KR102062296B1 - 극자외 광원을 위한 열 모니터 - Google Patents

극자외 광원을 위한 열 모니터 Download PDF

Info

Publication number
KR102062296B1
KR102062296B1 KR1020157017347A KR20157017347A KR102062296B1 KR 102062296 B1 KR102062296 B1 KR 102062296B1 KR 1020157017347 A KR1020157017347 A KR 1020157017347A KR 20157017347 A KR20157017347 A KR 20157017347A KR 102062296 B1 KR102062296 B1 KR 102062296B1
Authority
KR
South Korea
Prior art keywords
temperature
light beam
light
amplified
amplified light
Prior art date
Application number
KR1020157017347A
Other languages
English (en)
Other versions
KR20150108820A (ko
Inventor
블라디미르 플루로브
이고르 브이. 포멘코브
샤일렌드라 엔. 스리바스타바
Original Assignee
에이에스엠엘 네델란즈 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이에스엠엘 네델란즈 비.브이. filed Critical 에이에스엠엘 네델란즈 비.브이.
Publication of KR20150108820A publication Critical patent/KR20150108820A/ko
Application granted granted Critical
Publication of KR102062296B1 publication Critical patent/KR102062296B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • X-Ray Techniques (AREA)

Abstract

증폭 광빔을 수신하도록 위치 설정되는 제1 광 요소에 인접하고 이와 별개인 요소의 온도를 나타내는 제1 온도 분포에 액세스된다. 액세스된 제1 온도 분포는 요소에 연관된 온도 메트릭을 결정하기 위해 분석되며, 결정된 온도 메트릭은 기준 온도 메트릭과 비교되며, 제1 광 요소에 대하여 증폭 광빔의 위치의 조정이 비교에 기초하여 결정된다.

Description

극자외 광원을 위한 열 모니터{THERMAL MONITOR FOR AN EXTREME ULTRAVIOLET LIGHT SOURCE}
본원은 극자외(extreme ultraviolet, EUV) 광원을 위한 열 모니터에 관한 것이다.
극자외("EUV") 광, 예컨대 약 13 nm의 파장의 광을 포함하여, 약 50 nm 미만의 파장을 갖는 전자기 방사선(소프트 X-선이라고도 함)이 실리콘 웨이퍼와 같은 기판에 극소형의 피처를 생성하기 위한 광 리소그래피 공정에 사용될 수 있다.
EUV 광 발생 방법은, 이에 필수적으로 제한되는 것은 아니나, EUV 범위의 방출선(emission line)으로, 재료를 크세논, 리튬, 또는 주석과 같은 원소를 갖는 플라즈마 상태로 전환하는 단계를 포함한다. 이 방법에서, 구동 레이저라고 하는 증폭 광빔으로, 예컨대 재료의 액적, 스트림 또는 클러스터의 형태인 타겟 재료에 조사하여, 레이저 생성 플라즈마(laser produced plasma, LPP)라는 용어인, 요구되는 플라즈마가 발생될 수 있다. 이 공정을 위하여, 플라즈마는 전형적으로 밀봉 용기, 예컨대 진공 챔버에서 생성되고, 다양한 유형의 계측 기기를 사용하여 모니터링된다.
일반적인 측면에서, 극자외(EUV) 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하기 위한 방법은 제1 광 요소에 인접하고 제1 광 요소와 별개인 요소의 온도를 나타내는 제1 온도 분포에 액세스하는 단계를 포함한다. 제1 광 요소는 증폭 광빔을 수신하도록 위치를 설정한다. 이 방법은 또한 요소와 연관된 온도 메트릭(temperature metric)을 결정하도록 액세스된 제1 온도 분포를 분석하는 단계, 결정된 온도 메트릭을 기준(baseline) 온도 메트릭과 비교하는 단계, 및 상기 비교에 기초하여 제1 광 요소에 대한 증폭 광빔의 위치의 조정을 결정하는 단계를 포함한다.
구현예는 하나 이상의 다음의 특징을 포함할 수 있다. 증폭 광빔의 위치에 대한 결정된 조정을 나타내는 표시(indication)가 발생될 수 있다. 이 표시는 제2 광 요소에 기계적으로 결합되는 액추에이터를 위한 입력을 포함하고, 제2 광 요소는 증폭 광빔을 수신하도록 위치 설정되는 활성 영역을 포함할 수 있고, 액추에이터로의 입력은 액추에이터가 하나 이상의 방향으로 활성 영역을 이동시키도록 하기에 충분할 수 있다. 입력이 액추에이터에 제공될 수 있다. 액추에이터로의 입력을 제공한 이후에, 제1 광 요소에 인접하는 요소의 제2 온도 분포가 액세스될 수 있고, 제2 온도 분포는 온도 메트릭을 결정하기 위하여 분석될 수 있으며, 온도 메트릭은 제1 온도 분포 또는 기준 온도 메트릭 중 하나 이상과 비교될 수 있다.
표시(indicator)가 또한 EUV 광원 내의 제3 광 요소에 결합되는 제2 액추에이터를 위한 입력을 포함할 수 있고, 제2 액추에이터로의 입력은 제2 액추에이터가 하나 이상의 방향으로 제3 광 요소를 이동시키도록 하기에 충분하다. 제2 광 요소의 활성 영역은 증폭 광빔을 수신하는 반사부를 갖는 미러를 포함하며, 이동시, 반사부는 제1 광 요소에 대하여 증폭 광빔의 위치를 변경시킨다.
제1 온도 분포는 제1 광 요소에 인접하는 요소의 부분의 온도를 포함할 수 있고, 상기 부분의 온도는 적어도 2회의 상이한 시간에 측정된다. 제1 온도 분포는 제1 광 요소에 인접하는 요소의 다수의 부분의 온도를 포함할 수 있다. 다수의 부분의 각각의 온도는 적어도 2회의 상이한 시간에 측정될 수 있다. 제1 온도 분포는 제1 광 요소에 인접하는 요소에 기계적으로 결합되는 열 센서로부터 수신된 온도 측정을 나타내는 데이터를 포함할 수 있다. 제1 온도 분포는 상이한 시간에 측정된 요소의 다수의 온도를 포함할 수 있고, 온도 메트릭은 다수의 온도의 변량(variance), 다수의 온도의 평균, 또는 다수의 온도 중 적어도 둘 사이의 변화율 중 하나 이상을 포함할 수 있다.
제1 광 요소는 증폭 광빔이 통과하는 집속 렌즈일 수 있고, 집속 렌즈에 인접하는 요소는 렌즈 실드(shield)일 수 있다.
제1 온도 분포는 특정 시간에 요소 상의 상이한 위치에서 측정되는 다수의 온도를 포함할 수 있고, 온도 메트릭은 다수의 온도의 공간적 변량을 포함할 수 있다. 제1 온도 분포는 또한 제1 광 요소에 인접하는 요소 상의 상이한 위치에서 측정되는 요소의 다수의 온도를 포함할 수 있다. 온도 메트릭은 또한 제1 광 요소에 인접하는 요소 상의 상이한 위치에서 측정되는 다수의 온도의 공간적 변량을 포함할 수 있다. 온도 메트릭은 제1 광 요소에 인접하는 요소의 측정된 온도의 시간적 변화를 나타내는 값을 포함할 수 있고, 온도 메트릭을 기준 온도 메트릭과 비교하는 단계는 그 값을 임계치와 비교하는 단계를 포함할 수 있다.
또 다른 일반적 측면에서, 시스템은 극자외(EUV) 광원의 증폭 광빔을 수신하는 제1 광 요소에 인접한 요소에 기계적으로 결합하고 상기 요소의 온도를 측정하고, 측정된 온도의 표시를 생성하도록 구성된 열 센서를 포함한다. 이 시스템은 또한 비-일시적 컴퓨터-판독가능 매체에 결합된 하나 이상의 전자 프로세서를 포함하는 제어기를 포함하며, 컴퓨터-판독가능 매체는 하나 이상의 전자 프로세서에 의해 실행되는 명령어를 포함하는 소프트웨어를 저장하며, 이 명령어는, 실행시 하나 이상의 전자 프로세서로 하여금, 측정된 온도의 생성된 표시를 수신하고, 측정된 온도의 생성된 표시에 기초하여 출력 신호를 생성하도록 하며, 출력 신호는 액추에이터가 증폭 광빔을 수신하는 제2 광 요소를 이동시키도록 하고 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하기에 충분하다.
구현예는 하나 이상의 다음의 특징을 포함할 수 있다. 제1 광 요소는 증폭 광빔이 지나가는 렌즈일 수 있고, 이 렌즈에 인접한 요소는 렌즈에 인접한 렌즈 실드일 수 있고, 열 센서는 렌즈 실드에 탑재되도록 구성될 수 있다. 열 센서는 열전대(thermocouple), 서미스터(thermistor), 또는 섬유-기반 열 센서 중 하나 이상을 포함할 수 있다. 제1 광 요소는 전력 증폭기 출력 윈도우, 최종 초점 터닝 미러, 또는 공간적 필터 어퍼처 중 하나일 수 있다. 열 센서는 복수의 열 센서를 포함할 수 있고, 제1 광 요소는 증폭 광빔을 포커싱하는 렌즈의 하류에 있는 하나 이상의 광 요소를 포함할 수 있고, 각각의 하나 이상의 광 요소는 열 센서와 결합할 수 있다. 하나 이상의 광 요소는 미러일 수 있다.
명령어는 또한 액추에이터에 출력 신호를 제공하는 명령어를 포함하고, 액추에이터는 제2 광 요소에 결합되도록 구성될 수 있다. 명령어는 또한 실행시, 제어기로 하여금 열 센서로부터 요소의 측정된 온도의 표시에 기초하는 제1 온도 분포에 액세스하고, 요소와 연관된 온도 메트릭을 결정하기 위하여 액세스된 온도 분포를 분석하고, 결정된 온도 메트릭을 기준 온도 분포와 비교하고, 상기 비교에 기초하여 증폭 광빔의 파라미터에 대한 조정을 결정하도록 하는 명령어를 포함한다.
또 다른 일반적 측면에서, 시스템은 극자외(EUV) 광원의 증폭 광빔을 수신하는 제1 광 요소, 및 제1 광 요소에 인접하며 개별적인 요소를 포함한다. 시스템은 또한 제1 광 요소에 인접한 요소에 결합되는 열 시스템을 포함하고, 열 시스템은 요소의 상이한 부분과 각각 연관되고, 요소의 연관된 부분의 측정된 온도의 표시를 생성하도록 구성되는 하나 이상의 온도 센서, 및 이동시 증폭 광빔의 대응하는 이동을 야기하는 제2 광 요소에 결합된 액추에이션 시스템을 포함한다. 이 시스템은 또한 열 시스템의 출력부와 액추에이션 시스템의 하나 이상의 입력부와 접속되고, 측정된 온도의 생성된 표시에 기초하여 액추에이션 시스템 입력을 위한 출력 신호를 발생하도록 구성되는 제어 시스템을 포함하고, 출력 신호는 액추에이터가 제2 광 요소를 이동시키고 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는데 충분하다.
전술한 임의의 기술의 구현예는 현존하는 EUV 광원 또는 장치를 재조정하기 위한 방법, 공정, 디바이스, 키트를 포함할 수 있다. 하나 이상의 구현예의 자세한 내용이 수반되는 도면과 이하의 발명의 구체적인 내용에서 기재된다. 발명의 구체적인 내용 및 도면, 그리고 청구범위로부터 다른 특징이 명백해질 것이다.
도 1a는 레이저 생성 플라즈마 극자외 광원의 블록 다이아그램이다.
도 1b는 도 1a의 광원에 사용될 수 있는 일례의 구동 레이저 시스템의 블록 다이아그램이다.
도 2a는 도 1a의 광원의 일례의 구현예의 측면도이다.
도 2b는 라인 2B-2B에 따른 도 2a의 렌즈 실드의 전면도이다.
도 3a 및 3b는 시간의 기능으로서 측정된 온도의 실시예이다.
도 4a는 오정렬 증폭 광빔을 갖는 도 2a의 광원의 일례의 구현예의 측면도이다.
도 4b는 도 4a의 최종 초점 렌즈의 전면도이다.
도 5a는 정렬 증폭 광빔을 갖는 도 2a의 광원의 일례의 구현예의 측면도이다.
도 5b는 도 5a의 최종 초점 렌즈의 전면도이다.
도 6은 일례의 빔 전달 시스템을 도시한다.
도 7은 증폭 광빔을 정렬하는 일례의 시스템의 블록 다이아그램이다.
도 8은 증폭 광빔을 정렬하는 일례의 공정이다.
극자외(EUV) 광원을 위한 열 모니터가 개시된다. 열 모니터는, 증폭 광빔을 수신하는 광 요소에 인접하고 광 요소와 별개인 요소의 온도를 결정한다. 증폭 광빔은 타겟 재료 액적의 스트림 쪽으로 다이렉팅되며(directed), 증폭 광빔이 타겟 재료 액적과 상호작용시, 타겟 재료 액적이 플라즈마 상태로 전환되고 EUV 광을 방출한다.
열 모니터는 빔을 반사하거나 굴절시키는 광 요소에 대하여 증폭 광빔의 더 정확한 위치 설정을 제공하여 EUV 광원의 성능을 개선할 수 있다. 증폭 광빔으로 타겟 재료 액적을 조사하여 EUV 광이 발생되기 때문에, 타겟 재료 액적이 통과하는 타겟 위치에 빔이 포커싱되도록 증폭 광빔을 정렬하여 집중된 에너지를 액적에 제공할 수 있고, 그것은 액적이 플라즈마로 전환될 가능성을 많도록 하며, 따라서 발생되는 EUV 광의 양을 증가시키고 EUV 광원의 전체 성능을 향상시킨다. 또한, 증폭 광빔의 정렬 및 품질을 유지하여 광원이 발생시키는 EUV 전력의 안정성을 개선한다. 추가로, 또한 증폭 광빔을 수신하는 요소 상의 공간적 온도 분포 및 강도의 대칭을 모니터링하여 열 드리프트에 의해 도입되는 오차(error)의 보상이 가능하다.
이하 논의되는 것처럼, 증폭 광빔을 수신하는 광 요소(예컨대 렌즈 또는 미러)에 인접하는 요소(예컨대 렌즈 실드)의 온도를 모니터링하여 증폭 광빔의 정렬을 개선할 수 있다. 요소 상에 직접 방사 및 간접 방사는 요소를 가열하여, 요소의 온도의 측정가능한 변화를 발생시킬 수 있다. 요소가 흡수하거나 노출되는 증폭 광빔으로부터의 방사 량은 빔의 정렬의 품질에 달려 있다. 예를 들어, 증폭 광빔이 렌즈에 대하여 양호하게 시준되고(collimated) 정렬된다면, 렌즈 상의 빔의 강도 분포가 공간적으로 및/또는 시간적으로 실질적으로 균일하다. 증폭 광빔이 양호하게 시준되는 경우에, 강도 분포는 대칭적인 형상이며 렌즈와 렌즈에 인접한 요소 상의 중심에 있다. 렌즈 상의 강도 분포가 균일하기 때문에, 렌즈와 렌즈에 인접한 요소의 가열도 역시 균일하다. 추가로, 재료 액적에 반사되는 빔의 강도 분포가 시준되고 균일하다.
반대로, 증폭 광빔이 오정렬되면, 렌즈 상의 증폭 광빔의 강도 분포와 반사된 빔의 강도 분포가 균일하지 않다. 예를 들어, 오정렬되는 경우에, 증폭 광빔은 렌즈를 통해 중심을 벗어나서 통과하고 비대칭 강도 분포를 가지며, 잠재적으로는 렌즈 및/또는 인접한 요소의 특정 부분이 다른 부분보다 더 가열되도록 한다. 비-균일 가열은 렌즈 및/또는 인접한 요소에 열 손상을 초래할 수 있는 국소화된 핫 스팟(hot spot)을 야기할 수 있다. 추가로, 핫 스팟은 렌즈에, 굴절의 인덱스를 변화시키고 광원의 성능을 저하시키기 때문에 렌즈의 촛점 거리를 변화시킬 수 있는, 광학 효과, 예컨대 광 렌징(lensing)을 일으킬 수 있다. 광학 효과는 렌즈의 광학적 성질을 변화시키는 렌즈 상의 효과이다. 또한, 오정렬시, 증폭 광빔이 중심을 벗어나서 미러에 부딪치고 어퍼처나 렌즈에 인접한 비-투과성 요소와 부딪칠 수 있다. 이러한 예시 둘 다에서, 증폭 광빔은 비대칭이 되며, 인접한 요소가 비-균일한 강도 분포를 가지게 될 것이다.
다시 말해서, 증폭 광빔의 부정확한 정렬은 시간적으로 및/또는 공간적으로 비-균일한 렌즈 상의 온도 분포를 초래할 수 있다. 결과적으로, 열전도성 요소 또는 렌즈에 인접한 컴포넌트의 다양한 부분의 온도가 또한 비-균일할 수 있다. 따라서, 인접한 컴포넌트 상의 비-균일한 온도 분포의 측정이 증폭 광빔의 오정렬의 표시일 수 있다. 또한, 인접한 컴포넌트 상의 온도 분포를 특징화하여, 오정렬의 양이 결정되고, 타겟 재료 액적 쪽으로 광의 증폭 빔을 다이렉팅하는 광 요소의 위치를 조정함으로써 증폭 광빔의 오정렬을 조정하거나 교정하도록 사용될 수 있다.
추가로, 인접한 컴포넌트 상의 온도 분포의 특징화는 열 드리프트로 인한 성능 변화의 보상을 가능하게 한다. EUV 광원에서 광 컴포넌트는 가열에 노출된 경우에 크기가 팽창할 수 있다. 예를 들어, 미러 또는 미러를 지지하는 마운트는 급속하게 가열되고 및/또는 오랜 기간 동안 가열되는 것에 반응하여 팽창될 수 있다. 그러한 추가의 가열은 증폭 광빔의 듀티 사이클이 증가되는 경우에 발생할 수 있다. 열 팽창은 미러의 위치의 미세한 변화를 일으키며, 드리프트의 포인팅을 야기하며, 이것은 미러로부터 반사된 광이 움직이는 방향의 변경이다. 드리프트의 포인팅으로 인하여 증폭 광빔이 미러로부터 하류에 있는 광 요소의 중심에 있지 않게 된다. 드리프트의 포인팅은 하류에 있는 광 요소 상의 비대칭 강도 분포를 일으킨다.
이하 기재될 열 모니터는 또한 증폭 광빔이 광 요소 상에 비대칭으로 위치 설정되는지 여부를 결정하여 드리프트의 포인팅을 보상하고, 빔이 비대칭으로 위치 설정되면 빔이 대칭적 강도 분포를 가지고 광 요소 상의 중심에 있도록 증폭 광빔의 위치를 재설정하는데 사용될 수 있다.
이처럼, 이하 기재될 열 모니터링 기술은 증폭 광빔의 정렬을 개선하고 열 드리프트를 보상함으로써 EUV 광원의 성능을 개선할 수 있다. 열 모니터를 좀 더 상세히 설명하기 전에 EUV 광원에 대하여 설명한다.
도 1a를 참조하면, LPP EUV 광원(100)은 타겟 혼합물(114)을 향하여 빔 경로를 따라 움직이는 증폭 광빔(110)으로 타겟 혼합물(114)의 타겟 위치(105)에 조사하여 형성된다. 조사 사이트로도 지칭되는 타겟 위치(105)는 진공 챔버(130)의 내부(107) 내에 있다. 증폭 광빔(110)이 타겟 혼합물(114)에 부딪칠 때, 타겟 혼합물(114) 내의 타겟 재료는 EUV 범위 내의 방출선을 갖는 원소를 포함하는 플라즈마 상태로 전환된다. 생성된 플라즈마는 타겟 혼합물(114) 내의 타겟 재료의 조성에 따르는 특정한 특징을 갖는다. 이러한 특징은 플라즈마에 의해 발생된 EUV 광의 파장 및 플라즈마로부터 방출된 부스러기(debris)의 유형과 양을 포함할 수 있다.
광원(100)은 또한 액상 액적, 액상 스트림, 고상 입자 또는 클러스터, 액상 액적 내에 함유된 고상 입자나 액상 스트림 내에 함유된 고상 입자의 형태인 타겟 혼합물(114)을 전달하고, 제어하고, 다이렉팅하는 타겟 재료 전달 시스템(125)을 포함한다. 타겟 혼합물(114)은, 플라즈마 상태로 전환시, EUV 범위 내의 방출선을 갖는 타겟 재료, 예컨대 물, 주석, 리튬, 크세논, 또는 임의의 재료를 포함한다. 예를 들어, 원소 주석은 순수 주석(Sn)으로서; 주석 화합물, 예컨대 SnBr4, SnBr2, SnH4으로서; 주석 합금, 예컨대 주석-갈륨 합금, 주석-인듐 합금, 주석-인듐-갈륨 합금, 또는 이 합금들의 임의의 조합으로서 사용될 수 있다. 타겟 혼합물(114)은 또한 비-타겟 입자와 같은 불순물을 포함할 수 있다. 따라서, 불순물이 없는 경우에, 타겟 혼합물(114)은 타겟 재료로만 이루어진다. 타겟 혼합물(114)이 타겟 재료 전달 시스템(125)에 의해 챔버(130)의 내부(107)에 전달되고 타겟 위치(105)로 전달된다.
광원(100)은 레이저 시스템(115)의 이득 매질이나 매질 내의 밀도 반전(population inversion)으로 인해 증폭 광빔(110)을 발생하는 구동 레이저 시스템(115)을 포함한다. 광원(100)은 레이저 시스템(115)과 타겟 위치(105) 사이에 빔 전달 시스템을 포함하며, 빔 전달 시스템은 빔 수송 시스템(120)와 포커스 조립체(122)를 포함한다. 빔 수송 시스템(120)은 레이저 시스템(115)으로부터 증폭 광빔(110)을 수신하고, 필요한 대로 증폭 광빔(110)을 조향하고(steer) 변경하며, 포커스 조립체(122)로 증폭 광빔(110)을 출력한다. 포커스 조립체(122)는 증폭 광빔(110)을 수신하고, 타겟 위치(105)에 빔(110)을 포커싱한다.
일부 구현예에서, 레이저 시스템(115)은 하나 이상의 메인 펄스, 일부 경우에는 하나 이상의 사전-펄스를 제공하기 위해 하나 이상의 광학 증폭기, 레이저, 및/또는 램프를 포함할 수 있다. 각 광학 증폭기는 높은 이득에서 원하는 파장을 광학적으로 증폭시킬 수 있는 이득 매질, 여기 소스(excitation source) 및 내부 광학 기기를 포함한다. 광학 증폭기는 레이저 미러 또는 레이저 캐비티를 형성하는 다른 피드백 디바이스를 가지거나 가지지 않을 수도 있다. 따라서, 레이저 시스템(115)은 레이저 캐비티가 없다 할지라도 레이저 증폭기의 이득 매질 내의 밀도 반전으로 인해 증폭 광빔(110)을 발생한다. 게다가, 레이저 시스템(115)은 레이저 시스템(115)으로 충분한 피드백을 제공하기 위하여 레이저 캐비티가 존재한다면 코히런트 레이저 빔인 증폭 광빔(110)을 발생시킬 수 있다. 용어 "증폭 광빔"은, 증폭될 뿐이나 코히런트 레이저 진동은 필수적으로 아닌 레이저 시스템(115)으로부터의 광 및 증폭되며 또한 코히런트 레이저 진동인 레이저 시스템(115)으로부터의 광 중 하나 이상을 포함한다.
레이저 시스템(115) 내의 광학 증폭기는 이득 매질로서 CO2 를 포함하는 충진 가스를 포함할 수 있고, 약 9100 내지 약 11000 nm 사이의 파장에서, 특히 약 10600 nm 에서, 1000 이상의 이득으로, 광을 증폭할 수 있다. 레이저 시스템(115)에 사용되는 적합한 증폭기 및 레이저는 펄스식 레이저 디바이스, 예컨대, 약 9300 nm 또는 약 10600 nm 에서, 예를 들어 DC 또는 RF 여기로, 방사를 발생하고, 비교적 고 전력, 예컨대 10kW 이상 및 고 펄스 반복률, 예컨대 50kHz 이상에서 작동하는 펄스식, 가스-방전 CO2 레이저 디바이스를 포함할 수 있다. 레이저 시스템(115) 내의 광학 증폭기는 또한 더 높은 전력에서 레이저 시스템(115)을 작동할 때 사용될 수 있는 물과 같은 냉각 시스템을 포함할 수 있다.
도 1b는 일례의 구동 레이저 시스템(180)의 블록 다이아그램을 도시한다. 구동 레이저 시스템(180)은 광원(100) 내의 구동 레이저 시스템(115)으로 사용될 수 있다. 구동 레이저 시스템(180)은 3개의 전력 증폭기(181, 182, 및 183)를 포함한다. 임의의 또는 모든 전력 증폭기(181, 182, 및 183)가 내부 광 요소(미도시)를 포함할 수 있다.
광(184)은 출력 윈도우(185)를 통해 전력 증폭기(181)로부터 나오며, 커브식 미러(186)에서 반사된다. 반사 이후에, 광(184)은 공간적 필터(187)를 통해 통과하고, 커브식 미러(188)에서 반사되고, 입력 윈도우(189)를 통해 전력 증폭기(182)로 들어간다. 광(184)은 전력 증폭기(182)에서 증폭되고 출력 윈도우(190)를 통하여 광(191)으로서 전력 증폭기(182)의 외부로 리다이렉팅된다(redirected). 광(191)은 접이식 미러(192)를 구비하여 증폭기(183) 쪽으로 다이렉팅되며, 입력 윈도우(193)를 통하여 증폭기(183)에 들어간다. 증폭기(183)는 광(191)을 증폭하고, 광(191)을 출력 윈도우(194)를 통하여 출력 빔(195)으로서 증폭기(193)의 외부로 다이렉팅한다. 접이식 미러(196)는 출력 빔(195)을 빔 수송 시스템(120)을 향하여 위쪽으로(페이지의 밖으로) 다이렉팅한다.
공간적 필터(187)는 어퍼처(197)를 형성하며, 이 어퍼처는 예컨대 약 2.2 mm 내지 3 mm의 직경을 갖는 원형일 수 있다. 커브식 미러(186 및 188)는, 예컨대 각각 약 1.7 m 및 2.3 m의 초점 거리를 각각 갖는 오프-액시스 포물선 미러일 수 있다. 어퍼처(197)가 구동 레이저 시스템(180)의 초점과 일치하도록 공간적 필터(187)의 위치가 설정될 수 있다.
도 1a를 참조하면, 광원(100)은 증폭 광빔(110)이 통과하여 지나고 타겟 위치(105)에 도달하도록 하는 어퍼처(140)를 구비한 집광 미러(135)를 포함한다. 집광 미러(135)는, 예컨대 타겟 위치(105)에 1차적 초점을 갖고 중간 위치(145)에 부차적 초점(중간 초점이라고도 함)을 갖는 타원체 미러일 수 있고, 이 때 EUV 광은 광원(100)으로부터 출력될 수 있고, 예컨대 집적 회로 리소그래피 툴(미도시)로 입력될 수 있다. 광원(100)은 또한 증폭 광빔(110)가 타겟 위치(105)에 도달하도록 하면서, 포커스 조립체(122) 및/또는 빔 수송 시스템(120)에 들어가는 플라스마-생성 부스러기의 양을 감소하기 위해 집광 미러(135)로부터 타겟 위치(105) 쪽으로 테이퍼링되는 개방-단부식, 중공 원추형 쉬라우드(150)(예컨대, 가스 콘)를 포함할 수 있다. 이러한 목적으로, 가스 흐름이, 타겟 위치(105)를 향하여 다이렉팅되는 쉬라우드에 제공될 수 있다.
광원(100)은 액적 위치 검출 피드백 시스템(156), 레이저 제어 시스템(157), 및 빔 제어 시스템(158)에 접속되는 마스터 제어기(155)를 포함할 수 있다. 광원(100)은, 예컨대 타겟 위치(105)에 대하여 액적의 위치를 나타내는 출력을 제공하고, 이 출력을 액적 위치 검출 피드백 시스템(156)에 제공하는 하나 이상의 타겟 또는 액적 이미저(160)를 포함할 수 있으며, 액적 위치 검출 피드백 시스템은, 예컨대 액적 위치, 및 액적 위치 오차가 액적 단위(basis)에 의한 액적으로 또는 평균으로 계산될 수 있는 궤적(trajectory)를 계산할 수 있다. 따라서, 액적 위치 검출 피드백 시스템(156)은 마스터 제어기(155)로의 입력으로서 액적 위치 오차를 제공한다. 따라서, 마스터 제어기(155)는 레이저 위치, 방향 및 타이밍 교정 신호를, 예컨대 레이저 타이밍 회로를 제어하도록 사용될 수 있는 레이저 제어 시스템(157)으로, 및/또는 챔버(130) 내의 빔 촛점의 위치 및/또는 초점력을 변경하기 위하여 증폭 광빔 위치와 빔 수송 시스템(120)의 형상을 제어하기 위해 빔 제어 시스템(158)으로 제공한다.
타겟 재료 전달 시스템(125)는, 예컨대 원하는 타겟 위치(105)에 도달하는 액적의 오차를 보정하기 위하여 타겟 재료 공급 장치(127)에 의해 방출되도록 액적의 방출 포인트를 변경하기 위하여, 마스터 제어기(155)로부터 신호에 응답하여 작동가능한 타겟 재료 전달 제어 시스템(126)을 포함한다.
추가로, 광원(100)은, 이에 한정되는 것은 아니나, 펄스 에너지, 파장의 기능으로서의 에너지 분포, 파장의 특정 대역 내의 에너지, 파장의 특정 대역 외부의 에너지, 및 EUV 강도의 각 분포 및/또는 평균 전력을 포함하는, 하나 이상의 EUV 광 파라미터를 측정하는 광원 검출기(165)를 포함할 수 있다. 광원 검출기(165)는 마스터 제어기(155)에 의해 사용되기 위한 피드백 신호를 생성한다. 피드백 신호는, 예컨대 적절한 장소에 있는 액적 및 효율적이고 효과적인 EUV 광 발생을 위한 시간을 적절히 인터셉트하도록(intercept) 레이저 펄스의 시간 및 초점과 같은 파라미터의 오차를 나타낼 수 있다.
광원(100)은 또한 광원(100)의 다양한 섹션을 정렬하거나 증폭 광빔(110)을 타겟 위치(105)로 조향하는데 도움이 되도록 사용될 수 있는 가이드 레이저(175)를 포함할 수 있다. 가이드 레이저(175)에 관련하여, 광원(100)은 가이드 레이저(175)로부터 광의 부분 및 증폭 광빔(110)을 샘플링하도록 포커스 조립체(122) 내에 위치하는 계측 시스템(124)을 포함한다. 다른 구현예에서, 계측 시스템(124)이 빔 수송 시스템(120) 내에 위치한다. 계측 시스템(124)은 광의 서브세트를 샘플링하거나 리다이렉팅하는 광 요소를 포함하며, 그러한 광 요소는 증폭 광빔(110)과 가이드 레이저 빔의 전력을 견딜 수 있는 임의의 재료로 이루어진다. 마스터 제어기(155)가 가이드 레이저(175)로부터 샘플링된 광을 분석하고 빔 제어 시스템(158)을 통하는 포커스 조립체(122) 내의 컴포넌트를 조정하도록 정보를 사용하기 때문에, 빔 분석 시스템은 계측 시스템(124) 및 마스터 제어기(155)로부터 형성된다.
따라서, 요약하면, 광원(100)은 타겟 혼합물(114)의 타겟 위치(105)에 조사하도록 빔 경로에 따라 다이렉팅되는 증폭 광빔(110)을 발생하여, 혼합물(114) 내의 타겟 재료를 EUV 범위 내의 광을 방출하는 플라즈마로 전환시킨다. 증폭 광빔(110)은 레이저 시스템(115)의 설계 및 특성에 기초하여 결정되는 특정 파장(소스 파장으로도 지칭됨)에서 작동된다. 추가로, 코히런트 레이저 광을 발생하도록 타겟 재료가 충분한 피드백을 레이저 시스템(115)에 되돌려 제공하는 경우에 또는 구동 레이저 시스템(115)이 레이저 캐비티를 형성하기에 적합한 광학 피드백을 포함한다면, 증폭 광빔(110)이 레이저 빔일 수 있다.
도 2a를 참조하면, 광원(100)은 일 구현예에서, 구동 레이저 시스템(115)과 타겟 위치(105) 사이에 위치되는 최종 포커스 조립체(210)와 빔 수송 시스템(240)을 포함한다. 최종 포커스 조립체(210)는 증폭 광빔(110)을 진공 용기(130) 내의 타겟 위치(105)에 포커싱한다. 구동 레이저 시스템(115)은 빔 수송 시스템(240)에 의해 수신되는, 증폭 광빔(110)을 생성한다. 빔 수송 시스템(240)을 통해 통과한 이후에, 증폭 광빔(110)은 최종 포커스 조립체(210)에 도달한다. 최종 포커스 조립체(210)는 증폭 광빔(110)을 포커싱하고, 진공 용기(130)로 빔을 다이렉팅한다.
전술한 것처럼, 광원(100)이 작동되는 동안에 증폭 광빔(110)의 정렬이 능동적으로 조정될 수 있다. 특히, 비-균일한 온도 분포가 렌즈 홀더(212) 상에 존재한다는 결정에 응답하여, 마스터 제어기(155)가 최종 포커스 조립체(210) 및/또는 빔 수송 시스템(240) 내의 조향 요소를 이동시키고 및/또는 위치 재설정함으로써 제어한다. 조향 요소를 이동시키고 및/또는 위치 재설정함으로써, 증폭 광빔(110)의 위치가 조정되도록 조정할 수 있으며, 이로써 증폭 광빔(110)이 EUV 광의 발생을 최대화하도록 정렬된다. 조향 요소는 증폭 광빔(110)의 위치 및/또는 방향에 영향을 미칠 수 있는 광원(100) 내의 임의의 요소일 수 있다.
빔 수송 시스템(240) 조향 모듈(242)을 포함한다. 조향 모듈(242)는, 위치 설정되거나 이동시, 증폭 광빔(110)의 위치의 대응하는 변화를 야기하는, 하나 이상의 광 컴포넌트(예컨대 미러)를 포함한다. 마스터 제어기(155)는, 예컨대 컴포넌트로 하여금 위치를 이동시키거나 변경시키도록 하도록 신호를 광 컴포넌트에 제공함으로써, 조향 모듈(242)의 광 컴포넌트를 제어한다. 조향 모듈(242) 내의 광 컴포넌트의 예는 도 6을 참조하여 이하 기재된다. 마스터 제어기(155)와 조향 모듈(242)의 광 요소 사이의 상호작용이 도 7 및 8을 참조하여 이하 기재된다.
최종 포커스 조립체(210)는 조향 미러(214), 렌즈 홀더(212), 최종 포커스 렌즈(218), 지지 브라켓(220), 및 위치설정 액추에이터(221)를 포함한다. 조향 미러(214)는 빔 수송 시스템(240)으로부터 빔(110)을 수신하고, 빔(110)을 타겟 위치(105)에 포커싱하는 최종 포커스 렌즈(218)를 향하여 빔(110)을 반사시킨다. 포커싱된 빔(110)과 액적 사이의 상호작용으로 EUV 광의 생성을 일으키고, 빔(110)의 적절한 정렬을 유지하는 것은 타겟 위치(105)에 초점을 유지하는데 도움이 되고, 빔(110)의 위치와 품질을 모니터링하고 상기 모니터링에 응답하여 빔(110)의 위치를 재설정하는 것은 광원(100)의 성능을 개선시킬 수 있기 때문이다.
렌즈 홀더(212)가 렌즈(218)를 둘러싸고, 렌즈 홀더(212)의 온도는 렌즈(218)의 표면 상의 온도에 비례한다. 도 2b는 도 2a의 라인 2B-2B에 따르는, 렌즈 홀더(212)의 일례의 구현예의 전면도를 도시한다. 도 2a 및 2b의 실시예에서, 렌즈 홀더(212)는 렌즈(218)로부터 밖으로 향하여 연장되는 히트 실드이다. 렌즈 홀더(212)의 상이한 부분들의 운도가 온도 센서(228A, 228B, 228C, 및 228D)에 의해 측정된다. 온도 센서(228A, 228B, 228C, 및 228D)는 렌즈 홀더(212)의 둘레(234)를 따라서 서로 대략 동등하게 이격된다. 온도 센서(228A-228D)는 렌즈 홀더(212)의 내면(237) 및/또는 외면(238) 상에 위치될 수 있다. 센서(228A-228D)가 렌즈 홀더(212)의 외부 둘레를 따라 위치하는 것으로 도시된다 할지라도, 이것이 꼭 필수적인 것은 아니다. 센서(228A-228D)는 렌즈 홀더(212)의 내면(237) 및/또는 외면(238) 상의 어디든지 위치할 수 있다.
센서(228A-D) 중 임의의 하나의 센서에 의해 측정된 온도는 특정 온도 센서에 가장 근접한 렌즈(218)의 부분의 온도에 비례한다. 예를 들어, 온도 센서(228A)에 의해 측정된 온도는 렌즈(218)의 부분(235) 상의 온도를 나타낸다. 유사하게, 온도 센서(228B)에 의해 측정된 온도는 렌즈(218)의 부분(236) 상의 온도를 각각 나타낸다.
빔 수송 시스템(240)과 같이, 최종 포커스 조립체(210)는 빔(110)을 조향하는 광 요소를 포함하고, 오정렬을 교정하도록 조정될 수 있다. 예를 들어, 최종 포커스 조립체(210)는 조향 미러(214)를 포함한다. 조향 미러(214)는 증폭 광빔(110)을 반사시키는 반사부(215)를 구비하는 홀더(217), 및 마스터 제어기(155)로부터 커맨드 신호의 수신에 응답하여 홀더(217) 및/또는 반사부(215)를 두 방향인 "X" 및 "Y" 중 어느 하나 또는 둘 다로 이동시키는 액추에이터(216)를 포함한다. 따라서, 조향 미러(214)는 증폭 광빔(110)을 최종 포커스 렌즈(218)의 특정 부분으로 다이렉팅할 수 있다. 이것은 광 빔(110)이 타겟 위치(105)에 포커싱되는 것을 보장하는데 도움이 된다. 최종 포커스 조립체(210)는 또한 빔(110)의 초점의 위치를 더 조정하기 위하여 렌즈(218)를 방향 "X"를 따라 움직이게 하는 위치설정 액추에이터(221)를 포함한다.
증폭 광빔(110)은 최종 포커스 조립체(210)로부터 진공 용기(130)로 지나간다. 증폭 광빔(110)은 집광 미러(135) 내의 어퍼처(140)를 통해 통과하여 타겟 위치(105) 쪽으로 전파된다. 증폭 광빔(110)은 EUV 광을 발생하도록 타겟 혼합물(114) 내의 액적과 상호작용한다. 진공 용기(130)는 EUV 모니터링 모듈(241)에 의해 모니터링된다. EUV 모니터링 모듈(241)은 도 1a에서 논의한 광원 검출기(165)를 포함할 수 있다. EUV 모니터링 모듈(241)의 출력이 마스터 제어기(155)에 제공되고, 또한 발생된 EUV 광의 양을 모니터링하도록 사용될 수 있다. 예를 들어, EUV 모니터링 모듈(241)의 출력은 조향 모듈(242) 내의 컴포넌트를 조정하고 및/또는 타겟 위치(105)에서 발생되는 EUV 광의 양을 최대화하기 위하여 사용될 수 있다.
도 3a 및 3b는 최종 포커스 렌즈 실드의 표면에 결합되는 4개의 열전대에 의해 측정되는 것처럼 시간의 함수로서의 온도를 도시한다. 최종 포커스 렌즈 실드는 전술한 렌즈 홀더(212)와 유사할 수 있다. 열전대는 센서(228A-228D)와 유사한 방식으로 렌즈 실드 상에 위치할 수 있다(도 2a 및 2d). 도 3a 및 3b에서, 시계열(time serie)(302, 304, 306, 및 308)은 각각 시간에 걸쳐 특정 열전대에 의해 측정된 온도를 나타낸다.
도 3a는 광원(100)이 비교적 불안정한 양의 EUV 전력을 발생하고 있었던 경우에 수집된 데이터에 기반하는 실시예를 도시하며, 도 3b는 광원(100)이 비교적 안정되는 (또는 지속적인) 양의 EUV 전력을 발생하고 있었던 경우에 수집된 데이터에 기반하는 실시예이다. 최종 포커스 렌즈 실드는 도 2b의 렌즈 홀더(212)와 유사하다.
실시예에서, 광원(100)은 900 Hz 버스트 레이트에서 미니-버스트 모드로 작동한다. 도 3a를 도 3b와 비교하면, 최종 포커스 렌즈 실드의 온도는, 광원(100)이 비교적 불안정한 EUV 전력을 발생하는 경우보다 광원(100)이 안정한 EUV 전력을 발생하는 경우(도 3b)의 시간에 걸쳐 비교적 더 일정하다. 예를 들어, 도 3b는 심지어 광원(100)이 비교적 안정한 EUV 전력을 발생하는 경우라도, 특정 시간에 4개의 열전대 가운데 약 1-2 섭씨온도 및 약 2-4 섭씨온도의 온도 편차(deviation)가 발생할 수 있음을 보여준다. 반대로, 도 3a는 시간에 걸쳐 특정 열전대에 의해 측정된 온도에서, 그리고 특정 시간에 모든 열전대에 의해 측정된 온도에서 더 큰 변이(variation)를 보여준다. 이로써, 시간에 걸쳐 렌즈 실드 상의 다양한 위치에서 온도를 측정함으로써, 그리고 히트 실드 상에서 측정된 온도 분포가 시간 및/또는 공간에서 비교적 지속적으로 될 때까지 빔을 조정함으로써, 광원(100)에 의해 생성된 EUV 전력의 안정성 및 양이 개선될 수 있다.
도 4a-5b를 참조하면, 도 4a는 빔(110)이 오정렬된 최종 포커스 렌즈 조립체(210)의 측면도이며, 도 4b는 도 4a의 라인 4B-4B를 따르는 최종 포커스 렌즈(218)와 빔(110)의 전면도이다. 도 5a는 빔(110)이 적절히 정렬된 최종 포커스 렌즈 조립체(210)의 측면도이다. 도 5b는 도 5a의 라인 5B-5B를 따르는 최종 포커스 렌즈(218)의 전면도이다.
도 4a 및 4b의 실시예에서, 빔(110)은 오정렬되어, 렌즈(218)의 중심(244)으로부터 떨어진 위치(243)에서 최종 포커스 렌즈(218)를 통해 통과한다. 이 결과로, 온도 센서(228A)에 근접한 렌즈(218)의 부분이 렌즈(218)의 다른 부분보다 더 따뜻하며, 센서(228A)는 센서(228B, 228C, 및 228D)에 비하여 더 높은 온도 판독을 발생한다. 또한, 빔(110)이 렌즈(218)의 중심(244)을 통해 통과하지 않기 때문에, 빔(110)이 타겟 위치(105)에 초점이 맞추어지지 않는다. 결과적으로, 타겟 혼합물(114)의 액적이 플라즈마로 쉽게 전환되지 않아서, EUV 광이 미세하게 생성되거나 생성되지 않는다.
센서(228A-228D)로부터의 온도 판독이 마스터 제어기(155)에 제공된다. 마스터 제어기(155)는 온도 판독을 비교하여 예컨대 중심(244)에 대하여 또는 공간 좌표로 빔(110)의 위치를 결정한다. 마스터 제어기(155)는 반사부(215)로 하여금 빔(110)을 렌즈(218)의 중심(244)으로 이동시키기 위해 위치를 변경하도록 하기에 충분한 조향 미러(214)로 신호를 제공한다.
도 5a 및 5b에서, 조향 미러(214)는 빔(110)을 렌즈(218)의 중심(244)으로 이동시키기 위해 방향 "A" 및 "B"로 이동한다. 액추에이터(221)는 또한 빔(110)을 포커싱하도록 방향 "Z"로 렌즈(218)를 이동시킨다. 조정의 결과로서, 빔(110)이 렌즈(218) 상에 대칭이 되며, 각각의 온도 센서(228A-228D)는 대략 동일한 온도를 측정한다. 빔(110)은 타겟 위치(105)에 초점을 맞추며, 타겟 혼합물(114)의 액적에 조사된다. 액적은 플라스마로 전환되고 EUV 광이 방출된다.
따라서, 도 4a 및 4b의 실시예와 비교하면, 빔(110)을 조향 미러(214)로 위치설정하여 빔(110)이 렌즈(218)의 중심(244)를 통해 통과함으로써, 생성되는 EUV 광의 양이 증가된다. 추가로, EUV 광의 양의 안정성이 또한 개선될 수 있고, 이는 렌즈(218)에 대하여 빔(110)의 정렬을 모니터링함으로써, 빔(110)이 타겟 위치(105)에 더 일정하게 포커싱될 수 있어서 비교적 일정한 양의 EUV 광을 발생할 수 있기 때문이다.
도 6을 참조하면, 일례의 빔 전달 시스템(600)은 구동 레이저 시스템(600)과 타겟 위치(610) 사이에 위치한다. 빔 전달 시스템(600)은 빔 수송 시스템(615)과 포커스 조립체(620)를 포함한다. 빔 수송 시스템(615)은 빔 수송 시스템(240)으로 사용될 수 있고, 포커스 조립체(620)은 최종 포커스 조립체(210)로 사용될 수 있다.
빔 수송 시스템(615)은 구동 레이저 시스템(600)에 의해 발생된 증폭 광빔(625)을 수신하고, 증폭 광빔(625)을 리다이렉팅하고 연장시키며, 그 후 연장되고 리다이렉팅된 증폭 광빔(625)을 포커스 조립체(620) 쪽으로 다이렉팅시킨다. 포커스 조립체(620)는 증폭 광빔(625)을 타겟 위치(610)에 포커싱한다.
빔 수송 시스템(615)은 광 컴포넌트, 예컨대 미러(630, 632) 및 증폭 광빔(625)의 방향을 변경시키는 다른 빔 다이렉팅 광학 기기(634)를 포함한다. 광 컴포넌트(630, 632, 634, 및 638)는 빔 수송 시스템(240)의 조향 모듈(242) 내에 포함될 수 있다(도 2a).
빔 수송 시스템(615)은 또한, 빔 연장 시스템(640)을 나오는 증폭 광빔(625)의 횡방향 크기가 빔 연장 시스템(640)을 들어오는 증폭 광빔(625)의 횡방향 크기보다 크도록, 증폭 광빔(625)을 연장시키는 빔 연장 시스템(640)을 포함한다. 빔 연장 시스템(640)은 타원 포물면(이러한 미러는 오프-액시스 포물면 미러라고도 함)의 오프-액시스 세그먼트인 반사면을 갖는 커브식 미러를 포함할 수 있다. 빔 연장 시스템(640)은 증폭 광빔(625)을 리다이렉팅하고 연장하거나 시준하도록 선택되는 다른 광 컴포넌트를 포함할 수 있다. 다양한 설계의 빔 연장 시스템(640)이 명칭이 "극자외 광원을 위한 빔 수송 시스템"인 미국특허출원 제12/638,092호에 기재되며, 그 내용은 본 명세서에 참조로 원용된다.
도 6에서, 포커스 조립체(620)는, 타겟 위치(610)에 미러(650)로부터 반사되는 증폭 광빔(625)을 포커싱하도록 구성되고 배열되는 집속 렌즈(655)를 포함하는 포커싱 요소 및 미러(650)를 포함한다. 집속 렌즈(655)는 포커스 렌즈(218)일 수 있고, 미러(650)는 도 2a에 대하여 기재된 실시예에서 조향 미러(214)일 수 있다.
그러므로, 빔 수송 시스템(615)에서 미러(630, 632, 638) 중 적어도 하나와 빔 다이렉팅 광학 기기(634) 내의 컴포넌트, 및 포커스 조립체(620)에서 미러(650)가, 타겟 위치(610)로 증폭 광빔(625)의 능동적인 포인팅 제어를 제공하기 위하여 마스터 제어기(155)에 의해 제어될 수 있는 모터를 포함하는 액추에이션 시스템에 의해 작동하는 이동가능 마운트의 사용으로 이동이 가능하다. 이동가능 미러와 빔 다이렉팅 광학 기기는 렌즈(655) 상에 증폭 광빔(625)의 위치 및 타겟 재료에 증폭 광빔(625)의 초점을 유지하도록 조정될 수 있다.
집속 렌즈(655)는 구면 렌즈에 발생하는 구면 수차 및 다른 광 수차를 감소하도록 비구면 렌즈일 수 있다. 집속 렌즈(655)는 챔버의 벽부 상의 윈도우로서 탑재될 수 있고, 챔버의 내부에 탑재될 수 있고, 또는 챔버의 외부에 탑재될 수 있다. 렌즈(655)는 이동가능하며, 따라서 시스템 작동 동안 능동적인 포커스 제어를 위한 메커니즘을 제공하도록 하나 이상의 액추에이터에 탑재될 수 있다. 이 방법으로, 렌즈(655)는 증폭 광빔(625)을 더 효과적으로 수집하고 EUV 발생량을 증가시키거나 최대화하도록 광빔(625)를 타겟 위치로 다이렉팅하기 위해 이동할 수 있다. 렌즈(655)의 변위량 및 변위 방향이 전술한 온도 센서(228A-228D), 또는 이하 기재할 열 센서(710)에 의해 제공되는 피드백에 기초하여 결정된다.
집속 렌즈(655)는, 증폭 광빔(625)의 대부분을 포획하기에 충분히 크고 증폭 광빔(625)을 타겟 위치로 포커싱하기에 충분한 곡률을 제공하는 직경을 가진다. 일부 구현예에서, 집속 렌즈(655)는 적어도 0.25의 수치 어퍼처를 가질 수 있다. 일부 구현예에서, 집속 렌즈(655)는 적외선 응용에 이용될 수 있는 재료인, ZnSe로 이루어진다. ZnSe는 0.6 내지 20 ㎛의 전송 범위를 가지며, 고 전력 증폭기로부터 발생되는 고 전력 광빔을 위해 사용될 수 있다. ZnSe는 전자기 스펙트럼의 적색(특히, 적외선) 단에서 낮은 열흡수를 가진다. 집속 렌즈를 위해 사용될 수 있는 다른 재료는, 이에 제한되는 것은 아니나, 갈륨 비소(GaAs) 및 금강석을 포함한다. 게다가, 집속 렌즈(655)는 반사-방지 코팅을 포함하고, 증폭 광빔(625)의 파장에서 증폭 광빔(625)의 적어도 95%를 전송할 수 있다.
포커스 조립체(620)는 또한 렌즈(655)로부터 반사되는 광(665)을 포획하는 계측 시스템(660)을 포함할 수 있다. 이 포획된 광은 증폭 광빔(625) 및 가이드 레이저(175)로부터의 광의 특성을 분석하여, 예컨대 증폭 광빔(625)의 위치를 결정하고, 증폭 광빔(625)의 초점거리의 변경을 모니터링하도록 사용될 수 있다.
빔 전달 시스템(600)은 또한 빔 전달 시스템(600)의 하나 이상의 컴포넌트(예컨대 미러(630, 632), 빔 다이렉팅 광학 기기(634), 빔 연장 시스템(640) 내의 컴포넌트 및 사전-렌즈 미러(650))의 위치 및 각도나 포지션을 정렬하기 위하여 설정 동안 사용되는 정렬 레이저(670)를 포함할 수 있다. 정렬 레이저(670)는 컴포넌트의 시각적 정렬을 조력하도록 가시 스펙트럼 내에서 작동하는 다이오드 레이저일 수 있다.
빔 전달 시스템(600)은 또한 검출 디바이스(675), 예컨대 타겟 위치(610)에서 타겟 혼합물(114)의 액적으로부터 반사되는 광을 모니터링하는 카메라를 포함할 수 있고, 그러한 광은 검출 디바이스(675)에서 검출될 수 있는 진단 빔(680)을 형성하는 구동 레이저 시스템(600)의 전면으로부터 반사된다. 검출 디바이스(675)는 마스터 제어기(155)에 접속될 수 있다.
도 7을 참조하면, EUV 광원 내의 증폭 광빔 (또는 구동 레이저)을 정렬하는, 일례의 시스템(700)의 블록 다이아그램을 도시한다. 시스템(700)은 모니터링되는 요소(monitored element)(720)와 그리고 제어기(730)와 통신하는 열 센서(710)를 포함한다. 제어기(730)는 또한 액추에이션 시스템(740)과 통신한다. 액추에이션 시스템(740)은 조향 요소(750)와 결합되고 통신한다.
시스템(700)은 구동 레이저(미도시)를 정렬할 수 있고, 시스템(700)은 모니터링되는 요소(720)의 온도를 모니터링하여 사용된다. 온도는 제어기(730)에 제공되고, 제어기(730)는, 모니터링되는 요소(720)의 온도가 대략 균일할 때까지 조향 요소(750)로 하여금 구동 레이저 빔의 위치를 재설정하도록 하기에 충분한 액추에이션 시스템(740)로 신호(731)를 제공한다. 구동 레이저 빔은 모니터링되는 요소(720)의 온도가 시간적 및/또는 공간적으로 대략 일정한 경우에 정렬될 수 있다. 따라서, 시스템(700)은 구동 레이저 빔의 능동적 정렬을 제공하도록 고려될 수 있다.
열 센서가 모니터링되는 요소(720) 상에, 모니터링되는 요소(720)에 접촉하여, 또는 모니터링되는 요소(720)에 근접하게 설치되는 경우에, 열 센서(710)는 모니터링되는 요소(720)의 온도의 표시를 발생하는 임의의 유형의 센서일 수 있다. 예를 들어, 열 센서(710)는 열전대, 섬유-기반 열 센서, 또는 서미스터 중 하나 이상일 수 있다. 열 센서(710)는 하나 이상의 열 센서를 포함할 수 있고, 다수의 열 센서는 모두 동일한 유형이거나, 상이한 유형의 열 센서의 집합일 수 있다.
열 센서(710)는 감지 메커니즘(712), 입력/출력(I/O) 인터페이스(716), 및 전력 모듈(718)을 포함한다. 감지 메커니즘(712)은 열을 감지하고 신호 또는 감지된 열의 양에 대한 다른 표시를 발생할 수 있는 능동적 또는 수동적 요소이다. I/O 인터페이스(716)는 신호 또는 감지된 열의 다른 표시가 열 센서(710)에 액세스되고 및/또는 열 센서(710)로부터 제거되도록 한다. I/O 인터페이스(716)는 또한, 감지 메커니즘(712)에 의해 발생된 신호를 액세스하기 위하여, 시스템(700)의 사용자가 예컨대 원격 컴퓨터를 통하여 열 센서(710)와 통신하도록 한다. 열 센서(710)는 또한 열 센서(710)를 모니터링되는 요소(720)의 표면이나 다른 부분에 연결시키는 커플링(714)을 포함할 수 있다. 커플링(714)은 모니터링되는 요소(720)에 열 센서(710)를 물리적으로 연결시키는 기계적 커플링일 수 있다. 커플링(714)은, 열 센서(710)를 모니터링되는 요소(720)에 물리적으로 연결시키지 않고도, 열 센서(710)가 모니터링되는 요소(720)에 근접하도록 유지하는 요소일 수 있다.
열 센서(710)는 모니터링되는 요소(720)의 부분의 온도를 측정한다. 모니터링되는 요소(720)는 고-전력 광 컴포넌트(722)의 가까이에 있는 임의의 열전도성 요소일 수 있다. 예를 들어, 모니터링되는 요소(720)는 반사나 굴절을 통한 구동 레이저 빔과 상호작용하는 고-전력 광 컴포넌트(722)의 가까이에 있는 물리적 컴포넌트이다. 고-전력 광 컴포넌트(722)는 반사나 굴절을 통한 구동 레이저 빔과 상호작용하는 임의의 컴포넌트일 수 있다. 예를 들어, 고-전력 광 컴포넌트(722)는 최종 포커스 렌즈(예컨대 렌즈(218)), 전력 증폭기 상의 윈도우(예컨대 입력 윈도우(189 및 193) 및/또는 출력 윈도우(185, 190, 및 194)), 최종 포커스 렌즈 조립체 내의 조향 미러(예컨대 조향 미러(214)), 최종 포커스 렌즈의 하류에 잇는 미러, 및/또는 공간적 필터 어퍼처(예컨대 어퍼처(197))와 같은, 많은 양의 레이저 전력에 노출되는 광 요소일 수 있다. 하나 이상의 고-전력 광 컴포넌트(722)가 동시에 모니터링될 수 있다.
모니터링되는 요소(720)의 온도가 컴포넌트(722)의 온도에 비례하거나 컴포넌트(722)의 온도에 의해 영향을 받는다면, 모니터링되는 요소(720)는 컴포넌트(722)의 가까이에 있는 것으로 여겨질 수 있다. 예를 들면, 모니터링되는 요소(720)가 컴포넌트(722)를 고정하고, 지지하거나 보호하는 요소일 수 있다. 예를 들어, 모니터링되는 요소(720)는 최종 포커스 렌즈를 둘러싸는 히트 실드, 미러의 하나 이상의 면 상에 미러를 유지하는 미러 마운트, 또는 공간적 필터를 고정하는 홀더일 수 있다. 모니터링되는 요소(720)는 컴포넌트(722)와 물리적으로 접촉할 수 있고, 이에 필수적이지는 않고, 모니터링되는 요소(720)와 컴포넌트(722)가 서로 물리적으로 분리될 수 있다.
열 센서(710)는 모니터링되는 요소 상의 하나 이상의 위치에서 모니터링되는 요소(720)의 온도를 측정한다. 열 센서(710)는 제어기(730)로 하나 이상의 위치에서 측정된 온도를 나타내는 신호를 제공한다. 일부 구현예에서, 열 센서(710)는 시간의 기간에 걸쳐 모니터링되는 요소(720)의 온도를 측정하고 제어기(730)로 시계열적인 온도 측정을 제공한다. 제어기(730)는 구동 레이저 빔이 적절히 정렬되는지 여부를 결정하도록 온도 측정을 분석한다. 이 분석에 기초하여, 제어기(730)가 구동 레이저 빔의 정렬을 교정하기에 충분한 액추에이션 시스템(740)으로 신호(731)를 제공할 수 있다.
제어기(730)는 전자 프로세서(732), 전자 스토리지(734), 및 I/O 인터페이스(736)를 포함한다. 전자 스토리지(734)는, 실행시 전자 프로세서(732)로 하여금 동작을 수행하도록 하는, 명령어 및/또는 컴퓨터 프로그램을 저장한다. 예를 들어, 프로세서(732)는 열 센서(710)로부터 신호를 수신하고, 모니터링되는 요소(720) 상의 온도 분포가 신호를 분석하여 공간적으로 및/또는 시간적으로 비-균일함을 결정하고, 따라서, 구동 레이저 빔이 오정렬된다. 입력/출력(I/O) 인터페이스(736)는 프로세서(732)에 의해 분석된 데이터를 디스플레이 상에 시각적으로 및/또는 청각적으로 제시할 수 있다. I/O 인터페이스(736)는 입력 디바이스(예컨대, 시스템(700)의 휴먼 오퍼레이터 또는 자동화 프로세스에 의해 활성화된 입력 디바이스)로부터의 커맨드를 수락하여, 열 센서(710), 액추에이션 시스템(740)를 설정하거나 전자 스토리지(734) 내에 저장된 데이터 또는 컴퓨터 프로그램 명령어를 업데이트할 수 있다.
제어기(730)는, 조향 요소(750)의 위치를 조정하도록 하기에 충분한 액추에이션 시스템(740)으로 신호(731)를 제공한다. 신호는 예컨대, 조향 요소(750)의 새로운 위치 또는 하나 이상의 방향으로 조향 요소(750)를 이동시키는 물리적 거리에 대한 좌표를 포함할 수 있다. 신호는 액추에이션 시스템(740)에 의해 수락되고 처리될 수 있는 포맷이며, 신호는 유선이나 무선 접속을 통해 액추에이션 시스템(740)에 전송될 수 있다.
액추에이션 시스템(740)은 액추에이션 메커니즘(742), 커플링(744), 및 I/O 인터페이스(746)를 포함한다. 액추에이션 메커니즘(742)은, 예컨대 모터, 압전기 소자, 피구동 레버, 또는 또 다른 대상의 움직임을 야기시키는 임의의 다른 요소일 수 있다. 액추에이션 시스템은 또한, 외부 요소가 액추에이션 메커니즘(742)에 의해 이동될 수 있도록, 액추에이션 메커니즘(742)이 외부 요소에 부착되도록 하는 커플링(744)을 포함한다. 커플링(744)은 외부 요소와 물리적으로 접촉하는 기계적 커플링일 수 있고, 또는 커플링(744)은 비-접촉될 수 있다(예컨대 자기 커플링). I/O 인터페이스(746)는 시스템(700) 또는 자동화 공정의 오퍼레이터가 액추에이션 시스템(740)과 상호작용하도록 한다. I/O 인터페이스(746)는, 예컨대 액추에이션 메커니즘(742)이 제어기(730) 대신에 오퍼레이터로부터 조향 요소(750)를 이동시키도록 하기에 충분한 신호를 수락한다.
조향 요소(750)는 액추에이션 메커니즘(742)과 접촉하며, 조향 요소(750)는 액추에이션 메커니즘(742)의 동작에 응답하여 이동한다. 예를 들어, 조향 요소(750)는 플랫폼, 즉 플랫폼의 일부와 접촉되는 액추에이션 메커니즘(742) 내의 압전기 소자가 연장되는 경우에 이동하는 부분일 수 있다. 조향 요소(750)는 구동 레이저 빔과 상호작용하는 활성 영역(752)를 포함한다. 조향 요소(750)의 이동은 활성 영역(752)의 대응하는 이동을 야기하고, 활성 영역의 위치의 변화는 빔의 위치를 재설정시킨다. 예를 들어, 활성 영역(752)은 빔을 반사시키는 미러이고, 미러의 위치를 설정하는 것은 빔이 반사되는 방향을 변화시킨다.
도 8을 참조하면, 광 요소에 대하여 증폭 광빔의 위치를 조정하는 일례의 프로세서(800)가 도시된다. 프로세서(800)는 도 1에 도시된 광원(100)의 증폭 광빔(110)과 같이, EUV 광원의 증폭 광빔에서 수행될 수 있다. 프로세서(800)는 도 7을 참조하여 기재한 제어기(730) 내에 포함되는 전자 프로세서(732)와 같이, 증폭 광빔을 조향하는 요소의 위치 설정을 제어하는 전자 컴포넌트 내에 포함되는 하나 이상의 전자 프로세서에 의해 수행된다.
제1 온도 분포에 액세스된다(810). 제1 온도 분포는 제1 광 요소에 인접한 컴포넌트의 온도를 나타낸다. 제1 광 요소는 증폭 광빔(110)을 수신하도록 위치 설정된다. 컴포넌트의 온도가 제1 광 요소의 온도와 비례하거나 제1 광 요소의 온도에 의해 영향 받는 경우에 컴포넌트는 제1 광 요소에 인접하거나 제1 광 요소 가까이에 있다. 따라서, 컴포넌트의 온도를 측정하여 광 요소의 온도의 표시를 제공하며, 이로써 광 요소의 온도가 간접적으로 측정된다. 컴포넌트와 광 요소는 서로 물리적으로 접촉될 수 있고, 컴포넌트와 광 요소는 광 요소의 가열이 컴포넌트를 또한 가열하도록 서로 충분히 인접할 수 있다.
광 요소는 빔(110)을 반사하고, 빔(110)을 흡수하고, 및/또는 빔(110)을 전송함으로써 증폭 광빔(110)을 수신한다. 광 요소는 EUV 광원 내의 임의의 광 컴포넌트일 수 있다. 광 요소는, 예를 들어 고-전력 광 요소, 예컨대 최종 포커스 렌즈, 전력 증폭기 상의 출력 윈도우, 최종 포커스 터닝 미러, 또는 공간적 필터 어퍼처일 수 있다. 광 요소 가까이에 있는 컴포넌트는 예컨대 광 요소를 고정하거나 지지한다.
제1 온도 분포가 컴포넌트 상에 또는 컴포넌트 가까이에 있는 하나 이상의 온도 센서에 의해 얻어지는 온도 측정을 나타내는 수치의 세트일 수 있다. 컴포넌트의 온도가 광 요소의 온도에 관련되기 때문에, 제1 온도 분포는 광 요소의 온도의 근사치를 제공한다. 제1 온도 분포는 시간의 기간에 걸쳐 컴포넌트의 특정 부분의 온도를 나타내는 수치의 세트일 수 있다. 일부 구현예에서, 제1 온도 분포는 시간의 기간에서 또는 특정 경우에서 컴포넌트의 다수의 상이한 부분의 온도를 나타내는 수치의 세트일수 있다.
액세스된 제1 온도 분포는 온도 메트릭(820)을 결정하도록 분석된다. 온도 메트릭은 기준치와 비교되는 수치적 성능지수(figure of merit)일 수 있다. 온도 메트릭은 광 요소에 인접한 컴포넌트 또는 광 요소 상의 온도 분포의 상세한 내용과 관련있는 임의의 적합한 수학적 구성일 수 있다. 예를 들어, 이하 추가로 기재될 것처럼, 온도 메트릭은 인접한 광 요소 상의 상이한 위치에서 측정된 온도들의 표준 편차 또는 변량과 같은 온도 분포의 공간적 대칭의 측정치(measure)일 수 있다. 온도 메트릭은 시간에 걸쳐 센서(228A-228D) 중 하나 이상의 온도를 나타내는 수치의 세트로부터 결정되는, 온도 변화차 또는 온도 변화률과 같은 값일 수 있다.
전술한 것처럼, 광 요소 상의 온도의 변화는 증폭 광빔(110)이 오정렬되거나 저품질임을 나타낼 수 있다. 따라서, 온도가 비교적 일정한지 여부를 결정하기 위해 제1 온도 분포를 분석하는 것은 빔 정렬 및 빔 품질의 표시를 제공할 수 있다. 예를 들어, 제1 온도 분포가 공간적 대칭의 측정치를 결정하여 분석될 수 있다. 공간적 대칭의 측정치는 예컨대, 렌즈 홀더(212)(도 2a)의 표면을 따라 대략 일정하게 이격되는, 4개의 온도 센서(228A-228D)(도 2a)에 의해 얻어지는 온도 측정에 액세스하여 계산될 수 있다. 특정 시간에, 온도 센서(228A-228D) 각각으로부터의 측정이 최종 포커스 렌즈(218)의 대응하는 부분의 온도의 표시를 제공한다. 증폭 광빔(110)이 도 4b처럼 중심을 벗어나서 렌즈(218)를 통과한다면, 온도 센서(228A 및 228C)로부터의 온도 판독의 값은 온도 센서(228B 및 228D)로부터의 온도 판독의 값보다 크다. 특정 시간에 센서(228A-228D)로부터의 온도 판독들 간의 차는 빔(110)이 렌즈(218)의 중심에 있지 않음을 표시한다.
전술한 실시예는 빔(110)이 렌즈(218)의 중심에 있지 않은 경우에 대한 것이다. 또 다른 실시예에서, 빔(110)이 비-균일 강도 분포를 가진다면, 각각의 센서(228A-228D)는 가장 높은 강도를 갖는 빔(110)의 부분과 최근접한 센서로부터 얻는 가장 높은 온도와 함께, 상이한 온도를 측정하고 발생한다. 따라서, 각각의 센서(228A-228D)로부터의 온도 값들을 비교하여, 빔(110)이 모니터링되어서 강도의 공간적 비-균일성이 존재하는지 여부를 결정한다. 센서(228A-228D)로부터의 온도 값이 상이하면, 그 후 빔(110)이 공간적 비-균일성을 갖는다고 결정될 수 있다. 강도 분포의 형상(공간적 위치의 함수로서의 강도의 양)은 센서(228A-228D)에 의해 제공되는 온도 값을 순차화하여 근사화된다. 강도의 비-균일성의 심각도(severity)가 센서(228A-228D)에 의해 측정된 온도의 변량이나 표준 편차를 계산하여 결정될 수 있다.
또 다른 실시예에서, 제1 온도 분포는 시간에 걸쳐 센서(228A-228D) 중 하나 이상의 센서의 온도를 나타내는 수치의 세트일 수 있다. 이 실시예에서, 제1 온도 분포는 센서(228A-228D) 중 임의의 하나에 의해 측정된 시계열적인 온도 값의 변량 또는 표준 편차를 계산하여 분석될 수 있다. 최적 또는 허용가능한 작동 환경 아래서, 증폭 광빔(110)이 타겟 위치(105)에 포커싱되도록 정렬되고, 빔(110)은 빔(110)이 상호작용하는 광 요소에 대하여 위치를 변경하지 않는다. 빔(110)이 시간의 기간에 걸쳐 광 요소에 대하여 위치를 변경하고 및/또는 빔(110)의 빔 프로필이 시간에 걸쳐 변경된다면, 광 요소의 강도 분포도 변경된다. 결과적으로, 빔(110)이 오정렬되는 경우에, 각각의 센서(228A-228D)에 의해 측정된 온도는 또한 변경된다. 시간의 함수로서 온도의 변화율 및/또는 분포의 변량을 결정하기 위하여 제1 온도 분포를 분석하는 것은 빔(110)의 위치나 프로필이 변화하는지 여부에 대한 표시를 제공할 수 있다.
단계 820에서 결정된 온도 메트릭은 기준 온도 메트릭(830)과 비교된다. 기준 온도 메트릭은 광원이 허용가능하거나 최적의 방식으로 작동하는 경우에 결정되는 메트릭의 값일 수 있다. 결정된 온도 메트릭은 예컨대, 기준 온도 메트릭으로부터 결정된 온도 메트릭을 추출하여 둘 사이의 차를 결정함으로써, 기준 온도 메트릭과 비교될 수 있다. 이 차는 증폭 광빔(110)이 오정렬되는지 여부를 결정하기 위하여 임계치와 비교되거나, 그렇지 않으면 조정으로부터 유용할 것이다. 예를 들어, 2 이상의 섭씨 온도의 특정 온도 센서에 의해 측정된 온도 차는 증폭 광빔(110)이 오정렬되었음을 나타낼 수 있다.
증폭 광빔(110)은 비교 단계(840)에 기초하여 조정된다. 예를 들어, 센서(228A)에 의해 측정된 온도가 시간의 기간에 걸쳐 4℃ 증가한다면, 그리고, 센서(228C)에 의해 측정된 온도가 시간의 기간에 걸쳐 4℃ 감소한다면, 그 후 빔(110)은 센서(228A)에 더 가까운 렌즈(218)의 부분으로 이동되었다고 결정된다. 센서(228C)를 향한 대응하는 방향으로 빔(110)을 이동시키기 위하여 방향 "X"로 반사부(215)를 이동하는 조정이 결정된다. 이 조정은 마스터 제어기(155)에 의해 발생되는 신호일 수 있다. 신호는 액추에이터(216)에 의한 이동량을 특정하는 정보를 포함할 수 있다. 액추에이터(216)가 신호를 수신하고 처리하는 경우에, 액추에이터(216)는 반사부(215)가 빔(110) 렌즈(218)의 하부로 이동하도록 움직이게 한다.
다른 구현예가 다음의 청구항의 범위 내에 있다.

Claims (25)

  1. 극자외(EUV) 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법으로서,
    제1 광 요소에 인접하고 제1 광 요소와 별개인 모니터링된 요소의 제1 온도 분포에 액세스하는 단계 - 상기 제1 온도 분포는 복수의 온도 분포를 포함하고, 상기 복수의 온도 분포 각각은 상기 모니터링된 요소 상에서의 복수의 서로 별개인 공간적 위치 중 한 위치의 온도를 나타내는 적어도 하나의 수치 값을 포함하며, 상기 제1 광 요소는 상기 증폭 광빔을 수신하도록 위치설정되고, 상기 모니터링된 요소 상에서의 상기 복수의 서로 별개인 공간적 위치 각각의 온도는 상기 제1 광 요소의 복수 개의 부분들 중 한 부분의 온도의 간접적인 측정임 -;
    상기 복수의 온도 분포 각각으로부터 온도 메트릭(temperature metric)을 결정하는 단계 - 각각의 온도 메트릭은 상기 모니터링된 요소 상에서의 상기 서로 별개인 공간적 위치 중 한 위치와 연관됨 -;
    복수의 결정된 온도 메트릭을 서로 비교하는 단계;
    상기 증폭 광빔이 상기 제1 광 요소의 중심에 있는지 여부를 결정하는 단계 - 상기 복수의 결정된 온도 메트릭이 실질적으로 동일할 때 상기 증폭 광빔이 상기 제1 광 요소의 중심에 있는 것이며, 상기 복수의 결정된 온도 메트릭이 실질적으로 동일하지 않을 때 상기 증폭 광빔이 상기 제1 광 요소에 대해 중심에서 벗어난 것임 -; 및
    상기 증폭 광빔이 상기 제1 광 요소에 대해 중심에서 벗어난 경우, 상기 증폭 광빔이 상기 제1 광 요소의 중심에 더 가까워질 때까지 상기 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 단계
    를 포함하는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  2. 제1항에 있어서,
    상기 증폭 광빔의 위치를 조정하는 단계는 증폭 광빔의 위치에 대한 조정을 나타내는 표시(indication)를 생성하는 단계를 더 포함하는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  3. 제2항에 있어서,
    상기 표시는 제2 광 요소에 기계적으로 결합되는 액추에이터를 위한 입력을 포함하고, 상기 제2 광 요소는 상기 증폭 광빔을 수신하도록 위치 설정되는 활성 영역을 포함하고, 상기 액추에이터로의 입력은 상기 액추에이터가 하나 이상의 방향으로 상기 활성 영역을 이동시키도록 하기에 충분한, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  4. 제3항에 있어서,
    상기 입력을 상기 액추에이터에 제공하는 단계를 더 포함하는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  5. 제4항에 있어서,
    상기 입력을 상기 액추에이터에 제공한 이후에, 상기 모니터링된 요소 상에서의 상기 복수의 서로 별개인 공간적 위치 중 한 위치의 온도를 각각 나타내는 복수의 제2 온도 분포에 액세스하는 단계;
    상기 복수의 제2 온도 분포로부터 복수의 온도 메트릭을 결정하는 단계; 및
    상기 제2 온도 분포로부터 결정된 온도 메트릭을 서로 비교하거나 상기 제1 온도 분포 중의 하나 이상과 비교하는 단계
    를 더 포함하는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  6. 제3항에 있어서,
    상기 제2 광 요소의 활성 영역은, 상기 증폭 광빔을 수신하고, 이동시 상기 제1 광 요소에 대하여 상기 증폭 광빔의 위치를 변경시키는, 반사부를 갖는 미러를 포함하는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  7. 제3항에 있어서,
    상기 표시는 상기 EUV 광원 내의 제3 광 요소에 결합되는 제2 액추에이터를 위한 입력을 포함하고, 상기 제2 액추에이터로의 입력은 상기 제2 액추에이터가 하나 이상의 방향으로 제3 광 요소를 이동시키도록 하기에 충분한, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  8. 제1항에 있어서,
    상기 모니터링된 요소 상에서의 상기 서로 별개인 공간적 위치 각각의 온도는 적어도 2회의 상이한 시간에 측정되는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  9. 제1항에 있어서,
    상기 복수의 온도 분포 각각은 상기 모니터링된 요소에 기계적으로 결합되는 열 센서로부터 수신된 온도 측정을 나타내는 데이터를 포함하는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  10. 제1항에 있어서,
    상기 제1 광 요소는 상기 증폭 광빔이 통과하는 렌즈를 포함하고, 상기 모니터링된 요소는 상기 렌즈의 외측 가장자리를 둘러싸는 렌즈 실드(shield)를 포함하는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  11. 제1항에 있어서,
    상기 온도 분포는 상이한 시간에 측정된 상기 모니터링된 요소 상에서의 상기 서로 별개인 공간적 위치의 다수의 온도를 포함하고, 상기 온도 메트릭은 상기 다수의 온도의 변량(variance), 상기 다수의 온도의 평균, 또는 상기 다수의 온도 중 적어도 두 온도 사이의 변화율 중 하나 이상을 포함하는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  12. 제11항에 있어서,
    상기 온도 메트릭은 상기 다수의 온도의 공간적 변량을 포함하는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  13. 제12항에 있어서,
    상기 복수의 온도 메트릭은 상기 모니터링된 요소 상에서의 상기 서로 별개인 공간적 위치에서 측정된 상기 다수의 온도의 공간적 변량을 포함하는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  14. 제1항에 있어서,
    상기 온도 메트릭은 상기 모니터링된 요소의 측정된 온도의 시간적 변화를 나타내는 값을 포함하는, EUV 광원에서 제1 광 요소에 대하여 증폭 광빔의 위치를 조정하는 방법.
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
KR1020157017347A 2013-01-22 2013-12-17 극자외 광원을 위한 열 모니터 KR102062296B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/747,263 US9148941B2 (en) 2013-01-22 2013-01-22 Thermal monitor for an extreme ultraviolet light source
US13/747,263 2013-01-22
PCT/US2013/075871 WO2014116371A1 (en) 2013-01-22 2013-12-17 Thermal monitor for an extreme ultraviolet light source

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020197038651A Division KR102100789B1 (ko) 2013-01-22 2013-12-17 극자외 광원을 위한 열 모니터

Publications (2)

Publication Number Publication Date
KR20150108820A KR20150108820A (ko) 2015-09-30
KR102062296B1 true KR102062296B1 (ko) 2020-01-03

Family

ID=51207012

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020197038651A KR102100789B1 (ko) 2013-01-22 2013-12-17 극자외 광원을 위한 열 모니터
KR1020157017347A KR102062296B1 (ko) 2013-01-22 2013-12-17 극자외 광원을 위한 열 모니터

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020197038651A KR102100789B1 (ko) 2013-01-22 2013-12-17 극자외 광원을 위한 열 모니터

Country Status (5)

Country Link
US (1) US9148941B2 (ko)
JP (1) JP6250067B2 (ko)
KR (2) KR102100789B1 (ko)
TW (1) TWI611427B (ko)
WO (1) WO2014116371A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015172816A1 (de) * 2014-05-13 2015-11-19 Trumpf Laser- Und Systemtechnik Gmbh Einrichtung zur überwachung der ausrichtung eines laserstrahls und euv-strahlungserzeugungsvorrichtung damit
US9927292B2 (en) 2015-04-23 2018-03-27 Asml Netherlands B.V. Beam position sensor
US10109451B2 (en) * 2017-02-13 2018-10-23 Applied Materials, Inc. Apparatus configured for enhanced vacuum ultraviolet (VUV) spectral radiant flux and system having the apparatus
US10128017B1 (en) * 2017-05-12 2018-11-13 Asml Netherlands B.V. Apparatus for and method of controlling debris in an EUV light source
US10824083B2 (en) * 2017-09-28 2020-11-03 Taiwan Semiconductor Manufacturing Co., Ltd. Light source, EUV lithography system, and method for generating EUV radiation
US11258224B2 (en) * 2018-02-20 2022-02-22 Asml Netherlands B.V. Sensor system
WO2019186754A1 (ja) 2018-03-28 2019-10-03 ギガフォトン株式会社 極端紫外光生成システム及び電子デバイスの製造方法
US20200057376A1 (en) * 2018-08-14 2020-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. Lithography system and lithography method
NL2024323A (en) 2018-12-18 2020-07-07 Asml Netherlands Bv Sacrifical device for protecting an optical element in a path of a high-power laser beam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070278194A1 (en) 2004-08-05 2007-12-06 Kuka Schweissanlagen Gmbh Laser Device And Operating Method
JP2010161092A (ja) 2009-01-06 2010-07-22 Komatsu Ltd 極端紫外光源装置
JP2010161318A (ja) 2009-01-09 2010-07-22 Komatsu Ltd 極端紫外光源装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123492A (ja) * 1984-11-19 1986-06-11 Toshiba Corp レ−ザ加工装置
US4749122A (en) * 1986-05-19 1988-06-07 The Foxboro Company Combustion control system
JPS6348509A (ja) * 1986-08-18 1988-03-01 Komatsu Ltd レ−ザスキヤナ装置
DE19622671A1 (de) * 1995-06-30 1997-01-02 Basf Magnetics Gmbh Temperatur-Indikator für gekühlte Produkte oder ähnliches
US6559424B2 (en) * 2001-01-02 2003-05-06 Mattson Technology, Inc. Windows used in thermal processing chambers
JPWO2002067390A1 (ja) * 2001-02-22 2004-06-24 三菱電機株式会社 レーザ装置
US7598509B2 (en) * 2004-11-01 2009-10-06 Cymer, Inc. Laser produced plasma EUV light source
US7554662B1 (en) * 2002-06-24 2009-06-30 J.A. Woollam Co., Inc. Spatial filter means comprising an aperture with a non-unity aspect ratio in a system for investigating samples with electromagnetic radiation
US6825681B2 (en) * 2002-07-19 2004-11-30 Delta Design, Inc. Thermal control of a DUT using a thermal control substrate
US6992306B2 (en) * 2003-04-15 2006-01-31 Canon Kabushiki Kaisha Temperature adjustment apparatus, exposure apparatus having the same, and device fabricating method
US7164144B2 (en) * 2004-03-10 2007-01-16 Cymer Inc. EUV light source
US7891075B2 (en) * 2005-01-19 2011-02-22 Gm Global Technology Operations, Inc. Reconfigurable fixture device and method for controlling
JP4710406B2 (ja) * 2005-04-28 2011-06-29 ウシオ電機株式会社 極端紫外光露光装置および極端紫外光光源装置
US7333904B2 (en) * 2005-08-26 2008-02-19 Delphi Technologies, Inc. Method of determining FET junction temperature
US8290753B2 (en) * 2006-01-24 2012-10-16 Vextec Corporation Materials-based failure analysis in design of electronic devices, and prediction of operating life
US8766212B2 (en) * 2006-07-19 2014-07-01 Asml Netherlands B.V. Correction of spatial instability of an EUV source by laser beam steering
JP5076087B2 (ja) * 2006-10-19 2012-11-21 ギガフォトン株式会社 極端紫外光源装置及びノズル保護装置
KR100841478B1 (ko) * 2007-08-28 2008-06-25 주식회사 브이엠티 다중 모세관의 장착이 가능한 액체 타겟 공급 장치 및 이를구비한 x선 및 극자외선 광원 발생 장치
US8115900B2 (en) * 2007-09-17 2012-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR20170116248A (ko) * 2007-10-09 2017-10-18 칼 짜이스 에스엠테 게엠베하 광학 소자의 온도 제어 장치
JP2009099390A (ja) * 2007-10-17 2009-05-07 Tokyo Institute Of Technology 極端紫外光光源装置および極端紫外光発生方法
US20090275815A1 (en) * 2008-03-21 2009-11-05 Nova Biomedical Corporation Temperature-compensated in-vivo sensor
JP5833806B2 (ja) * 2008-09-19 2015-12-16 ギガフォトン株式会社 極端紫外光源装置、極端紫外光源装置用レーザ光源装置及び極端紫外光源装置用レーザ光源の調整方法
US7641349B1 (en) * 2008-09-22 2010-01-05 Cymer, Inc. Systems and methods for collector mirror temperature control using direct contact heat transfer
JP5587578B2 (ja) * 2008-09-26 2014-09-10 ギガフォトン株式会社 極端紫外光源装置およびパルスレーザ装置
JP5559562B2 (ja) * 2009-02-12 2014-07-23 ギガフォトン株式会社 極端紫外光光源装置
US8306774B2 (en) * 2009-11-02 2012-11-06 Quinn David E Thermometer for determining the temperature of an animal's ear drum and method of using same
US8373758B2 (en) * 2009-11-11 2013-02-12 International Business Machines Corporation Techniques for analyzing performance of solar panels and solar cells using infrared diagnostics
US8173985B2 (en) 2009-12-15 2012-05-08 Cymer, Inc. Beam transport system for extreme ultraviolet light source
US8000212B2 (en) * 2009-12-15 2011-08-16 Cymer, Inc. Metrology for extreme ultraviolet light source
JP5705592B2 (ja) * 2010-03-18 2015-04-22 ギガフォトン株式会社 極端紫外光生成装置
JP5726546B2 (ja) * 2010-03-29 2015-06-03 ギガフォトン株式会社 チャンバ装置
US8686381B2 (en) * 2010-06-28 2014-04-01 Media Lario S.R.L. Source-collector module with GIC mirror and tin vapor LPP target system
JP2012129345A (ja) * 2010-12-15 2012-07-05 Renesas Electronics Corp 半導体装置の製造方法、露光方法および露光装置
US20120210999A1 (en) * 2011-02-21 2012-08-23 Straeter James E Solar heating system for a hot water heater
US8993976B2 (en) * 2011-08-19 2015-03-31 Asml Netherlands B.V. Energy sensors for light beam alignment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070278194A1 (en) 2004-08-05 2007-12-06 Kuka Schweissanlagen Gmbh Laser Device And Operating Method
JP2010161092A (ja) 2009-01-06 2010-07-22 Komatsu Ltd 極端紫外光源装置
JP2010161318A (ja) 2009-01-09 2010-07-22 Komatsu Ltd 極端紫外光源装置

Also Published As

Publication number Publication date
TWI611427B (zh) 2018-01-11
KR102100789B1 (ko) 2020-04-16
KR20150108820A (ko) 2015-09-30
KR20200003271A (ko) 2020-01-08
US20140203195A1 (en) 2014-07-24
JP2016509343A (ja) 2016-03-24
WO2014116371A1 (en) 2014-07-31
JP6250067B2 (ja) 2017-12-20
TW201435912A (zh) 2014-09-16
US9148941B2 (en) 2015-09-29

Similar Documents

Publication Publication Date Title
KR102062296B1 (ko) 극자외 광원을 위한 열 모니터
US9167679B2 (en) Beam position control for an extreme ultraviolet light source
US8324600B2 (en) Apparatus and method for measuring and controlling target trajectory in chamber apparatus
JP5312959B2 (ja) 極端紫外光源装置
TWI580320B (zh) 控制雷射光束的裝置及產生極端紫外線的設備
TWI739755B (zh) 極紫外線光源中之目標擴張率控制
US9386675B2 (en) Laser beam controlling device and extreme ultraviolet light generating apparatus
TWI821839B (zh) 量測目標之移動屬性的方法及光學設備
KR101969609B1 (ko) 얼라인먼트 시스템 및 극단 자외광 생성 시스템
JP2008119716A (ja) レーザ加工装置およびレーザ加工装置における焦点維持方法
CN110431391B (zh) 针对极紫外光源的量测系统
JP6374481B2 (ja) 極端紫外線光源のビーム位置制御を行うシステム又は方法
JP2013201388A (ja) レーザシステム及び極端紫外光生成システム
JP6894485B2 (ja) はんだ付け装置およびそのシステム制御器
JP4220707B2 (ja) レーザ加工ヘッド
JP2006045598A (ja) 配管の残留応力改善装置
JP2016154149A (ja) アライメントシステム
TW202202945A (zh) 極紫外光光源之對準

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right