KR101727369B1 - 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지 - Google Patents
고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지 Download PDFInfo
- Publication number
- KR101727369B1 KR101727369B1 KR1020140166728A KR20140166728A KR101727369B1 KR 101727369 B1 KR101727369 B1 KR 101727369B1 KR 1020140166728 A KR1020140166728 A KR 1020140166728A KR 20140166728 A KR20140166728 A KR 20140166728A KR 101727369 B1 KR101727369 B1 KR 101727369B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrolyte membrane
- polymer electrolyte
- polymer
- less
- thickness
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1053—Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1025—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1044—Mixtures of polymers, of which at least one is ionically conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
- H01M8/1062—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1065—Polymeric electrolyte materials characterised by the form, e.g. perforated or wave-shaped
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1067—Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0094—Composites in the form of layered products, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1027—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/103—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1032—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Fuel Cell (AREA)
Abstract
본 명세서는 본 명세서는 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지를 제공한다.
Description
본 명세서는 2013년 11월 26일에 한국특허청에 제출된 한국 특허 출원 제 10-2013-0144444호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지를 제공한다.
연료전지는 고효율 발전장치로서, 기존 내연기관에 비하여 효율이 높아 연료 사용량이 적으며, SOx, NOx, VOC 등의 환경오염 물질을 발생시키지 않는 무공해 에너지원이라는 장점이 있다. 또한, 생산설비에 필요한 입지면적이 적고 건설 기간이 짧다는 등의 추가적 장점이 있다.
따라서 연료전지는 휴대용 기기 등의 이동용 전원, 자동차 등의 수송용 전원, 가정용 및 전력사업용으로 이용가능한 분산형 발전에 이르기까지 응용분야가 다양하다. 특히, 차세대 운송 장치인 연료전지 자동차의 운영이 실용화될 경우, 그 잠재 시장 규모는 광범위할 것으로 예상된다.
연료전지는 작동되는 온도와 전해질에 따라 크게 5가지로 분류되는데, 상세하게는 알칼리 연료전지(AFC), 인산형 연료전지(PAFC), 용융 탄산염형 연료전지(MCFC), 고체 산화물 연료전지(SOFC), 고분자 전해질 연료전지(PEMFC) 및 직접 메탄올 연료전지(DMFC)가 있다. 그 중에서, 이동성이 우수한 고분자 전해질 연료전지 및 직접 메탄올 연료전지가 미래 전원으로서 큰 주목을 받고 있다.
고분자 전해질 연료 전지는 고분자 전해질막의 양면에 가스 확산성의 전극층을 배치하고, 애노드(Anode)를 연료극에, 캐소드(Cathode)를 산화극으로 향하게 하여, 고분자 전해질막을 통한 화학 반응에 의해 물이 생성되고, 이것에 의해서 생기는 반응 에너지를 전기에너지로 변환하는 것을 기본 원리로 하고 있다.
이온 전도성 고분자 전해질 막의 대표적인 예로는 1960년대 초 미국 듀퐁사에서 개발한 과불소계 수소이온 교환막인 나피온(Nafion)을 들 수 있다. 나피온 이외에도 이와 유사한 과불소계 고분자전해질 상용막으로서, 아사히 케미칼스(Asahi Chemicals)사의 아시플렉스-에스(Aciplex-S)막, 다우 케미칼스(Dow Chemicals)사의 다우(Dow)막, 아사히 글래스(Asahi Glass)사의 프레미온(Flemion)막 등이 있다.
종래 상용화된 과불소계 고분자 전해질 막은 내화학성, 내산화성, 우수한 이온 전도성을 가지고 있으나, 높은 가격과 제조시 발생하는 중간 생성물의 독성으로 인한 환경 문제가 지적되고 있다. 따라서, 이러한 과불소계 고분자 전해질 막의 결점을 보완하기 위하여 방향족환 고분자에 카르복실기, 술폰산기 등을 도입한 고분자 전해질 막이 연구되고 있다. 그 일례로서, 술폰화 폴리아릴에테르 술폰[Journal of Membrane Science, 1993, 83, 211], 술폰화 폴리에테르에테르 케톤[일본 공개특허 평6-93114, 미국특허 제5,438,082호], 술폰화 폴리이미드[미국특허 제6,245,881호] 등이 있다.
고분자 전해질 막은 온도와 수화(hydration) 정도에 따라 15 내지 30%의 막두께 변화와 체적 변화를 수반하고, 이에 연료전지 운전 조건에 따라 전해질 막은 팽윤과 수축을 반복하게 되며, 이러한 체적변화로 미세 구멍이나 균열이 발생하게 된다. 또한 부 반응으로서 캐소드에서의 산소의 환원 반응으로 과산화수소(H2O2) 또는 과산화물 라디칼이 생성되어 전해질 막을 열화시킬 수 있다. 연료전지용 고분자 전해질 막은 연료전지 구동 중 발생할 수 있는 이와 같은 현상을 염두에 두어 기계적, 화학적 내구를 개선시키는 방향으로 개발되어 왔다.
기계적 내구를 개선하기 위한 방향으로는 나피온 용액(5 중량% 농도)을 e-PTFE에 도입하여 제조한 강화 복합전해질 막[미국특허 제5,547,551호] 및 술폰화된 탄화수소계 고분자 물질에 치수 안정성이 우수한 고분자를 도입한 고분자 블랜드 복합막에 관한 연구(대한민국 특허 제 10-0746339호) 등이 있다. 또한, 고어 앤 어소시에이트(W.L. Gore & Associates)사에서는 고어 셀렉트(Gore Select)라는 상품명으로 상용화된 강화 복합전해질 막 제품을 출시하고 있다.
강화 복합전해질 막에는 기계적 물성 및 치수 안정성을 부여하기 위하여 다공성 지지체가 사용된다. 다공성 지지체는 성능을 떨어뜨리지 않는 동시에 기계적 내구성을 유지시켜야 하므로, 높은 기공도를 가지면서 우수한 기계적 물성을 구비한 적합한 소재의 지지체를 선택해야 한다. 또한 이온전도체를 지지체에 함침 시키는 방법과 이온전도체의 종류에 따라 막의 이온전도도가 크게 달라질 수 있으므로, 효과적인 이온전도체의 함침 방법 및 강화 복합전해질 막에 적합한 이온전도체 개발이 요구된다.
본 명세서가 해결하고자 하는 과제로는 고분자 전해질막을 제공함에 있다. 나아가, 상기 고분자 전해질막을 포함하는 막 전극 접합체 및 이를 포함하는 연료전지를 제공함에 있다.
본 명세서는 이온 이동 영역 및 3차원 망상 구조의 지지체를 포함하는 혼합층을 포함하고, 상기 이온 이동 영역은 제1 이온 전도성 고분자를 포함하는 2 이상의 셀이 3차원적으로 접하는 구조이며, 상기 제1 이온 전도성 고분자의 IEC(ion exchange capacity)는 1.7 meq/g 이상 2.5 meq/g 이하인 것을 특징으로 하는 고분자 전해질막을 제공한다.
또한, 본 명세서는 상기 고분자 전해질막을 포함하는 막 전극 접합체를 제공한다.
또한, 본 명세서는 상기 막 전극 접합체를 포함하는 연료전지를 제공한다.
본 명세서에 따른 고분자 전해질막은 내구성이 우수한 장점이 있다. 구체적으로, 본 명세서에 따른 고분자 전해질막을 포함하는 막 전극 접합체를 이용하여 연료전지에 사용하는 경우, 연료전지의 성능 향상에 기여할 수 있다. 즉, 고온 가습 및 건조가 반복되어 고분자 전해질막의 수축과 팽창이 반복되는 연료전지의 작동 환경에서도 연료전자의 성능의 저하를 최소화하고, 일정한 성능을 유지할 수 있게 한다.
또한, 본 명세서에 따른 고분자 전해질막은 우수한 내구성과 동시에, 높은 이온 전도도를 가진다. 즉, 본 명세서에 따른 고분자 전해질막은 지지체를 포함함에 따른 이온 전도도의 하락을 최소화하며, 지지체가 없는 경우와 동등한 수준의 이온 전도도를 가진다.
도 1 및 2는 본 명세서의 일 구현예에 따른 고분자 전해질막의 표면의 일 영역을 도시한 것이다.
도 3은 본 명세서의 일 구현예에 따른 고분자 전해질막의 단면의 일 영역을 도시한 것이다.
도 4는 본 명세서의 일 구현예에 따른 연료전지의 구조를 도시한 것이다.
도 5는 상대습도(RH) 100 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 6은 상대습도(RH) 50 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 7는 상대습도(RH) 32 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 3은 본 명세서의 일 구현예에 따른 고분자 전해질막의 단면의 일 영역을 도시한 것이다.
도 4는 본 명세서의 일 구현예에 따른 연료전지의 구조를 도시한 것이다.
도 5는 상대습도(RH) 100 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 6은 상대습도(RH) 50 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 7는 상대습도(RH) 32 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하 본 명세서에 대하여 보다 상세하게 설명하도록 한다.
본 명세서는 이온 이동 영역 및 3차원 망상 구조의 지지체를 포함하는 혼합층을 포함하고, 상기 이온 이동 영역은 제1 이온 전도성 고분자를 포함하는 2 이상의 셀이 3차원적으로 접하는 구조이며, 상기 제1 이온 전도성 고분자의 IEC(ion exchange capacity)는 1.7 meq/g 이상 2.5 meq/g 이하인 것을 특징으로 하는 고분자 전해질막을 제공한다.
상기 제1 이온 전도성 고분자는 상기 이온 이동 영역에 포함되어 높은 이온 전도도로 인하여, 혼합층 내에서의 이온 이동을 원활하게 하여 고분자 전해질막의 성능을 향상시킬 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체를 제1 이온 전도성 고분자에 함침하여 상기 혼합층을 형성할 수 있다. 구체적으로, 본 명세서의 일 구현예에 따르면, 상기 제1 이온 전도성 고분자를 상기 지지체 두께 범위까지 포함시키는 경우, 추가의 순수층이 없는 고분자 전해질막을 형성할 수 있다. 또한, 본 명세서의 일 구현예에 따르면, 상기 제1 이온 전도성 고분자를 상기 지지체 두께 범위를 초과하여 포함시키는 경우, 상기 혼합층의 상면 및/또는 하면 상에 추가의 순수층이 구비된 고분자 전해질막을 제조할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막은 상기 혼합층의 상면, 또는 하면, 또는 상면 및 하면 상에 구비된 제2 이온 전도성 고분자를 포함하는 순수층을 포함하고, 상기 제2 이온 전도성 고분자의 IEC(ion exchange capacity)는 상기 제1 전도성 고분자의 IEC(ion exchange capacity)보다 낮은 것일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 순수층은 상기 혼합층의 상면 및/또는 하면 상에 접하여 구비되거나, 또는 상기 추가의 순수층 상에 구비될 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제2 이온 전도성 고분자의 IEC(ion exchange capacity)는 상기 제1 이온 전도성 고분자의 IEC(ion exchange capacity)보다 0.2 meq/g 이상 낮은 것일 수 있다.
상기 제2 이온 전도성 고분자는 상기 혼합층의 적어도 일면 상에 구비되어 상기 혼합층 내에 포함되어 있는 상기 제1 이온 전도성 고분자의 용출을 방지하는 역할을 할 수 있다. 구체적으로, 상기 고분자 전해질막을 연료전지에 적용하여 사용하는 경우, 수분에 의하여 상기 제1 이온 전도성 고분자가 용출될 수 있는바, 상기 제2 이온 전도성 고분자는 상기 제1 이온 전도성 고분자의 수분에 의한 용출을 방지할 수 있는 역할을 할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제2 이온 전도성 고분자의 IEC(ion exchange capacity)는 0.9 meq/g 이상 1.8 meq/g 이하인 것일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 순수층은 혼합층에 접하여 구비된 상기 제1 이온 전도성 고분자를 포함하는 추가의 순수층을 더 포함하는 것일 수 있다.
상기 추가의 순수층은, 상기 이온 이동 영역에 포함되는 제1 이온 전도성 고분자와 동일한 고분자가 혼합층의 상부, 하부, 또는 상부 및 하부에 접하여 구비된 것일 수 있다. 구체적으로, 상기 지지체를 상기 제1 이온 전도성 고분자에 함침하고, 상기 혼합층의 상면 및/또는 하면에 상기 제1 이온 전도성 고분자가 잔류하여 추가의 순수층이 형성될 수 있다.
본 명세서에 따른 고분자 전해질막은 우수한 내구성과 동시에, 높은 이온 전도도를 가진다. 구체적으로, 본 명세서에 따른 고분자 전해질막은 지지체를 포함함에 따른 이온 전도도의 하락을 최소화하며, 지지체가 없는 경우와 동등한 수준의 이온 전도도를 가진다. 그러므로, 본 명세서에 따른 고분자 전해질막을 포함하는 연료전지는 장시간의 구동에 따른 전해질막의 손상을 최소화하며, 나아가, 높은 성능을 발휘할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 두께는 1 ㎛ 이상 30 ㎛ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 두께는 1 ㎛ 이상 25 ㎛ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 두께는 1 ㎛ 이상 15 ㎛ 이하일 수 있다.
본 명세서에 따른 상기 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하인 경우, 높은 이온 전도도 및 내구성을 구현할 수 있다. 또한, 상기 혼합층이 상기 두께 범위 내인 경우, 두께 감소에 따른 내구성의 저하가 거의 발생하지 않을 수 있다. 즉, 상기 혼합층의 두께가 1 ㎛ 미만인 경우에는 내구성이 유지되지 않는 단점이 있으며, 두께가 30 ㎛ 초과인 경우에는 이온 전도도가 저하될 수 있는 단점이 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막은 상기 혼합층만으로 이루어질 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 어느 일 면에 구비된 상기 순수층의 두께는 각각 독립적으로 0 ㎛ 초과 6 ㎛ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 추가의 순수층의 두께는 0 ㎛ 초과 5 ㎛ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 순수층의 두께는 상기 추가의 순수층의 두께를 포함하는 것일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 상면 및 하면에 각각 구비된 상기 순수층 간의 두께 차이는 상기 혼합층 두께의 50 % 이하일 수 있다. 구체적으로, 상기 혼합층의 상면 및 하면에 구비된 상기 순수층 간의 두께 차이는 혼합층 두께의 30 % 이하일 수 있다. 본 명세서의 일 구현예에 따르면, 상기 순수층 간의 두께 차이가 0 % 인 경우는 상기 혼합층의 상면 및 하면에 각각 구비된 순수층의 두께가 동일한 것을 의미한다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 상면에 구비된 순수층과 혼합층의 하면에 구비된 순수층의 두께 차이가 혼합층 두께의 50 % 이하인 경우, 상기 고분자 전해질막을 가습 및 건조를 반복하더라도 상기 고분자 전해질막의 상면과 하면의 수축 및 팽창 정도가 비슷하게 되어 크랙(crack)이 발생하는 것을 방지할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층과 상기 전체 순수층의 두께 비율은 1:0 내지 1:4 일 수 있다. 구체적으로, 상기 혼합층과 상기 전체 순수층의 두께 비율은 1:0 내지 1:1.5일 수 있다. 보다 구체적으로, 상기 혼합층과 상기 전체 순수층의 두께 비율은 1:0 내지 1:1일 수 있다.
본 명세서의 일 구현예에 따른 고분자 전해질막에 따르면, 상기 순수층 대비 상기 혼합층의 두께 비율이 높을수록, 가습 및 건조 상태가 반복되는 조건에서 높은 내구성을 발휘할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 전체 두께는 3 ㎛ 이상 36 ㎛ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 전체 부피에 대하여 상기 이온 이동 영역은 40 부피% 이상 85 부피% 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은, 상기 이온 이동 영역 및 지지체의 전체 부피에 대하여 40 부피% 이상 80 부피% 이하 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 혼합층의 전체 부피에 대하여 40 부피% 이상 70 부피% 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 혼합층의 전체 부피에 대하여 40 부피% 이상 60 부피% 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 혼합층의 전체 부피에 대하여 40 부피% 이상 55 부피% 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 혼합층의 전체 부피에 대하여 45 부피% 이상 65 부피% 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 혼합층의 전체 부피에 대하여 45 부피% 이상 60 부피% 이하일 수 있다.
본 명세서에 따른 상기 고분자 전해질막의 상기 이온 이동 영역이 40 부피% 이상 85 부피% 이하인 경우, 상기 고분자 전해질막의 내구성을 확보할 수 있는 동시에, 충분한 이온 전도도를 확보할 수 있다. 즉, 이온 이동 영역이 40 부피% 미만인 경우, 고분자 전해질막의 내구성은 상승하지만, 충분한 이온 전도도를 확보하기 곤란한 단점이 있다. 나아가, 이온 이동 영역이 85 부피%를 초과하는 경우, 고분자 전해질막의 이온 전도도는 상승하지만, 내구성의 확보가 곤란한 단점이 있다.
도 1 및 2는 본 명세서의 일 구현예에 따른 고분자 전해질막의 표면의 일 영역을 도시한 것이다. 구체적으로, 상기 도 1은 본 명세서의 상기 고분자 전해질막의 수평 표면의 일 영역을 도시한 것이며, 상기 도 2는 본 명세서의 상기 고분자 전해질막의 수직 표면의 일 영역을 도시한 것이다. 나아가, 어두운 영역으로 표시된 영역이 지지체를 의미하며, 밝은 영역은 이온 이동 영역을 의미한다.
상기 수직 표면이라 함은, 상기 고분자 전해질막의 두께 방향의 표면을 의미할 수 있다. 또한, 상기 수평 표면이라 함은, 상기 고분자 전해질막의 두께 방향에 수직인 표면으로서, 상대적으로 넓은 영역을 차지하는 면을 의미할 수 있다.
도 1 및 도 2에서, 상기 이온 이동 영역은 셀의 단면을 의미할 수 있으며, 도시된 셀에 3차원적으로 접하는 셀이 고분자 전해질막 내부에 존재한다.
본 명세서의 상기 셀은 구형 또는 구가 눌린 형태, 다면체일 수 있으며, 셀이 구형인 경우, 셀의 단면은 종횡비 1:1 내지 5:1의 폐쇄도형일 수 있다.
본 명세서의 상기 셀은 지지체의 노드 및 노드들을 연결하는 섬유형 가지들이 연결되는 경우, 형성되는 가상의 평면으로 둘러싸인 가상의 3차원 폐쇄공간을 의미할 수 있다. 상기 노드는 섬유형 가지들이 2 이상 교차하는 부위를 의미할 수 있다.
도 3은 본 명세서의 일 구현예에 따른 고분자 전해질막의 단면의 일 영역을 도시한 것이다. 구체적으로, 도 3의 점선 영역은 가상의 선으로서, 가상의 3차원 폐쇄공간을 구획하기 위한 것이다. 어두운 영역으로 표시된 것은 지지체의 섬유형 가지 또는 노드이며, 이는 3차원적으로 연결된다.
또한, 본 명세서의 상기 셀은 지지체의 섬유형 가지로 둘러싸인 이온 전도성 고분자를 포함하는 이온 이동 영역의 단위 공간으로, 지지체의 섬유로 둘러 쌓인 경우의 가상의 3차원 폐쇄공간의 수평 및 수직 방향 단면이 원형 또는 타원형 또는 단일폐곡선 도형의 형태일 수 있다.
또한, 상기 본 명세서의 상기 셀은 일정 크기 이상의 부피를 갖는 것을 의미하며, 셀의 직경이 40 ㎚ 미만인 것은 셀에 해당하지 않을 수 있다.
본 명세서의 상기 셀의 직경은 셀을 가로 지르는 가장 긴 선의 길이를 의미할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 상면과 수평한 임의의 면에서, 상기 셀은 어느 한 방향(x축 방향) 및 이에 수직인 방향(y축 방향)과 고분자 전해질막의 두께 방향(z축 방향)으로 2층이상 적층된 것일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 2이상의 상기 셀이 분포하는 스펀지 구조일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 상기 셀이 규칙적으로 분포하고 있는 구조일 수 있다. 구체적으로, 본 명세서의 일 구현예에 따르면, 상기 지지체는 임의의 단위 부피에 따른 기공도의 편차가 10 % 이내일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수직 단면 및 수평 단면 모두에 2 이상의 상기 셀의 단면을 포함할 수 있다.
본 명세서의 셀의 단면의 직경은 셀의 단면을 가로지르는 가장 긴 선의 길이를 의미할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수평 표면에서의 셀의 단면은 종횡비가 1:1 내지 5:1 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수직 표면에서의 셀의 단면은 종횡비가 1:1 내지 10:1 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수평 표면에서의 셀의 단면의 직경 크기는 40 ㎚ 이상 500 ㎚ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수직 표면에서의 셀의 단면의 직경 크기는 40 ㎚ 이상 500 ㎚ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수평 표면과 수직 표면의 100 μ㎟ 당 셀 개수의 비는 1:1 내지 1:5일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 100 μ㎟ 당 수직 단면과 수평 단면의 셀 개수의 편차는 0개 이상 500개 이하 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 셀의 단면의 직경의 평균 크기는 40 ㎚ 이상 500 ㎚ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 셀의 단면의 직경의 표준 편차는 50 ㎚ 내지 200 ㎚일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 셀의 직경은 40 ㎚ 이상 1000 ㎚ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 임의의 단면에서, 상기 셀의 단면이 전체 단면 면적 중 50 % 내지 90 %를 차지할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 2 이상의 노드(node)로 이루어지며, 각각의 노드는 3이상의 분지를 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체의 어느 하나의 노드와 인접한 다른 노드와의 거리는 10 ㎚ 내지 500 ㎚ 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 셀의 중심으로부터 상기 지지체의 임의의 점까지의 길이는 20 ㎚ 내지 250 ㎚ 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 이온의 이동시 1 ㎛당 3 이상의 변곡 지점을 포함할 수 있다. 상기 변곡 지점은 굴곡인자(tortuosity factors)일 수 있으며, 1 ㎛당 3 이상의 굴곡인자로 표현될 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 탄화수소계 또는 불소계 물질을 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 반 결정질 폴리머를 포함할 수 있다.
본 명세서의 상기 반 결정질 폴리머는 결정도의 범위가 20 내지 80 % 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 반 결정질 폴리머는 폴리올레핀, 플루오로카본, 폴리아미드, 폴리에스터, 폴리아세탈(또는 폴리옥시메틸렌), 폴리설파이드, 폴리비닐 알코올, 이들의 코폴리머 및 이들의 조합을 포함할 수 있으며, 이에 제한되지는 않는다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 폴리올레핀계 물질로부터 유래된 것을 포함할 수 있다.
상기 폴리올레핀은 폴리에틸렌(LDPE, LLDPE, HDPE, UHMWPE), 폴리프로필렌, 폴리부텐, 폴리메틸펜텐, 이들의 코폴리머 및 이들의 블렌드를 포함할 수 있다.
상기 플루오로카본은 폴리테트라플루오로에틸렌(PTFE), 폴리클로로트리플루오로에틸렌(PCTFE), 플로리네이티드 에틸렌 프로필렌(FEP), 에틸렌 클로로트리플루오로에틸렌(ECTFE), 에틸렌 테트라플루오로에틸렌(ETFE), 폴리비닐리덴 플로라이드(PVDF), 폴리비닐플로라이드(PVF), 프리플로로알콕시(PFZ) 레진, 이들의 코폴리머 및 블렌드를 포함할 수 있으며, 이에 제한되지는 않는다.
상기 폴리아미드는, 폴리아미드 6, 폴리아미드 6/6, 나일로 10/10, 폴리프탈아미드(PPA), 이들의 코폴리머 및 이들의 블렌드를 포함할 수 있으나, 이에 제한되지 않는다.
상기 폴리에스터는 폴리에스터 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리-1-4-사이클로헥실렌디메틸렌 테레프탈레이트(PCT), 폴리에틸렌 나프탈레이트(PEN) 및 액상 결정 폴리머(LCP)를 포함할 수 있으며, 이에 제한되지는 않는다.
상기 폴리설파이드는, 폴리페닐설파이드, 폴리에틸렌 설파이드, 이들의 코폴리머 및 이들의 블렌드를 포함하지만, 이에 제한되지는 않는다.
상기 폴리비닐 알코올은, 에틸렌-비닐 알코올, 이들의 코폴리머 및 이들의 블렌드를 포함하지만, 이들에 제한되지는 않는다.
본 명세서의 일 구현예에 따르면, 상기 이온 전도성 고분자는 양이온 전도성 고분자 및/또는 음이온 전도성 고분자를 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 전도성 고분자는 프로톤 전도성 물질을 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 이온 전도성 고분자 및 상기 제2 이온 전도성 고분자는 각각 술폰화 벤즈이미다졸계 고분자, 술폰화 폴리이미드계 고분자, 술폰화 폴리에테르이미드계 고분자, 술폰화 폴리페닐렌설파이드계 고분자, 술폰화 폴리술폰계 고분자, 술폰화 폴리에테르술폰계 고분자, 술폰화 폴리에테르케톤계 고분자, 술폰화 폴리에테르-에테르케톤계 고분자, 술폰화 폴리페닐퀴녹살린계 고분자, 술폰화 부분불소계가 도입된 고분자 및 술폰화 불소계 고분자로 이루어진 군에서 선택되는 1종 또는 2종 이상을 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 전도성 고분자는 60 ℃ 이상에서 1 mS/cm 이상의 이온 전도성을 갖을 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 공기 투과도는 6 sec/100 ㎖ 이상일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 제1 이온 전도성 고분자를 70 부피% 이상 100 부피% 이하로 포함할 수 있다.
본 명세서의 상기 고분자 전해질막은 인장강도 및 신율(elongation)이 우수한 장점이 있다.
본 명세서의 상기 인장강도 및 신율은, ASTM(American Society for Testing and Materials) 표준에 따라 절취된 도그본 형태의 고분자 전해질막을 UTM(united test machine)으로 10 ㎜/min 속도로 측정한 것을 의미한다. 상기 UTM은 인장강도와 신율을 동시에 측정하는 장비로서, 당업계에서 일반적으로 쓰이는 장비이다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 인장강도는 200 kgf/㎠ 이상 2000 kgf/㎠ 이하, 또는 500 kgf/㎠ 이상 1500 kgf/㎠ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 신율(elongation)은 50 % 이상 300 % 이하일 수 있다. 또는 상기 고분자 전해질막의 신율은 100 % 이상 300 % 이하일 수 있다.
본 명세서의 상기 고분자 전해질막은 내구성이 우수한 장점이 있다. 구체적으로, 상기 고분자 전해질막은 RH 사이클을 통하여 우수한 내구성을 확인할 수 있다.
본 명세서의 상기 RH 사이클은, 전해질막을 MEA(Membrane Electrode Assembley, 막 전극 접합체)로 제조한 후 연료전지 상태에서 내구성을 측정하는 것을 의미한다. 구체적으로, 본 명세서의 상기 RH 사이클은 80 ℃의 조건에서, 애노드에 질소를 0.95 slm(standard liter per minute) 유량으로 주입하고, 캐소드에 질소를 1.0 slm 유량으로 주입하며, RH 150 % 의 가습 및 RH 0 % 의 비가습을 2분 간격으로 전환하며, 내구성을 측정하는 것을 의미한다.
나아가, 본 명세서의 RH 사이클이 높을수록 전해질막의 내구성은 높다는 것을 의미한다. 또한, 상기 RH 사이클은 전해질막이 MEA로 사용될 수 없을 정도의 손상이 발생한 사이클까지의 횟수를 의미한다.
본 명세서의 상기 RH 사이클 도중 전해질막의 손상 여부를 측정하기 위하여, LSV(linear sweep volta-mmetry)를 이용한다. 구체적으로, 상기 LSV는 애노드에 수소를 0.2 slm 유량으로 주입하고, 캐소드에 질소를 0.2 slm 유량으로 주입하며, 0.1 내지 0.4 V (2 mV/s)에서 수소의 크로스오버(crossover)를 측정하는 것을 의미한다. 즉, RH 사이클 도중 수소의 크로스오버 수치가 상승하는 경우, 전해질막의 손상이 있다고 볼 수 있으며, 수소의 크로스오버 수치가 상승하는 정도에 따라, 전해질막의 손상 정도를 판단할 수 있다.
즉, 상기 RH 사이클 횟수가 높을수록 고분자 전해질막의 내구성이 높은 것을 의미하며, RH 사이클이 20,000회 이상인 경우 일반적으로 우수한 내구성을 가지는 것으로 판단할 수 있다. 본 명세서의 고분자 전해질막은 상기 RH 사이클이 20,000회 이상에서도 성능 저하가 거의 없이 일정한 성능을 유지할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 20,000회 이상일 수 있다. 나아가, 본 명세서의 고분자 전해질막의 RH 사이클은 40,000회 이상, 또는 50,000회 이상일 수 있다. 또한, 본 명세서의 고분자 전해질막의 RH 사이클은 75,000회 이상, 또는 80,000회 이상일 수 있다. 상기 고분자 전해질막은 상기 범위의 RH 사이클 횟수에서도 성능의 저하가 없다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 200,000 회 이하일 수 있다. 또는, 본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 150,000회 이하, 또는 100,000회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 1회 이상 150,000회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15㎛ 이하이고, RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이고, RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이고, RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이고, RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이고, RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서는 상기 고분자 전해질막을 포함하는 막 전극 접합체를 제공한다. 또한, 본 명세서는 상기 막 전극 접합체를 포함하는 연료전지를 제공한다.
본 명세서의 상기 연료전지는 당업계에서 일반적으로 알려져 있는 연료전지를 포함한다.
본 명세서의 일 구현예에 따르면, 상기 막 전극 접합체와 상기 막전극 접합체들 사이에 개재하는 세퍼레이터를 포함하는 스택; 연료를 상기 스택으로 공급하는 연료공급부; 및 산화제를 상기 스택으로 공급하는 산화제공급부를 포함하는 것을 특징으로 하는 연료전지를 제공한다.
도 4는 본 명세서의 일 구현예에 따른 연료전지의 구조를 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
상기 스택(60)은 상기 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다.
상기 세퍼레이터는 상기 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
상기 산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 펌프(70)로 주입하여 사용할 수 있다.
상기 연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있으며, 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
[실시예 1]
IEC(ion exchange capacity) 2.16 meq/g 의 탄화수소계 고분자를 7 wt%로 DMSO(Dimethyl sulfoxide)에 녹여 함침 용액을 제조하였다. 상기 함침 용액에 두께 약 5 ㎛, 기공도 약 80 %의 2 이상의 셀이 규칙적으로 분포하는 3차원 망상 구조의 지지체를 함침하였다. 이후, 80 ℃의 오븐에서 24시간동안 건조하여 혼합층을 제조하였다. IEC(ion exchange capacity) 1.81 meq/g 의 탄화수소계 고분자를 7 wt%로 DMSO(Dimethyl sulfoxide)에 녹여 용액을 제조한 뒤, 상기 혼합층의 상면 및 하면에 도포하고, 80 ℃의 오븐에서 24시간동안 건조하여 순수층을 형성하였다. 제조된 고분자 전해질막은 10 % 황산으로 80 ℃에서 24시간 산처리 후, 증류수로 4회 이상 제척한 뒤, 80 ℃에서 건조하여 고분자 전해질막을 제조하였다.
[비교예 1]
함침 용액에 포함되는 탄화수소계 고분자의 IEC(ion exchange capacity)가 1.81 meq/g 이고, 순수층을 추가로 형성하지 않고, 상기 실시예 1과 동일한 방법으로 고분자 전해질막을 제조하였다.
[비교예 2]
함침 용액에 포함되는 탄화수소계 고분자의 IEC(ion exchange capacity)가 1.68 meq/g 이고, 지지체는 두께 약 5㎛, 기공도 85% 이상이고 셀로 정의될 수 없는 기공이 불규칙하게 분포하는 구조의 ePTFE를 사용하였으며, 순수층을 추가로 형성하지 않고 상기 실시예 1과 동일한 방법으로 고분자 전해질막을 제조하였다.
[실험예]
상기 실시예 및 비교예에 따라 제조된 고분자 전해질막의 연료전지에서의 성능을 측정하기 위하여, 상기 고분자 전해질막 포함하는 막전극 접합체를 제조하였다. 구체적으로, 상기 고분자 전해질막을 8 ㎝ × 8 ㎝ 의 사각형으로 절취하고, 상기 고분자 전해질막의 상면 및 하면에 Pt 0.4 mg/㎝2 의 카본담지 백금촉매를 5 ㎝ × 5 ㎝ 크기로 전사하여 막전극 접합체를 제조하였다.
상기 제조된 막전극 접합체의 성능평가는 H2/Air 및 상압 조건에서 상대습도(RH) 100 %, 상대습도(RH) 50 % 및 상대습도(RH) 32 %의 조건에서 실시하였다.
도 5는 상대습도(RH) 100 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 6은 상대습도(RH) 50 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 7는 상대습도(RH) 32 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 5 내지 도 7의 결과에 따르면, 실시예에 따른 고분자 전해질막이 비교예에 따른 고분자 전해질에 비하여 높은 성능을 나타내는 것을 알 수 있다.
또한, 도 7의 저가습 조건에서의 성능 결과를 보면, 비교예에 따른 고분자 전해질막에 비하여 실시예에 따른 고분자 전해질막은 안정적인 성능이 구현됨을 알 수 있다.
상기 도 5 내지 도 7의 결과에서 알 수 있듯이, 실시예에 따른 고분자 전해질막은 고가습 조건에서 안정적인 성능이 구현될 수 있으며, 실시예 1에 따른 고분자 전해질막과 같이 순수층이 구비되는 경우에는 저가습 조건에서도 보다 안정적이고, 우수한 성능을 유지할 수 있다.
Claims (28)
- 이온 이동 영역 및 3차원 망상 구조의 지지체를 포함하는 혼합층을 포함하고,
상기 이온 이동 영역은 제1 이온 전도성 고분자를 포함하는 2 이상의 셀이 3차원적으로 접하는 구조이며,
상기 제1 이온 전도성 고분자의 IEC(ion exchange capacity)는 1.7 meq/g 이상 2.5 meq/g 이하이고,
상기 혼합층의 상면, 또는 하면, 또는 상면 및 하면 상에 구비된 제2 이온 전도성 고분자를 포함하는 순수층을 포함하고,
상기 제2 이온 전도성 고분자의 IEC(ion exchange capacity)는 상기 제1 이온 전도성 고분자의 IEC(ion exchange capacity)보다 0.2 meq/g 이상 낮은 것을 특징으로 하는 고분자 전해질막. - 삭제
- 삭제
- 청구항 1에 있어서,
상기 제2 이온 전도성 고분자의 IEC(ion exchange capacity)는 0.9 meq/g 이상 1.8 meq/g 이하인 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 순수층은 혼합층에 접하여 구비된 상기 제1 이온 전도성 고분자를 포함하는 추가의 순수층을 더 포함하는 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하인 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 순수층의 두께는 각각 독립적으로 0 ㎛ 초과 6 ㎛ 이하인 것을 특징으로 하는 고분자 전해질막. - 청구항 5에 있어서,
상기 추가의 순수층의 두께는 0 ㎛ 초과 5㎛ 이하인 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 혼합층의 상면 및 하면에 각각 구비된 상기 순수층 간의 두께 차이는 상기 혼합층 두께의 50 % 이하인 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 혼합층과 상기 전체 순수층의 두께 비율은 1:0 내지 1:4 인 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 고분자 전해질막의 전체 두께는 3 ㎛ 이상 36 ㎛ 이하인 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 혼합층의 전체 부피에 대하여 상기 이온 이동 영역은 40 부피% 이상 85 부피% 이하인 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
고분자 전해질막의 상면과 수평한 임의의 면에서, 상기 셀은 어느 한 방향(x축 방향) 및 이에 수직인 방향(y축 방향)과 고분자 전해질막의 두께 방향(z축 방향)으로 2층이상 적층된 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 지지체는 2이상의 상기 셀이 분포하는 스펀지 구조인 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 고분자 전해질막의 수직 단면 및 수평 단면 모두에 2 이상의 상기 셀의 단면을 포함하는 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 지지체는 2 이상의 노드(node)로 이루어지며, 각각의 노드는 3이상의 분지를 포함하는 것을 특징으로 하는 고분자 전해질막. - 삭제
- 청구항 1에 있어서,
상기 지지체는 탄화수소계 또는 불소계 물질을 포함하는 것을 특징으로 하는 고분자 전해질막. - 청구항 18에 있어서,
상기 지지체는 반 결정질 폴리머를 포함하는 것을 특징으로 하는 고분자 전해질막. - 청구항 18에 있어서,
상기 지지체는 폴리올레핀, 플루오로카본, 폴리아미드, 폴리에스터, 폴리아세탈(또는 폴리옥시메틸렌), 폴리설파이드, 폴리비닐 알코올, 이들의 코폴리머 및 이들의 조합을 포함하는 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 제1 이온 전도성 고분자 및 상기 제2 이온 전도성 고분자는 각각 술폰화 벤즈이미다졸계 고분자, 술폰화 폴리이미드계 고분자, 술폰화 폴리에테르이미드계 고분자, 술폰화 폴리페닐렌설파이드계 고분자, 술폰화 폴리술폰계 고분자, 술폰화 폴리에테르술폰계 고분자, 술폰화 폴리에테르케톤계 고분자, 술폰화 폴리에테르-에테르케톤계 고분자, 술폰화 폴리페닐퀴녹살린계 고분자, 술폰화 부분불소계가 도입된 고분자 및 술폰화 불소계 고분자로 이루어진 군에서 선택되는 1종 또는 2종 이상을 포함하는 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 고분자 전해질막의 공기 투과도는 6 sec/100 ㎖ 이상인 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 이온 이동 영역은 상기 제1 이온 전도성 고분자를 70 부피% 이상 100 부피% 이하로 포함하는 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 고분자 전해질막의 인장강도는 200 kgf/㎠ 이상 2000 kgf/㎠ 이하인 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 고분자 전해질막의 신율(elongation)은 50 % 이상 300 % 이하인 것을 특징으로 하는 고분자 전해질막. - 청구항 1에 있어서,
상기 고분자 전해질막의 RH 사이클은 20,000회 이상인 것을 특징으로 하는 고분자 전해질막. - 청구항 1, 4 내지 16 및 18 내지 26 중 어느 한 항의 고분자 전해질막을 포함하는 막 전극 접합체.
- 청구항 27의 막 전극 접합체를 포함하는 연료전지.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130144444 | 2013-11-26 | ||
KR1020130144444 | 2013-11-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150060599A KR20150060599A (ko) | 2015-06-03 |
KR101727369B1 true KR101727369B1 (ko) | 2017-04-14 |
Family
ID=53199364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140166728A KR101727369B1 (ko) | 2013-11-26 | 2014-11-26 | 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10297852B2 (ko) |
EP (1) | EP3076466B1 (ko) |
JP (1) | JP6316964B2 (ko) |
KR (1) | KR101727369B1 (ko) |
CN (1) | CN105849959B (ko) |
WO (1) | WO2015080475A1 (ko) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140128894A (ko) * | 2013-04-29 | 2014-11-06 | 주식회사 엘지화학 | 고분자 전해질막, 고분자 전해질막을 포함하는 막전극 접합체 및 막 전극 접합체를 포함하는 연료전지 |
KR102130873B1 (ko) | 2016-06-01 | 2020-07-06 | 주식회사 엘지화학 | 강화막, 이를 포함하는 막 전극 접합체 및 연료 전지, 및 이의 제조방법 |
CN108461792B (zh) * | 2016-12-13 | 2021-11-30 | 中国科学院大连化学物理研究所 | 一种复合型碱性聚合物电解质膜及其制备方法和应用 |
KR102293177B1 (ko) * | 2017-11-30 | 2021-08-26 | 코오롱인더스트리 주식회사 | 고분자 전해질 막, 이의 제조 방법 및 이를 포함하는 막 전극 어셈블리 |
KR102203974B1 (ko) | 2018-01-19 | 2021-01-15 | 주식회사 엘지화학 | 막 전극 접합체의 제조방법 및 적층체 |
KR102480909B1 (ko) | 2018-01-22 | 2022-12-22 | 주식회사 엘지화학 | 전극 제조장치 및 전극 제조방법 |
KR102169843B1 (ko) | 2018-01-22 | 2020-10-26 | 주식회사 엘지화학 | 막 전극 접합체의 제조방법 및 적층체 |
KR102586433B1 (ko) * | 2018-04-26 | 2023-10-06 | 현대자동차주식회사 | 연료전지용 전해질막의 제조방법 및 이로 제조된 전해질막 |
EP4084169A1 (en) * | 2019-12-26 | 2022-11-02 | Kolon Industries, Inc. | Polymer electrolyte membrane, membrane-electrode assembly including same, and method for measuring durability thereof |
CN111635531B (zh) * | 2020-05-28 | 2022-03-01 | 珠海冠宇电池股份有限公司 | 一种聚烯烃接枝苯并咪唑类聚合物质子交换膜及其制备方法与应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005050561A (ja) * | 2003-07-29 | 2005-02-24 | Toyobo Co Ltd | 複合イオン交換膜 |
JP2006120409A (ja) * | 2004-10-20 | 2006-05-11 | Nissan Motor Co Ltd | プロトン伝導性コンポジット型電解質膜及びその製造方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG73410A1 (en) | 1992-06-13 | 2000-06-20 | Hoechst Ag | Polymer electrolyte membrane and process for the production thereof |
US5547551A (en) | 1995-03-15 | 1996-08-20 | W. L. Gore & Associates, Inc. | Ultra-thin integral composite membrane |
FR2748485B1 (fr) | 1996-05-07 | 1998-08-07 | Commissariat Energie Atomique | Polyimides sulfones, membranes preparees avec ceux-ci, et dispositif de pile a combustible comprenant ces membranes |
CA2458378C (en) * | 2002-06-14 | 2013-04-02 | Toray Industries, Inc. | Porous membrane and method of manufacturing the same |
JP2005044610A (ja) * | 2003-07-28 | 2005-02-17 | Toyobo Co Ltd | 複合イオン交換膜およびその製造方法 |
US20060083962A1 (en) | 2004-10-20 | 2006-04-20 | Nissan Motor Co., Ltd. | Proton-conductive composite electrolyte membrane and producing method thereof |
KR100746339B1 (ko) | 2006-03-07 | 2007-08-03 | 한국과학기술원 | 고분자 전해질 연료전지용 복합막의 제조방법 |
JP5124097B2 (ja) * | 2006-03-20 | 2013-01-23 | 日本ゴア株式会社 | 電解質膜及び固体高分子形燃料電池 |
KR100833056B1 (ko) | 2006-03-31 | 2008-05-27 | 주식회사 엘지화학 | 연료전지용 강화-복합 전해질막 |
JP5151074B2 (ja) | 2006-06-08 | 2013-02-27 | 株式会社日立製作所 | 固体高分子電解質膜,膜電極接合体およびそれを用いた燃料電池 |
JP5228378B2 (ja) * | 2007-06-04 | 2013-07-03 | 旭硝子株式会社 | 固体高分子形燃料電池用膜電極接合体およびその製造方法 |
JP5320799B2 (ja) * | 2008-04-11 | 2013-10-23 | 旭硝子株式会社 | 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体 |
JP5104696B2 (ja) * | 2008-09-29 | 2012-12-19 | トヨタ自動車株式会社 | 燃料電池用の電解質膜の製造方法および電解質膜 |
CN102104156B (zh) | 2009-12-18 | 2013-03-27 | 中国科学院大连化学物理研究所 | 一种燃料电池用复合阴离子交换膜及其制备方法 |
KR101433133B1 (ko) * | 2011-03-31 | 2014-08-25 | 코오롱인더스트리 주식회사 | 고분자 전해질 및 이의 제조 방법 |
KR101315744B1 (ko) * | 2011-05-18 | 2013-10-10 | 한국화학연구원 | 고체 고분자 전해질형 연료전지용 다층 강화 복합전해질 막, 그 제조방법, 그 막을 구비한 막-전극 어셈블리 및 연료전지 |
KR20130020000A (ko) * | 2011-08-18 | 2013-02-27 | 삼성전자주식회사 | 다공성막, 이를 포함하는 전해질막, 그 제조방법 및 이를 채용한 연료전지 |
US9375525B2 (en) * | 2012-01-09 | 2016-06-28 | Somerset Group Enterprises, Inc. | Modular extracorporeal systems and methods for treating blood-borne diseases |
KR20140128894A (ko) * | 2013-04-29 | 2014-11-06 | 주식회사 엘지화학 | 고분자 전해질막, 고분자 전해질막을 포함하는 막전극 접합체 및 막 전극 접합체를 포함하는 연료전지 |
-
2014
- 2014-11-26 EP EP14865322.3A patent/EP3076466B1/en active Active
- 2014-11-26 KR KR1020140166728A patent/KR101727369B1/ko active IP Right Grant
- 2014-11-26 WO PCT/KR2014/011441 patent/WO2015080475A1/ko active Application Filing
- 2014-11-26 JP JP2016534223A patent/JP6316964B2/ja active Active
- 2014-11-26 CN CN201480071336.5A patent/CN105849959B/zh active Active
- 2014-11-26 US US15/038,951 patent/US10297852B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005050561A (ja) * | 2003-07-29 | 2005-02-24 | Toyobo Co Ltd | 複合イオン交換膜 |
JP2006120409A (ja) * | 2004-10-20 | 2006-05-11 | Nissan Motor Co Ltd | プロトン伝導性コンポジット型電解質膜及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20170005355A1 (en) | 2017-01-05 |
JP6316964B2 (ja) | 2018-04-25 |
EP3076466B1 (en) | 2018-02-28 |
US10297852B2 (en) | 2019-05-21 |
EP3076466A4 (en) | 2017-04-19 |
WO2015080475A1 (ko) | 2015-06-04 |
CN105849959A (zh) | 2016-08-10 |
KR20150060599A (ko) | 2015-06-03 |
CN105849959B (zh) | 2019-11-19 |
JP2016538698A (ja) | 2016-12-08 |
EP3076466A1 (en) | 2016-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101727369B1 (ko) | 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지 | |
KR101579001B1 (ko) | 고분자 전해질막, 고분자 전해질막을 포함하는 막전극 접합체 및 막 전극 접합체를 포함하는 연료전지 | |
Kraytsberg et al. | Review of advanced materials for proton exchange membrane fuel cells | |
JP2009242688A (ja) | 高分子電解質膜 | |
Maharana et al. | Polyetheretherketone (PEEK) membrane for fuel cell applications | |
Mehdipour-Ataei et al. | Polymer electrolyte membranes for direct methanol fuel cells | |
KR102293564B1 (ko) | 강화막, 이를 포함하는 전기화학 전지 및 연료 전지, 및 상기 강화막의 제조방법 | |
KR102119915B1 (ko) | 복합 전해질막, 강화복합 전해질막 및 이를 포함하는 연료전지 | |
KR102701887B1 (ko) | 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료 전지 | |
JP5114047B2 (ja) | 高分子電解質膜の製造方法 | |
KR20220151512A (ko) | 강화복합막, 이를 포함하는 막-전극 어셈블리 및 연료전지 | |
KR20230068616A (ko) | 고분자 전해질막 및 이를 포함하는 막-전극 어셈블리 | |
KR20230143051A (ko) | 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 전기 화학 장치 | |
Korin et al. | Fuel cells and ionically conductive membranes: an overview | |
KR20170098006A (ko) | 강화막, 이를 포함하는 전기화학 전지 및 연료 전지, 및 상기 강화막의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |