WO2015080475A1 - 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지 - Google Patents

고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지 Download PDF

Info

Publication number
WO2015080475A1
WO2015080475A1 PCT/KR2014/011441 KR2014011441W WO2015080475A1 WO 2015080475 A1 WO2015080475 A1 WO 2015080475A1 KR 2014011441 W KR2014011441 W KR 2014011441W WO 2015080475 A1 WO2015080475 A1 WO 2015080475A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
polymer electrolyte
polymer
present specification
less
Prior art date
Application number
PCT/KR2014/011441
Other languages
English (en)
French (fr)
Inventor
민민규
박영선
김혁
최성호
이상우
김도영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/038,951 priority Critical patent/US10297852B2/en
Priority to EP14865322.3A priority patent/EP3076466B1/en
Priority to CN201480071336.5A priority patent/CN105849959B/zh
Priority to JP2016534223A priority patent/JP6316964B2/ja
Publication of WO2015080475A1 publication Critical patent/WO2015080475A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1065Polymeric electrolyte materials characterised by the form, e.g. perforated or wave-shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present specification provides a fuel cell including a polymer electrolyte membrane, a membrane electrode assembly including a polymer electrolyte membrane, and a membrane electrode assembly.
  • a fuel cell is a high-efficiency power generation device, which has a higher efficiency than a conventional internal combustion engine, thus uses less fuel, and has a merit of being a pollution-free energy source that does not generate environmental pollutants such as SO x , NO x , and VOC.
  • SO x sulfur dioxide
  • NO x nitrogen oxide
  • VOC pollution-free energy source
  • fuel cells have a variety of application fields ranging from mobile power sources for portable devices, transportation power sources for automobiles, and the like to distributed power generation for home and power projects.
  • the potential market size is expected to be wide.
  • AFC alkaline fuel cells
  • PAFC phosphoric acid fuel cells
  • MCFC molten carbonate fuel cells
  • SOFC solid oxide fuel cells
  • PEMFC Polymer electrolyte fuel cells
  • DMFC direct methanol fuel cells
  • gas diffusion electrode layers are disposed on both sides of the polymer electrolyte membrane, an anode is directed at the anode, and a cathode is directed at the anode, and water is generated by a chemical reaction through the polymer electrolyte membrane.
  • the basic principle is to convert the reaction energy generated by this into electrical energy.
  • ion conductive polymer electrolyte membrane is Nafion, a perfluorinated hydrogen ion exchange membrane developed by DuPont in the early 1960's.
  • Nafion as a similar perfluorinated polymer electrolyte membrane, Asahi Chemicals' Aciplex-S membrane, Dow Chemical's Dow membrane and Asahi Glass Glass's Flemion film.
  • the polymer electrolyte membrane has a thickness change and a volume change of 15 to 30% depending on the temperature and the degree of hydration, and thus the electrolyte membrane repeats swelling and shrinking depending on the fuel cell operating conditions. Or cracking will occur.
  • hydrogen peroxide (H 2 O 2 ) or peroxide radicals are generated by reduction of oxygen at the cathode, which may degrade the electrolyte membrane.
  • Polymer electrolyte membranes for fuel cells have been developed in the direction of improving mechanical and chemical durability in consideration of such phenomena that may occur during fuel cell operation.
  • a porous support is used to impart mechanical properties and dimensional stability. Since the porous support must maintain mechanical durability without sacrificing performance, it is necessary to select a support of a suitable material having high porosity and excellent mechanical properties. In addition, since the ion conductivity of the membrane may vary greatly depending on the method of impregnating the ion conductor with the support and the type of the ion conductor, it is required to develop an ion conductor suitable for an effective method of impregnating the ion conductor and the reinforced composite electrolyte membrane.
  • An object of the present specification is to provide a polymer electrolyte membrane. Furthermore, the present invention provides a membrane electrode assembly including the polymer electrolyte membrane and a fuel cell including the same.
  • the present specification includes a mixed layer including an ion transport region and a support of a three-dimensional network structure, wherein the ion transport region is a structure in which two or more cells including a first ion conductive polymer are three-dimensionally contacted, and the first ion IEC (ion exchange capacity) of the conductive polymer provides a polymer electrolyte membrane, characterized in that 1.7 meq / g or more and 2.5 meq / g or less.
  • the present disclosure provides a membrane electrode assembly including the polymer electrolyte membrane.
  • the present disclosure provides a fuel cell including the membrane electrode assembly.
  • the polymer electrolyte membrane according to the present specification has an advantage of excellent durability. Specifically, when used in a fuel cell using a membrane electrode assembly comprising a polymer electrolyte membrane according to the present disclosure, it can contribute to the performance improvement of the fuel cell. That is, the high temperature humidification and drying is repeated to minimize the deterioration of the performance of the fuel electronics in the operating environment of the fuel cell in which the shrinkage and expansion of the polymer electrolyte membrane is repeated, thereby maintaining a constant performance.
  • the polymer electrolyte membrane according to the present specification has excellent durability and high ionic conductivity. That is, the polymer electrolyte membrane according to the present disclosure minimizes the decrease in the ionic conductivity by including the support, and has the same level of ionic conductivity as in the absence of the support.
  • 1 and 2 illustrate one region of the surface of the polymer electrolyte membrane according to one embodiment of the present specification.
  • FIG 3 illustrates one region of a cross section of the polymer electrolyte membrane according to one embodiment of the present specification.
  • FIG. 4 illustrates a structure of a fuel cell according to one embodiment of the present specification.
  • Figure 5 shows the voltage according to the current density in the fuel cell of the polymer electrolyte membrane according to the embodiment and the comparative example at 100% relative humidity (RH) conditions.
  • Figure 6 shows the voltage according to the current density in the fuel cell of the polymer electrolyte membrane according to the embodiment and the comparative example at 50% relative humidity (RH).
  • the present specification includes a mixed layer including an ion transport region and a support of a three-dimensional network structure, wherein the ion transport region is a structure in which two or more cells including a first ion conductive polymer are three-dimensionally contacted, and the first ion IEC (ion exchange capacity) of the conductive polymer provides a polymer electrolyte membrane, characterized in that 1.7 meq / g or more and 2.5 meq / g or less.
  • the first ion-conducting polymer may be included in the ion migration region to increase ion performance in the mixed layer due to high ion conductivity, thereby improving performance of the polymer electrolyte membrane.
  • the mixed layer may be formed by impregnating the support with the first ion conductive polymer.
  • a polymer electrolyte membrane without an additional pure layer may be formed.
  • a polymer electrolyte membrane having an additional pure layer is provided on the upper and / or lower surface of the mixed layer. can do.
  • the polymer electrolyte membrane includes a pure layer including a top surface, a bottom surface, or a second ion conductive polymer provided on the top and bottom surfaces of the mixed layer,
  • the ion exchange capacity (IEC) may be lower than the ion exchange capacity (IEC) of the first conductive polymer.
  • the pure layer may be provided on the upper and / or lower surface of the mixed layer, or may be provided on the additional pure layer.
  • the ion exchange capacity (IEC) of the second ion conductive polymer may be 0.2 meq / g or more lower than the ion exchange capacity (IEC) of the first ion conductive polymer.
  • the second ion conductive polymer may be provided on at least one surface of the mixed layer to prevent dissolution of the first ion conductive polymer contained in the mixed layer.
  • the first ion conductive polymer may be eluted by moisture, and the second ion conductive polymer is eluted by water of the first ion conductive polymer. It can play a role to prevent this.
  • the ion exchange capacity (IEC) of the second ion conductive polymer may be 0.9 meq / g or more and 1.8 meq / g or less.
  • the pure layer may further include an additional pure layer including the first ion conductive polymer provided in contact with the mixed layer.
  • the additional pure layer may be one in which the same polymer as the first ion conductive polymer included in the ion migration region is provided in contact with an upper portion, a lower portion, or an upper portion and a lower portion of the mixed layer.
  • the support may be impregnated in the first ion conductive polymer, and the first ion conductive polymer may remain on the upper and / or lower surfaces of the mixed layer to form an additional pure layer.
  • the polymer electrolyte membrane according to the present specification has excellent durability and high ionic conductivity. Specifically, the polymer electrolyte membrane according to the present disclosure minimizes the decrease in ionic conductivity according to the inclusion of the support, and has the same level of ionic conductivity as in the absence of the support. Therefore, the fuel cell including the polymer electrolyte membrane according to the present disclosure can minimize the damage of the electrolyte membrane due to long time driving, and further, can exhibit high performance.
  • the thickness of the mixed layer may be 1 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the mixed layer may be 1 ⁇ m or more and 25 ⁇ m or less.
  • the thickness of the mixed layer may be 1 ⁇ m or more and 15 ⁇ m or less.
  • the thickness of the mixed layer according to the present disclosure is 1 ⁇ m or more and 30 ⁇ m or less, high ion conductivity and durability may be realized.
  • the mixed layer is within the thickness range, a decrease in durability due to thickness reduction may hardly occur. That is, when the thickness of the mixed layer is less than 1 ⁇ m has a disadvantage that the durability is not maintained, when the thickness is more than 30 ⁇ m has a disadvantage that the ion conductivity may be lowered.
  • the polymer electrolyte membrane may be formed of only the mixed layer.
  • the thicknesses of the pure layers provided on one surface of the mixed layer may be each independently greater than 0 ⁇ m and less than or equal to 6 ⁇ m.
  • the thickness of the additional pure layer may be greater than 0 ⁇ m and 5 ⁇ m or less.
  • the thickness of the pure layer may be to include the thickness of the additional pure layer.
  • the thickness difference between the pure layers provided on the upper and lower surfaces of the mixed layer may be 50% or less of the thickness of the mixed layer. Specifically, the thickness difference between the pure layer provided on the upper and lower surfaces of the mixed layer may be 30% or less of the thickness of the mixed layer. According to the exemplary embodiment of the present specification, when the thickness difference between the pure layers is 0%, the thicknesses of the pure layers provided on the upper and lower surfaces of the mixed layer are the same.
  • the polymer electrolyte membrane when the thickness difference between the pure layer provided on the upper surface of the mixed layer and the pure layer provided on the lower surface of the mixed layer is 50% or less of the mixed layer thickness, the polymer electrolyte membrane may be repeatedly humidified and dried. Shrinkage and expansion of the upper and lower surfaces of the polymer electrolyte membrane are similar to prevent cracks from occurring.
  • the thickness ratio of the mixed layer and the entire pure layer may be 1: 0 to 1: 4. Specifically, the thickness ratio of the mixed layer and the entire pure layer may be 1: 0 to 1: 1.5. More specifically, the thickness ratio of the mixed layer and the entire pure layer may be 1: 0 to 1: 1.
  • the thickness ratio of the mixed layer to the pure layer is higher, high durability may be exhibited under conditions of repeated humidification and drying.
  • the total thickness of the polymer electrolyte membrane may be 3 ⁇ m or more and 36 ⁇ m or less.
  • the ion migration region may be 40 vol% or more and 85 vol% or less with respect to the total volume of the mixed layer.
  • the ion migration region may be 40 vol% or more and 80 vol% or less with respect to the total volume of the ion migration region and the support.
  • the ion migration region may be 40 vol% or more and 70 vol% or less with respect to the total volume of the mixed layer.
  • the ion migration region may be 40 vol% or more and 60 vol% or less with respect to the total volume of the mixed layer.
  • the ion migration region may be 40 vol% or more and 55 vol% or less with respect to the total volume of the mixed layer.
  • the ion migration region may be 45 vol% or more and 65 vol% or less with respect to the total volume of the mixed layer.
  • the ion migration region may be 45 vol% or more and 60 vol% or less with respect to the total volume of the mixed layer.
  • the ion migration region of the polymer electrolyte membrane according to the present disclosure is 40% by volume or more and 85% by volume or less, it is possible to secure durability of the polymer electrolyte membrane and to ensure sufficient ion conductivity.
  • the ion migration region is less than 40% by volume, the durability of the polymer electrolyte membrane is increased, but it is difficult to secure sufficient ion conductivity.
  • the ion migration region exceeds 85% by volume, the ion conductivity of the polymer electrolyte membrane is increased, but it is difficult to secure durability.
  • FIG. 1 and 2 illustrate one region of the surface of the polymer electrolyte membrane according to one embodiment of the present specification. Specifically, FIG. 1 illustrates one region of the horizontal surface of the polymer electrolyte membrane of the present specification, and FIG. 2 illustrates one region of the vertical surface of the polymer electrolyte membrane of the present specification. Furthermore, the region indicated by the dark region means the support, and the bright region means the ion migration region.
  • the vertical surface may mean a surface in the thickness direction of the polymer electrolyte membrane.
  • the horizontal surface is a surface perpendicular to the thickness direction of the polymer electrolyte membrane, and may mean a surface occupying a relatively large area.
  • the ion migration region may mean a cross section of a cell, and a cell three-dimensionally contacting the illustrated cell exists inside the polymer electrolyte membrane.
  • the cell of the present specification may be spherical or spherical in shape, polyhedron, and when the cell is spherical, the cross section of the cell may have a closed shape with an aspect ratio of 1: 1 to 5: 1.
  • the cell of the present specification may mean a virtual three-dimensional closed space surrounded by a virtual plane to be formed when the fibrous branches connecting the nodes and the nodes of the support are connected.
  • the node may mean a site where two or more fibrous branches intersect.
  • FIG. 3 illustrates one region of a cross section of the polymer electrolyte membrane according to one embodiment of the present specification.
  • the dotted line region of FIG. 3 is a virtual line, for partitioning the virtual three-dimensional closed space. Marked with dark areas are fibrous branches or nodes of the support, which are connected three-dimensionally.
  • the cell of the present specification is a unit space of an ion migration region including an ion conductive polymer surrounded by fibrous branches of a support, and the horizontal and vertical cross-sections of the virtual three-dimensional closed space in the case of being enclosed by the fibers of the support are It may be in the form of a circular or elliptical or single closed curve figure.
  • the cell of the present specification means a volume having a predetermined size or more, and the diameter of the cell is less than 40 nm may not correspond to the cell.
  • the diameter of the cell of the present specification may mean the length of the longest line across the cell.
  • the cell in any plane parallel to the upper surface of the polymer electrolyte membrane, the cell is in one direction (x-axis direction) and the direction perpendicular thereto (y-axis direction) and the thickness direction of the polymer electrolyte membrane ( z-axis direction) may be stacked two or more layers.
  • the support may be a sponge structure in which two or more of the cells are distributed.
  • the support may have a structure in which the cells are regularly distributed. Specifically, according to one embodiment of the present specification, the support may have a variation in porosity of any unit volume within 10%.
  • two or more cross sections of the cell may be included in both the vertical cross section and the horizontal cross section of the polymer electrolyte membrane.
  • the diameter of the cross section of the cell herein may mean the length of the longest line across the cross section of the cell.
  • the cross section of the cell on the horizontal surface of the polymer electrolyte membrane may have an aspect ratio of 1: 1 to 5: 1.
  • the cross section of the cell on the vertical surface of the polymer electrolyte membrane may have an aspect ratio of 1: 1 to 10: 1.
  • the diameter size of the cross section of the cell on the horizontal surface of the polymer electrolyte membrane may be 40 nm or more and 500 nm or less.
  • the diameter size of the cross section of the cell on the vertical surface of the polymer electrolyte membrane may be 40 nm or more and 500 nm or less.
  • the ratio of the number of cells per 100 ⁇ mm 2 of the horizontal surface and the vertical surface of the polymer electrolyte membrane may be 1: 1 to 1: 5.
  • the deviation of the number of cells in the vertical section and the horizontal section per 100 ⁇ mm 2 of the polymer electrolyte membrane may be 0 or more and 500 or less.
  • the average size of the diameter of the cross section of the cell may be greater than or equal to 40 nm and less than or equal to 500 nm.
  • the standard deviation of the diameter of the cross section of the cell may be 50 nm to 200 nm.
  • the cell may have a diameter of 40 nm or more and 1000 nm or less.
  • the cross section of the cell may occupy 50% to 90% of the total cross-sectional area.
  • the support consists of two or more nodes, and each node may include three or more branches.
  • the distance between one node of the support and another node adjacent to the support may be 10 nm to 500 nm.
  • the length from the center of the cell to any point of the support may be 20 nm to 250 nm.
  • the ion migration region may include three or more inflection points per ⁇ m when the ions move.
  • the inflection point may be tortuosity factors and may be expressed as three or more flexure factors per ⁇ m.
  • the support may include a hydrocarbon-based or fluorine-based material.
  • the support may include a semi-crystalline polymer.
  • the semi-crystalline polymer of the present specification may have a range of 20 to 80% of the crystallinity.
  • the semi-crystalline polymer is polyolefin, fluorocarbon, polyamide, polyester, polyacetal (or polyoxymethylene), polysulfide, polyvinyl alcohol, copolymers thereof and combinations thereof It may include, but is not limited thereto.
  • the support may include one derived from a polyolefin-based material.
  • the polyolefin may include polyethylene (LDPE, LLDPE, HDPE, UHMWPE), polypropylene, polybutene, polymethylpentene, copolymers thereof and blends thereof.
  • the fluorocarbons are polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), florinated ethylene propylene (FEP), ethylene chlorotrifluoroethylene (ECTFE), ethylene tetrafluoroethylene (ETFE) ), Polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), prefluoroalkoxy (PFZ) resin, copolymers and blends thereof, but are not limited thereto.
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • FEP florinated ethylene propylene
  • ECTFE ethylene chlorotrifluoroethylene
  • ETFE ethylene tetrafluoroethylene
  • PVDF Polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • PFZ prefluoroalkoxy
  • the polyamide may include, but is not limited to, polyamide 6, polyamide 6/6, nilo 10/10, polyphthalamide (PPA), copolymers thereof, and blends thereof.
  • the polyester is polyester terephthalate (PET), polybutylene terephthalate (PBT), poly-1-4-cyclohexylenedimethylene terephthalate (PCT), polyethylene naphthalate (PEN) and liquid crystalline polymer (LCP) ), but is not limited thereto.
  • PET polyester terephthalate
  • PBT polybutylene terephthalate
  • PCT poly-1-4-cyclohexylenedimethylene terephthalate
  • PEN polyethylene naphthalate
  • LCP liquid crystalline polymer
  • Such polysulfides include, but are not limited to, polyphenylsulfides, polyethylene sulfides, copolymers thereof and blends thereof.
  • the polyvinyl alcohol includes, but is not limited to, ethylene-vinyl alcohol, copolymers thereof and blends thereof.
  • the ion conductive polymer may include a cationic conductive polymer and / or an anionic conductive polymer.
  • the ion conductive polymer may include a proton conductive material.
  • the first ion conductive polymer and the second ion conductive polymer are sulfonated benzimidazole polymers, sulfonated polyimide polymers, sulfonated polyetherimide polymers, and sulfonated polyethers, respectively.
  • Phenylene sulfide polymer sulfonated polysulfone polymer, sulfonated polyether sulfone polymer, sulfonated polyether ketone polymer, sulfonated polyether-ether ketone polymer, sulfonated polyphenylquinoxaline polymer, sulfonated It may include one or two or more selected from the group consisting of a partially fluorine-based polymer and a sulfonated fluorine-based polymer.
  • the ion conductive polymer may have an ion conductivity of 1 mS / cm or more at 60 ° C. or more.
  • the air permeability of the polymer electrolyte membrane may be 6 sec / 100 ml or more.
  • the ion migration region may include 70% by volume or more and 100% by volume or less of the first ion conductive polymer.
  • the polymer electrolyte membrane of the present specification has an advantage of excellent tensile strength and elongation.
  • the tensile strength and elongation of the present specification means that the polymer electrolyte membrane of the dogbone form cut according to the American Society for Testing and Materials (ASTM) standard is measured at a speed of 10 mm / min with a united test machine (UTM).
  • ASTM American Society for Testing and Materials
  • the UTM is a device for simultaneously measuring tensile strength and elongation, and is generally used in the art.
  • the tensile strength of the polymer electrolyte membrane may be 200 kgf / cm 2 or more and 2000 kgf / cm 2 or less, or 500 kgf / cm 2 or more and 1500 kgf / cm 2 or less.
  • the elongation of the polymer electrolyte membrane may be 50% or more and 300% or less.
  • the elongation of the polymer electrolyte membrane may be 100% or more and 300% or less.
  • the polymer electrolyte membrane of the present specification has an advantage of excellent durability. Specifically, the polymer electrolyte membrane can be confirmed excellent durability through the RH cycle.
  • the RH cycle of the present specification means that the electrolyte membrane is made of MEA (membrane electrode assembly) and the durability of the fuel cell is measured. Specifically, in the RH cycle of the present specification, nitrogen is injected into the anode at a flow rate of 0.95 slm (standard liter per minute) at 80 ° C., nitrogen is injected into the cathode at a flow rate of 1.0 slm, humidification of RH 150%, and RH 0% of non-humidity is converted every two minutes, which means measuring durability.
  • MEA membrane electrode assembly
  • the higher the RH cycle of the present specification the higher the durability of the electrolyte membrane.
  • the RH cycle means the number of cycles until the damage occurred such that the electrolyte membrane cannot be used as the MEA.
  • LSV linear sweep volta-mmetry
  • the LSV injects hydrogen into the anode at a flow rate of 0.2 slm, injects nitrogen into the cathode at a flow rate of 0.2 slm, and measures the crossover of hydrogen at 0.1 to 0.4 V (2 mV / s). It means. That is, when the crossover value of hydrogen rises during the RH cycle, it is considered that there is a damage to the electrolyte membrane, and the degree of damage to the electrolyte membrane can be determined according to the degree of increase of the crossover value of hydrogen.
  • the polymer electrolyte membrane of the present specification can maintain a constant performance with almost no performance degradation even when the RH cycle is 20,000 or more.
  • the RH cycle of the polymer electrolyte membrane may be 20,000 or more times. Furthermore, the RH cycle of the polymer electrolyte membrane of the present specification may be 40,000 or more, or 50,000 or more. In addition, the RH cycle of the polymer electrolyte membrane of the present specification may be 75,000 or more, or 80,000 or more. The polymer electrolyte membrane does not deteriorate even in the number of RH cycles in the above range.
  • the RH cycle of the polymer electrolyte membrane may be 200,000 times or less.
  • the RH cycle of the polymer electrolyte membrane may be 150,000 or less, or 100,000 or less.
  • the RH cycle of the polymer electrolyte membrane may be one or more times and 150,000 or less times.
  • the RH cycle of the polymer electrolyte membrane may be 20,000 or more and 150,000 or less.
  • the RH cycle of the polymer electrolyte membrane may be 40,000 or more and 150,000 or less.
  • the RH cycle of the polymer electrolyte membrane may be 50,000 or more and 150,000 or less.
  • the RH cycle of the polymer electrolyte membrane may be 70,000 or more and 150,000 or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane may be 1 ⁇ m or more and 30 ⁇ m or less, and the RH cycle may be 20,000 or more and 150,000 times or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane may be 1 ⁇ m or more and 30 ⁇ m or less, and the RH cycle may be 40,000 or more and 150,000 times or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane may be 1 ⁇ m or more and 30 ⁇ m or less, and the RH cycle may be 50,000 or more and 150,000 or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane may be 1 ⁇ m or more and 30 ⁇ m or less, and the RH cycle may be 70,000 or more and 150,000 times or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane may be 1 ⁇ m or more and 15 ⁇ m or less, and the RH cycle may be 20,000 or more and 150,000 times or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane may be 1 ⁇ m or more and 15 ⁇ m or less, and the RH cycle may be 40,000 or more and 150,000 times or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane may be 1 ⁇ m or more and 15 ⁇ m or less, and the RH cycle may be 50,000 or more and 150,000 or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane may be 1 ⁇ m or more and 15 ⁇ m or less, and the RH cycle may be 70,000 or more and 150,000 times or less.
  • the thickness of the entire pure layer of the polymer electrolyte membrane may be 0 ⁇ m or more and 10 ⁇ m or less, and the RH cycle may be 20,000 or more and 150,000 times or less.
  • the thickness of the entire pure layer of the polymer electrolyte membrane may be 0 ⁇ m or more and 10 ⁇ m or less, and the RH cycle may be 40,000 or more and 150,000 times or less.
  • the thickness of the entire pure layer of the polymer electrolyte membrane may be 0 ⁇ m or more and 10 ⁇ m or less, and the RH cycle may be 50,000 or more and 150,000 or less.
  • the thickness of the entire pure layer of the polymer electrolyte membrane may be 0 ⁇ m or more and 10 ⁇ m or less, and the RH cycle may be 70,000 or more and 150,000 times or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane is 1 ⁇ m or more and 30 ⁇ m or less
  • the thickness of the entire pure layer is 0 ⁇ m or more and 10 ⁇ m or less
  • the RH cycle may be 20,000 or more and 150,000 times or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane is 1 ⁇ m or more and 30 ⁇ m or less
  • the thickness of the entire pure layer is 0 ⁇ m or more and 10 ⁇ m or less
  • the RH cycle may be 40,000 or more and 150,000 times or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane may be 1 ⁇ m or more and 30 ⁇ m or less, the thickness of the entire pure layer may be 0 ⁇ m or more and 10 ⁇ m or less, and the RH cycle may be 50,000 or more and 150,000 or less. have.
  • the thickness of the mixed layer of the polymer electrolyte membrane is 1 ⁇ m or more and 30 ⁇ m or less
  • the thickness of the entire pure layer is 0 ⁇ m or more and 10 ⁇ m or less
  • the RH cycle may be 70,000 or more and 150,000 times or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane is 1 ⁇ m or more and 15 ⁇ m or less
  • the thickness of the entire pure layer is 0 ⁇ m or more and 10 ⁇ m or less
  • the RH cycle may be 20,000 or more and 150,000 times or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane is 1 ⁇ m or more and 15 ⁇ m or less
  • the thickness of the entire pure layer is 0 ⁇ m or more and 10 ⁇ m or less
  • the RH cycle may be 40,000 or more and 150,000 times or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane is 1 ⁇ m or more and 15 ⁇ m or less
  • the thickness of the entire pure layer is 0 ⁇ m or more and 10 ⁇ m or less
  • the RH cycle may be 50,000 or more and 150,000 or less.
  • the thickness of the mixed layer of the polymer electrolyte membrane is 1 ⁇ m or more and 15 ⁇ m or less
  • the thickness of the entire pure layer is 0 ⁇ m or more and 10 ⁇ m or less
  • the RH cycle may be 70,000 or more and 150,000 times or less.
  • the present specification provides a membrane electrode assembly including the polymer electrolyte membrane.
  • the present disclosure provides a fuel cell including the membrane electrode assembly.
  • the fuel cell of the present specification includes a fuel cell generally known in the art.
  • a stack including a separator interposed between the membrane electrode assembly and the membrane electrode assembly; A fuel supply unit supplying fuel to the stack; And it provides a fuel cell comprising an oxidant supply unit for supplying an oxidant to the stack.
  • the fuel cell includes a stack 60, an oxidant supply unit 70, and a fuel supply unit 80.
  • the stack 60 includes one or more membrane electrode assemblies, and when two or more membrane electrode assemblies are included, the stack 60 includes a separator interposed therebetween.
  • the separator serves to prevent the membrane electrode assemblies from being electrically connected and to transfer fuel and oxidant supplied from the outside to the membrane electrode assembly.
  • the oxidant supply unit 70 serves to supply the oxidant to the stack 60.
  • Oxygen is typically used as the oxidizing agent, and may be used by injecting oxygen or air into the pump 70.
  • the fuel supply unit 80 supplies fuel to the stack 60, and a fuel tank 81 storing fuel and a pump 82 supplying fuel stored in the fuel tank 81 to the stack 60. It can be configured as.
  • the fuel may be gas or liquid hydrogen or hydrocarbon fuel, and examples of the hydrocarbon fuel include methanol, ethanol, propanol, butanol or natural gas.
  • An impregnation solution was prepared by dissolving a hydrocarbon-based polymer having an IEC (ion exchange capacity) of 2.16 meq / g at 7 wt% in dimethyl sulfoxide (DMSO).
  • the impregnation solution was impregnated with a support having a three-dimensional network structure in which two or more cells having a thickness of about 5 ⁇ m and a porosity of about 80% are regularly distributed. Thereafter, the mixture was dried in an oven at 80 ° C. for 24 hours to prepare a mixed layer.
  • a solution prepared by dissolving a hydrocarbon-based polymer having an IEC (ion exchange capacity) of 1.81 meq / g at 7 wt% in DMSO (dimethyl sulfoxide) was prepared and applied to the upper and lower surfaces of the mixed layer, followed by 24 hours in an oven at 80 ° C. It dried and formed the pure layer.
  • the prepared polymer electrolyte membrane was acid-treated with 10% sulfuric acid at 80 ° C. for 24 hours, then rinsed four times with distilled water, and dried at 80 ° C. to prepare a polymer electrolyte membrane.
  • the IEC (ion exchange capacity) of the hydrocarbon-based polymer included in the impregnation solution was 1.81 meq / g, and a polymer electrolyte membrane was prepared in the same manner as in Example 1 without further forming a pure layer.
  • the IEC (ion exchange capacity) of the hydrocarbon-based polymer contained in the impregnation solution is 1.68 meq / g, and the support has an ePTFE structure having an irregular distribution of pores of about 5 ⁇ m in thickness and a porosity of 85% or more and which cannot be defined as a cell.
  • a polymer electrolyte membrane was prepared in the same manner as in Example 1 without further forming a pure layer.
  • a membrane electrode assembly including the polymer electrolyte membrane was prepared. Specifically, the polymer electrolyte membrane is cut into a rectangle of 8 cm ⁇ 8 cm, and a Pt 0.4 mg / cm 2 carbon supported platinum catalyst is transferred to a size of 5 cm ⁇ 5 cm on the upper and lower surfaces of the polymer electrolyte membrane to form a membrane electrode assembly.
  • a membrane electrode assembly including the polymer electrolyte membrane was prepared. Specifically, the polymer electrolyte membrane is cut into a rectangle of 8 cm ⁇ 8 cm, and a Pt 0.4 mg / cm 2 carbon supported platinum catalyst is transferred to a size of 5 cm ⁇ 5 cm on the upper and lower surfaces of the polymer electrolyte membrane to form a membrane electrode assembly.
  • Performance evaluation of the prepared membrane electrode assembly was performed under conditions of 100% relative humidity (RH), 50% relative humidity (RH), and 32% relative humidity (RH) under H 2 / Air and atmospheric pressure.
  • Figure 5 shows the voltage according to the current density in the fuel cell of the polymer electrolyte membrane according to the embodiment and the comparative example at 100% relative humidity (RH) conditions.
  • Figure 6 shows the voltage according to the current density in the fuel cell of the polymer electrolyte membrane according to the embodiment and the comparative example at 50% relative humidity (RH).
  • the polymer electrolyte membrane according to the embodiment shows higher performance than the polymer electrolyte according to the comparative example.
  • the polymer electrolyte membrane according to the embodiment is stable performance compared to the polymer electrolyte membrane according to the comparative example.
  • the polymer electrolyte membrane according to the embodiment can realize stable performance under high humidification conditions, and when the pure layer is provided as in the polymer electrolyte membrane according to Example 1 It is more stable under humid conditions and can maintain excellent performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

본 명세서는 본 명세서는 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지를 제공한다.

Description

고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지
본 명세서는 2013년 11월 26일에 한국특허청에 제출된 한국 특허 출원 제 10-2013-0144444호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지를 제공한다.
연료전지는 고효율 발전장치로서, 기존 내연기관에 비하여 효율이 높아 연료 사용량이 적으며, SOx, NOx, VOC 등의 환경오염 물질을 발생시키지 않는 무공해 에너지원이라는 장점이 있다. 또한, 생산설비에 필요한 입지면적이 적고 건설 기간이 짧다는 등의 추가적 장점이 있다.
따라서 연료전지는 휴대용 기기 등의 이동용 전원, 자동차 등의 수송용 전원, 가정용 및 전력사업용으로 이용가능한 분산형 발전에 이르기까지 응용분야가 다양하다. 특히, 차세대 운송 장치인 연료전지 자동차의 운영이 실용화될 경우, 그 잠재 시장 규모는 광범위할 것으로 예상된다.
연료전지는 작동되는 온도와 전해질에 따라 크게 5가지로 분류되는데, 상세하게는 알칼리 연료전지(AFC), 인산형 연료전지(PAFC), 용융 탄산염형 연료전지(MCFC), 고체 산화물 연료전지(SOFC), 고분자 전해질 연료전지(PEMFC) 및 직접 메탄올 연료전지(DMFC)가 있다. 그 중에서, 이동성이 우수한 고분자 전해질 연료전지 및 직접 메탄올 연료전지가 미래 전원으로서 큰 주목을 받고 있다.
고분자 전해질 연료 전지는 고분자 전해질막의 양면에 가스 확산성의 전극층을 배치하고, 애노드(Anode)를 연료극에, 캐소드(Cathode)를 산화극으로 향하게 하여, 고분자 전해질막을 통한 화학 반응에 의해 물이 생성되고, 이것에 의해서 생기는 반응 에너지를 전기에너지로 변환하는 것을 기본 원리로 하고 있다.
이온 전도성 고분자 전해질 막의 대표적인 예로는 1960년대 초 미국 듀퐁사에서 개발한 과불소계 수소이온 교환막인 나피온(Nafion)을 들 수 있다. 나피온 이외에도 이와 유사한 과불소계 고분자전해질 상용막으로서, 아사히 케미칼스(Asahi Chemicals)사의 아시플렉스-에스(Aciplex-S)막, 다우 케미칼스(Dow Chemicals)사의 다우(Dow)막, 아사히 글래스(Asahi Glass)사의 프레미온(Flemion)막 등이 있다.
종래 상용화된 과불소계 고분자 전해질 막은 내화학성, 내산화성, 우수한 이온 전도성을 가지고 있으나, 높은 가격과 제조시 발생하는 중간 생성물의 독성으로 인한 환경 문제가 지적되고 있다. 따라서, 이러한 과불소계 고분자 전해질 막의 결점을 보완하기 위하여 방향족환 고분자에 카르복실기, 술폰산기 등을 도입한 고분자 전해질 막이 연구되고 있다. 그 일례로서, 술폰화 폴리아릴에테르 술폰[Journal of Membrane Science, 1993, 83, 211], 술폰화 폴리에테르에테르 케톤[일본 공개특허 평6-93114, 미국특허 제5,438,082호], 술폰화 폴리이미드[미국특허 제6,245,881호] 등이 있다.
고분자 전해질 막은 온도와 수화(hydration) 정도에 따라 15 내지 30%의 막두께 변화와 체적 변화를 수반하고, 이에 연료전지 운전 조건에 따라 전해질 막은 팽윤과 수축을 반복하게 되며, 이러한 체적변화로 미세 구멍이나 균열이 발생하게 된다. 또한 부 반응으로서 캐소드에서의 산소의 환원 반응으로 과산화수소(H2O2) 또는 과산화물 라디칼이 생성되어 전해질 막을 열화시킬 수 있다. 연료전지용 고분자 전해질 막은 연료전지 구동 중 발생할 수 있는 이와 같은 현상을 염두에 두어 기계적, 화학적 내구를 개선시키는 방향으로 개발되어 왔다.
기계적 내구를 개선하기 위한 방향으로는 나피온 용액(5 중량% 농도)을 e-PTFE에 도입하여 제조한 강화 복합전해질 막[미국특허 제5,547,551호] 및 술폰화된 탄화수소계 고분자 물질에 치수 안정성이 우수한 고분자를 도입한 고분자 블랜드 복합막에 관한 연구(대한민국 특허 제 10-0746339호) 등이 있다. 또한, 고어 앤 어소시에이트(W.L. Gore & Associates)사에서는 고어 셀렉트(Gore Select)라는 상품명으로 상용화된 강화 복합전해질 막 제품을 출시하고 있다.
강화 복합전해질 막에는 기계적 물성 및 치수 안정성을 부여하기 위하여 다공성 지지체가 사용된다. 다공성 지지체는 성능을 떨어뜨리지 않는 동시에 기계적 내구성을 유지시켜야 하므로, 높은 기공도를 가지면서 우수한 기계적 물성을 구비한 적합한 소재의 지지체를 선택해야 한다. 또한 이온전도체를 지지체에 함침 시키는 방법과 이온전도체의 종류에 따라 막의 이온전도도가 크게 달라질 수 있으므로, 효과적인 이온전도체의 함침 방법 및 강화 복합전해질 막에 적합한 이온전도체 개발이 요구된다.
본 명세서가 해결하고자 하는 과제로는 고분자 전해질막을 제공함에 있다. 나아가, 상기 고분자 전해질막을 포함하는 막 전극 접합체 및 이를 포함하는 연료전지를 제공함에 있다.
본 명세서는 이온 이동 영역 및 3차원 망상 구조의 지지체를 포함하는 혼합층을 포함하고, 상기 이온 이동 영역은 제1 이온 전도성 고분자를 포함하는 2 이상의 셀이 3차원적으로 접하는 구조이며, 상기 제1 이온 전도성 고분자의 IEC(ion exchange capacity)는 1.7 meq/g 이상 2.5 meq/g 이하인 것을 특징으로 하는 고분자 전해질막을 제공한다.
또한, 본 명세서는 상기 고분자 전해질막을 포함하는 막 전극 접합체를 제공한다.
또한, 본 명세서는 상기 막 전극 접합체를 포함하는 연료전지를 제공한다.
본 명세서에 따른 고분자 전해질막은 내구성이 우수한 장점이 있다. 구체적으로, 본 명세서에 따른 고분자 전해질막을 포함하는 막 전극 접합체를 이용하여 연료전지에 사용하는 경우, 연료전지의 성능 향상에 기여할 수 있다. 즉, 고온 가습 및 건조가 반복되어 고분자 전해질막의 수축과 팽창이 반복되는 연료전지의 작동 환경에서도 연료전자의 성능의 저하를 최소화하고, 일정한 성능을 유지할 수 있게 한다.
또한, 본 명세서에 따른 고분자 전해질막은 우수한 내구성과 동시에, 높은 이온 전도도를 가진다. 즉, 본 명세서에 따른 고분자 전해질막은 지지체를 포함함에 따른 이온 전도도의 하락을 최소화하며, 지지체가 없는 경우와 동등한 수준의 이온 전도도를 가진다.
도 1 및 2는 본 명세서의 일 구현예에 따른 고분자 전해질막의 표면의 일 영역을 도시한 것이다.
도 3은 본 명세서의 일 구현예에 따른 고분자 전해질막의 단면의 일 영역을 도시한 것이다.
도 4는 본 명세서의 일 구현예에 따른 연료전지의 구조를 도시한 것이다.
도 5는 상대습도(RH) 100 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 6은 상대습도(RH) 50 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 7는 상대습도(RH) 32 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하 본 명세서에 대하여 보다 상세하게 설명하도록 한다.
본 명세서는 이온 이동 영역 및 3차원 망상 구조의 지지체를 포함하는 혼합층을 포함하고, 상기 이온 이동 영역은 제1 이온 전도성 고분자를 포함하는 2 이상의 셀이 3차원적으로 접하는 구조이며, 상기 제1 이온 전도성 고분자의 IEC(ion exchange capacity)는 1.7 meq/g 이상 2.5 meq/g 이하인 것을 특징으로 하는 고분자 전해질막을 제공한다.
상기 제1 이온 전도성 고분자는 상기 이온 이동 영역에 포함되어 높은 이온 전도도로 인하여, 혼합층 내에서의 이온 이동을 원활하게 하여 고분자 전해질막의 성능을 향상시킬 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체를 제1 이온 전도성 고분자에 함침하여 상기 혼합층을 형성할 수 있다. 구체적으로, 본 명세서의 일 구현예에 따르면, 상기 제1 이온 전도성 고분자를 상기 지지체 두께 범위까지 포함시키는 경우, 추가의 순수층이 없는 고분자 전해질막을 형성할 수 있다. 또한, 본 명세서의 일 구현예에 따르면, 상기 제1 이온 전도성 고분자를 상기 지지체 두께 범위를 초과하여 포함시키는 경우, 상기 혼합층의 상면 및/또는 하면 상에 추가의 순수층이 구비된 고분자 전해질막을 제조할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막은 상기 혼합층의 상면, 또는 하면, 또는 상면 및 하면 상에 구비된 제2 이온 전도성 고분자를 포함하는 순수층을 포함하고, 상기 제2 이온 전도성 고분자의 IEC(ion exchange capacity)는 상기 제1 전도성 고분자의 IEC(ion exchange capacity)보다 낮은 것일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 순수층은 상기 혼합층의 상면 및/또는 하면 상에 접하여 구비되거나, 또는 상기 추가의 순수층 상에 구비될 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제2 이온 전도성 고분자의 IEC(ion exchange capacity)는 상기 제1 이온 전도성 고분자의 IEC(ion exchange capacity)보다 0.2 meq/g 이상 낮은 것일 수 있다.
상기 제2 이온 전도성 고분자는 상기 혼합층의 적어도 일면 상에 구비되어 상기 혼합층 내에 포함되어 있는 상기 제1 이온 전도성 고분자의 용출을 방지하는 역할을 할 수 있다. 구체적으로, 상기 고분자 전해질막을 연료전지에 적용하여 사용하는 경우, 수분에 의하여 상기 제1 이온 전도성 고분자가 용출될 수 있는바, 상기 제2 이온 전도성 고분자는 상기 제1 이온 전도성 고분자의 수분에 의한 용출을 방지할 수 있는 역할을 할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제2 이온 전도성 고분자의 IEC(ion exchange capacity)는 0.9 meq/g 이상 1.8 meq/g 이하인 것일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 순수층은 혼합층에 접하여 구비된 상기 제1 이온 전도성 고분자를 포함하는 추가의 순수층을 더 포함하는 것일 수 있다.
상기 추가의 순수층은, 상기 이온 이동 영역에 포함되는 제1 이온 전도성 고분자와 동일한 고분자가 혼합층의 상부, 하부, 또는 상부 및 하부에 접하여 구비된 것일 수 있다. 구체적으로, 상기 지지체를 상기 제1 이온 전도성 고분자에 함침하고, 상기 혼합층의 상면 및/또는 하면에 상기 제1 이온 전도성 고분자가 잔류하여 추가의 순수층이 형성될 수 있다.
본 명세서에 따른 고분자 전해질막은 우수한 내구성과 동시에, 높은 이온 전도도를 가진다. 구체적으로, 본 명세서에 따른 고분자 전해질막은 지지체를 포함함에 따른 이온 전도도의 하락을 최소화하며, 지지체가 없는 경우와 동등한 수준의 이온 전도도를 가진다. 그러므로, 본 명세서에 따른 고분자 전해질막을 포함하는 연료전지는 장시간의 구동에 따른 전해질막의 손상을 최소화하며, 나아가, 높은 성능을 발휘할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 두께는 1 ㎛ 이상 30 ㎛ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 두께는 1 ㎛ 이상 25 ㎛ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 두께는 1 ㎛ 이상 15 ㎛ 이하일 수 있다.
본 명세서에 따른 상기 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하인 경우, 높은 이온 전도도 및 내구성을 구현할 수 있다. 또한, 상기 혼합층이 상기 두께 범위 내인 경우, 두께 감소에 따른 내구성의 저하가 거의 발생하지 않을 수 있다. 즉, 상기 혼합층의 두께가 1 ㎛ 미만인 경우에는 내구성이 유지되지 않는 단점이 있으며, 두께가 30 ㎛ 초과인 경우에는 이온 전도도가 저하될 수 있는 단점이 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막은 상기 혼합층만으로 이루어질 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 어느 일 면에 구비된 상기 순수층의 두께는 각각 독립적으로 0 ㎛ 초과 6 ㎛ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 추가의 순수층의 두께는 0 ㎛ 초과 5 ㎛ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 순수층의 두께는 상기 추가의 순수층의 두께를 포함하는 것일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 상면 및 하면에 각각 구비된 상기 순수층 간의 두께 차이는 상기 혼합층 두께의 50 % 이하일 수 있다. 구체적으로, 상기 혼합층의 상면 및 하면에 구비된 상기 순수층 간의 두께 차이는 혼합층 두께의 30 % 이하일 수 있다. 본 명세서의 일 구현예에 따르면, 상기 순수층 간의 두께 차이가 0 % 인 경우는 상기 혼합층의 상면 및 하면에 각각 구비된 순수층의 두께가 동일한 것을 의미한다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 상면에 구비된 순수층과 혼합층의 하면에 구비된 순수층의 두께 차이가 혼합층 두께의 50 % 이하인 경우, 상기 고분자 전해질막을 가습 및 건조를 반복하더라도 상기 고분자 전해질막의 상면과 하면의 수축 및 팽창 정도가 비슷하게 되어 크랙(crack)이 발생하는 것을 방지할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층과 상기 전체 순수층의 두께 비율은 1:0 내지 1:4 일 수 있다. 구체적으로, 상기 혼합층과 상기 전체 순수층의 두께 비율은 1:0 내지 1:1.5일 수 있다. 보다 구체적으로, 상기 혼합층과 상기 전체 순수층의 두께 비율은 1:0 내지 1:1일 수 있다.
본 명세서의 일 구현예에 따른 고분자 전해질막에 따르면, 상기 순수층 대비 상기 혼합층의 두께 비율이 높을수록, 가습 및 건조 상태가 반복되는 조건에서 높은 내구성을 발휘할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 전체 두께는 3 ㎛ 이상 36 ㎛ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 혼합층의 전체 부피에 대하여 상기 이온 이동 영역은 40 부피% 이상 85 부피% 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은, 상기 이온 이동 영역 및 지지체의 전체 부피에 대하여 40 부피% 이상 80 부피% 이하 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 혼합층의 전체 부피에 대하여 40 부피% 이상 70 부피% 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 혼합층의 전체 부피에 대하여 40 부피% 이상 60 부피% 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 혼합층의 전체 부피에 대하여 40 부피% 이상 55 부피% 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 혼합층의 전체 부피에 대하여 45 부피% 이상 65 부피% 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 혼합층의 전체 부피에 대하여 45 부피% 이상 60 부피% 이하일 수 있다.
본 명세서에 따른 상기 고분자 전해질막의 상기 이온 이동 영역이 40 부피% 이상 85 부피% 이하인 경우, 상기 고분자 전해질막의 내구성을 확보할 수 있는 동시에, 충분한 이온 전도도를 확보할 수 있다. 즉, 이온 이동 영역이 40 부피% 미만인 경우, 고분자 전해질막의 내구성은 상승하지만, 충분한 이온 전도도를 확보하기 곤란한 단점이 있다. 나아가, 이온 이동 영역이 85 부피%를 초과하는 경우, 고분자 전해질막의 이온 전도도는 상승하지만, 내구성의 확보가 곤란한 단점이 있다.
도 1 및 2는 본 명세서의 일 구현예에 따른 고분자 전해질막의 표면의 일 영역을 도시한 것이다. 구체적으로, 상기 도 1은 본 명세서의 상기 고분자 전해질막의 수평 표면의 일 영역을 도시한 것이며, 상기 도 2는 본 명세서의 상기 고분자 전해질막의 수직 표면의 일 영역을 도시한 것이다. 나아가, 어두운 영역으로 표시된 영역이 지지체를 의미하며, 밝은 영역은 이온 이동 영역을 의미한다.
상기 수직 표면이라 함은, 상기 고분자 전해질막의 두께 방향의 표면을 의미할 수 있다. 또한, 상기 수평 표면이라 함은, 상기 고분자 전해질막의 두께 방향에 수직인 표면으로서, 상대적으로 넓은 영역을 차지하는 면을 의미할 수 있다.
도 1 및 도 2에서, 상기 이온 이동 영역은 셀의 단면을 의미할 수 있으며, 도시된 셀에 3차원적으로 접하는 셀이 고분자 전해질막 내부에 존재한다.
본 명세서의 상기 셀은 구형 또는 구가 눌린 형태, 다면체일 수 있으며, 셀이 구형인 경우, 셀의 단면은 종횡비 1:1 내지 5:1의 폐쇄도형일 수 있다.
본 명세서의 상기 셀은 지지체의 노드 및 노드들을 연결하는 섬유형 가지들이 연결되는 경우, 형성되는 가상의 평면으로 둘러싸인 가상의 3차원 폐쇄공간을 의미할 수 있다. 상기 노드는 섬유형 가지들이 2 이상 교차하는 부위를 의미할 수 있다.
도 3은 본 명세서의 일 구현예에 따른 고분자 전해질막의 단면의 일 영역을 도시한 것이다. 구체적으로, 도 3의 점선 영역은 가상의 선으로서, 가상의 3차원 폐쇄공간을 구획하기 위한 것이다. 어두운 영역으로 표시된 것은 지지체의 섬유형 가지 또는 노드이며, 이는 3차원적으로 연결된다.
또한, 본 명세서의 상기 셀은 지지체의 섬유형 가지로 둘러싸인 이온 전도성 고분자를 포함하는 이온 이동 영역의 단위 공간으로, 지지체의 섬유로 둘러 쌓인 경우의 가상의 3차원 폐쇄공간의 수평 및 수직 방향 단면이 원형 또는 타원형 또는 단일폐곡선 도형의 형태일 수 있다.
또한, 상기 본 명세서의 상기 셀은 일정 크기 이상의 부피를 갖는 것을 의미하며, 셀의 직경이 40 ㎚ 미만인 것은 셀에 해당하지 않을 수 있다.
본 명세서의 상기 셀의 직경은 셀을 가로 지르는 가장 긴 선의 길이를 의미할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 상면과 수평한 임의의 면에서, 상기 셀은 어느 한 방향(x축 방향) 및 이에 수직인 방향(y축 방향)과 고분자 전해질막의 두께 방향(z축 방향)으로 2층이상 적층된 것일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 2이상의 상기 셀이 분포하는 스펀지 구조일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 상기 셀이 규칙적으로 분포하고 있는 구조일 수 있다. 구체적으로, 본 명세서의 일 구현예에 따르면, 상기 지지체는 임의의 단위 부피에 따른 기공도의 편차가 10 % 이내일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수직 단면 및 수평 단면 모두에 2 이상의 상기 셀의 단면을 포함할 수 있다.
본 명세서의 셀의 단면의 직경은 셀의 단면을 가로지르는 가장 긴 선의 길이를 의미할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수평 표면에서의 셀의 단면은 종횡비가 1:1 내지 5:1 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수직 표면에서의 셀의 단면은 종횡비가 1:1 내지 10:1 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수평 표면에서의 셀의 단면의 직경 크기는 40 ㎚ 이상 500 ㎚ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수직 표면에서의 셀의 단면의 직경 크기는 40 ㎚ 이상 500 ㎚ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 수평 표면과 수직 표면의 100 μ㎟ 당 셀 개수의 비는 1:1 내지 1:5일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 100 μ㎟ 당 수직 단면과 수평 단면의 셀 개수의 편차는 0개 이상 500개 이하 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 셀의 단면의 직경의 평균 크기는 40 ㎚ 이상 500 ㎚ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 셀의 단면의 직경의 표준 편차는 50 ㎚ 내지 200 ㎚일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 셀의 직경은 40 ㎚ 이상 1000 ㎚ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 임의의 단면에서, 상기 셀의 단면이 전체 단면 면적 중 50 % 내지 90 %를 차지할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 2 이상의 노드(node)로 이루어지며, 각각의 노드는 3이상의 분지를 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체의 어느 하나의 노드와 인접한 다른 노드와의 거리는 10 ㎚ 내지 500 ㎚ 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 셀의 중심으로부터 상기 지지체의 임의의 점까지의 길이는 20 ㎚ 내지 250 ㎚ 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 이온의 이동시 1 ㎛당 3 이상의 변곡 지점을 포함할 수 있다. 상기 변곡 지점은 굴곡인자(tortuosity factors)일 수 있으며, 1 ㎛당 3 이상의 굴곡인자로 표현될 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 탄화수소계 또는 불소계 물질을 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 반 결정질 폴리머를 포함할 수 있다.
본 명세서의 상기 반 결정질 폴리머는 결정도의 범위가 20 내지 80 % 일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 반 결정질 폴리머는 폴리올레핀, 플루오로카본, 폴리아미드, 폴리에스터, 폴리아세탈(또는 폴리옥시메틸렌), 폴리설파이드, 폴리비닐 알코올, 이들의 코폴리머 및 이들의 조합을 포함할 수 있으며, 이에 제한되지는 않는다.
본 명세서의 일 구현예에 따르면, 상기 지지체는 폴리올레핀계 물질로부터 유래된 것을 포함할 수 있다.
상기 폴리올레핀은 폴리에틸렌(LDPE, LLDPE, HDPE, UHMWPE), 폴리프로필렌, 폴리부텐, 폴리메틸펜텐, 이들의 코폴리머 및 이들의 블렌드를 포함할 수 있다.
상기 플루오로카본은 폴리테트라플루오로에틸렌(PTFE), 폴리클로로트리플루오로에틸렌(PCTFE), 플로리네이티드 에틸렌 프로필렌(FEP), 에틸렌 클로로트리플루오로에틸렌(ECTFE), 에틸렌 테트라플루오로에틸렌(ETFE), 폴리비닐리덴 플로라이드(PVDF), 폴리비닐플로라이드(PVF), 프리플로로알콕시(PFZ) 레진, 이들의 코폴리머 및 블렌드를 포함할 수 있으며, 이에 제한되지는 않는다.
상기 폴리아미드는, 폴리아미드 6, 폴리아미드 6/6, 나일로 10/10, 폴리프탈아미드(PPA), 이들의 코폴리머 및 이들의 블렌드를 포함할 수 있으나, 이에 제한되지 않는다.
상기 폴리에스터는 폴리에스터 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리-1-4-사이클로헥실렌디메틸렌 테레프탈레이트(PCT), 폴리에틸렌 나프탈레이트(PEN) 및 액상 결정 폴리머(LCP)를 포함할 수 있으며, 이에 제한되지는 않는다.
상기 폴리설파이드는, 폴리페닐설파이드, 폴리에틸렌 설파이드, 이들의 코폴리머 및 이들의 블렌드를 포함하지만, 이에 제한되지는 않는다.
상기 폴리비닐 알코올은, 에틸렌-비닐 알코올, 이들의 코폴리머 및 이들의 블렌드를 포함하지만, 이들에 제한되지는 않는다.
본 명세서의 일 구현예에 따르면, 상기 이온 전도성 고분자는 양이온 전도성 고분자 및/또는 음이온 전도성 고분자를 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 전도성 고분자는 프로톤 전도성 물질을 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 이온 전도성 고분자 및 상기 제2 이온 전도성 고분자는 각각 술폰화 벤즈이미다졸계 고분자, 술폰화 폴리이미드계 고분자, 술폰화 폴리에테르이미드계 고분자, 술폰화 폴리페닐렌설파이드계 고분자, 술폰화 폴리술폰계 고분자, 술폰화 폴리에테르술폰계 고분자, 술폰화 폴리에테르케톤계 고분자, 술폰화 폴리에테르-에테르케톤계 고분자, 술폰화 폴리페닐퀴녹살린계 고분자, 술폰화 부분불소계가 도입된 고분자 및 술폰화 불소계 고분자로 이루어진 군에서 선택되는 1종 또는 2종 이상을 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 전도성 고분자는 60 ℃ 이상에서 1 mS/cm 이상의 이온 전도성을 갖을 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 공기 투과도는 6 sec/100 ㎖ 이상일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 이온 이동 영역은 상기 제1 이온 전도성 고분자를 70 부피% 이상 100 부피% 이하로 포함할 수 있다.
본 명세서의 상기 고분자 전해질막은 인장강도 및 신율(elongation)이 우수한 장점이 있다.
본 명세서의 상기 인장강도 및 신율은, ASTM(American Society for Testing and Materials) 표준에 따라 절취된 도그본 형태의 고분자 전해질막을 UTM(united test machine)으로 10 ㎜/min 속도로 측정한 것을 의미한다. 상기 UTM은 인장강도와 신율을 동시에 측정하는 장비로서, 당업계에서 일반적으로 쓰이는 장비이다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 인장강도는 200 kgf/㎠ 이상 2000 kgf/㎠ 이하, 또는 500 kgf/㎠ 이상 1500 kgf/㎠ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 신율(elongation)은 50 % 이상 300 % 이하일 수 있다. 또는 상기 고분자 전해질막의 신율은 100 % 이상 300 % 이하일 수 있다.
본 명세서의 상기 고분자 전해질막은 내구성이 우수한 장점이 있다. 구체적으로, 상기 고분자 전해질막은 RH 사이클을 통하여 우수한 내구성을 확인할 수 있다.
본 명세서의 상기 RH 사이클은, 전해질막을 MEA(Membrane Electrode Assembley, 막 전극 접합체)로 제조한 후 연료전지 상태에서 내구성을 측정하는 것을 의미한다. 구체적으로, 본 명세서의 상기 RH 사이클은 80 ℃의 조건에서, 애노드에 질소를 0.95 slm(standard liter per minute) 유량으로 주입하고, 캐소드에 질소를 1.0 slm 유량으로 주입하며, RH 150 % 의 가습 및 RH 0 % 의 비가습을 2분 간격으로 전환하며, 내구성을 측정하는 것을 의미한다.
나아가, 본 명세서의 RH 사이클이 높을수록 전해질막의 내구성은 높다는 것을 의미한다. 또한, 상기 RH 사이클은 전해질막이 MEA로 사용될 수 없을 정도의 손상이 발생한 사이클까지의 횟수를 의미한다.
본 명세서의 상기 RH 사이클 도중 전해질막의 손상 여부를 측정하기 위하여, LSV(linear sweep volta-mmetry)를 이용한다. 구체적으로, 상기 LSV는 애노드에 수소를 0.2 slm 유량으로 주입하고, 캐소드에 질소를 0.2 slm 유량으로 주입하며, 0.1 내지 0.4 V (2 mV/s)에서 수소의 크로스오버(crossover)를 측정하는 것을 의미한다. 즉, RH 사이클 도중 수소의 크로스오버 수치가 상승하는 경우, 전해질막의 손상이 있다고 볼 수 있으며, 수소의 크로스오버 수치가 상승하는 정도에 따라, 전해질막의 손상 정도를 판단할 수 있다.
즉, 상기 RH 사이클 횟수가 높을수록 고분자 전해질막의 내구성이 높은 것을 의미하며, RH 사이클이 20,000회 이상인 경우 일반적으로 우수한 내구성을 가지는 것으로 판단할 수 있다. 본 명세서의 고분자 전해질막은 상기 RH 사이클이 20,000회 이상에서도 성능 저하가 거의 없이 일정한 성능을 유지할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 20,000회 이상일 수 있다. 나아가, 본 명세서의 고분자 전해질막의 RH 사이클은 40,000회 이상, 또는 50,000회 이상일 수 있다. 또한, 본 명세서의 고분자 전해질막의 RH 사이클은 75,000회 이상, 또는 80,000회 이상일 수 있다. 상기 고분자 전해질막은 상기 범위의 RH 사이클 횟수에서도 성능의 저하가 없다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 200,000 회 이하일 수 있다. 또는, 본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 150,000회 이하, 또는 100,000회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 1회 이상 150,000회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15㎛ 이하이고, RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이고, RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이고, RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이고, RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이고, RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 20,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 40,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 50,000 회 이상 150,000 회 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 고분자 전해질막의 혼합층의 두께가 1 ㎛ 이상 15 ㎛ 이하이고, 상기 전체 순수층의 두께가 0 ㎛ 이상 10 ㎛ 이하이며, RH 사이클은 70,000 회 이상 150,000 회 이하일 수 있다.
본 명세서는 상기 고분자 전해질막을 포함하는 막 전극 접합체를 제공한다. 또한, 본 명세서는 상기 막 전극 접합체를 포함하는 연료전지를 제공한다.
본 명세서의 상기 연료전지는 당업계에서 일반적으로 알려져 있는 연료전지를 포함한다.
본 명세서의 일 구현예에 따르면, 상기 막 전극 접합체와 상기 막전극 접합체들 사이에 개재하는 세퍼레이터를 포함하는 스택; 연료를 상기 스택으로 공급하는 연료공급부; 및 산화제를 상기 스택으로 공급하는 산화제공급부를 포함하는 것을 특징으로 하는 연료전지를 제공한다.
도 4는 본 명세서의 일 구현예에 따른 연료전지의 구조를 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
상기 스택(60)은 상기 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다.
상기 세퍼레이터는 상기 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
상기 산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 펌프(70)로 주입하여 사용할 수 있다.
상기 연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있으며, 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
[실시예 1]
IEC(ion exchange capacity) 2.16 meq/g 의 탄화수소계 고분자를 7 wt%로 DMSO(Dimethyl sulfoxide)에 녹여 함침 용액을 제조하였다. 상기 함침 용액에 두께 약 5 ㎛, 기공도 약 80 %의 2 이상의 셀이 규칙적으로 분포하는 3차원 망상 구조의 지지체를 함침하였다. 이후, 80 ℃의 오븐에서 24시간동안 건조하여 혼합층을 제조하였다. IEC(ion exchange capacity) 1.81 meq/g 의 탄화수소계 고분자를 7 wt%로 DMSO(Dimethyl sulfoxide)에 녹여 용액을 제조한 뒤, 상기 혼합층의 상면 및 하면에 도포하고, 80 ℃의 오븐에서 24시간동안 건조하여 순수층을 형성하였다. 제조된 고분자 전해질막은 10 % 황산으로 80 ℃에서 24시간 산처리 후, 증류수로 4회 이상 제척한 뒤, 80 ℃에서 건조하여 고분자 전해질막을 제조하였다.
[실시예 2]
함침 용액에 포함되는 탄화수소계 고분자의 IEC(ion exchange capacity)가 1.81 meq/g 이고, 순수층을 추가로 형성하지 않고, 상기 실시예 1과 동일한 방법으로 고분자 전해질막을 제조하였다.
[비교예 1]
함침 용액에 포함되는 탄화수소계 고분자의 IEC(ion exchange capacity)가 1.68 meq/g 이고, 지지체는 두께 약 5㎛, 기공도 85% 이상이고 셀로 정의될 수 없는 기공이 불규칙하게 분포하는 구조의 ePTFE를 사용하였으며, 순수층을 추가로 형성하지 않고 상기 실시예 1과 동일한 방법으로 고분자 전해질막을 제조하였다.
[실험예]
상기 실시예 및 비교예에 따라 제조된 고분자 전해질막의 연료전지에서의 성능을 측정하기 위하여, 상기 고분자 전해질막 포함하는 막전극 접합체를 제조하였다. 구체적으로, 상기 고분자 전해질막을 8 ㎝ × 8 ㎝ 의 사각형으로 절취하고, 상기 고분자 전해질막의 상면 및 하면에 Pt 0.4 mg/㎝2 의 카본담지 백금촉매를 5 ㎝ × 5 ㎝ 크기로 전사하여 막전극 접합체를 제조하였다.
상기 제조된 막전극 접합체의 성능평가는 H2/Air 및 상압 조건에서 상대습도(RH) 100 %, 상대습도(RH) 50 % 및 상대습도(RH) 32 %의 조건에서 실시하였다.
도 5는 상대습도(RH) 100 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 6은 상대습도(RH) 50 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 7는 상대습도(RH) 32 % 조건에서의 실시예 및 비교예에 따른 고분자 전해질막의 연료전지에서의 전류밀도에 따른 전압을 나타낸 것이다.
도 5 내지 도 7의 결과에 따르면, 실시예에 따른 고분자 전해질막이 비교예에 따른 고분자 전해질에 비하여 높은 성능을 나타내는 것을 알 수 있다.
또한, 도 7의 저가습 조건에서의 성능 결과를 보면, 비교예에 따른 고분자 전해질막에 비하여 실시예에 따른 고분자 전해질막은 안정적인 성능이 구현됨을 알 수 있다.
상기 도 5 내지 도 7의 결과에서 알 수 있듯이, 실시예에 따른 고분자 전해질막은 고가습 조건에서 안정적인 성능이 구현될 수 있으며, 실시예 1에 따른 고분자 전해질막과 같이 순수층이 구비되는 경우에는 저가습 조건에서도 보다 안정적이고, 우수한 성능을 유지할 수 있다.

Claims (28)

  1. 이온 이동 영역 및 3차원 망상 구조의 지지체를 포함하는 혼합층을 포함하고,
    상기 이온 이동 영역은 제1 이온 전도성 고분자를 포함하는 2 이상의 셀이 3차원적으로 접하는 구조이며,
    상기 제1 이온 전도성 고분자의 IEC(ion exchange capacity)는 1.7 meq/g 이상 2.5 meq/g 이하인 것을 특징으로 하는 고분자 전해질막.
  2. 청구항 1에 있어서,
    상기 혼합층의 상면, 또는 하면, 또는 상면 및 하면 상에 구비된 제2 이온 전도성 고분자를 포함하는 순수층을 포함하고,
    상기 제2 이온 전도성 고분자의 IEC(ion exchange capacity)는 상기 제1 전도성 고분자의 IEC(ion exchange capacity)보다 낮은 것을 특징으로 하는 고분자 전해질막.
  3. 청구항 2에 있어서,
    상기 제2 이온 전도성 고분자의 IEC(ion exchange capacity)는 상기 제1 이온 전도성 고분자의 IEC(ion exchange capacity)보다 0.2 meq/g 이상 낮은 것을 특징으로 하는 고분자 전해질막.
  4. 청구항 2에 있어서,
    상기 제2 이온 전도성 고분자의 IEC(ion exchange capacity)는 0.9 meq/g 이상 1.8 meq/g 이하인 것을 특징으로 하는 고분자 전해질막.
  5. 청구항 2에 있어서,
    상기 순수층은 혼합층에 접하여 구비된 상기 제1 이온 전도성 고분자를 포함하는 추가의 순수층을 더 포함하는 것을 특징으로 하는 고분자 전해질막.
  6. 청구항 1에 있어서,
    상기 혼합층의 두께가 1 ㎛ 이상 30 ㎛ 이하인 것을 특징으로 하는 고분자 전해질막.
  7. 청구항 2에 있어서,
    상기 순수층의 두께는 각각 독립적으로 0 ㎛ 초과 6 ㎛ 이하인 것을 특징으로 하는 고분자 전해질막.
  8. 청구항 5에 있어서,
    상기 추가의 순수층의 두께는 0 ㎛ 초과 5㎛ 이하인 것을 특징으로 하는 고분자 전해질막.
  9. 청구항 2에 있어서,
    상기 혼합층의 상면 및 하면에 각각 구비된 상기 순수층 간의 두께 차이는 상기 혼합층 두께의 50 % 이하인 것을 특징으로 하는 고분자 전해질막.
  10. 청구항 2에 있어서,
    상기 혼합층과 상기 전체 순수층의 두께 비율은 1:0 내지 1:4 인 것을 특징으로 하는 고분자 전해질막.
  11. 청구항 2에 있어서,
    상기 고분자 전해질막의 전체 두께는 3 ㎛ 이상 36 ㎛ 이하인 것을 특징으로 하는 고분자 전해질막.
  12. 청구항 1에 있어서,
    상기 혼합층의 전체 부피에 대하여 상기 이온 이동 영역은 40 부피% 이상 85 부피% 이하인 것을 특징으로 하는 고분자 전해질막.
  13. 청구항 1에 있어서,
    고분자 전해질막의 상면과 수평한 임의의 면에서, 상기 셀은 어느 한 방향(x축 방향) 및 이에 수직인 방향(y축 방향)과 고분자 전해질막의 두께 방향(z축 방향)으로 2층이상 적층된 것을 특징으로 하는 고분자 전해질막.
  14. 청구항 1에 있어서,
    상기 지지체는 2이상의 상기 셀이 분포하는 스펀지 구조인 것을 특징으로 하는 고분자 전해질막.
  15. 청구항 1에 있어서,
    상기 고분자 전해질막의 수직 단면 및 수평 단면 모두에 2 이상의 상기 셀의 단면을 포함하는 것을 특징으로 하는 고분자 전해질막.
  16. 청구항 1에 있어서,
    상기 지지체는 2 이상의 노드(node)로 이루어지며, 각각의 노드는 3이상의 분지를 포함하는 것을 특징으로 하는 고분자 전해질막.
  17. 청구항 1에 있어서,
    상기 이온 이동 영역은 이온의 이동시 1 ㎛당 3 이상의 변곡 지점을 포함하는 것을 특징으로 하는 고분자 전해질막.
  18. 청구항 1에 있어서,
    상기 지지체는 탄화수소계 또는 불소계 물질을 포함하는 것을 특징으로 하는 고분자 전해질막.
  19. 청구항 18에 있어서,
    상기 지지체는 반 결정질 폴리머를 포함하는 것을 특징으로 하는 고분자 전해질막.
  20. 청구항 18에 있어서,
    상기 지지체는 폴리올레핀, 플루오로카본, 폴리아미드, 폴리에스터, 폴리아세탈(또는 폴리옥시메틸렌), 폴리설파이드, 폴리비닐 알코올, 이들의 코폴리머 및 이들의 조합을 포함하는 것을 특징으로 하는 고분자 전해질막.
  21. 청구항 1에 있어서,
    상기 제1 이온 전도성 고분자 및 상기 제2 이온 전도성 고분자는 각각 술폰화 벤즈이미다졸계 고분자, 술폰화 폴리이미드계 고분자, 술폰화 폴리에테르이미드계 고분자, 술폰화 폴리페닐렌설파이드계 고분자, 술폰화 폴리술폰계 고분자, 술폰화 폴리에테르술폰계 고분자, 술폰화 폴리에테르케톤계 고분자, 술폰화 폴리에테르-에테르케톤계 고분자, 술폰화 폴리페닐퀴녹살린계 고분자, 술폰화 부분불소계가 도입된 고분자 및 술폰화 불소계 고분자로 이루어진 군에서 선택되는 1종 또는 2종 이상을 포함하는 것을 특징으로 하는 고분자 전해질막.
  22. 청구항 1에 있어서,
    상기 고분자 전해질막의 공기 투과도는 6 sec/100 ㎖ 이상인 것을 특징으로 하는 고분자 전해질막.
  23. 청구항 1에 있어서,
    상기 이온 이동 영역은 상기 제1 이온 전도성 고분자를 70 부피% 이상 100 부피% 이하로 포함하는 것을 특징으로 하는 고분자 전해질막.
  24. 청구항 1에 있어서,
    상기 고분자 전해질막의 인장강도는 200 kgf/㎠ 이상 2000 kgf/㎠ 이하인 것을 특징으로 하는 고분자 전해질막.
  25. 청구항 1에 있어서,
    상기 고분자 전해질막의 신율(elongation)은 50 % 이상 300 % 이하인 것을 특징으로 하는 고분자 전해질막.
  26. 청구항 1에 있어서,
    상기 고분자 전해질막의 RH 사이클은 20,000회 이상인 것을 특징으로 하는 고분자 전해질막.
  27. 청구항 1 내지 26 중 어느 한 항의 고분자 전해질막을 포함하는 막 전극 접합체.
  28. 청구항 27의 막 전극 접합체를 포함하는 연료전지.
PCT/KR2014/011441 2013-11-26 2014-11-26 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지 WO2015080475A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/038,951 US10297852B2 (en) 2013-11-26 2014-11-26 Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane, and fuel cell comprising membrane electrode assembly
EP14865322.3A EP3076466B1 (en) 2013-11-26 2014-11-26 Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane, and fuel cell comprising membrane electrode assembly
CN201480071336.5A CN105849959B (zh) 2013-11-26 2014-11-26 聚合物电解质膜、包括聚合物电解质膜的膜电极组合件及包括膜电极组合件的燃料电池
JP2016534223A JP6316964B2 (ja) 2013-11-26 2014-11-26 高分子電解質膜、高分子電解質膜を含む膜電極接合体および膜電極接合体を含む燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0144444 2013-11-26
KR20130144444 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015080475A1 true WO2015080475A1 (ko) 2015-06-04

Family

ID=53199364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011441 WO2015080475A1 (ko) 2013-11-26 2014-11-26 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지

Country Status (6)

Country Link
US (1) US10297852B2 (ko)
EP (1) EP3076466B1 (ko)
JP (1) JP6316964B2 (ko)
KR (1) KR101727369B1 (ko)
CN (1) CN105849959B (ko)
WO (1) WO2015080475A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635531A (zh) * 2020-05-28 2020-09-08 珠海冠宇电池股份有限公司 一种聚烯烃接枝苯并咪唑类聚合物质子交换膜及其制备方法与应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140128895A (ko) * 2013-04-29 2014-11-06 주식회사 엘지화학 고분자 전해질막, 고분자 전해질막을 포함하는 막전극 접합체 및 막 전극 접합체를 포함하는 연료전지
KR102130873B1 (ko) 2016-06-01 2020-07-06 주식회사 엘지화학 강화막, 이를 포함하는 막 전극 접합체 및 연료 전지, 및 이의 제조방법
CN108461792B (zh) * 2016-12-13 2021-11-30 中国科学院大连化学物理研究所 一种复合型碱性聚合物电解质膜及其制备方法和应用
KR102293177B1 (ko) * 2017-11-30 2021-08-26 코오롱인더스트리 주식회사 고분자 전해질 막, 이의 제조 방법 및 이를 포함하는 막 전극 어셈블리
KR102203974B1 (ko) 2018-01-19 2021-01-15 주식회사 엘지화학 막 전극 접합체의 제조방법 및 적층체
KR102169843B1 (ko) 2018-01-22 2020-10-26 주식회사 엘지화학 막 전극 접합체의 제조방법 및 적층체
KR102480909B1 (ko) 2018-01-22 2022-12-22 주식회사 엘지화학 전극 제조장치 및 전극 제조방법
KR102586433B1 (ko) * 2018-04-26 2023-10-06 현대자동차주식회사 연료전지용 전해질막의 제조방법 및 이로 제조된 전해질막
CN114730901A (zh) * 2019-12-26 2022-07-08 可隆工业株式会社 聚合物电解质膜、包括其的膜-电极组件和测量其耐久性的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693114A (ja) 1992-06-13 1994-04-05 Hoechst Ag 高分子電解質膜およびその製造方法
US5547551A (en) 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US6245881B1 (en) 1996-05-07 2001-06-12 Commissariat A L'energie Atomique Sulphonated polyimides, membranes and fuel cell
KR20050018624A (ko) * 2002-06-14 2005-02-23 도레이 가부시끼가이샤 다공질막 및 그의 제조 방법
KR100746339B1 (ko) 2006-03-07 2007-08-03 한국과학기술원 고분자 전해질 연료전지용 복합막의 제조방법
KR20070098323A (ko) * 2006-03-31 2007-10-05 주식회사 엘지화학 연료전지용 강화-복합 전해질막
KR20120111395A (ko) * 2011-03-31 2012-10-10 코오롱인더스트리 주식회사 고분자 전해질 및 이의 제조 방법
KR20120128905A (ko) * 2011-05-18 2012-11-28 한국화학연구원 고체 고분자 전해질형 연료전지용 다층 강화 복합전해질 막, 그 제조방법, 그 막을 구비한 막-전극 어셈블리 및 연료전지
JP5104696B2 (ja) * 2008-09-29 2012-12-19 トヨタ自動車株式会社 燃料電池用の電解質膜の製造方法および電解質膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044610A (ja) * 2003-07-28 2005-02-17 Toyobo Co Ltd 複合イオン交換膜およびその製造方法
JP2005050561A (ja) * 2003-07-29 2005-02-24 Toyobo Co Ltd 複合イオン交換膜
US20060083962A1 (en) 2004-10-20 2006-04-20 Nissan Motor Co., Ltd. Proton-conductive composite electrolyte membrane and producing method thereof
JP4716706B2 (ja) * 2004-10-20 2011-07-06 日産自動車株式会社 プロトン伝導性コンポジット型電解質膜及びその製造方法
JP5124097B2 (ja) * 2006-03-20 2013-01-23 日本ゴア株式会社 電解質膜及び固体高分子形燃料電池
JP5151074B2 (ja) * 2006-06-08 2013-02-27 株式会社日立製作所 固体高分子電解質膜,膜電極接合体およびそれを用いた燃料電池
JP5228378B2 (ja) * 2007-06-04 2013-07-03 旭硝子株式会社 固体高分子形燃料電池用膜電極接合体およびその製造方法
JP5320799B2 (ja) * 2008-04-11 2013-10-23 旭硝子株式会社 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
CN102104156B (zh) 2009-12-18 2013-03-27 中国科学院大连化学物理研究所 一种燃料电池用复合阴离子交换膜及其制备方法
KR20130020000A (ko) * 2011-08-18 2013-02-27 삼성전자주식회사 다공성막, 이를 포함하는 전해질막, 그 제조방법 및 이를 채용한 연료전지
WO2013106443A1 (en) 2012-01-09 2013-07-18 Somerset Group Enterprises, Inc. Modular extracorporeal systems and methods for treating blood-borne diseases
KR20140128895A (ko) * 2013-04-29 2014-11-06 주식회사 엘지화학 고분자 전해질막, 고분자 전해질막을 포함하는 막전극 접합체 및 막 전극 접합체를 포함하는 연료전지

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693114A (ja) 1992-06-13 1994-04-05 Hoechst Ag 高分子電解質膜およびその製造方法
US5438082A (en) 1992-06-13 1995-08-01 Hoechst Aktiengesellschaft Polymer electrolyte membrane, and process for the production thereof
US5547551A (en) 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US6245881B1 (en) 1996-05-07 2001-06-12 Commissariat A L'energie Atomique Sulphonated polyimides, membranes and fuel cell
KR20050018624A (ko) * 2002-06-14 2005-02-23 도레이 가부시끼가이샤 다공질막 및 그의 제조 방법
KR100746339B1 (ko) 2006-03-07 2007-08-03 한국과학기술원 고분자 전해질 연료전지용 복합막의 제조방법
KR20070098323A (ko) * 2006-03-31 2007-10-05 주식회사 엘지화학 연료전지용 강화-복합 전해질막
JP5104696B2 (ja) * 2008-09-29 2012-12-19 トヨタ自動車株式会社 燃料電池用の電解質膜の製造方法および電解質膜
KR20120111395A (ko) * 2011-03-31 2012-10-10 코오롱인더스트리 주식회사 고분자 전해질 및 이의 제조 방법
KR20120128905A (ko) * 2011-05-18 2012-11-28 한국화학연구원 고체 고분자 전해질형 연료전지용 다층 강화 복합전해질 막, 그 제조방법, 그 막을 구비한 막-전극 어셈블리 및 연료전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MEMBRANE SCIENCE, vol. 83, 1993, pages 211

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635531A (zh) * 2020-05-28 2020-09-08 珠海冠宇电池股份有限公司 一种聚烯烃接枝苯并咪唑类聚合物质子交换膜及其制备方法与应用
CN111635531B (zh) * 2020-05-28 2022-03-01 珠海冠宇电池股份有限公司 一种聚烯烃接枝苯并咪唑类聚合物质子交换膜及其制备方法与应用

Also Published As

Publication number Publication date
EP3076466A4 (en) 2017-04-19
KR101727369B1 (ko) 2017-04-14
EP3076466A1 (en) 2016-10-05
CN105849959B (zh) 2019-11-19
JP2016538698A (ja) 2016-12-08
KR20150060599A (ko) 2015-06-03
CN105849959A (zh) 2016-08-10
US10297852B2 (en) 2019-05-21
US20170005355A1 (en) 2017-01-05
EP3076466B1 (en) 2018-02-28
JP6316964B2 (ja) 2018-04-25

Similar Documents

Publication Publication Date Title
WO2015080475A1 (ko) 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지
WO2014178620A1 (ko) 고분자 전해질막, 고분자 전해질막을 포함하는 막전극 접합체 및 막 전극 접합체를 포함하는 연료전지
WO2013147520A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2020005018A1 (ko) 고분자 전해질 막, 이의 제조 방법 및 이를 포함하는 막 전극 어셈블리
WO2016163773A1 (ko) 고분자 전해질막, 이를 포함하는 전기화학 전지 및 흐름전지, 고분자 전해질막의 제조방법 및 흐름 전지용 전해액
WO2021066544A1 (ko) 높은 분산 안정성을 갖는 이오노머 분산액, 그 제조방법, 및 그것을 이용하여 제조된 고분자 전해질막
WO2017171471A1 (ko) 강화막, 이를 포함하는 전기화학 전지 및 연료 전지, 및 상기 강화막의 제조방법
WO2021006496A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
WO2021133044A1 (ko) 고분자 전해질막, 이를 포함하는 막-전극 어셈블리, 및 이것의 내구성 측정방법
WO2017175892A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
KR20100034259A (ko) 보강 개스킷을 포함하는 막-전극 접합체
WO2019139415A1 (ko) 연료전지용 기체확산층, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료 전지 및 연료전지용 기체확산층의 제조방법
WO2021133045A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
WO2023101266A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 전기 화학 장치
WO2023195623A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 전기 화학 장치
WO2022145735A1 (ko) 고분자 전해질막 및 이를 포함하는 막-전극 어셈블리
WO2022071684A1 (ko) 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료 전지
WO2019143097A1 (ko) 막 전극 접합체의 제조방법 및 적층체
WO2024014741A1 (ko) 고분자 전해질막 및 이를 포함하는 막-전극 어셈블리
WO2023113218A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2022071731A1 (ko) 고분자 전해질 막 및 이를 포함하는 막 전극 어셈블리
WO2011021870A2 (ko) 고분자 전해질형 연료 전지용 고분자 전해질 막, 이의 제조 방법 및 이를 포함하는 고분자 전해질형 연료 전지 시스템
WO2017090860A1 (ko) 고분자 전해질막, 이를 포함하는 막 전극 접합체 및 상기 막 전극 접합체를 포함하는 연료 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15038951

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016534223

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014865322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865322

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE