05-25 | Corning Incorporated | Methods for producing strengthened and durable glass containers |
JP6412156B2 (ja) | 2014-11-27 | 2018-10-24 | テクノクオーツ株式会社 | 管理情報を設けた製品 |
DE102015207032A1 (de) | 2015-04-17 | 2016-10-20 | Crewpharm Gmbh | System und Verfahren zur Kennzeichnung eines Produkts |
US10012598B2 (en) | 2015-07-17 | 2018-07-03 | Emhart S.A. | Multi-wavelength laser check detection tool |
US20170235987A1 (en) | 2016-01-14 | 2017-08-17 | Aaron Hirschmann | Systems and Methods for Labeling, Identifying, and Tracking Data Related to Consumable Product |
EP3455085B1 (en) * | 2016-05-31 | 2021-12-01 | Corning Incorporated | Anti-counterfeiting measures for glass articles |
WO2018071617A1 (en) | 2016-10-13 | 2018-04-19 | Corning Incorporated | Creation of holes and slots in glass substrates |
US20190134742A1 (en) | 2017-11-03 | 2019-05-09 | Powertech Technology Inc. | Method for laser marking |
US10919326B2 (en) | 2018-07-03 | 2021-02-16 | Apple Inc. | Controlled ablation and surface modification for marking an electronic device |
-
2017
- 2017-05-31 EP EP17734542.8A patent/EP3455085B1/en active Active
- 2017-05-31 CN CN201780033949.3A patent/CN109219526A/zh active Pending
- 2017-05-31 WO PCT/US2017/035246 patent/WO2017210315A1/en unknown
- 2017-05-31 JP JP2018562258A patent/JP6948349B2/ja active Active
- 2017-05-31 MX MX2018014811A patent/MX2018014811A/es unknown
- 2017-05-31 RU RU2018142293A patent/RU2746048C2/ru active
- 2017-05-31 TW TW106117905A patent/TWI739843B/zh not_active IP Right Cessation
- 2017-05-31 US US15/610,054 patent/US10676240B2/en active Active
- 2017-05-31 KR KR1020187036785A patent/KR102344384B1/ko active IP Right Grant
- 2017-05-31 CA CA3025663A patent/CA3025663A1/en active Pending
- 2017-05-31 US US15/610,048 patent/US11667434B2/en active Active
-
2020
- 2020-05-01 US US16/865,085 patent/US11932445B2/en active Active
-
2023
- 2023-05-04 US US18/143,456 patent/US20230331436A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012174545A1 (en) * | 2011-06-17 | 2012-12-20 | I-Property Holding Corp. | 3d laser coding in glass |
US20130327740A1 (en) * | 2012-06-07 | 2013-12-12 | Corning Incorporated | Delamination resistant glass containers |
Also Published As
Publication number | Publication date |
---|---|
RU2018142293A (ru) | 2020-07-09 |
RU2018142293A3 (ko) | 2020-10-16 |
JP6948349B2 (ja) | 2021-10-13 |
US20170341812A1 (en) | 2017-11-30 |
CN109219526A (zh) | 2019-01-15 |
US11667434B2 (en) | 2023-06-06 |
US20170340518A1 (en) | 2017-11-30 |
JP2019525781A (ja) | 2019-09-12 |
US20230331436A1 (en) | 2023-10-19 |
EP3455085B1 (en) | 2021-12-01 |
KR20190013849A (ko) | 2019-02-11 |
RU2746048C2 (ru) | 2021-04-06 |
US10676240B2 (en) | 2020-06-09 |
US11932445B2 (en) | 2024-03-19 |
MX2018014811A (es) | 2019-05-22 |
EP3455085A1 (en) | 2019-03-20 |
WO2017210315A1 (en) | 2017-12-07 |
US20200255184A1 (en) | 2020-08-13 |
CA3025663A1 (en) | 2017-12-07 |
TW201808735A (zh) | 2018-03-16 |
TWI739843B (zh) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102344384B1 (ko) | 유리 물품의 위조-방지 방법 | |
CN111065611B (zh) | 具有改进的应力分布的玻璃基制品 | |
EP3045191B1 (en) | Marked container for medical use | |
CN104968625B (zh) | 具经改善的损坏容忍度的强化硼硅酸盐玻璃容器 | |
KR101999090B1 (ko) | 약품 포장용 유리 | |
US7856795B2 (en) | Method of identifying a plurality of containers and/or finished articles obtained from the said containers | |
CN105940323B (zh) | 用于显示器照明的激光特征玻璃 | |
Danto et al. | Photowritable Silver‐Containing Phosphate Glass Ribbon Fibers | |
CN110023262A (zh) | 获得标记玻璃板的方法 | |
US20220073413A1 (en) | Multichroic glasses with praseodymium and neodymium | |
US11530155B2 (en) | Strengthened glass articles with separation features | |
Guérineau et al. | Laser Direct Writing of Silver Clusters‐Based Subwavelength Periodic Structures Embedded in Mid‐Infrared Gallo‐Germanate Glass | |
CN109476534A (zh) | 包含光提取特征的玻璃制品及其制造方法 | |
US20240177312A1 (en) | Systems and methods for detecting particle generation in glass-to-glass contact | |
Canioni et al. | Nanostructuring by Photochemistry: Laser-Induced Type A Modification | |
JP2004352561A (ja) | ガラスの着色方法 | |
JP2004352562A (ja) | ガラスの着色方法 | |
JP2002068783A (ja) | ガラス中に発光中心を形成させる方法 | |
JP2003019863A (ja) | 紫外線照射を受けた際に周囲とは異なる挙動を示す任意形状の異質部分を形成させ得る透明無機材料及びその製造方法 | |
CN118475542A (zh) | 具有高ct及cs能力的可离子交换含锆玻璃 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |