KR102318520B1 - 비휘발성 금속 재료의 에칭 방법 - Google Patents

비휘발성 금속 재료의 에칭 방법 Download PDF

Info

Publication number
KR102318520B1
KR102318520B1 KR1020150043503A KR20150043503A KR102318520B1 KR 102318520 B1 KR102318520 B1 KR 102318520B1 KR 1020150043503 A KR1020150043503 A KR 1020150043503A KR 20150043503 A KR20150043503 A KR 20150043503A KR 102318520 B1 KR102318520 B1 KR 102318520B1
Authority
KR
South Korea
Prior art keywords
metal
etching
stack
providing
layer
Prior art date
Application number
KR1020150043503A
Other languages
English (en)
Other versions
KR20150112896A (ko
Inventor
메이후아 센
하미트 싱
사만다 에스.에이치. 탄
제프리 마크스
토스텐 릴
리차드 피. 자넥
웬빙 양
프리투 샤르마
Original Assignee
램 리써치 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 램 리써치 코포레이션 filed Critical 램 리써치 코포레이션
Publication of KR20150112896A publication Critical patent/KR20150112896A/ko
Application granted granted Critical
Publication of KR102318520B1 publication Critical patent/KR102318520B1/ko

Links

Images

Classifications

    • H01L43/12
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/08Apparatus, e.g. for photomechanical printing surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • H01L43/02
    • H01L43/10
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)

Abstract

하나 이상의 사이클들로 적어도 하나의 금속층을 갖는 스택을 에칭하는 방법이 제공된다. 적어도 하나의 금속층의 일부를 금속 산화물, 금속 할로겐화물, 또는 격자 손상된 금속성 사이트들 (lattice damaged metallic site) 으로 변환하는, 개시 단계가 수행된다. 하나 이상의 사이클들을 제공하는 반응 단계가 수행되고, 상기 사이클 각각은, 용매화된 금속, 금속 할로겐화물, 또는 금속 산화물 상태를 형성하도록 유기 용매 증기를 제공하는 단계; 및 휘발성 유기금속성 화합물들을 형성하기 위해 유기 리간드 용매를 제공하는 단계를 포함한다. 상기 휘발성 유기금속성 화합물들의 탈착 (desorption) 이 수행된다.

Description

비휘발성 금속 재료의 에칭 방법{METHOD TO ETCH NON-VOLATILE METAL MATERIALS}
관련 출원에 대한 교차 참조
본 출원은 35 U.S.C. § 119(e) 하에서 2014년 3월 27일 출원된, 명칭이 “METHODS TO ETCH AND TO REMOVE POST ETCH METALLIC RESIDUE”인 미국 특허 가출원 번호 제 61/971,032 호의 우선권을 주장하고, 이는 모든 목적들을 위해 참조로서 본 명세서에 인용되었다.
본 발명은 반도체 디바이스의 생산 동안 마스크를 통해 비휘발성 재료들의 층을 에칭하는 것에 관한 것이다. 보다 구체적으로, 본 발명은 금속층들을 에칭하는 것에 관한 것이다.
반도체 웨이퍼 프로세싱 동안, 피처부들은 금속층을 통해 에칭될 수도 있다. MRAM (magnetoresistive random-access memory) 또는 RRAM (resistive random-access memory) 디바이스들의 형성시, 복수의 박형 금속층들 또는 막들이 순차적으로 에칭될 수도 있다. MRAM에 대해 금속 터널링 접합 스택들을 형성하기 위해 복수의 박형 금속층들이 사용될 수도 있다.
전통적인 반응성 이온 에칭기 (RIE: reactive ion etcher) 에서 MRAM과 같은 비휘발성 금속 재료들을 패터닝하는 것은 에칭 부산물들의 낮은 휘발도로 인해 어렵다. 비휘발성 측벽 패시베이션은 자기 터널링 접합 영역에 걸쳐 디바이스 쇼트 (short) 및 전기적 성능의 열화를 초래할 수 있다. 이온 빔 에칭 (IBE: ion beam etching) 은 측벽을 세정하고 재료 무결성을 유지하기 위해 MRAM 패터닝에 사용되었다. 그러나, IBE는 고 패턴 밀도를 갖는 진보된 기술 노드들에 대한 애스팩트 비 (<2:1) 로 인해 제한된다.
전술한 바를 달성하고 본 발명의 목적에 따라, 하나 이상의 사이클들로 적어도 하나의 금속층을 갖는 스택을 에칭하는 방법이 제공된다. 적어도 하나의 금속층의 일부를 금속 산화물, 금속 할로겐화물, 또는 격자 손상된 금속성 사이트들 (lattice damaged metallic site) 으로 변환하는, 개시 단계가 수행된다. 하나 이상의 사이클들을 제공하는 반응 단계가 수행되고, 상기 사이클 각각은, 용매화된 금속, 금속 할로겐화물, 또는 금속 산화물 상태를 형성하도록 유기 용매 증기를 제공하는 단계; 및 휘발성 유기금속성 화합물들을 형성하기 위해 유기 리간드 용매를 제공하는 단계를 포함한다. 상기 휘발성 유기금속성 화합물들의 탈착 (desorption) 이 수행된다.
본 발명의 다른 현상에서, 마스크 아래에 배치된 터널링 층 아래에 배치된 적어도 하나의 금속층을 갖는 MRAM 스택을 에칭하는 방법이 제공된다. 상기 터널링 층이 에칭된다. 상기 에칭된 터널링 층 위에 스페이서 층이 형성된다. 상기 스페이서가 개구된다. 적어도 하나의 금속층이 하나 이상의 사이클들로 에칭되고, 상기 사이클 각각은, 적어도 하나의 금속층의 일부를 금속 산화물, 금속 할로겐화물, 또는 격자 손상된 금속성 사이트들로 변환하는, 개시 단계를 수행하는 단계; 하나 이상의 사이클들을 제공하는 반응 단계를 수행하는 단계로서, 상기 사이클 각각은, 용매화된 금속, 금속 할로겐화물, 또는 금속 산화물 상태를 형성하도록 유기 용매 증기를 제공하는 단계 및 휘발성 유기금속성 화합물들을 형성하기 위해 유기 리간드 용매를 제공하는 단계를 포함하는, 상기 반응 단계를 수행하는 단계; 및 상기 휘발성 유기금속성 화합물들의 탈착을 수행하는 단계를 포함한다.
본 발명의 이들 및 다른 특징들은 이하의 도면들과 함께 본 발명의 상세한 설명으로 이하에 보다 상세히 기술될 것이다.
본 발명은 제한이 아닌 예로서, 유사한 참조 번호가 유사한 엘리먼트들을 참조하는, 첨부된 도면들에 예시된다.
도 1은 본 발명의 일 실시예의 고레벨 흐름도이다.
도 2a 내지 도 2h는 본 발명의 일 실시예에 따라 프로세싱된 스택의 개략도이다.
도 3은 에칭을 위해 사용될 수도 있는 에칭 반응기의 개략도이다.
도 4는 본 발명의 실시예들에서 사용된 제어기를 구현하기에 적합한 컴퓨터 시스템을 예시한다.
도 5는 반응 단계의 보다 상세한 흐름도이다.
도 6a 내지 도 6e는 본 발명의 일 실시예에 따라 프로세싱된 MRAM 스택의 개략도이다.
본 발명은 이제 첨부된 도면들에 예시된 바와 같이, 몇몇 바람직한 실시예들을 참조하여 상세히 기술될 것이다. 이하의 기술에서, 본 발명의 전체적인 이해를 제공하기 위해 다수의 구체적인 상세들이 언급된다. 그러나, 본 발명은 이들 구체적인 상세들 일부 또는 전부가 없이도 실시될 수도 있다는 것이 당업자에게 이해될 것이다. 다른 예들에서, 공지의 프로세스 동작들 및/또는 구조들은 본 발명들을 불필요하게 모호하게 하지 않도록 상세히 기술되지 않았다.
이해를 용이하게 하기 위해, 도 1은 본 발명의 일 실시예에서 사용된 프로세스의 고레벨 흐름도이다. 적어도 하나의 금속 함유층을 갖는 스택을 갖는 기판이 제공된다 (단계 104). 개시 단계가 제공된다 (단계 108). 반응 단계가 제공된다 (단계 112). 탈착 단계가 제공된다 (단계 116).
예들
본 발명의 바람직한 실시예의 예에서, 적어도 하나의 금속층을 갖는 스택을 갖는 기판이 제공된다 (단계 104). 도 2a는 기판 (204) 위의 스택 (200) 의 단면도이다. 스택 (200) 은 마스크 (212) 아래에 배치된 적어도 하나의 금속층 (208) 을 포함한다. 적어도 하나의 금속층 (208) 은 비금속층과 함께 하나 이상의 금속층들을 포함할 수도 있다. 부가적으로, 하나 이상의 층들은 기판 (204) 과 적어도 하나의 금속층 (208) 사이에 배치될 수도 있다. 부가적으로, 하나 이상의 층들은 적어도 하나의 금속층 (208) 과 마스크 (212) 사이에 배치될 수도 있다. 본 예에서, 적어도 하나의 금속층 (208) 은, MRAM 막 스택 내에서 고정된 자기 층인 백금 망간 (PtMn), 또는 CoPt/CoPd 층 아래의 하단 전극층으로서 탄탈이다.
일 실시예에서, 모든 프로세싱이 단일 플라즈마 에칭 챔버 내에서 수행될 수도 있다. 도 3은 이러한 실시예를 실시하는데 사용될 수도 있는 에칭 반응기의 개략도이다. 본 발명의 하나 이상의 실시예들에서, 에칭 반응기 (300) 는 에칭 챔버 (349) 내에, 가스 유입구를 제공하는 분배 플레이트 (306) 및 척 (308) 을 포함하고, 챔버 벽 (350) 에 의해 둘러싸인다. 에칭 챔버 (349) 내에서, 그 위에 스택이 형성되는 기판 (204) 이 척 (308) 의 상단에 위치된다. 척 (308) 은 기판 (304) 을 홀딩하기 위한 정전 척 (ESC) 으로서 ESC 소스 (348) 로부터 바이어스를 제공할 수 있거나 기판 (204) 을 홀딩하기 위해 다른 척킹 힘을 사용할 수도 있다. 가열 램프와 같은, 가열 소스 (310) 가 금속층을 가열하도록 제공된다. 이온 소스 (324), 용매 기화기 (326), 및 리간드 기화기 (328) 가 분배 플레이트 (306) 를 통해 에칭 챔버 (349) 에 연결된다. 리간드 소스 (327) 는 리간드 기화기 (328) 에 연결된다. 용매 소스 (325) 는 용매 기화기 (326) 에 연결된다. ESC 온도 제어기가 척 (308) 에 연결되고, 척 (308) 의 온도 제어를 제공한다.
도 4는 본 발명의 실시예들에서 사용된 제어기 (335) 를 구현하기에 적합한 컴퓨터 시스템 (400) 을 도시하는 고레벨 블록도이다. 컴퓨터 시스템은 집적 회로, 인쇄 회로 기판, 및 소형 휴대용 디바이스로부터 대형 슈퍼 컴퓨터까지의 범위의 많은 물리적 형태들을 가질 수도 있다. 컴퓨터 시스템 (400) 은 하나 이상의 프로세서들 (402) 을 포함하고, 전자 디스플레이 디바이스 (402) (그래픽, 텍스트, 및 다른 데이터를 디스플레이하기 위한), 메인 메모리 (406) (예를 들어, RAM (random access memory)), 저장 디바이스 (408) (예를 들어, 하드 디스크 드라이브), 이동식 저장 디바이스 (410) (예를 들어, 광학 디스크 드라이브), 사용자 인터페이스 디바이스 (412) (예를 들어, 키보드, 터치 스크린, 키패드, 마우스 또는 다른 포인팅 디바이스들, 등), 및 통신 인터페이스 (414) (예를 들어, 무선 네트워크 인터페이스) 를 더 포함할 수 있다. 통신 인터페이스 (414) 는 소프트웨어 및 데이터가 링크를 통해 컴퓨터 시스템 (400) 과 외부 디바이스들 간에 이동되도록 한다. 시스템은 또한 전술한 디바이스들/모듈들이 접속된 통신 인프라스트럭처 (416) (예를 들어, 통신 버스, 크로스오버 바, 또는 네트워크) 를 포함할 수도 있다.
통신 인터페이스 (414) 를 통해 전달된 정보는 신호들을 반송하고, 유선 또는 케이블, 광 섬유, 전화선, 셀룰러 전화 링크, 무선 주파수 링크, 및/또는 다른 통신 채널들을 사용하여 구현될 수도 있는 통신 링크를 통해 통신 인터페이스 (414) 에 의해 수신될 수 있는 전자, 전자기, 광학 또는 다른 신호들과 같은 신호들의 형태일 수도 있다. 이러한 통신 인터페이스를 사용하여, 하나 이상의 프로세서들 (402) 이 네트워크로부터 정보를 수신할 수도 있고, 또는 상기 기술된 방법 단계들을 수행하는 동안 네트워크로 정보를 출력할 수도 있다. 게다가, 본 발명의 방법 실시예들은 프로세서들 상에서만 실행될 수도 있고 또는 프로세싱의 일부를 공유하는 원격 프로세서들과 함께 인터넷과 같은 네트워크 상에서 실행될 수도 있다.
용어 "비일시적인 컴퓨터 판독가능 매체 (non-transient computer readable medium)" 는 일반적으로 메인 메모리, 2차 메모리, 이동식 저장장치, 및 하드 디스크, 플래시 메모리, 디스크 드라이브 메모리, CD-ROM, 및 지속적인 메모리의 다른 형태들과 같은 저장 디바이스들과 같은 매체를 지칭하는데 사용되고, 반송파 또는 신호들과 같은 임시적인 소재를 커버하는 것으로 해석되지 않아야 한다. 컴퓨터 코드의 예들은 컴파일러에 의해 생성된 것과 같은 머신 코드, 및 인터프리터를 사용하여 컴퓨터에 의해 실행되는 보다 고 레벨 코드를 포함하는 파일들을 포함한다. 컴퓨터 판독가능 매체는 또한 반송파 내에 포함되고 프로세서에 의해 실행가능한 인스트럭션들의 시퀀스를 나타내는 컴퓨터 데이터 신호에 의해 송신된 컴퓨터 코드일 수도 있다.
개시 단계가 제공된다 (단계 108). 개시 단계는 적어도 하나의 금속층의 일부를 금속 산화물, 금속 할로겐화물, 또는 격자 손상된 금속성 사이트들로 변환하는 반응성 사이트를 개시한다. 본 실시예에서, 개시 단계는 적어도 하나의 금속층 (208) 의 일부를 금속 산화물, 금속 할로겐화물, 또는 격자 손상된 금속성 사이트들로 변환하기 위해 이온 플럭스 또는 이온 빔을 사용함으로써 제공된다. 본 예에서, 산소 플라즈마 또는 IBE를 통한 이온 빔이 마스크로 덮이지 않은 막을 산화시키기 위해 웨이퍼 표면에 인가된다. 다른 예에서, 염소 플라즈마 또는 저에너지 불활성 가스 플라즈마 이온이 또한 인가될 수 있다. 도 2b는 개시 단계 (단계 108) 가 제공된 후 스택 (200) 의 단면도이다. 적어도 하나의 금속층 (208) 의 마스크되지 않은 표면층들은 이온 플럭스 또는 이온 빔에 노출되고 개질된 금속성 사이트들 (216) 로 변환된다. 본 예에서, 개질된 금속성 사이트들 (216) 은 금속 산화물, 금속 할로겐화물, 또는 격자 손상된 금속성 사이트들로 변환된 금속이다. 본 예에서, 이온 소스 (324) 로부터 에칭 챔버 (349) 내로 이온들이 제공된다.
반응 단계가 제공된다 (단계 112). 도 5는 본 발명의 실시예에서 제공된, 반응 단계 (단계 112) 를 제공하는 보다 상세한 흐름도이다. 본 실시예에서, 반응 단계 (단계 112) 는 개질된 금속성 사이트들 용매화 단계 (단계 504) 및 리간드 착물 형성 단계 (단계 508) 를 포함한다. 본 실시예에서, 개질된 금속성 사이트들 용매화 단계 (단계 504) 는 개질된 금속성 사이트들에 용매화된 금속을 형성한다. 본 실시예에서, 개질된 금속성 사이트들은 증기 용매에 노출된다. 용매 소스 (325) 는, 용매를 기화하는 용매 기화기 (326) 에 용매를 제공하고, 용매 증기를 에칭 챔버 (349) 내에 제공한다. 이러한 용매들은 알코올, 아민, 또는 하이드로카본이다. 이러한 용매들은 극성 또는 비극성, 염기 또는 산이다. 용매화된 금속을 제공하는 것은 금속 전자를 국부화하고 유기 리간드 부착을 용이하게 하는 것을 돕는다. 본 실시예에서, 리간드 착물 형성 단계 (단계 508) 는 용매화된 금속을 유기금속성 화합물들로 변환하는 리간드 증기를 제공한다. 리간드 소스 (327) 는, 리간드를 기화하는 리간드 기화기 (328) 에 리간드를 제공하고, 리간드 증기를 에칭 챔버 (349) 에 제공한다. 본 예에서, 리간드 증기는 유기 리간드들을 제공한다. 리간드 착물들을 형성하는데 사용될 수도 있는 유기 리간드들은 (bis(acac)-EDIM과 같은) 아세틸아세토네이트 (acac) 족, 아세트산, 아미드, 아미디네이트 (tBuNC(R)Net), 알릴, 에틸렌, 아세틸렌, 및 사이클로-펜타디에닐을 포함할 수도 있다. 본 실시예에서, 개질된 금속성 사이트들 용매화 단계 (단계 504) 및 리간드 착물 형성 단계 (단계 508) 는 복수 회 주기적으로 수행된다. 다른 실시예들에서, 개질된 금속성 사이트들 용매화 단계 및 리간드 착물 형성 단계는 동시에 수행될 수도 있다. 이들 단계들이 동시에 수행될 때, 리간드 농도는 높아야 한다. 도 2c는 반응 단계 (단계 112) 가 제공된 후 스택 (200) 의 단면도이다. 개질된 금속성 사이트들이 유기 금속성 사이트들 (220) 로 변환되었다. 본 실시예에서, ESC 온도 제어기 (350) 가 척 (308) 을 냉각시키기 위해 사용될 수도 있다. 부가적으로, 가열 소스 (310) 가 오프될 수도 있어서, 스택 (200) 은 증기의 증착을 증가시키기 위해 냉각된 채로 유지된다.
탈착 단계가 제공된다 (단계 116). 본 실시예에서, 유기 금속성 사이트들 (220) 이 가열되어 유기 금속성 재료의 탈착을 유발한다. 가열은 기판 (204) 을 홀딩하는 척을 가열함으로써 또는 유기 금속성 사이트들 (220) 을 직접적으로 가열하는 복사에 의해 달성될 수도 있다. 본 예에서, 가열 소스 (310) 는 유기 금속성 사이트들 (220) 에 직접적으로 복사열을 사용할 수도 있다. ESC 온도 제어기 (350) 는 스택 (200) 을 가열하는 척 (308) 을 가열하기 위해 사용될 수도 있다. 도 2d는 탈착 단계 (단계 116) 가 제공된 후 스택 (200) 의 단면도이다. 유기 금속성 사이트들은 부분적으로 에칭된 사이트들 (224) 을 남기면서, 탈착에 의해 제거된다.
탈착 단계는 또한 정밀하게 제어된 에너지 스퍼터링에 의해 실현될 수 있어서, 유기금속성 화합물들은 분리되지만 리간드들은 금속 사이트들로부터 분리되지 않는다.
적어도 하나의 금속층 (208) 이 부분적으로만 에칭되기 때문에, 사이클이 계속되고 (단계 120), 개시 단계 (단계 108) 로 돌아간다. 상기에 기술된 바와 동일한 개시 단계가 사용되거나 파라미터들이 변경될 수도 있다. 도 2e는 개시 단계 (단계 108) 가 제공된 후 스택 (200) 의 단면도이다. 적어도 하나의 금속층 (208) 의 마스크되지 않은 표면 층들이 이온 플럭스 또는 이온 빔에 노출되고 개질된 금속성 사이트들 (228) 로 변환된다.
반응 단계가 제공된다 (단계 112). 상기에 기술된 바와 동일한 반응 단계가 사용되거나 파라미터들이 변경될 수도 있다. 도 2f는 반응 단계 (단계 112) 가 제공된 후 스택 (200) 의 단면도이다. 개질된 금속성 사이트들이 유기 금속성 사이트들 (232) 로 변환되었다.
탈착 단계가 제공된다 (단계 116). 본 실시예에서, 유기 금속성 사이트들 (232) 이 가열되어 유기 금속성 재료의 탈착을 유발한다. 상기에 기술된 바와 동일한 탈착 단계가 사용되거나 파라미터들이 변경될 수도 있다. 도 2g는 탈착 단계 (단계 116) 가 제공된 후 스택 (200) 의 단면도이다. 유기 금속성 사이트들은 부분적으로 에칭된 사이트들 (224) 을 남기면서, 탈착에 의해 제거된다.
에칭 프로세스가 완료될 때까지 사이클이 계속된다 (단계 120). 도 2h는 적어도 하나의 금속층 (208) 의 에칭이 완료된 후 스택 (200) 의 단면도이다.
본 실시예는 플라즈마가 없는 에칭 프로세스를 제공한다. 다른 실시예들은 개시 단계 또는 탈착 단계 동안 플라즈마를 사용할 수도 있다. 이러한 플라즈마는 플라즈마 소스로부터 에칭 챔버 (349) 로 제공된 다운스트림 플라즈마일 수도 있고 또는 인 시츄 생성될 수도 있고, 이때 에칭 챔버 (349) 가 전구체 가스 소스 및 플라즈마 여기 시스템을 요구할 것이다. 다른 실시예들에서, O2, COS, 또는 CH3OH의 이온 플럭스가 개시 단계를 제공하도록 사용될 수도 있다. 다른 실시예들에서, H2O2, HClO, O3, SOCl2, NH4OH, HCHO, 또는 CH3COOH로부터 생성된 증기가 개시 단계를 제공하도록 사용될 수도 있다. 다른 실시예들에서, 반응 속도를 증가시키기 위해 반응 단계 동안 촉매가 사용될 수도 있다.
도 6a는 본 발명의 다른 실시예에서 사용된 스택 (600) 의 개략 단면도이다. 이 스택 (600) 에서 층간 유전체층 (ILD) (604) 이 기판 위에 위치되고, 이는 도시되지 않는다. 하단 전극 (608) 이 ILD (604) 위에 형성된다. 본 실시예에서, 하단 전극 (608) 은 Ta, Ti, 또는 W로 형성된다. 다른 실시예들에서, 다른 유사한 금속들이 하단 전극 (608) 으로 사용될 수도 있다. 하단 비휘발성 금속 (NVM) (고정층) 층 (612) 이 하단 전극 (608) 위에 형성된다. 본 실시예에서, 하단 NVM 층은 MnPt, CoPt, CoPd, 또는 CoFe로 형성된다. 다른 실시예들에서, 다른 유사한 합금들이 하단 NVM 층 (612) 으로 형성된다. 산화 마그네슘 (MgO) 의 터널링 층 (616) 이 하단 NVM 층 (612) 위에 형성된다. 상단 NVM 층 (620) 은 터널링 층 (616) 위에 형성된다. 본 실시예에서, 상단 NVM 층 (620) 은 CoFe, CoFeB, Ru, CoPt, 또는 CoPd로 형성된다. 다른 실시예들에서 상단 NVM 층 (620) 은 다른 금속들 또는 합금들로 형성된다. 본 실시예에서, 하단 NVM 층 (612), 터널링 층 (616), 및 상단 NVM 층 (620) 의 조합이 자기 터널 접합 (MTJ) 을 형성한다. 패터닝된 마스크 (624) 가 상단 NVM 층 (620) 위에 형성된다. 본 실시예에서 패터닝된 하드마스크 (624) 는 Ta, TaN, TiN 또는 W이고, 전극으로서 사용된다. 다른 실시예들에서, 다른 전극 재료가 사용될 수도 있다.
본 실시예에서, 상단 NVM 층 (620) 및 터널링 층 (616) 이 RIE 또는 IBE를 사용하여 에칭되고, 본 실시예에서 하단 NVM 층 (612) 의 2-3 ㎚이 에칭된다. IBE 에칭은 측벽 증착을 형성하지 않고 터널링 층 (616) 을 손상시키지 않고 상단 NVM 층 (620) 및 터널링 층 (616) 을 에칭할 수 있다. 도 6b는 NVM 층 (620) 및 터널링 층 (616) 이 에칭된 후 스택의 개략 단면도이다. 상단 NVM 층 (620) 및 터널링 층 (616) 만을 에칭하기 위해 IBE를 사용하는 것은 증착 퇴적물 없이 터널링 층 (616) 무결성을 유지하면서 IBE 측벽 각도/애스팩트 비를 감소시킨다.
부분적으로 에칭된 스택 (600) 주변에 산화물 또는 질화물 스페이서가 형성된다. 도 6c는 스페이서 (628) 이 형성된 후 부분적으로 에칭된 스택 (600) 의 개략 단면도이다. 스페이서는 후속하는 에칭 동안 터널링 층 (616) 을 시일 (seal) 한다. 스페이서 두께는 대략 2 내지 5 ㎚이다. RIE 또는 IBE 스퍼터링이 스페이서 (628) 를 개구하도록 사용된다. 도 6d는 스페이서 (628) 가 개구된 후 부분적으로 에칭된 스택 (600) 의 개략 단면도이다.
이어서 도 1에 도시된 바와 같이, 스택이 에칭 프로세스를 겪고, 여기서 패터닝된 하드마스크 (624), 상단 NVM 층 (620), 터널링 층 (616), 및 스페이서 (628) 가 하단 NVM 층 (612) 을 에칭하기 위한 패터닝된 마스크를 제공한다. 본 예에서, 개시 단계 (단계 108) 는 4 내지 80 mTorr의 압력을 제공함으로써 산화를 제공함으로써 제공된다. 50 내지 500 sccm의 O2 및 0 내지 500 sccm의 Ar이 에칭 챔버 (349) 내로 흐른다. 가스를 플라즈마로 형성하기 위해 200 내지 1500의 TCP 전력이 13 ㎒로 제공된다. 20 내지 500 볼트의 바이어스 전압이 제공된다. 산화 프로세스가 5 내지 60 초 동안 유지된다. 대안적인 실시예에서, 개시 단계는 염소화에 의해 제공될 수도 있다. 이러한 프로세스에서 4 내지 80 mTorr의 압력이 제공된다. 50 내지 500 sccm의 Cl2 및 0 내지 500 sccm의 Ar이 에칭 챔버 (349) 내로 흐른다. 가스를 플라즈마로 형성하기 위해 200 내지 1500의 TCP 전력이 13 ㎒로 제공된다. 20 내지 500 볼트의 바이어스 전압이 제공된다. 염소화 프로세스가 5 내지 60 초 동안 유지된다.
본 예에서, 유기 산의 증기를 제공함으로써 개질된 금속성 사이트들 용매화 단계 (단계 504) 가 제공된다. 리간드의 증기를 제공함으로써 리간드 착물 형성 단계 (단계 508) 가 제공된다. 캐리어 가스를 사용하거나 사용하지 않는 용매화 및 리간드 착물 형성 단계 동안 20 mTorr 내지 1 Torr의 압력이 제공되고, 이들 단계들은 반응을 강화시키기 위해 다수회 순환될 수도 있다.
본 예에서 약 (light) 플라즈마 스퍼터링을 제공함으로써 탈착 단계 (단계 116) 가 제공된다. 일 예에서, 약 플라즈마 스퍼터링은 4 내지 80 mTorr의 챔버 압력을 제공함으로써 달성될 수도 있다. 50 내지 500 sccm의 Ar이 에칭 챔버 (349) 내로 흐른다. 가스를 플라즈마로 형성하기 위해 200 내지 1500의 TCP 전력이 제공된다. 0 내지 100 볼트의 바이어스 전압이 제공된다. Ar 가스는 He, Ne, 또는 Xe로 대체될 수도 있다. 바람직하게, 가스는 퓨어 비활성 가스 (pure noble gas) 이다. 다른 예에서, 탈착이 80 ℃ 내지 300 ℃의 온도로 척 (308) 을 가열함으로써 제공될 수도 있다. 프로세스는 NVM 층 (612) 의 에칭이 완료될 때까지 반복된다. 도 6e는 NVM 층 (612) 이 에칭된 후 부분적으로 에칭된 스택 (600) 의 개략도이다.
본 실시예는 터널링 층 (616) 을 에칭만 하고 스페이서를 개구하기 위해 IBE를 사용하여, IBE가 보다 얕고 보다 낮은 애스팩트 에칭을 위해 사용된다. 이는 IBE로 하여금 측벽 증착물을 형성하지 않고 터널링 층 (616) 을 손상시키지 않게 한다. 부분적으로 패터닝하는 것은 막 스택에 증착 퇴적물 없이 MgO 무결성을 유지하면서 IBE 측벽 각도/애스팩트 비 제한에 보다 적은 제한을 부여한다. 스페이서는 후속 층들을 에칭하는 동안 MgO 층을 더 보호할 수 있다. 본 실시예는 MgO 층의 잠재적인 열화를 방지하기 위해 비수성 용매들을 사용한다. 본 실시예는 유기 금속성 부산물들을 생성하기 위해 증기를 사용하고, 이 부산물들은 본질적으로 휘발성이고 과도한 측벽 퇴적물 없이 웨이퍼 표면을 떠난다. 이는 고 애스팩트 비를 갖는 고 밀도 MRAM 패터닝의 형성을 가능하게 한다. 본 실시예는 작은 CD 및 고 애스팩트 비를 갖는 MRAM의 이방성 에칭을 제공한다. 원자 레벨 에칭을 제공함으로써 본 실시예는 에칭 프로세스의 보다 큰 제어를 제공한다.
본 발명이 몇몇 바람직한 실시예들로 기술되었지만, 본 발명의 범위 내의 대체, 치환, 수정, 및 다양한 대용 등가물들이 있다. 또한 본 발명의 방법들 및 장치들을 구현하는 많은 대안적인 방식들이 있다는 것을 주의해야 한다. 따라서 이하의 첨부된 청구항들이 본 발명의 진정한 정신 및 범위 내에 있는 모든 이러한 대체, 치환, 및 다양한 대용 등가물들을 포함하는 것으로 해석되도록 의도된다.

Claims (20)

  1. 하나 이상의 사이클들로 적어도 하나의 금속층을 갖는 스택을 에칭하는 방법으로서,
    상기 사이클 각각은,
    적어도 하나의 금속층의 일부를 금속 산화물, 금속 할로겐화물, 또는 격자 손상된 금속성 사이트들 (lattice damaged metallic site) 로 변환하는, 개시 단계를 수행하는 단계; 및
    하나 이상의 사이클들을 제공하는 반응 단계를 수행하는 단계로서, 사이클 각각은,
    용매화된 금속, 금속 할로겐화물, 또는 금속 산화물 상태를 형성하도록 유기 용매 증기를 제공하는 단계; 및
    휘발성 유기금속성 화합물들을 형성하기 위해 유기 리간드 용매를 제공하는 단계를 포함하는, 상기 반응 단계를 수행하는 단계를 포함하는, 스택을 에칭하는 방법.
  2. 제 1 항에 있어서,
    상기 용매화된 금속, 금속 할로겐화물, 또는 금속 산화물 상태를 형성하도록 유기 용매 증기를 제공하는 단계 및 상기 휘발성 유기금속성 화합물들을 형성하기 위해 유기 리간드 용매를 제공하는 단계는 순차적으로 수행되는, 스택을 에칭하는 방법.
  3. 제 1 항에 있어서,
    상기 용매화된 금속, 금속 할로겐화물, 또는 금속 산화물 상태를 형성하도록 유기 용매 증기를 제공하는 단계 및 상기 휘발성 유기금속성 화합물들을 형성하기 위해 유기 리간드 용매를 제공하는 단계는 동시에 수행되는, 스택을 에칭하는 방법.
  4. 제 1 항에 있어서,
    상기 용매 증기는 알코올류, 아민, 및 하이드로카본류 중 적어도 하나를 포함하는, 스택을 에칭하는 방법.
  5. 제 1 항에 있어서,
    상기 리간드 용매는 아세틸아세토네이트 (acac) 족, 아세트산, 아미드류, 아미디네이트류, 알릴류, 에틸렌, 아세틸렌, 및 사이클로-펜타디에닐 중 적어도 하나를 포함하는, 스택을 에칭하는 방법.
  6. 하나 이상의 사이클들로 적어도 하나의 금속층을 갖는 스택을 에칭하는 방법으로서,
    상기 사이클 각각은,
    적어도 하나의 금속층의 일부를 금속 산화물, 금속 할로겐화물, 또는 격자 손상된 금속성 사이트들로 변환하는, 개시 단계를 수행하는 단계; 및
    반응 단계를 수행하는 단계로서,
    용매화된 금속, 금속 할로겐화물, 또는 금속 산화물 상태를 형성하도록 유기 용매 증기를 제공하는 단계; 또는
    휘발성 유기금속성 화합물들을 형성하기 위해 유기 리간드 용매를 제공하는 단계를 포함하는, 상기 반응 단계를 수행하는 단계를 포함하는, 스택을 에칭하는 방법.
  7. 제 6 항에 있어서,
    상기 휘발성 유기금속성 화합물들의 탈착 (desorption) 을 수행하는 단계를 더 포함하는, 스택을 에칭하는 방법.
  8. 제 7 항에 있어서,
    상기 탈착을 수행하는 단계는,
    상기 유기금속성 화합물들을 가열하는 단계를 포함하는, 스택을 에칭하는 방법.
  9. 제 6 항에 있어서,
    상기 용매 증기는 알코올류, 아민, 및 하이드로카본류 중 적어도 하나를 포함하는, 스택을 에칭하는 방법.
  10. 제 6 항에 있어서,
    상기 리간드 용매는 아세틸아세토네이트 (acac) 족, 아세트산, 아미드류, 아미디네이트류, 알릴류, 에틸렌, 아세틸렌, 및 사이클로-펜타디에닐 중 적어도 하나를 포함하는, 스택을 에칭하는 방법.
  11. 하나 이상의 사이클들로 적어도 하나의 금속층을 갖는 스택을 에칭하는 방법으로서,
    상기 사이클 각각은,
    적어도 하나의 금속층의 일부를 금속 산화물, 금속 할로겐화물, 또는 격자 손상된 금속성 사이트들로 변환하는, 개시 단계를 수행하는 단계; 및
    용매화된 금속, 금속 할로겐화물, 또는 금속 산화물 상태를 형성하도록 유기 용매 증기를 제공하는 단계를 포함하는, 반응 단계를 수행하는 단계를 포함하는, 스택을 에칭하는 방법.
  12. 제 11 항에 있어서,
    휘발성 유기금속성 화합물들의 탈착을 수행하는 단계를 더 포함하는, 스택을 에칭하는 방법.
  13. 제 12 항에 있어서,
    상기 탈착을 수행하는 단계는,
    상기 유기금속성 화합물들을 가열하는 단계를 포함하는, 스택을 에칭하는 방법.
  14. 제 11 항에 있어서,
    상기 용매 증기는 알코올류, 아민, 및 하이드로카본류 중 적어도 하나를 포함하는, 스택을 에칭하는 방법.
  15. 제 11 항에 있어서,
    패터닝된 마스크를 형성하는 단계로서,
    이온빔 에칭 또는 반응성 이온 에칭을 사용하여 상기 스택 상에 형성된 자기 터널 접합층을 에칭하는 단계;
    상기 자기 터널 접합층 위에 스페이서 층을 형성하는 단계; 및
    상기 스페이서 층을 개구하는 단계를 포함하는, 상기 패터닝된 마스크를 형성하는 단계를 더 포함하는, 스택을 에칭하는 방법.
  16. 하나 이상의 사이클들로 적어도 하나의 금속층을 갖는 스택을 에칭하는 방법으로서,
    상기 사이클 각각은,
    적어도 하나의 금속층의 일부를 금속 산화물, 금속 할로겐화물, 또는 격자 손상된 금속성 사이트들로 변환하는, 개시 단계를 수행하는 단계; 및
    휘발성 유기금속성 화합물들을 형성하기 위해 유기 리간드 용매를 제공하는 단계를 포함하는, 반응 단계를 수행하는 단계를 포함하는, 스택을 에칭하는 방법.
  17. 제 16 항에 있어서,
    상기 휘발성 유기금속성 화합물들의 탈착을 수행하는 단계를 더 포함하는, 스택을 에칭하는 방법.
  18. 제 17 항에 있어서,
    상기 탈착을 수행하는 단계는,
    상기 유기금속성 화합물들을 가열하는 단계를 포함하는, 스택을 에칭하는 방법.
  19. 제 16 항에 있어서,
    상기 리간드 용매는 아세틸아세토네이트 (acac) 족, 아세트산, 아미드류, 아미디네이트류, 알릴류, 에틸렌, 아세틸렌, 및 사이클로-펜타디에닐 중 적어도 하나를 포함하는, 스택을 에칭하는 방법.
  20. 제 16 항에 있어서,
    패터닝된 마스크를 형성하는 단계로서,
    이온빔 에칭 또는 반응성 이온 에칭을 사용하여 상기 스택 상에 형성된 자기 터널 접합층을 에칭하는 단계;
    상기 자기 터널 접합층 위에 스페이서 층을 형성하는 단계; 및
    상기 스페이서 층을 개구하는 단계를 포함하는, 상기 패터닝된 마스크를 형성하는 단계를 더 포함하는, 스택을 에칭하는 방법.
KR1020150043503A 2014-03-27 2015-03-27 비휘발성 금속 재료의 에칭 방법 KR102318520B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461971032P 2014-03-27 2014-03-27
US61/971,032 2014-03-27
US14/325,911 2014-07-08
US14/325,911 US9130158B1 (en) 2014-03-27 2014-07-08 Method to etch non-volatile metal materials

Publications (2)

Publication Number Publication Date
KR20150112896A KR20150112896A (ko) 2015-10-07
KR102318520B1 true KR102318520B1 (ko) 2021-10-28

Family

ID=54012662

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020150011133A KR102377668B1 (ko) 2014-03-27 2015-01-23 비-휘발성 금속 재료들을 에칭하는 방법
KR1020150043503A KR102318520B1 (ko) 2014-03-27 2015-03-27 비휘발성 금속 재료의 에칭 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020150011133A KR102377668B1 (ko) 2014-03-27 2015-01-23 비-휘발성 금속 재료들을 에칭하는 방법

Country Status (6)

Country Link
US (3) US9257638B2 (ko)
JP (2) JP6557490B2 (ko)
KR (2) KR102377668B1 (ko)
CN (2) CN104953027B (ko)
SG (2) SG10201502437TA (ko)
TW (2) TWI651773B (ko)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9240547B2 (en) 2013-09-10 2016-01-19 Micron Technology, Inc. Magnetic tunnel junctions and methods of forming magnetic tunnel junctions
US9257638B2 (en) * 2014-03-27 2016-02-09 Lam Research Corporation Method to etch non-volatile metal materials
US9373779B1 (en) 2014-12-08 2016-06-21 Micron Technology, Inc. Magnetic tunnel junctions
US9576811B2 (en) 2015-01-12 2017-02-21 Lam Research Corporation Integrating atomic scale processes: ALD (atomic layer deposition) and ALE (atomic layer etch)
US9502642B2 (en) 2015-04-10 2016-11-22 Micron Technology, Inc. Magnetic tunnel junctions, methods used while forming magnetic tunnel junctions, and methods of forming magnetic tunnel junctions
US9530959B2 (en) * 2015-04-15 2016-12-27 Micron Technology, Inc. Magnetic tunnel junctions
US9520553B2 (en) * 2015-04-15 2016-12-13 Micron Technology, Inc. Methods of forming a magnetic electrode of a magnetic tunnel junction and methods of forming a magnetic tunnel junction
US9806252B2 (en) 2015-04-20 2017-10-31 Lam Research Corporation Dry plasma etch method to pattern MRAM stack
US9870899B2 (en) 2015-04-24 2018-01-16 Lam Research Corporation Cobalt etch back
US9257136B1 (en) 2015-05-05 2016-02-09 Micron Technology, Inc. Magnetic tunnel junctions
US9960346B2 (en) 2015-05-07 2018-05-01 Micron Technology, Inc. Magnetic tunnel junctions
US9449843B1 (en) * 2015-06-09 2016-09-20 Applied Materials, Inc. Selectively etching metals and metal nitrides conformally
US9972504B2 (en) 2015-08-07 2018-05-15 Lam Research Corporation Atomic layer etching of tungsten for enhanced tungsten deposition fill
US10096487B2 (en) 2015-08-19 2018-10-09 Lam Research Corporation Atomic layer etching of tungsten and other metals
US9984858B2 (en) 2015-09-04 2018-05-29 Lam Research Corporation ALE smoothness: in and outside semiconductor industry
CN106548936B (zh) * 2015-09-23 2022-04-22 北京北方华创微电子装备有限公司 一种金属层的刻蚀方法
WO2016172740A2 (en) 2015-11-10 2016-10-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Etching reactants and plasma-free oxide etching processes using the same
US10157742B2 (en) * 2015-12-31 2018-12-18 Taiwan Semiconductor Manufacturing Co., Ltd. Method for mandrel and spacer patterning
US10727073B2 (en) 2016-02-04 2020-07-28 Lam Research Corporation Atomic layer etching 3D structures: Si and SiGe and Ge smoothness on horizontal and vertical surfaces
US10229837B2 (en) * 2016-02-04 2019-03-12 Lam Research Corporation Control of directionality in atomic layer etching
US9991128B2 (en) 2016-02-05 2018-06-05 Lam Research Corporation Atomic layer etching in continuous plasma
US9953843B2 (en) * 2016-02-05 2018-04-24 Lam Research Corporation Chamber for patterning non-volatile metals
US10256108B2 (en) * 2016-03-01 2019-04-09 Lam Research Corporation Atomic layer etching of AL2O3 using a combination of plasma and vapor treatments
US10230042B2 (en) 2016-03-03 2019-03-12 Toshiba Memory Corporation Magnetoresistive element and method of manufacturing the same
US10269566B2 (en) 2016-04-29 2019-04-23 Lam Research Corporation Etching substrates using ale and selective deposition
US9680089B1 (en) 2016-05-13 2017-06-13 Micron Technology, Inc. Magnetic tunnel junctions
US9799519B1 (en) * 2016-06-24 2017-10-24 International Business Machines Corporation Selective sputtering with light mass ions to sharpen sidewall of subtractively patterned conductive metal layer
US9837312B1 (en) 2016-07-22 2017-12-05 Lam Research Corporation Atomic layer etching for enhanced bottom-up feature fill
KR102511914B1 (ko) 2016-08-04 2023-03-21 삼성전자주식회사 자기 기억 소자 및 이의 제조 방법
US10103196B2 (en) 2016-08-30 2018-10-16 Micron Technology, Inc. Methods of forming magnetic memory cells, and methods of forming arrays of magnetic memory cells
CN116779435A (zh) * 2016-12-09 2023-09-19 Asm Ip 控股有限公司 热原子层蚀刻工艺
US10566212B2 (en) 2016-12-19 2020-02-18 Lam Research Corporation Designer atomic layer etching
US10283319B2 (en) 2016-12-22 2019-05-07 Asm Ip Holding B.V. Atomic layer etching processes
KR102638610B1 (ko) 2017-01-11 2024-02-22 삼성전자주식회사 자기 메모리 장치
US10297746B2 (en) 2017-04-05 2019-05-21 Taiwan Semiconductor Manufacturing Company, Ltd. Post treatment to reduce shunting devices for physical etching process
SG11201908113WA (en) 2017-04-13 2019-10-30 Basf Se Process for the etching metal- or semimetal-containing materials
US10559461B2 (en) 2017-04-19 2020-02-11 Lam Research Corporation Selective deposition with atomic layer etch reset
US9997371B1 (en) 2017-04-24 2018-06-12 Lam Research Corporation Atomic layer etch methods and hardware for patterning applications
US10832909B2 (en) 2017-04-24 2020-11-10 Lam Research Corporation Atomic layer etch, reactive precursors and energetic sources for patterning applications
US10242885B2 (en) * 2017-05-26 2019-03-26 Applied Materials, Inc. Selective dry etching of metal films comprising multiple metal oxides
JP7466824B2 (ja) * 2017-06-13 2024-04-15 東京エレクトロン株式会社 磁気トンネル接合をパターン化する方法
KR102476262B1 (ko) * 2017-12-14 2022-12-08 어플라이드 머티어리얼스, 인코포레이티드 에칭 잔류물이 더 적게 금속 산화물들을 에칭하는 방법들
KR102642011B1 (ko) 2018-03-30 2024-02-27 램 리써치 코포레이션 내화성 금속들 및 다른 고 표면 결합 에너지 재료들의 원자 층 에칭 및 평활화 (smoothing)
US10714681B2 (en) * 2018-10-19 2020-07-14 International Business Machines Corporation Embedded magnetic tunnel junction pillar having reduced height and uniform contact area
JP7310146B2 (ja) * 2019-01-16 2023-07-19 東京エレクトロン株式会社 ハードマスク付き半導体デバイスの製造用の基板及び半導体デバイスの製造方法
CN109801844A (zh) * 2019-02-03 2019-05-24 南通大学 一种金属刻槽方法
CN109786241B (zh) * 2019-02-03 2022-09-27 南通大学 一种微损伤减缓铝刻蚀侧腐的方法
US12029133B2 (en) 2019-02-28 2024-07-02 Lam Research Corporation Ion beam etching with sidewall cleaning
US10971500B2 (en) * 2019-06-06 2021-04-06 Micron Technology, Inc. Methods used in the fabrication of integrated circuitry
JP2021019201A (ja) 2019-07-18 2021-02-15 エーエスエム アイピー ホールディング ビー.ブイ. 半導体処理システム用シャワーヘッドデバイス
CY2004010I1 (el) 2019-08-29 2009-11-04 Novartis Ag Phenyl carbamate
US11424134B2 (en) * 2019-09-19 2022-08-23 Applied Materials, Inc. Atomic layer etching of metals
US11574813B2 (en) 2019-12-10 2023-02-07 Asm Ip Holding B.V. Atomic layer etching
US11502246B2 (en) 2020-06-04 2022-11-15 Samsung Electronics Co., Ltd. Magnetoresistive device, magnetic memory, and method of fabricating a magnetoresistive device
US11737289B2 (en) 2020-12-09 2023-08-22 International Business Machines Corporation High density ReRAM integration with interconnect
US20230420267A1 (en) * 2022-05-27 2023-12-28 Tokyo Electron Limited Oxygen-free etching of non-volatile metals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224456A1 (en) * 2002-06-28 2005-10-13 Tokyo Electron Limited Anisotropic dry etching of cu-containing layers
JP2006278457A (ja) * 2005-03-28 2006-10-12 Ulvac Japan Ltd エッチング方法
JP2014022751A (ja) * 2012-07-20 2014-02-03 Samsung Electronics Co Ltd 磁気接合、磁気メモリ、改善された特性を有する磁気接合を提供するための方法、及びシステム

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433983B1 (en) * 1989-12-20 1998-03-04 Texas Instruments Incorporated Copper etch process using halides
JPH04208526A (ja) * 1990-11-30 1992-07-30 Nisshin Hightech Kk ドライエッチング方法および装置
KR0155785B1 (ko) * 1994-12-15 1998-10-15 김광호 핀형 커패시터 및 그 제조방법
WO1997015069A1 (en) * 1995-10-19 1997-04-24 Massachusetts Institute Of Technology Metals removal process
US6010966A (en) * 1998-08-07 2000-01-04 Applied Materials, Inc. Hydrocarbon gases for anisotropic etching of metal-containing layers
JP3619745B2 (ja) * 1999-12-20 2005-02-16 株式会社日立製作所 固体表面の処理方法及び処理液並びにこれらを用いた電子デバイスの製造方法
FR2820417B1 (fr) 2001-02-08 2003-05-30 Commissariat Energie Atomique Procede de dissolution et de decontamination
KR100421219B1 (ko) * 2001-06-14 2004-03-02 삼성전자주식회사 β-디케톤 리간드를 갖는 유기 금속 착물을 이용한 원자층증착방법
JP2004332045A (ja) * 2003-05-07 2004-11-25 Renesas Technology Corp 多層膜材料のドライエッチング方法
US20060017043A1 (en) * 2004-07-23 2006-01-26 Dingjun Wu Method for enhancing fluorine utilization
JP4534664B2 (ja) * 2004-08-24 2010-09-01 ソニー株式会社 磁気記憶装置の製造方法
JP5481547B2 (ja) * 2006-08-24 2014-04-23 富士通セミコンダクター株式会社 金属付着物の除去方法、基板処理装置、および記録媒体
JP2007158361A (ja) * 2007-01-09 2007-06-21 Yamaha Corp 磁気トンネル接合素子の製法
US7948044B2 (en) * 2008-04-09 2011-05-24 Magic Technologies, Inc. Low switching current MTJ element for ultra-high STT-RAM and a method for making the same
JP2010010175A (ja) * 2008-06-24 2010-01-14 Konica Minolta Holdings Inc 薄膜トランジスタおよび薄膜トランジスタの製造方法
US8043732B2 (en) * 2008-11-11 2011-10-25 Seagate Technology Llc Memory cell with radial barrier
US8981502B2 (en) * 2010-03-29 2015-03-17 Qualcomm Incorporated Fabricating a magnetic tunnel junction storage element
JP2012038815A (ja) * 2010-08-04 2012-02-23 Toshiba Corp 磁気抵抗素子の製造方法
US20140147353A1 (en) * 2010-09-03 2014-05-29 Georgia Tech Research Corporation Compositions and methods for the separation of metals
KR101850510B1 (ko) * 2011-03-22 2018-04-20 삼성디스플레이 주식회사 산화물 반도체의 전구체 조성물 및 이를 이용한 박막 트랜지스터 표시판의 제조 방법
US8546263B2 (en) * 2011-04-27 2013-10-01 Applied Materials, Inc. Method of patterning of magnetic tunnel junctions
JP2013016587A (ja) * 2011-07-01 2013-01-24 Toshiba Corp 磁気抵抗効果素子及びその製造方法
US8784676B2 (en) * 2012-02-03 2014-07-22 Lam Research Corporation Waferless auto conditioning
US20130270227A1 (en) * 2012-04-13 2013-10-17 Lam Research Corporation Layer-layer etch of non volatile materials
US9257638B2 (en) * 2014-03-27 2016-02-09 Lam Research Corporation Method to etch non-volatile metal materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224456A1 (en) * 2002-06-28 2005-10-13 Tokyo Electron Limited Anisotropic dry etching of cu-containing layers
JP2006278457A (ja) * 2005-03-28 2006-10-12 Ulvac Japan Ltd エッチング方法
JP2014022751A (ja) * 2012-07-20 2014-02-03 Samsung Electronics Co Ltd 磁気接合、磁気メモリ、改善された特性を有する磁気接合を提供するための方法、及びシステム

Also Published As

Publication number Publication date
TW201603135A (zh) 2016-01-16
KR20150112896A (ko) 2015-10-07
TWI651773B (zh) 2019-02-21
CN108682737A (zh) 2018-10-19
SG10201502437TA (en) 2015-10-29
TWI650886B (zh) 2019-02-11
JP6557490B2 (ja) 2019-08-07
JP2015216360A (ja) 2015-12-03
US9130158B1 (en) 2015-09-08
JP6789614B2 (ja) 2020-11-25
SG10201502438RA (en) 2015-10-29
JP2015192150A (ja) 2015-11-02
US20150280114A1 (en) 2015-10-01
US9391267B2 (en) 2016-07-12
US20150280113A1 (en) 2015-10-01
KR102377668B1 (ko) 2022-03-22
CN104953027A (zh) 2015-09-30
TW201608748A (zh) 2016-03-01
US9257638B2 (en) 2016-02-09
KR20150112757A (ko) 2015-10-07
CN104953027B (zh) 2018-05-22
US20150340603A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
KR102318520B1 (ko) 비휘발성 금속 재료의 에칭 방법
TWI579914B (zh) 利用電漿進行非揮發性物質之分層蝕刻
US9659783B2 (en) High aspect ratio etch with combination mask
US6893893B2 (en) Method of preventing short circuits in magnetic film stacks
KR102516921B1 (ko) 구리 배리어 막을 에칭하기 위한 새로운 방법
US20130270227A1 (en) Layer-layer etch of non volatile materials
US20220254649A1 (en) Atomic layer etch and ion beam etch patterning
Hwang et al. Etch characteristics of Ru thin films using O2/Ar, CH4/Ar, and O2/CH4/Ar plasmas
US20240021435A1 (en) Metal etch

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant