KR101560509B1 - 쌍극형 리튬 이온 이차 전지용 집전체 - Google Patents

쌍극형 리튬 이온 이차 전지용 집전체 Download PDF

Info

Publication number
KR101560509B1
KR101560509B1 KR1020147001330A KR20147001330A KR101560509B1 KR 101560509 B1 KR101560509 B1 KR 101560509B1 KR 1020147001330 A KR1020147001330 A KR 1020147001330A KR 20147001330 A KR20147001330 A KR 20147001330A KR 101560509 B1 KR101560509 B1 KR 101560509B1
Authority
KR
South Korea
Prior art keywords
layer
current collector
active material
conductive layer
electrode active
Prior art date
Application number
KR1020147001330A
Other languages
English (en)
Other versions
KR20140024464A (ko
Inventor
야스유키 다나카
마사미 야나기다
고헤이 오가와
사토시 오쿠
마사히로 고지마
다카시 기쿠치
다카시 이토
Original Assignee
가부시키가이샤 가네카
닛산 지도우샤 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 가네카, 닛산 지도우샤 가부시키가이샤 filed Critical 가부시키가이샤 가네카
Publication of KR20140024464A publication Critical patent/KR20140024464A/ko
Application granted granted Critical
Publication of KR101560509B1 publication Critical patent/KR101560509B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 쌍극형 리튬 이온 이차 전지용 집전체(3)는, 이미드기 함유 수지를 포함하는 기재에 도전성 필러가 첨가되어 이루어지는 제1 도전성층(3A)과, 리튬 이온을 차단하는 기능을 갖는 제2 도전성층(3B)을 갖는다. 또한, 제2 도전성층(3B)은, 이미드기 비함유 수지를 포함하는 기재에 도전성 필러가 첨가되어 이루어지는 차단성 수지층(3a)과, 금속층(3b)을 갖는다. 그리고, 제1 도전성층(3A)이 제2 도전성층(3B)에 대하여 정극 활물질층측에 위치하도록 사용된다.

Description

쌍극형 리튬 이온 이차 전지용 집전체{CURRENT COLLECTOR FOR BIPOLAR LITHIUM ION SECONDARY BATTERY}
본 발명은, 쌍극형 리튬 이온 이차 전지용 집전체, 당해 집전체를 사용한 쌍극형 리튬 이온 이차 전지용 전극 및 쌍극형 리튬 이온 이차 전지에 관한 것이다.
최근, 환경이나 연비의 관점에서 하이브리드 자동차(HEV)나 전기 자동차(EV), 나아가 연료 전지 자동차가 제조 및 판매되고 있으며, 새로운 개발이 계속되고 있다. 이들 소위 전동 차량에 있어서는, 방전 및 충전을 할 수 있는 전원 장치의 활용이 불가결하다. 이 전원 장치로서는, 리튬 이온 전지나 니켈 수소 전지 등의 이차 전지나, 전기 이중층 캐패시터 등이 이용된다. 특히, 리튬 이온 이차 전지는 그 에너지 밀도의 높이나 반복 충방전에 대한 내구성의 높이로부터 전동 차량에 적합하다고 생각되어, 각종 개발이 예의 진행되고 있다. 단, 상기한 바와 같은 각종 자동차의 모터 구동용 전원에 적용할 때에는, 대출력을 확보하기 위해 복수의 이차 전지를 직렬로 접속하여 사용할 필요가 있다.
그러나, 접속부를 통해 전지를 접속한 경우, 접속부의 전기 저항에 의해 출력이 저하되어 버린다. 또한, 접속부를 갖는 전지는 공간적으로도 불이익을 갖는다. 즉, 접속부에 의해 전지의 출력 밀도나 에너지 밀도의 저하가 초래된다.
이 문제를 해결하는 것으로서, 쌍극형 리튬 이온 이차 전지 등의 쌍극형 이차 전지가 개발되어 있다. 쌍극형 이차 전지는, 집전체의 한쪽면에 정극 활물질층이 형성되고, 다른쪽면에 부극 활물질층이 형성된 쌍극형 전극이 전해질층이나 세퍼레이터를 통해 복수 적층된 발전 요소를 갖는다.
이러한 쌍극형 이차 전지에 사용하는 집전체는 보다 큰 출력 밀도를 확보하기 위해, 경량이면서도 도전성이 우수한 재료로 이루어지는 것이 바람직하다. 따라서, 최근 도전성 재료가 첨가된 고분자 재료를 집전체(수지 집전체)의 재료로서 사용하는 것이 제안되어 있다. 예를 들어, 특허문헌 1에서는, 고분자 재료에 도전성 재료로서 금속 입자 또는 카본 입자가 혼합된 수지 집전체가 개시되어 있다.
일본 특허 공개 제2006-190649호 공보
그러나, 특허문헌 1에 기재되어 있는 바와 같은 수지 집전체는, 전해액 중의 리튬 이온의 차단성이 낮다. 그로 인해, 쌍극형 리튬 이온 이차 전지에 적용한 경우에는, 쌍극형 전극을 구성하는 수지 집전체의 내부에 리튬 이온이 침투하여, 당해 집전체의 내부에 리튬 이온이 흡장된 채로 되는 것이 판명되었다. 이 흡장된 리튬은 집전체의 내부로부터 방출되기 어렵기 때문에, 결과적으로 전지 용량의 저하를 초래할 우려가 있다.
여기서, 수지 집전체를 구성하는 수지는 전지 제작시의 가열 처리나 가압 처리에 의해서도 변형되기 어렵고, 전해액 중의 용매에 용해되기 어려운 내열성, 강도 및 내용매성이 우수한 수지인 것이 바람직하다. 이들 특성을 겸비하는 수지로서 폴리이미드와 같은 이미드기 함유 수지가 적합하지만, 상술한 수지 집전체 내부로의 리튬 이온의 흡장은 이미드기 함유 수지를 사용한 경우에 특히 현저하다는 것도 판명되었다.
본 발명은, 이러한 종래 기술이 갖는 과제를 감안하여 이루어진 것이다. 그리고, 그 목적은, 쌍극형 리튬 이온 이차 전지에 사용되는 이미드기 함유 수지를 포함하는 수지 집전체에 있어서, 집전체의 내부로의 리튬 이온의 흡장을 억제할 수 있는 수단을 제공하는 것에 있다.
본 발명자들은, 상기 과제를 해결하기 위해 예의 연구를 행하였다. 그 과정에서, 본 발명자들은 수지 집전체로의 리튬 이온의 침투 및 흡장의 메커니즘을 밝혔다. 그리고, 이미드기 함유 수지를 포함하는 수지 집전체에, 이미드기 비함유 수지를 포함하는 차단성 수지층 및 금속층을 형성함으로써 리튬 이온의 침투 및 흡장을 현저하게 억제할 수 있다는 것을 발견하여, 본 발명을 완성시키기에 이르렀다.
본 발명의 형태에 관한 쌍극형 리튬 이온 이차 전지용 집전체는, 이미드기 함유 수지를 포함하는 기재에 도전성 필러가 첨가되어 이루어지는 제1 도전성층과, 리튬 이온을 차단하는 기능을 갖는 제2 도전성층을 갖는다. 또한, 제2 도전성층은, 이미드기 비함유 수지를 포함하는 기재에 도전성 필러가 첨가되어 이루어지는 차단성 수지층과, 금속층을 갖는다. 그리고, 제1 도전성층이 제2 도전성층에 대하여 정극 활물질층측에 위치하도록 사용된다.
도 1은, 본 발명의 한 실시 형태에 관한 쌍극형 리튬 이온 이차 전지용 집전체를 사용한, 쌍극형 리튬 이온 이차 전지용 전극의 전체 구조를 모식적으로 나타낸 단면도이다.
도 2는, 본 발명의 다른 실시 형태에 관한 쌍극형 리튬 이온 이차 전지용 집전체를 사용한, 쌍극형 리튬 이온 이차 전지용 전극의 전체 구조를 모식적으로 나타낸 단면도이다.
도 3은, 본 발명의 다른 실시 형태에 관한 금속 용출 방지층을 갖는 쌍극형 리튬 이온 이차 전지용 집전체를 사용한, 쌍극형 리튬 이온 이차 전지용 전극의 전체 구조를 모식적으로 나타낸 단면도이다.
도 4는, 본 발명의 일 실시 형태에 관한 쌍극형 리튬 이온 이차 전지를 모식적으로 나타낸 단면도이다.
이하, 도면을 참조하면서 본 발명의 바람직한 형태를 설명하지만, 본 발명의 기술적 범위는 특허 청구 범위의 기재에 기초하여 정해져야 하며, 이하의 형태로만 제한되지 않는다. 또한, 도면의 설명에 있어서 동일한 요소에는 동일한 부호를 부여하고, 중복된 설명을 생략한다. 또한, 도면의 치수 비율은 설명의 사정상 과장되어 있으며, 실제의 비율과는 상이한 경우가 있다. 이하에서는, 쌍극형 리튬 이온 이차 전지용 집전체를 간단히 「집전체」로, 쌍극형 리튬 이온 이차 전지용 전극을 간단히 「쌍극형 전극」으로, 쌍극형 리튬 이온 이차 전지를 「쌍극형 이차 전지」로 각각 칭하는 경우가 있다.
<집전체, 쌍극형 전극>
도 1은, 본 발명의 일 실시 형태에 관한 쌍극형 리튬 이온 이차 전지용 집전체를 사용한, 쌍극형 리튬 이온 이차 전지용 전극의 전체 구조를 모식적으로 나타낸 단면도이다. 도 1에 도시하는 쌍극형 전극(1)은 집전체(3)의 한쪽면에 정극 활물질층(5)이 형성되고, 다른쪽면에 부극 활물질층(7)이 형성된 적층 구조를 갖는다. 그리고, 집전체(3)는 정극 활물질층(5)측에 위치하는 제1 도전성층(3A)과, 부극 활물질층(7)측에 위치하는 제2 도전성층(3B)이 적층되어 이루어지는 구조를 갖는다.
여기서, 제1 도전성층(3A)은, 폴리이미드(PI)로 형성된 기재에 도전성 필러로서의 케첸 블랙(등록 상표)이 분산되어 이루어지는 구성을 갖는다. 또한, 제2 도전성층(3B)은, 차단성 수지층(3a) 및 금속층(3b)의 2개의 층을 포함한다. 차단성 수지층(3a)은, 폴리프로필렌(PP) 등의 이미드기 비함유 수지를 포함하는 기재에 도전성 필러로서의 케첸 블랙이 분산되어 이루어지는 구성을 갖는다. 금속층(3b)은, 구리로 구성된다.
정극 활물질층(5)은 정극 활물질로서 LiNiO2(도시하지 않음)를 포함하고, 부극 활물질층(7)은 부극 활물질로서 그래파이트(도시하지 않음)를 포함한다. 이하, 본 실시 형태의 집전체(3) 및 쌍극형 전극(1)의 주된 구성 요소에 대하여 설명한다.
[집전체]
집전체(3)는, 정극 활물질층이 형성되는 한쪽면으로부터 부극 활물질층이 형성되는 다른쪽면으로 전자의 이동을 매개하는 기능을 갖는다.
(제1 도전성층)
본 실시 형태에 있어서, 집전체(3)는 2개의 도전성층(3A, 3B)을 갖는다. 여기서, 쌍극형 전극(1)의 정극 활물질층(5)측에 위치하는 제1 도전성층(3A)은, 이미드기 함유 수지를 포함하는 기재에 도전성 필러가 첨가되어 이루어지는 구성을 갖는다. 이와 같은 구성에 의해 전자 이동 매체로서의 기능을 갖는 것은 물론, 집전체의 경량화에도 기여할 수 있다.
제1 도전성층(3A)을 구성하는 기재는, 이미드기 함유 수지를 필수로 포함한다. 이미드기 함유 수지는, 내열성, 강도 및 내용매성이 우수하다. 그로 인해, 이미드기 함유 수지를 집전체의 기재로서 사용함으로써, 전지 제작시의 가열 처리나 가압 처리에 의해서도 변형되기 어렵고, 전해액 중의 용매에도 용해되기 어려운 집전체로 할 수 있다.
여기서 이미드기 함유 수지로서는, 예를 들어 폴리이미드(PI) 이외에 폴리아미드이미드(PAI), 폴리에테르이미드(PEI) 등을 들 수 있다. 그 중에서도, 이미드기 함유 수지로서는 폴리이미드가 바람직하게 사용된다. 폴리이미드의 구체예로서는, 유피렉스(등록 상표, 우베 고산 가부시끼가이샤제), 캡톤(등록 상표, 도레이·듀퐁 가부시끼가이샤제), 아피칼(등록 상표, 가부시끼가이샤 가네까제) 등의 상품명으로 시판되어 있는 폴리이미드를 들 수 있다. 그러나, 폴리이미드는, 이것 이외의 수지를 사용하는 것도 물론 가능하다. 이들 이미드기 함유 수지는 1종을 단독으로 사용해도 좋고, 2종 이상을 조합하여 혼합물로서 사용해도 상관없다.
또한, 제1 도전성층(3A)을 구성하는 기재는, 이미드기 함유 수지 이외에 종래 공지된 비도전성 고분자 재료 또는 도전성 고분자 재료를 포함해도 좋다. 비도전성 고분자 재료로서는, 예를 들어 폴리에틸렌(PE; 고밀도 폴리에틸렌(HDPE), 저밀도 폴리에틸렌(LDPE)), 폴리프로필렌(PP), 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT), 폴리에테르니트릴(PEN), 폴리아미드(PA), 폴리테트라플루오로에틸렌(PTFE), 스티렌-부타디엔 고무(SBR), 폴리아크릴로니트릴(PAN), 폴리메틸아크릴레이트(PMA), 폴리메틸메타크릴레이트(PMMA), 폴리염화비닐(PVC), 폴리불화비닐리덴(PVdF) 및 폴리스티렌(PS) 등을 들 수 있다. 또한, 도전성 고분자 재료로서는, 예를 들어 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아세틸렌, 폴리파라페닐렌, 폴리페닐렌비닐렌, 폴리아크릴로니트릴 및 폴리옥사디아졸 등을 들 수 있다. 이들 비도전성 고분자 재료 또는 도전성 고분자 재료는 1종만이 단독으로 사용되어도 좋고, 2종 이상의 공중합체 또는 혼합물의 형태로 사용되어도 상관없다.
제1 도전성층(3A)의 기재를 구성하는 고분자 재료(수지) 중 본 실시 형태의 작용 효과를 더욱 발휘시키는 관점에서, 당해 기재에 차지하는 이미드기 함유 수지의 배합량이 규정된다. 구체적으로는, 기재를 구성하는 수지 100질량%에 차지하는 이미드기 함유 수지(보다 바람직하게는 폴리이미드(PI))의 배합량은 바람직하게는 50질량% 이상이다. 또한, 이미드기 함유 수지의 배합량은 보다 바람직하게는 70질량% 이상이고, 더욱 바람직하게는 90질량% 이상이고, 특히 바람직하게는 95질량% 이상이고, 가장 바람직하게는 100질량%이다.
제1 도전성층(3A)을 구성할 때에 기재에 첨가되는 도전성 필러는, 전기 전도성을 가지면 특별히 제한은 없다. 도전성 필러로서는, 예를 들어 도전성 카본, 주석(Sn) 및 티타늄산리튬(Li4Ti5O12) 등을 들 수 있다. 도전성 카본으로서는, 아세틸렌 블랙, 발칸, 블랙 펄, 카본 나노파이버, 케첸 블랙(등록 상표), 카본 나노튜브, 카본 나노혼, 카본 나노벌룬 및 풀러렌으로 이루어지는 군으로부터 선택되는 적어도 1종을 포함하는 것이 바람직하다. 이들 도전성 카본은 전위창(potential window)이 매우 넓고, 정극 전위 및 부극 전위 양쪽에 대하여 폭넓은 범위에서 안정적이며, 우수한 도전성을 갖는다. 그 중에서도, 카본 나노튜브, 카본 나노혼, 케첸 블랙, 카본 나노벌룬 및 풀러렌으로 이루어지는 군으로부터 선택되는 적어도 1종을 포함하는 것이 보다 바람직하다. 이들 도전성 카본은 중공 구조를 갖기 때문에 질량당의 표면적이 크고, 집전체를 더욱 경량화할 수 있다. 한편, 니켈(Ni), 알루미늄(Al), 구리(Cu), 백금(Pt), 철(Fe), 크롬(Cr), 아연(Zn), 인듐(In), 안티몬(Sb) 및 칼륨(K)으로 이루어지는 군으로부터 선택되는 적어도 1종의 금속 혹은 이들 금속을 포함하는 합금 또는 금속 산화물이 도전성 필러로서 사용되어도 좋다. 이들 금속은, 집전체 표면에 형성되는 정극 또는 부극의 전위에 대하여 내성을 갖는다. 예를 들어, Al은 정극 전위에 대하여, Ni, Cu는 부극 전위에 대하여, Pt는 양극(兩極)의 전위에 대하여 내성을 갖는다. 이들 중, Ni, Al, Cu, Pt, Fe 및 Cr로 이루어지는 군으로부터 선택되는 적어도 1종의 금속을 포함하는 합금인 것이 보다 바람직하다. 합금으로서는, 구체적으로 스테인리스강(SUS), 인코넬(등록 상표), 하스텔로이(등록 상표) 및 그 이외에 Fe-Cr계 합금, Ni-Cr 합금 등을 들 수 있다. 이들 합금을 사용함으로써, 보다 높은 내전위성이 얻어진다. 또한, 이들 도전성 필러는 1종을 단독으로, 혹은 2종 이상을 조합하여 사용할 수 있다.
도전성 필러의 형상은 특별히 제한은 없으며, 입자 형상, 섬유 형상, 판 형상, 덩어리 형상, 천 형상 및 메쉬 형상 등의 공지된 형상을 적절히 선택할 수 있다. 예를 들어, 수지에 대하여 광범위하게 걸쳐서 도전성을 부여하고자 하는 경우에는, 입자 형상의 도전성 필러를 사용하는 것이 바람직하다. 한편, 수지에 있어서 특정 방향으로의 도전성을 보다 향상시키고자 하는 경우에는, 섬유 형상 등의 형상에 일정한 방향성을 갖는 도전성 필러를 사용하는 것이 바람직하다.
도전성 필러의 크기는 특별히 제한은 없으며, 도전성층의 크기나 두께 또는 도전성 필러의 형상에 따라 다양한 크기의 필러를 사용할 수 있다. 일례로서, 도전성 필러가 입자 형상인 경우의 평균 입자 직경은, 도전성층의 성형을 용이하게 하는 관점에서 0.1㎛ 내지 10㎛ 정도인 것이 바람직하다. 또한, 본 명세서 중에서 「입자 직경」이란, 도전성 필러의 윤곽선 상의 임의의 2점간의 거리 중 최대의 거리 L을 의미한다. 「평균 입자 직경」의 값으로서는, 주사형 전자 현미경(SEM)이나 투과형 전자 현미경(TEM) 등의 관찰 수단을 사용하여, 수 내지 수십 시야 중에 관찰되는 입자의 입자 직경의 평균값으로서 산출되는 값을 채용하는 것으로 한다. 후술하는 활물질 등의 입자 직경이나 평균 입자 직경도 마찬가지로 정의할 수 있다.
제1 도전성층(3A)에 있어서의 도전성 필러의 함유량도 특별히 제한은 없다. 단, 도전성 필러의 함유량은, 기재의 전체 질량에 대하여 바람직하게는 5 내지 35질량%이고, 보다 바람직하게는 5 내지 25질량%이고, 더욱 바람직하게는 5 내지 15질량%이다. 이러한 양의 도전성 필러를 기재에 첨가함으로써, 제1 도전성층(3A)의 질량 증가를 억제하면서 기재에 충분한 도전성을 부여할 수 있다.
또한, 제1 도전성층(3A)에 있어서의 기재로서의 고분자 재료의 함유량은, 바람직하게는 65 내지 95질량%이고, 보다 바람직하게는 75 내지 95질량%이고, 더욱 바람직하게는 85 내지 95질량%이다. 이에 따라, 제1 도전성층(3A), 나아가서는 집전체 전체의 경량화를 도모하는 것이 가능해진다.
제1 도전성층(3A) 중에 있어서의 도전성 필러의 분산 형태는 특별히 제한은 없으며, 기재인 수지 중에 균일하게 분산되어 있는 형태여도 좋고, 부분적으로 국재하여 분산되어 있어도 물론 좋다.
(제2 도전성층)
쌍극형 전극(1)의 부극 활물질층(7)측에 위치하는 제2 도전성층(3B)은, 이미드기 비함유 수지를 포함하는 기재에 도전성 필러가 첨가되어 이루어지는 차단성 수지층(3a)과, 금속층(3b)을 포함한다.
차단성 수지층(3a)에 있어서, 기재는 이미드기를 갖지 않는 이미드기 비함유 수지를 포함한다. 본 실시 형태에 있어서, 이미드기 비함유 수지는 집전체(3)로의 리튬 이온의 침투 및 흡장을 억제하고, 부극 전위에 대한 내전위성의 향상에 기여한다. 또한, 집전체(3)의 내부로의 리튬 이온의 침투 및 흡장을 억제하는 관점에서, 차단성 수지층(3a)은 도 1에 도시한 바와 같이 제1 도전성층(3A)에 있어서의 부극 활물질층(7)과 대향하는 면의 전체를 덮도록 제1 도전성층(3A) 상에 적층되는 것이 바람직하다. 단, 차단성 수지층(3a)은, 적어도 부극 활물질층(7)과 제1 도전성층(3A) 사이에 개재하고 있는 것이 바람직하다.
이미드기 비함유 수지로서는 특별히 제한은 없고, 비가교성 고분자 재료나 가교성 고분자 재료가 적절히 채용될 수 있다. 구체적으로 이미드기 비함유 수지로서는, 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리부텐-1(PB), 폴리염화비닐리덴(PVDC), 폴리불화비닐리덴(PVDF), 폴리옥시메틸렌(POM), 폴리아미드-6(PA-6), 폴리아미드-66(PA-66), 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT), 폴리페닐렌술피드(PPS), 폴리에테르에테르케톤(PEEK), 에틸렌-테트라플루오로에틸렌 공중합체(ETFE), 퍼플루오로(에틸렌-프로필렌) 공중합체(FEP), 퍼플루오로알콕실알칸(PFA), 경질 폴리염화비닐(RPVC), 폴리메타크릴산메틸(PMMA), 일반 폴리스티렌(GPPS), 내충격용 폴리스티렌(HIPS), 아크릴로니트릴-스티렌 공중합체 수지(AS), 아크릴로니트릴-부타디엔-스티렌 공중합체 수지(ABS), 변성 폴리페닐렌옥시드(m-PPO), 폴리카르보네이트(PC), 폴리술폰(PSF), 폴리아릴레이트(PAR), 폴리에테르술폰(PES) 및 이들의 수지의 일부가 가교되어 이루어지는 가교성 고분자 재료를 들 수 있다. 또한, 이미드기 비함유 수지로서는, 페놀 수지, 우레아 수지, 멜라민 수지, 에폭시 수지, 폴리우레탄, 불포화 폴리에스테르 수지, 자외선 경화성 실리콘 수지, 우레탄 아크릴레이트 수지, 에폭시아크릴레이트 수지, 불포화 아크릴 수지, 폴리에스테르아크릴레이트 수지, 폴리에테르아크릴레이트 수지, 폴리엔-폴리티올 수지 등을 들 수 있다. 이들 이미드기 비함유 수지 중, 리튬 이온 차단성을 보다 높이는 관점에서 가교성 고분자 재료를 사용하는 것이 바람직하다. 또한, 이들 이미드기 비함유 수지는 1종만이 단독으로 사용되어도 좋고, 2종 이상의 공중합체 또는 혼합물의 형태로 사용되어도 상관없다.
또한, 차단성 수지층(3a)을 구성하는 기재는, 상술한 이미드기 비함유 수지 이외에도 제1 도전성층(3A)의 란에서 설명한 종래 공지된 비도전성 고분자 재료 또는 도전성 고분자 재료를 포함해도 좋다. 또한, 차단성 수지층(3a)의 기재를 구성하는 수지 100질량%에 차지하는 이미드기 비함유 수지의 배합량은, 바람직하게는 50질량% 이상이다. 또한, 이미드기 비함유 수지의 배합량은 보다 바람직하게는 70질량% 이상이고, 더욱 바람직하게는 90질량% 이상이고, 특히 바람직하게는 95질량% 이상이고, 가장 바람직하게는 100질량%이다.
또한, 본 실시 형태의 효과를 현저하게 저해하지 않는 범위에서 차단성 수지층(3a)은 이미드기 함유 수지를 포함해도 좋다. 단, 본 실시 형태의 작용 효과를 더욱 발휘시키는 관점에서, 차단성 수지층(3a)에 있어서의 이미드기 함유 수지의 배합량도 규정된다. 즉, 기재를 구성하는 수지 100질량%에 차지하는 이미드기 함유 수지의 배합량은 바람직하게는 50질량% 이하이고, 보다 바람직하게는 30질량% 이하이고, 더욱 바람직하게는 10질량% 이하이고, 특히 바람직하게는 5질량% 이하이고, 가장 바람직하게는 0질량%이다. 즉, 차단성 수지층(3a)은 이미드기 함유 수지를 포함하지 않는 것이 가장 바람직하다.
차단성 수지층(3a)은, 상술한 수지로 형성된 기재에 도전성 필러가 첨가되어 이루어지는 구성을 갖는다. 이때에 사용되는 도전성 필러의 구체적인 재료 및 형태에 대해서는 제1 도전성층에서 설명한 재료 및 형태와 마찬가지이기 때문에, 여기서는 상세한 설명을 생략한다.
차단성 수지층(3a)에 있어서의 도전성 필러의 함유량은 특별히 제한은 없다. 단, 도전성 필러의 함유량은, 기재의 전체 질량에 대하여 바람직하게는 5 내지 35질량%이고, 보다 바람직하게는 5 내지 25질량%이고, 더욱 바람직하게는 5 내지 15질량%이다. 이러한 양의 도전성 필러를 기재에 첨가함으로써, 차단성 수지층(3a)의 질량 증가를 억제하면서 기재에 충분한 도전성을 부여할 수 있다.
또한, 차단성 수지층(3a)에 있어서의 기재로서의 고분자 재료의 함유량은 바람직하게는 65 내지 95질량%이고, 보다 바람직하게는 75 내지 95질량%이고, 더욱 바람직하게는 85 내지 95질량%이다. 이에 따라, 차단성 수지층(3a), 나아가서는 집전체 전체의 경량화를 도모하는 것이 가능해진다.
또한, 제2 도전성층(3B)은 금속층(3b)을 필수로 포함한다. 본 실시 형태에 있어서, 금속층(3b)은 상술한 차단성 수지층(3a)과 마찬가지로 집전체(3)로의 리튬 이온의 침투 및 흡장을 억제하는 것에 기여한다. 또한, 집전체의 내부로의 리튬 이온의 침투 및 흡장을 억제하는 관점에서, 금속층(3b)도 차단성 수지층(3a)과 마찬가지로 제1 도전성층(3A)에 있어서의 부극 활물질층(7)과 대향하는 면의 전체를 덮도록 제1 도전성층(3A) 상에 적층되는 것이 바람직하다. 단, 금속층(3b)도, 적어도 부극 활물질층(7)과 제1 도전성층(3A)의 사이에 개재하고 있는 것이 바람직하다.
본 실시 형태의 금속층(3b)에 사용되는 금속 재료는 특별히 제한은 없고, 예를 들어 알루미늄, 구리, 철, 크롬, 니켈, 티타늄, 바나듐, 몰리브덴, 니오븀, 금,은, 백금, 및 이들 금속의 합금, 금속 탄화물, 금속 질화물, 금속 산화물 등이 사용될 수 있다. 이들 금속 재료 중 도전성이 양호한 금속 재료를 사용하는 것이 바람직하고, 구체적으로는 알루미늄, 니켈, 구리, 철 및 티타늄, 및 합금(일례를 들면, SUS304, SUS316, SUS316L 등의 오스테나이트계 스테인리스), 금속 탄화물, 금속 질화물, 금속 산화물로 이루어지는 군으로부터 선택되는 적어도 1종이 바람직하다. 도전성이 양호한 합금으로서는, 일례로서 SUS304, SUS316, SUS316L 등의 오스테나이트계 스테인리스를 들 수 있다. 또한, 금속 재료로서 방전시의 부극 전위하에서 용해되지 않는 금속 재료, 또는 충전시의 부극 전위하에서 리튬 이온과 합금화되지 않는 금속 재료를 사용하는 것이 바람직하다. 이러한 재료로서는, 예를 들어 구리 및 니켈, 및 이들 금속의 합금, 금속 인 화합물(예를 들어, 니켈 인(NiP)), 금속 붕소 화합물(예를 들어, 니켈 붕소(NiB)), 금속 탄화물, 금속 질화물(예를 들어, 니켈 질화물(NiN)), 금속 산화물 등을 들 수 있다.
또한, 금속층(3b)은, 상기 금속 재료 이외의 재료를 포함해도 좋다. 단, 리튬 이온의 침투 및 흡장을 억제하고, 도전성을 확보하는 관점에서 금속층(3b)에 있어서의 상기 금속 재료의 함유량은 바람직하게는 80질량% 이상이고, 보다 바람직하게는 90질량% 이상이고, 가장 바람직하게는 100질량%이다.
집전체(3)는, 상술한 제1 도전성층(3A), 및 차단성 수지층(3a) 및 금속층(3b)을 적어도 1층씩 갖는 제2 도전성층(3B)을 필수로 포함한다. 그리고, 제1 도전성층(3A)은 상대적으로 정극 활물질측에 위치하고, 제2 도전성층(3B)은 상대적으로 부극 활물질층측에 위치한다. 그로 인해, 이러한 한 각 층이 어떠한 배치로 적층되어 있어도 좋고, 다른 층을 포함하는 경우여도 본 발명의 기술적 범위에 포함된다. 일례로서, 도 2에 본 발명의 다른 실시 형태에 관한 쌍극형 리튬 이온 이차 전지용 집전체를 사용한, 쌍극형 리튬 이온 이차 전지용 전극의 전체 구조를 모식적으로 나타낸 단면도를 도시한다. 도 2의 형태에서는, 제2 도전성층(3B)에 있어서, 차단성 수지층(3a)이 금속층(3b)에 대하여 상대적으로 정극 활물질층측에 위치하고 있다는 점에서 도 1의 형태와 상이하다. 그러나, 도 2의 형태에서도 도 1의 형태와 마찬가지의 효과를 발휘할 수 있다. 즉, 본 실시 형태의 집전체(3)는, 제2 도전성층(3B)에 있어서의 차단성 수지층(3a)과 금속층(3b)과의 위치 관계에 상관없이, 충분한 리튬 이온 차단성을 발휘할 수 있다.
또한, 본 실시 형태의 집전체는, 상술한 층 이외에, 필요에 따라 그 밖의 층을 포함하는 적층체여도 좋다. 예를 들어, 그 밖의 층으로서는 금속 용출 방지층 또는 접착층 등을 들 수 있지만, 이들로 제한되는 것은 아니다. 도 3에, 본 발명의 다른 실시 형태에 관한 금속 용출 방지층을 갖는 쌍극형 리튬 이온 이차 전지용 집전체를 사용한, 쌍극형 리튬 이온 이차 전지용 전극의 전체 구조를 모식적으로 나타낸 단면도를 도시한다. 도 3의 형태에서는 제2 도전성층(3B)에 있어서, 예를 들어 구리로 이루어지는 금속층(3b)의 제1 도전성층(3A)과 대향하는 측의 표면(금속층(3b)의 정극 활물질층(5)측의 표면)에, 예를 들어 크롬으로 이루어지는 금속 용출 방지층(3c)이 형성되어 있다. 금속 용출 방지층(3c)은, 극성기인 이미드기를 함유하는 제1 도전성층(3A)과 금속층(3b)이 접하는 경우에 발생할 수 있는, 일렉트로 마이그레이션 또는 이온 마이그레이션에 의한 금속층(3b)의 용출을 방지하는 기능을 갖는다.
금속 용출 방지층(3c)에 사용되는 금속 재료는 특별히 제한은 없다. 금속 재료로서는, 예를 들어 크롬, 니켈, 코발트, 철, 팔라듐, 백금 및 이들의 합금(예를 들어, 니켈-크롬 합금)이나, 이들의 금속 탄화물, 금속 질화물, 금속 산화물 등을 들 수 있다. 특히, 이들 금속 용출 방지층(3c)은, 금속층(3b)이 구리 또는 알루미늄을 포함하는 경우에 있어서의 금속 용출을 방지하는 것에 효과적이다.
또한, 금속 용출 방지층(3c)은, 상기 금속 재료 이외의 재료를 포함해도 좋다. 단, 금속층(3b)의 용출을 억제하는 관점에서, 금속 용출 방지층(3c)에 있어서의 상기 금속 재료의 함유량은 바람직하게는 80질량% 이상이고, 보다 바람직하게는 90질량% 이상이고, 가장 바람직하게는 100질량%이다. 또한, 일렉트로 마이그레이션 등에 의한 금속층(3b)의 용출을 억제하는 관점에서, 금속 용출 방지층(3c)은 제1 도전성층(3A)에 있어서의 부극 활물질층(7)과 대향하는 면의 전체를 덮도록 제1 도전성층(3A) 상에 적층되는 것이 바람직하다.
또한, 본 실시 형태의 집전체(3)는, 1개의 층에 다른 층을 순차 적층하여 제조해도 좋고, 2개의 층을 각각 제작한 후, 이들의 층을 접착함으로써 제조해도 좋다. 이 때의 각 층의 접착 방법은 특별히 제한은 없다. 예를 들어, 수지를 포함하는 2개의 층끼리를 접착하는 경우에는, 이들의 층을 열 융착함으로써 접착할 수 있다. 또한, 수지를 포함하는 층과 금속층(3b) 또는 금속 용출 방지층(3c)을 접착하는 방법으로서는, 수지를 포함하는 층에 금속 증착(도금, 스퍼터)하는 방법, 금속박 상에 수지를 융착하는 방법 등을 들 수 있다. 또한, 인접하는 층의 경계면에서의 접촉 저항을 저감시키거나, 접착면의 박리를 방지한다는 관점에서 2개의 층은 접착층을 통해 접착되어도 좋다. 이러한 접착층에 사용되는 재료로서는, 산화아연, 산화인듐, 산화티타늄 등을 포함하는 금속 산화물계의 도전성 페이스트; 카본 블랙, 카본 나노튜브, 그래파이트 등을 포함하는 카본계의 도전성 페이스트가 바람직하게 사용된다.
집전체의 두께는, 경량화에 의해 전지의 출력 밀도를 높임에 있어서는 얇은 편이 바람직하다. 쌍극형 이차 전지에 있어서는, 쌍극형 전극의 정극 활물질층과 부극 활물질층의 사이에 존재하는 집전체는 적층 방향에 수평한 방향의 전기 저항이 높아도 되기 때문에, 집전체의 두께를 얇게 하는 것이 가능하다. 구체적으로는, 집전체(3)의 두께의 하한값은 10㎛ 이상인 것이 바람직하고, 20㎛ 이상인 것이 보다 바람직하고, 25㎛ 이상인 것이 더욱 바람직하다. 또한, 집전체(3)의 두께의 상한값은 200㎛ 이하인 것이 바람직하고, 100㎛ 이하인 것이 보다 바람직하고, 50㎛ 이하인 것이 더욱 바람직하다. 이러한 두께로 함으로써, 경량이면서도 충분한 기계적 강도를 확보할 수 있다.
또한, 제1 도전성층(3A) 및 제2 도전성층(3B)의 두께에 대해서도 특별히 제한은 없다. 구체적으로는, 제1 도전성층(3A) 및 제2 도전성층(3B)에 있어서의 두께의 하한값은 5㎛ 이상인 것이 바람직하고, 7㎛ 이상인 것이 보다 바람직하고, 10㎛ 이상인 것이 더욱 바람직하다. 또한, 제1 도전성층(3A) 및 제2 도전성층(3B)에 있어서의 두께의 상한값은 100㎛ 이하인 것이 바람직하고, 50㎛ 이하인 것이 보다 바람직하고, 25㎛ 이하인 것이 더욱 바람직하다.
또한, 제1 도전성층(3A)과 제2 도전성층(3B)의 두께의 비에 대해서도 특별히 제한은 없으며, 제1 도전성층/제2 도전성층으로서 바람직하게는 1000/1 내지 1/1000이고, 보다 바람직하게는 100/1 내지 1/100이고, 더욱 바람직하게는 5/1 내지 1/15이고, 특히 바람직하게는 2/1 내지 1/5이고, 가장 바람직하게는 1/1 내지 1/4이다. 이러한 범위 내의 값이 선택되면 리튬 이온이나 전해질에 대한 차단성이 충분히 발휘되고, 전지 용량의 향상에도 기여할 수 있다. 특히, 제2 도전성층(3B)이 제1 도전성층(3A)보다도 두꺼운 형태에서는 리튬 이온 차단성이 보다 현저하게 발휘되고, 전지 용량의 저하를 효과적으로 방지할 수 있다.
또한, 제2 도전성층(3B)에 있어서의 금속층(3b) 또는 임의로 형성되는 금속 용출 방지층(3c)의 두께도 특별히 제한은 없다. 단, 집전체의 경량화나, 단락시의 단락 부위로의 전류 집중을 억제하기 위해 집전체의 면 방향의 저항을 저감시키는 관점에서, 얇은 편이 바람직하다. 보다 상세하게는, 금속층(3b) 또는 금속 용출 방지층(3c)의 두께는 각각 제1 도전성층(3A)보다도 얇은 것이 바람직하다. 또한, 제1 도전성층(3A)과 금속층(3b)의 두께의 비(제1 도전성층(3A)/금속층(3b))가 10/1 이하인 것이 보다 바람직하다. 구체적으로는, 금속층(3b) 또는 금속 용출 방지층(3c)의 두께는 각각 0.001㎛ 내지 1㎛인 것이 바람직하고, 0.01㎛ 내지 0.1㎛인 것이 보다 바람직하고, 0.05㎛ 내지 0.1㎛인 것이 더욱 바람직하다.
집전체(3)의 체적 저항의 상한값은, 전지 성능의 관점에서 102Ω·cm 이하로 하는 것이 바람직하고, 10Ω·cm 이하로 하는 것이 보다 바람직하다. 한편, 집전체(3)의 체적 저항의 하한값은, 단락시의 단락 부위로의 전류 집중을 억제한다는 관점에서 10-5Ω·cm 이상으로 하는 것이 바람직하고, 5×10-2Ω·cm 이상으로 하는 것이 보다 바람직하고, 10-1Ω·cm 이상으로 하는 것이 더욱 바람직하다. 또한, 이러한 체적 저항으로 하기 위해서는, 도전성층을 제조할 때에 기재(수지)에 첨가하는 도전성 필러의 종류나 양, 분산 형태, 금속층이나 금속 용출 방지층에 사용하는 금속 재료 등을 적절히 설정하면 된다.
이하, 본 실시 형태의 집전체(3)가 발휘하는 작용 효과에 대하여 설명한다. 일반적으로, 쌍극형 전극의 부극 활물질층측에 배치되는 도전성층의 최고 피점 궤도(HOMO)의 에너지 준위는, 부극 전위에 기초한 전자의 공급에 의해 상승한다. 본 발명자들은, 이 상승 후의 레벨이 전해액에 있어서의 리튬 이온의 산화 환원 전위를 상회하면 전자가 이동하고, 이에 따라 리튬 이온이 수지 집전체의 내부에 침투한다는 것을 밝혀냈다.
본 실시 형태의 집전체(3)에 의하면, 제2 도전성층(3B)에 포함되는 차단성 수지층(3a)의 최고 피점 궤도의 에너지 준위가 부극 전위에 의해 상승하여도, 상승 후의 레벨이 전해액에 있어서의 리튬 이온의 산화 환원 전위를 상회하는 것이 억제된다. 그 결과, 리튬 이온의 수지 집전체 내부로의 침투 및 흡장이 방지된다. 그뿐만 아니라, 제2 도전성층(3B)에 포함되는 금속층(3b)도 리튬 이온 차단성을 보다 높이는 기능을 갖는다. 따라서, 제2 도전성층(3B)에 차단성 수지층(3a) 및 금속층(3b)을 병용함으로써, 이미드기 함유 수지를 포함하는 수지 집전체에 있어서 충분한 리튬 이온 차단성을 확보하는 것이 가능해진다.
또한, 본 실시 형태의 집전체(3)에서는, 리튬 이온을 차단하는 기능을 갖는 제2 도전성층(3B)으로서 차단성 수지층(3a) 이외에 금속층(3b)을 병용함으로써, 면 방향의 저항을 억제할 수 있다. 따라서, 전지가 내부 단락된 경우여도 전류가 단락 부위에 흐르기 어렵고, 전지의 발열을 억제할 수 있다. 또한, 본 실시 형태의 집전체(3)는 금속층(3b) 및 차단성 수지층(3a)을 병용함으로써, 부극 전위에 대한 내전위성도 우수하다.
[정극 활물질층]
정극 활물질층(5)은 정극 활물질을 포함한다. 정극 활물질은, 방전시에 이온을 흡장하고, 충전시에 이온을 방출하는 조성을 갖는다. 바람직한 일례로서는, 전이 금속과 리튬과의 복합 산화물인 리튬-전이 금속 복합 산화물을 들 수 있다. 구체적으로는, LiCoO2 등의 Li·Co계 복합 산화물, LiNiO2 등의 Li·Ni계 복합 산화물, 스피넬 LiMn2O4 등의 Li·Mn계 복합 산화물, LiFeO2 등의 Li·Fe계 복합 산화물 및 이들 전이 금속의 일부를 다른 원소에 의해 치환한 것 등을 사용할 수 있다. 이들 리튬-전이 금속 복합 산화물은 반응성, 사이클 특성이 우수하고, 저비용의 재료이다. 그로 인해 이들 재료를 전극에 사용함으로써, 출력 특성이 우수한 전지를 형성하는 것이 가능하다. 그 이외에, 정극 활물질로서는 LiFePO4 등의 전이 금속과 리튬의 인산 화합물이나 황산 화합물; V2O5, MnO2, TiS2, MoS2, MoO3 등의 전이 금속 산화물이나 황화물; PbO2, AgO, NiOOH 등을 사용할 수도 있다. 상기 정극 활물질은, 단독으로 사용되어도 혹은 2종 이상의 혼합물의 형태로 사용되어도 좋다.
정극 활물질의 평균 입자 직경은 특별히 제한되지 않지만, 정극 활물질의 고용량화, 반응성, 사이클 내구성의 관점에서는 바람직하게는 1㎛ 내지 100㎛, 보다 바람직하게는 1㎛ 내지 20㎛이다. 이러한 범위이면, 이차 전지는 고출력 조건하에서의 충방전시의 전지의 내부 저항의 증대가 억제되어, 충분한 전류를 취출할 수 있다. 또한, 정극 활물질이 2차 입자인 경우에는 2차 입자를 구성하는 1차 입자의 평균 입자 직경이 10nm 내지 1㎛의 범위인 것이 바람직하다고 할 수 있지만, 본 발명에서는 반드시 상기 범위로 제한되는 것은 아니다. 단, 제조 방법에 따라서도 상이하지만, 정극 활물질이 응집, 괴상 등에 의해 2차 입자화된 것이 아니어도 좋다. 이러한 정극 활물질의 입경 및 일차 입자의 입경은, 레이저 회절법을 사용하여 얻어진 메디안 직경을 사용할 수 있다.
또한, 정극 활물질의 형상은 그 종류나 제조 방법 등에 따라 취할 수 있는 형상이 상이하며, 예를 들어 구 형상(분말 형상), 판 형상, 바늘 형상, 기둥 형상, 각 형상 등을 들 수 있지만 이들로 한정되는 것은 아니고, 어떠한 형상이든 문제없이 사용할 수 있다. 바람직하게는, 충방전 특성 등의 전지 특성을 향상시킬 수 있는 최적의 형상을 적절히 선택하는 것이 바람직하다.
[부극 활물질층]
부극 활물질층(7)은 부극 활물질을 포함한다. 부극 활물질은, 방전시에 이온을 방출하고, 충전시에 이온을 흡장할 수 있는 조성을 갖는다. 부극 활물질은, 리튬을 가역적으로 흡장 및 방출할 수 있는 것이면 특별히 제한되지 않는다. 부극 활물질의 예로서는, Si나 Sn 등의 금속, 혹은 TiO, Ti2O3, TiO2 또는 SiO2, SiO, SnO2 등의 금속 산화물, Li4 /3Ti5 /3O4 또는 Li7MnN 등의 리튬과 전이 금속과의 복합 산화물, Li-Pb계 합금, Li-Al계 합금, Li 또는 그래파이트(천연 흑연, 인조 흑연), 카본 블랙, 활성탄, 탄소 섬유, 코크스, 소프트 카본, 혹은 하드 카본 등의 탄소 재료 등을 바람직하게 들 수 있다. 상기 부극 활물질은, 단독으로 사용되어도 혹은 2종 이상의 혼합물의 형태로 사용되어도 좋다.
또한, 부극 활물질은, 리튬과 합금화하는 원소를 포함하는 것이 바람직하다. 리튬과 합금화하는 원소를 사용함으로써, 종래의 탄소계 재료에 비해 높은 에너지 밀도를 갖는 고용량 및 우수한 출력 특성의 전지를 얻는 것이 가능해진다. 상기한 리튬과 합금화하는 원소로서는 이하로 제한되지 않지만, 구체적으로는 Si, Ge, Sn, Pb, Al, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Tl, C, N, Sb, Bi, O, S, Se, Te, Cl 등을 들 수 있다.
이들 중에서도, 부극 활물질로서는 용량 및 에너지 밀도가 우수한 전지를 구성할 수 있다는 관점에서 탄소 재료, 및/또는 Si, Ge, Sn, Pb, Al, In 및 Zn으로 이루어지는 군으로부터 선택되는 적어도 1종 이상의 원소를 포함하는 것이 바람직하다. 특히, 부극 활물질로서는, 탄소 재료, Si 또는 Sn의 원소를 포함하는 것이 바람직하다.
부극 활물질의 평균 입자 직경은 특별히 제한되지 않지만, 부극 활물질의 고용량화, 반응성, 사이클 내구성의 관점에서는 바람직하게는 1㎛ 내지 100㎛, 보다 바람직하게는 1㎛ 내지 20㎛이다. 이러한 범위이면, 고출력 조건하에서의 충방전 시의 전지의 내부 저항의 증대가 억제되어, 이차 전지로부터 충분한 전류를 취출할 수 있다. 또한, 부극 활물질이 2차 입자인 경우에는 2차 입자를 구성하는 1차 입자의 평균 입자 직경이 10nm 내지 1㎛의 범위인 것이 바람직하다. 그러나, 본 발명에서는 반드시 상기 범위로 제한되는 것은 아니다. 또한, 제조 방법에 따라서도 상이하지만, 부극 활물질이 응집, 괴상 등에 의해 2차 입자화된 것이 아니어도 좋다. 이러한 부극 활물질의 입경 및 일차 입자의 입경은, 레이저 회절법을 사용하여 얻어진 메디안 직경을 사용할 수 있다.
또한, 부극 활물질의 형상은 그 종류나 제조 방법 등에 따라 취할 수 있는 형상이 상이하며, 예를 들어 구 형상(분말 형상), 판 형상, 바늘 형상, 기둥 형상, 각 형상 등을 들 수 있지만 이들로 한정되는 것은 아니고, 어떠한 형상이든 문제없이 사용할 수 있다. 바람직하게는, 충방전 특성 등의 전지 특성을 향상시킬 수 있는 최적의 형상을 적절히 선택하는 것이 바람직하다.
정극 활물질층(5) 및 부극 활물질층(7)에는, 필요하면 그 밖의 물질이 포함되어도 좋다. 예를 들어, 도전 보조제, 바인더 등을 포함해도 좋다. 또한, 이온 전도성 중합체가 포함되는 경우에는, 상기 중합체를 중합시키기 위한 중합 개시제가 포함되어도 좋다.
도전 보조제란, 활물질층의 도전성을 향상시키기 위해 배합되는 첨가물을 말한다. 도전 보조제로서는, 아세틸렌 블랙, 카본 블랙, 케첸 블랙, 그래파이트 등의 카본 분말이나, 기상 성장 탄소 섬유(VGCF) 등의 다양한 탄소 섬유, 팽창 흑연 등을 들 수 있다. 그러나, 도전 보조제가 이들로 한정되지 않는다.
바인더로서는, 폴리불화비닐리덴(PVDF), PI, PTFE, SBR, 합성 고무계 바인더 등을 들 수 있다. 그러나, 바인더가 이들로 한정되지 않는다. 또한, 바인더와 겔 전해질로서 사용하는 매트릭스 중합체가 동일한 경우에는, 바인더를 사용할 필요는 없다.
활물질층에 포함되는 성분의 배합비는, 특별히 한정되지 않는다. 배합비는, 리튬 이온 이차 전지에 관한 공지된 지견을 적절히 참조함으로써 조정된다. 활물질층의 두께에 대해서도 특별히 제한은 없고, 리튬 이온 이차 전지에 관한 종래 공지된 지견이 적절히 참조된다. 일례를 들면, 활물질층의 두께는 바람직하게는 10㎛ 내지 100㎛ 정도이고, 보다 바람직하게는 20㎛ 내지 50㎛이다. 활물질층이 10㎛ 정도 이상이면, 전지 용량이 충분히 확보된다. 한편, 활물질층이 100㎛ 정도 이하이면 전극 심부(집전체측)에 리튬 이온이 확산되기 어려워짐에 따른 내부 저항의 증대가 억제된다.
집전체 표면 상으로의 정극 활물질층(또는 부극 활물질층)의 형성 방법은 특별히 제한되지 않으며, 공지된 방법을 사용할 수 있다. 예를 들어, 상기한 바와 같이 정극 활물질, 및 필요하면 이온 전도성을 높이기 위한 전해질염, 전자 전도성을 높이기 위한 도전 보조제 및 바인더를 적당한 용제에 분산, 용해 등을 행하여 정극 활물질 슬러리를 제조한다. 마찬가지로, 부극 활물질, 및 필요하면 전해질염, 도전 보조제 및 바인더를 적당한 용제에 분산, 용해 등을 행하여 부극 활물질 슬러리를 제조한다. 그리고, 정극 활물질 슬러리를 집전체 상에 도포, 건조하여 용제를 제거한 후, 프레스함으로써 정극 활물질층이 집전체 상에 형성된다. 마찬가지로, 부극 활물질 슬러리를 집전체 상에 도포, 건조하여 용제를 제거한 후, 프레스함으로써 부극 활물질층이 집전체 상에 형성된다.
이때, 용제로서는 특별히 제한되지 않지만, N-메틸-2-피롤리돈(NMP), 디메틸포름아미드, 디메틸아세트아미드, 메틸포름아미드, 시클로헥산, 헥산, 물 등을 사용할 수 있다. 바인더로서 폴리불화비닐리덴(PVdF)을 채용하는 경우에는, NMP를 용매로서 사용하면 좋다.
상기 방법에 있어서, 정극 활물질 슬러리(또는 부극 활물질 슬러리)를 집전체 상에 도포 및 건조한 후, 프레스한다. 이때, 프레스 조건을 조절함으로써 정극 활물질층 및 부극 활물질층의 공극률이 제어된다.
프레스 처리의 구체적인 수단이나 프레스 조건은 특별히 제한되지 않으며, 프레스 처리 후의 정극 활물질층 및 부극 활물질층의 공극률이 원하는 값이 되도록 적절히 조절된다. 프레스 처리의 구체적인 형태로서는, 예를 들어 핫 프레스기나 캘린더 롤 프레스기 등을 들 수 있다. 또한, 프레스 조건(온도, 압력 등)도 특별히 제한되지 않으며, 종래 공지된 지견이 적절히 참조된다.
본 실시 형태의 쌍극형 전극(1)에 의하면, 제2 도전성층(3B)에 포함되는 차단성 수지층(3a)의 최고 피점 궤도(HOMO)의 에너지 준위가 부극 전위에 의해 상승하여도, 상승 후의 레벨이 전해액에 있어서의 리튬 이온의 산화 환원 전위를 상회하는 것이 억제된다. 그 결과, 리튬 이온의 수지 집전체 내부로의 침투 및 흡장이 방지된다. 그뿐만 아니라, 제2 도전성층(3B)에 포함되는 금속층(3b)도, 리튬 이온 차단성을 보다 높이는 기능을 갖는다. 따라서, 제2 도전성층(3B)에 차단성 수지층(3a) 및 금속층(3b)을 병용함으로써, 이미드기 함유 수지를 포함하는 수지 집전체에 있어서 충분한 리튬 이온 차단성을 확보하는 것이 가능해진다.
<쌍극형 이차 전지>
또한, 본 발명의 쌍극형 리튬 이온 이차 전지는, 상술한 쌍극형 전극(1)과 전해질층이 적층되어 이루어지는 발전 요소를 갖는다. 도 4는, 본 발명의 일 실시 형태인 쌍극형 이차 전지의 전체 구조를 모식적으로 나타낸 단면도이다. 도 4에 도시하는 쌍극형 이차 전지(10)는, 실제로 충방전 반응이 진행되는 대략 직사각형의 발전 요소(21)가 전지 외장재인 라미네이트 필름(29)의 내부에 밀봉된 구조를 갖는다.
도 4에 도시한 바와 같이, 본 실시 형태의 쌍극형 이차 전지(10)의 발전 요소(21)는 복수의 쌍극형 전극(23)(도 1 내지 3에 있어서의 쌍극형 전극(1))을 갖는다. 쌍극형 전극(23)에서는, 집전체(11)(도 1 내지 3에 있어서의 집전체(3))의 한쪽면에 전기적으로 결합한 정극 활물질층(13)과, 집전체(11)의 반대측의 면에 전기적으로 결합한 부극 활물질층(15)을 갖는다. 그리고, 각 쌍극형 전극(23)은, 전해질층(17)을 개재하여 적층되어 발전 요소(21)를 형성한다. 또한, 전해질층(17)은, 기재로서의 세퍼레이터의 면 방향 중앙부에 전해질이 유지되어 이루어지는 구성을 갖는다. 이때, 하나의 쌍극형 전극(23)의 정극 활물질층(13)과 상기 하나의 쌍극형 전극(23)에 인접하는 다른 쌍극형 전극(23)의 부극 활물질층(15)이 전해질층(17)을 통해 마주 향하도록, 각 쌍극형 전극(23) 및 전해질층(17)이 교대로 적층되어 있다. 즉, 하나의 쌍극형 전극(23)의 정극 활물질층(13)과 상기 하나의 쌍극형 전극(23)에 인접하는 다른 쌍극형 전극(23)의 부극 활물질층(15) 사이에 전해질층(17)이 끼워져서 배치되어 있다.
인접하는 정극 활물질층(13), 전해질층(17) 및 부극 활물질층(15)은, 하나의 단전지층(19)을 구성한다. 따라서, 쌍극형 이차 전지(10)는, 단전지층(19)이 적층되어 이루어지는 구성을 갖는다고도 할 수 있다. 또한, 전해질층(17)으로부터의 전해액의 누설에 의한 액락을 방지하는 목적으로 단전지층(19)의 외주부에는 시일부(절연층)(31)가 배치되어 있다. 또한, 발전 요소(21)의 최외층에 위치하는 정극측의 최외층 집전체(11a)에는, 편면에만 정극 활물질층(13)이 형성되어 있다. 또한, 발전 요소(21)의 최외층에 위치하는 부극측의 최외층 집전체(11b)에는, 편면에만 부극 활물질층(15)이 형성되어 있다.
또한, 도 4에 도시하는 쌍극형 이차 전지(10)에서는, 정극측의 최외층 집전체(11a)에 인접하도록 정극 집전판(25)이 배치되고, 이것이 연장되어 라미네이트 필름(29)으로부터 도출되어 있다. 한편, 부극측의 최외층 집전체(11b)에 인접하도록 부극 집전판(27)이 배치되고, 마찬가지로 이것이 연장되어 라미네이트 필름(29)으로부터 도출되어 있다.
도 4에 도시하는 쌍극형 이차 전지(10)에 있어서는, 통상 각 단전지층(19)의 주위에 시일부(31)가 형성된다. 이 시일부(31)는, 전지 내에서 인접하는 집전체(11)끼리가 접촉하거나, 발전 요소(21)에 있어서의 단전지층(19)의 단부의 근소한 불균일 등에 기인하는 단락이 일어나는 것을 방지하는 목적으로 형성된다. 이러한 시일부(31)의 설치에 의해 장기간의 신뢰성 및 안전성이 확보되고, 고품질의 쌍극형 이차 전지(10)가 제공된다.
또한, 단전지층(19)의 적층 횟수는, 원하는 전압에 따라 조절한다. 또한, 쌍극형 이차 전지(10)에서는 전지의 두께를 최대한 얇게 하여도 충분한 출력을 확보할 수 있으면, 단전지층(19)의 적층 횟수를 적게 해도 좋다. 쌍극형 이차 전지(10)에서도, 사용할 때의 외부로부터의 충격, 환경 열화를 방지하기 위해 발전 요소(21)를 라미네이트 필름(29)에 감압하여 봉입하고, 정극 집전판(25) 및 부극 집전판(27)을 라미네이트 필름(29)의 외부로 취출한 구조로 하는 것이 좋다. 이하, 본 실시 형태의 쌍극형 이차 전지의 주된 구성 요소에 대하여 설명한다.
[전해질층]
전해질층을 구성하는 전해질에 특별히 제한은 없고, 액체 전해질, 및 고분자 겔 전해질 및 고분자 고체 전해질 등의 중합체 전해질을 적절히 사용할 수 있다.
액체 전해질은, 용매에 지지염인 리튬염이 용해된 것이다. 용매로서는, 예를 들어 디메틸카르보네이트(DMC), 디에틸카르보네이트(DEC), 디프로필카르보네이트(DPC), 에틸메틸카르보네이트(EMC), 프로피온산메틸(MP), 아세트산메틸(MA), 포름산메틸(MF), 4-메틸디옥솔란(4MeDOL), 디옥솔란(DOL), 2-메틸테트라히드로푸란(2MeTHF), 테트라히드로푸란(THF), 디메톡시에탄(DME), 에틸렌카르보네이트(EC), 프로필렌카르보네이트(PC), 부틸렌카르보네이트(BC) 및 γ-부티로락톤(GBL) 등을 들 수 있다. 이들 용매는 1종을 단독으로 사용해도 좋고, 2종 이상을 조합한 혼합물로서 사용해도 좋다.
또한, 지지염(리튬염)으로서는, LiPF6, LiBF4, LiClO4, LiAsF6, LiTaF6, LiSbF6, LiAlCl4, Li2B10Cl10, LiI, LiBr, LiCl, LiAlCl, LiHF2, LiSCN 등의 무기산 음이온염, LiCF3SO3, Li(CF3SO2)2N, LiBOB(리튬비스옥시드보레이트), LiBETI(리튬비스(퍼플루오로에틸렌술포닐이미드); Li(C2F5SO2)2N) 등의 유기산 음이온염 등을 들 수 있다. 이들 전해질염은, 단독으로 사용되어도 혹은 2종 이상의 혼합물의 형태로 사용되어도 좋다.
한편, 중합체 전해질은 전해액을 포함하는 겔 전해질과, 전해액을 포함하지 않는 고분자 고체 전해질로 분류된다. 겔 전해질은, 리튬 이온 전도성을 갖는 매트릭스 중합체에 상기한 액체 전해질이 주입되어 이루어지는 구성을 갖는다. 리튬 이온 전도성을 갖는 매트릭스 중합체로서는, 예를 들어 폴리에틸렌옥시드를 주쇄 또는 측쇄에 갖는 중합체(PEO), 폴리프로필렌옥시드를 주쇄 또는 측쇄에 갖는 중합체(PPO), 폴리에틸렌글리콜(PEG), 폴리아크릴로니트릴(PAN), 폴리메타크릴산에스테르, 폴리불화비닐리덴(PVdF), 폴리불화비닐리덴과 헥사플루오로프로필렌의 공중합체(PVdF-HFP), 폴리메틸아크릴레이트(PMA), 폴리메틸메타크릴레이트(PMMA) 등을 들 수 있다. 또한, 상기한 중합체 등의 혼합물, 변성체, 유도체, 랜덤 공중합체, 교호 공중합체, 그래프트 공중합체, 블록 공중합체 등도 사용할 수 있다. 이들 중, PEO, PPO 및 이들의 공중합체, PVdF, PVdF-HFP를 사용하는 것이 바람직하다. 이러한 매트릭스 중합체에는, 리튬염 등의 전해질염이 잘 용해된다.
또한, 전해질층이 액체 전해질이나 겔 전해질로 구성되는 경우에는, 전해질층에 세퍼레이터를 사용해도 좋다. 세퍼레이터의 구체적인 형태로서는, 예를 들어 폴리에틸렌이나 폴리프로필렌과 같은 폴리올레핀이나 폴리불화비닐리덴-헥사플루오로프로필렌(PVdF-HFP) 등의 탄화수소, 유리 섬유 등으로 이루어지는 미다공막을 들 수 있다.
고분자 고체 전해질은, 상기한 매트릭스 중합체에 지지염(리튬염)이 용해되어 이루어지는 구성을 갖고, 가소제인 유기 용매를 포함하지 않는다. 따라서, 전해질층이 고분자 고체 전해질로 구성되는 경우에는 전지로부터의 누액의 염려가 없고, 전지의 신뢰성이 향상된다.
고분자 겔 전해질이나 고분자 고체 전해질의 매트릭스 중합체는, 가교 구조를 형성함으로써 우수한 기계적 강도를 발휘한다. 가교 구조를 형성시키기 위해서는, 적당한 중합 개시제를 사용하여 고분자 전해질 형성용의 중합성 중합체(예를 들어, PEO나 PPO)에 대하여 중합 처리를 실시하면 좋다. 중합 처리로서는, 열중합, 자외선 중합, 방사선 중합, 전자선 중합 등을 들 수 있다. 또한, 상기 전해질은 전극의 활물질층 중에 포함되어 있어도 좋다.
[시일부]
시일부(절연층)는, 집전체끼리의 접촉이나 단전지층의 단부에 있어서의 단락을 방지하는 기능을 갖는다. 시일부를 구성하는 재료로서는, 절연성, 고체 전해질의 탈락에 대한 시일성이나 외부로부터의 수분의 투습에 대한 시일성(밀봉성), 전지 동작 온도하에서의 내열성 등을 갖는 것이면 좋다. 예를 들어, 아크릴 수지, 우레탄 수지, 에폭시 수지, 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리이미드 수지, 고무(에틸렌-프로필렌-디엔 고무: EPDM) 등이 사용된다. 또한, 이소시아네이트계 접착제나 아크릴 수지계 접착제, 시아노아크릴레이트계 접착제 등을 사용해도 좋고, 핫 멜트 접착제(우레탄 수지, 폴리아미드 수지, 폴리올레핀 수지) 등을 사용해도 좋다. 그 중에서도, 내식성, 내약품성, 제작 용이성(제막성), 경제성 등의 관점에서 폴리에틸렌 수지나 폴리프로필렌 수지가 절연층의 구성 재료로서 바람직하게 사용된다. 또한, 절연층의 구성 재료로서, 비결정성 폴리프로필렌 수지를 주성분으로 하는 에틸렌, 프로필렌, 부텐을 공중합한 수지를 사용하는 것이 바람직하다.
[전지 외장재]
전지 외장재로서는, 종래 공지된 금속 캔 케이스를 사용할 수 있다. 또한, 전지 외장재로서는, 발전 요소를 덮을 수 있는 알루미늄을 포함하는 라미네이트 필름을 사용한 주머니 형상의 케이스가 사용된다. 라미네이트 필름에는, 예를 들어 폴리프로필렌, 알루미늄, 나일론을 이 순서대로 적층하여 이루어지는 3층 구조의 라미네이트 필름 등을 사용할 수 있지만, 이들로 전혀 제한되지 않는다. 본 실시 형태에서는 고출력화나 냉각 성능이 우수하고, EV, HEV용 등의 대형 기기용 전지에 적절하게 이용할 수 있는 라미네이트 필름이 바람직하다.
본 실시 형태의 쌍극형 이차 전지(10)에 의하면, 제2 도전성층(3B)에 있어서의 차단성 수지층(3a)의 최고 피점 궤도의 에너지 준위가 부극 전위에 의해 상승하여도, 상승 후의 레벨이 전해액에 있어서의 리튬 이온의 산화 환원 전위를 상회하는 것이 억제된다. 그 결과, 리튬 이온의 수지 집전체 내부로의 침투 및 흡장이 방지된다. 그뿐만 아니라, 제2 도전성층(3B)에 포함되는 금속층(3b)도 리튬 이온 차단성을 보다 높이는 기능을 갖는다. 따라서, 수지 집전체 내부로의 리튬 이온의 침투 및 흡장이 충분히 방지되어, 전지 용량의 저하가 억제된다.
실시예
본 발명의 작용 효과를 이하의 실시예 및 비교예를 사용하여 설명한다. 단, 본 발명의 기술적 범위가 이하의 실시예만으로 제한되는 것은 아니다.
[실시예 1]
<집전체의 제작>
제1 도전성층으로서, 폴리이미드(PI) 100질량부에 대하여 케첸 블랙 10질량부가 혼합되어 이루어지는 도전성 수지 필름(막 두께:50㎛)을 제작하였다. 당해 제1 도전성층의 한쪽면에 스퍼터에 의해 구리를 20nm의 두께로 퇴적시켜, 제1 도전성층-금속층의 적층체를 형성하였다.
한편, 폴리프로필렌(PP) 100질량부에 케첸 블랙 10질량부가 혼합되어 이루어지는 도전성 수지 필름(막 두께: 100㎛)을 제작하고, 차단성 수지층으로 하였다.
그 후, 상기 제1 도전성층-금속층의 적층체에 있어서의 금속층측의 면과, 상기 차단성 수지층을 중첩하고, 160℃에서 10분간 열 융착하였다. 이에 따라, 도 1과 같은 3층 구조를 갖는 쌍극형 리튬 이온 이차 전지용 집전체를 제작하였다.
<쌍극형 전극의 제작>
부극 활물질로서 그래파이트 90질량부, 바인더로서 PVDF 10질량부 및 슬러리 점도 조정 용매로서 적당량의 NMP를 혼합하여, 부극 활물질 슬러리를 제조하였다. 한편, 정극 활물질로서 LiNiO2 85질량부, 도전 보조제로서 아세틸렌 블랙 5질량부, 바인더로서 폴리불화비닐리덴 10질량부 및 슬러리 점도 조정 용매로서 적당량의 N-메틸-2-피롤리돈을 혼합하여, 정극 활물질 슬러리를 제조하였다.
상기 부극 활물질 슬러리를 상기 집전체에 있어서의 제2 도전성층측의 표면, 즉 차단성 수지층의 표면에 도포하고, 건조시켜 부극 활물질층을 형성하였다. 또한, 당해 부극 활물질층의 두께는 30㎛로 하였다. 마찬가지로, 상기 정극 활물질 슬러리를 상기 집전체에 있어서의 제1 도전성층측의 표면에 도포하고, 건조시켜 정극 활물질층을 형성하였다. 또한, 당해 정극 활물질층의 두께는 30㎛로 하였다. 이때, 부극 활물질층의 면적과 정극 활물질층의 면적을 동일하게 하고, 부극 활물질층과 정극 활물질층과의 집전체로의 투영도가 일치하도록 조정하여, 부극 활물질층 및 정극 활물질층을 형성하였다. 그 후, 집전체의 주연부 20mm의 부극 활물질층 및 정극 활물질층을 박리함으로써 집전체의 표면을 노출시켜, 쌍극형 전극을 완성시켰다.
<쌍극형 이차 전지의 제작>
동일한 체적의 프로필렌카르보네이트와 에틸렌카르보네이트를 혼합한 용매에 리튬염인 LiPF6을 1mol/L의 농도로 용해시켜, 전해액을 제조하였다.
그리고, 집전체에 있어서의 제1 도전성층측의 표면의 노출부(주연부)에 폭 12mm의 시일재를 배치하였다. 이 조작을 반복하여, 6개의 쌍극형 전극이 겔 전해질층을 통해 적층되어 이루어지는 적층체를 얻었다. 이어서, 얻어진 적층체에 대하여 적층 방향으로 핫 프레스 처리를 실시하고, 시일부를 융착시킴으로써 인접하는 쌍극형 전극간을 시일하여, 발전 요소를 완성시켰다. 또한, 핫 프레스 처리로서는, 적층체의 전체면을 0.2MPa, 80℃에서 5초간 가압하였다.
또한, 얻어진 발전 요소의 전체를 덮을 수 있고, 알루미늄으로 이루어지는 2매의 집전판에 의해 발전 요소를 끼움 지지하였다. 그리고, 집전판 및 발전 요소를 알루미늄을 포함하는 라미네이트 필름으로 덮고, 3변을 융착하여 주머니 형상으로 하였다. 또한, 나머지 1변으로부터 상기 전해액을 주입하고, 당해 1변을 진공하에 융착하였다. 또한 이것을 적층 방향으로 핫 프레스 처리를 실시하고, 미경화된 시일부를 경화시켜, 쌍극형 이차 전지를 완성시켰다. 또한, 핫 프레스 처리로서는, 라미네이트 필름의 전체면을 면압 1kg/cm2, 150℃에서 1시간 가압하였다.
[실시예 2]
집전체의 제작에 있어서, 우선 제1 도전성층의 한쪽면에 스퍼터에 의해 구리를 20nm의 두께로 퇴적시켰다. 그 후, 이 퇴적시킨 구리를 150℃에서 강열(强熱)하여 산화구리로 함으로써, 제1 도전성층-금속층의 적층체를 형성하였다. 즉, 금속층이 산화구리로 이루어지는 집전체를 제작하였다. 그 이외에는, 상술한 실시예 1과 마찬가지의 방법에 의해 쌍극형 이차 전지를 제작하였다.
[실시예 3]
제1 도전성층의 한쪽면에 스퍼터에 의해 크롬을 50nm의 두께로 퇴적시켜 금속 용출 방지층을 형성하였다. 그 후, 마찬가지로 스퍼터에 의해 구리를 20nm의 두께로 퇴적시킴으로써, 제1 도전성층-금속 용출 방지층-금속층의 적층체를 형성하였다. 그리고, 제1 도전성층-금속층의 적층체에 있어서의 금속층측의 면과 차단성 수지층을 겹치고, 160℃에서 10분간 열 융착함으로써 쌍극형 리튬 이온 이차 전지용 집전체를 제작하였다. 즉, 금속층의 제1 도전성층과 대향하는 측의 표면에 금속 용출 방지층을 갖는 집전체를 제작하였다. 그 이외에는, 상술한 실시예 1과 마찬가지의 방법에 의해 쌍극형 이차 전지를 제작하였다.
[비교예 1]
제1 도전성층의 한쪽면에 스퍼터에 의해 구리를 20nm의 두께로 퇴적시키고, 제1 도전성층-금속층의 적층체를 쌍극형 리튬 이온 이차 전지용 집전체로서 사용하였다. 즉, 차단성 수지층을 갖지 않는 집전체를 제작하였다. 그 이외에는, 상술한 실시예 1과 마찬가지의 방법에 의해 쌍극형 이차 전지를 제작하였다.
[비교예 2]
제1 도전성층과, 차단성 수지층을 겹치고, 160℃에서 10분간 열 융착함으로써 쌍극형 리튬 이온 이차 전지용 집전체를 제작하였다. 즉, 금속층을 갖지 않는 집전체를 제작하였다. 그 이외에는, 상술한 실시예 1과 마찬가지의 방법에 의해 쌍극형 이차 전지를 제작하였다.
[비교예 3]
쌍극형 리튬 이온 이차 전지용 집전체로서, 폴리이미드(PI) 100질량부에 대하여 케첸 블랙 10질량부가 혼합되어 이루어지는 도전성 수지 필름을 사용하였다. 즉, 제1 도전성층만으로 이루어지는 집전체를 사용하였다. 또한, 도전성 수지 필름의 막 두께는 50㎛로 하였다. 그 이외에는, 상술한 실시예 1과 마찬가지의 방법에 의해 쌍극형 이차 전지를 제작하였다.
[비교예 4]
쌍극형 리튬 이온 이차 전지용 집전체로서, 폴리프로필렌(PP) 100질량부에 케첸 블랙 10질량부가 혼합되어 이루어지는 도전성 수지 필름을 사용하였다. 즉, 차단성 수지층만으로 이루어지는 집전체를 사용하였다. 또한, 도전성 수지 필름의 막 두께는 100㎛로 하였다. 그 이외에는, 상술한 실시예 1과 마찬가지의 방법에 의해 쌍극형 이차 전지를 제작하였다.
<사이클 시험>
실시예 1 및 비교예 1에서 제작한 쌍극형 이차 전지에 대하여, 45℃의 분위기하에 80mA의 전류로 각 전지의 만충전까지 정전류(CC) 충전하고, 그 후 정전압(CV)으로 충전하며, 합계 10시간 충전하였다. 그 후, 충전한 쌍극형 이차 전지를 정전류 방전하였다. 이 충전 및 방전을 1 사이클로 하여, 20 사이클의 사이클 시험을 행하였다. 그리고, 20 사이클 후의 방전 용량 유지율(20 사이클 후의 방전 용량/초기 방전 용량×100 [%])을 구하였다. 결과를 하기 표 1에 나타낸다.
<내전위 시험>
실시예 1 내지 3 및 비교예 1 내지 4에서 제작한 쌍극형 이차 전지에 대하여, 부극 전위에 있어서의 내전위 시험을 행하였다. 구체적으로는, 5mV의 일정 전압에 있어서 150시간 유지한 후에 있어서의 전류 밀도를 측정하였다. 그리고, 실시예 1에 있어서의 전류 밀도를 1로 한 경우에 있어서의 각 예의 전류 밀도의 상대값을 산출하였다. 또한, 전류 밀도의 값이 작을수록 내전위성이 우수한 것을 의미한다. 결과를 하기 표 1에 나타낸다.
Figure 112014004937181-pct00001
표 1의 용량 유지율의 결과로부터, 제1 도전성층인 PI층의 부극 활물질층측에 금속층 및 차단성 수지층을 갖는 실시예 1은, PI층의 부극 활물질층측에 금속층만을 갖는 비교예 1에 비해 용량 유지율이 유의하게 높은 것이 나타났다. 이 효과가 발현되는 메커니즘은, 이하와 같이 추정되었다. 즉, PI층의 부극 활물질층측에 차단성 수지층으로서의 PP층을 형성함으로써, 당해 PP층의 최고 피점 궤도(HOMO)의 에너지 준위가 부극 전위에 의해 상승하여도 상승 후의 레벨이 전해액에 있어서의 리튬 이온의 산화 환원 전위를 상회하는 경우가 없다. 그 결과, 리튬 이온의 집전체 내부로의 침투 및 흡장이 방지되어, 전지 용량의 저하가 억제된다고 생각된다.
또한, 표 1의 내전위 시험에 있어서의 전류 밀도의 결과로부터, PI층의 부극 활물질층측에 금속층 및 차단성 수지층을 형성함으로써 우수한 내전위 성능이 얻어지는 것이 나타났다.
일본 특허 출원 제2011-163258호(출원일: 2011년 7월 26일)의 전체 내용은 여기에 원용된다.
이상, 실시예에 따라 본 발명의 내용을 설명했지만, 본 발명은 이들 기재로 한정되는 것이 아니라, 다양한 변형 및 개량이 가능하다는 것은 당업자에게 자명하다.
본 발명의 쌍극형 리튬 이온 이차 전지용 집전체는, 적어도 2개의 도전성층을 갖는다. 그리고, 집전체를 구성하는 도전성층 중 1개(제1 도전성층)는, 이미드기 함유 수지를 포함하는 기재에 도전성 필러가 첨가되어 이루어지는 구성을 갖는다. 또한, 집전체를 구성하는 도전성층 중 다른 1개(제2 도전성층)는 리튬 이온을 차단하는 기능을 갖는 층이며, 이미드기 비함유 수지를 포함하는 기재에 도전성 필러가 첨가되어 이루어지는 차단성 수지층과, 금속층을 포함한다. 또한, 쌍극형 전극의 형성시에는, 제1 도전성층이 제2 도전성층에 대하여 정극 활물질측에 위치하도록 사용된다는 점에도 특징을 갖는다.
본 발명에 의하면, 이미드기 함유 수지를 포함하는 제1 도전성층보다도 상대적으로 부극 활물질층측에 차단성 수지층 및 금속층을 포함하는 제2 도전성층을 형성함으로써, 부극 전위에 노출된 경우여도 리튬 이온의 이동을 억제할 수 있다. 따라서, 리튬 이온의 수지 집전체 내부로의 흡장을 방지하는 것이 가능해진다.
1 쌍극형 전극(쌍극형 리튬 이온 이차 전지용 전극)
3 집전체(쌍극형 리튬 이온 이차 전지용 집전체)
3A 제1 도전성층
3B 제2 도전성층
3a 차단성 수지층
3b 금속층
3c 금속 용출 방지층
5 정극 활물질층
7 부극 활물질층
10 쌍극형 이차 전지(쌍극형 리튬 이온 이차 전지)
17 전해질층
21 발전 요소

Claims (6)

  1. 이미드기 함유 수지를 포함하는 기재에 도전성 필러가 첨가되어 이루어지는 제1 도전성층과,
    리튬 이온을 차단하는 기능을 갖는 제2 도전성층
    을 갖고,
    상기 제2 도전성층은, 이미드기 비함유 수지를 포함하는 기재에 도전성 필러가 첨가되어 이루어지는 차단성 수지층과, 금속층을 갖고,
    상기 제1 도전성층이 제2 도전성층에 대하여 상대적으로 정극 활물질층측에 위치하도록 사용되고,
    상기 제2 도전성층은 금속 용출 방지층을 더 포함하고,
    상기 금속 용출 방지층은, 상기 금속층의 상기 제1 도전성층과 대향하는 측의 표면에 위치하는 것을 특징으로 하는, 쌍극형 리튬 이온 이차 전지용 집전체.
  2. 제1항에 있어서, 상기 금속층은 알루미늄, 니켈, 구리, 철 및 티타늄, 및 이들의 합금, 금속 탄화물, 금속 질화물, 금속 산화물로 이루어지는 군으로부터 선택되는 적어도 1종을 포함하는 것을 특징으로 하는, 쌍극형 리튬 이온 이차 전지용 집전체.
  3. 제1항 또는 제2항에 있어서, 상기 금속층은 상기 제1 도전성층보다도 얇은 것을 특징으로 하는, 쌍극형 리튬 이온 이차 전지용 집전체.
  4. 삭제
  5. 제1항 또는 제2항에 기재된 집전체와,
    상기 집전체의 상기 제1 도전성층측의 면에 형성된 정극 활물질층과,
    상기 집전체의 상기 제2 도전성층측의 면에 형성된 부극 활물질층
    을 갖는 것을 특징으로 하는, 쌍극형 리튬 이온 이차 전지용 전극.
  6. 제5항에 기재된 전극과 전해질층이 적층되어 이루어지는 발전 요소를 갖는 것을 특징으로 하는, 쌍극형 리튬 이온 이차 전지.
KR1020147001330A 2011-07-26 2012-07-18 쌍극형 리튬 이온 이차 전지용 집전체 KR101560509B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011163258A JP5770553B2 (ja) 2011-07-26 2011-07-26 双極型リチウムイオン二次電池用集電体
JPJP-P-2011-163258 2011-07-26
PCT/JP2012/068143 WO2013015159A1 (ja) 2011-07-26 2012-07-18 双極型リチウムイオン二次電池用集電体

Publications (2)

Publication Number Publication Date
KR20140024464A KR20140024464A (ko) 2014-02-28
KR101560509B1 true KR101560509B1 (ko) 2015-10-14

Family

ID=47601009

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147001330A KR101560509B1 (ko) 2011-07-26 2012-07-18 쌍극형 리튬 이온 이차 전지용 집전체

Country Status (10)

Country Link
US (1) US9537152B2 (ko)
EP (1) EP2738852B1 (ko)
JP (1) JP5770553B2 (ko)
KR (1) KR101560509B1 (ko)
CN (1) CN103703595B (ko)
BR (1) BR112014001611A2 (ko)
MX (1) MX2014000774A (ko)
RU (1) RU2566741C2 (ko)
TW (1) TWI475738B (ko)
WO (1) WO2013015159A1 (ko)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104604003B (zh) 2012-08-30 2017-08-11 株式会社钟化 电池用集电体和使用了它的电池
JP2014167849A (ja) * 2013-02-28 2014-09-11 Nitto Denko Corp 導電性積層シート、および、集電体
JP6211880B2 (ja) * 2013-10-07 2017-10-11 古河機械金属株式会社 電気素子および電気素子の製造方法
CN103872346A (zh) * 2014-03-18 2014-06-18 湖南省银峰新能源有限公司 一种非均态导电塑料双极板及其制备方法
US9640834B2 (en) 2014-07-28 2017-05-02 Electronics And Telecommunications Research Institute Lithium battery and method of manufacturing the same
JP6571349B2 (ja) * 2015-02-26 2019-09-04 株式会社半導体エネルギー研究所 可撓性を有するリチウムイオン蓄電池
JP6430875B2 (ja) 2015-03-27 2018-11-28 日産自動車株式会社 リチウム電池用正極
KR20180102665A (ko) * 2016-02-24 2018-09-17 닛산 지도우샤 가부시키가이샤 리튬 이온 이차 전지용 전극 및 그 제조 방법
CN107305959B (zh) * 2016-04-25 2022-05-13 松下知识产权经营株式会社 电池和电池制造方法以及电池制造装置
CN107305960B (zh) * 2016-04-25 2022-03-29 松下知识产权经营株式会社 电池、电池制造方法和电池制造装置
EP3327837A1 (en) 2016-11-23 2018-05-30 Eidgenössische Materialprüfungs- und Forschungsanstalt EMPA Li-ion based electrochemical energy storage cell
JP6729481B2 (ja) * 2017-04-28 2020-07-22 トヨタ自動車株式会社 積層電池
CN106898825B (zh) * 2017-05-03 2019-02-05 江苏强劲新能源科技有限公司 一种双极性锌离子电池的制备方法
CN107240721B (zh) * 2017-05-27 2020-01-31 深圳市雄韬电源科技股份有限公司 双极性电极及锂离子电池和锂离子电池的制作方法
JP7246140B2 (ja) * 2017-08-07 2023-03-27 三洋化成工業株式会社 樹脂集電体及び樹脂集電体の製造方法
US11165090B2 (en) * 2017-09-22 2021-11-02 HHeLI, LLC Construction of ultra high capacity performance battery cells
JP6933149B2 (ja) * 2018-01-22 2021-09-08 トヨタ自動車株式会社 非水電解質二次電池
JP6998278B2 (ja) * 2018-06-13 2022-02-10 三洋化成工業株式会社 樹脂集電体、積層型樹脂集電体、及び、リチウムイオン電池
US10770731B2 (en) * 2018-08-01 2020-09-08 Chongqing Jinmei New Material Technology Co., Ltd. Positive electrode current collector and preparation method and use thereof
CN109786755A (zh) * 2018-12-26 2019-05-21 中国电子科技集团公司第十八研究所 一种双极性电池复合集流体结构及制备方法
JP7259100B2 (ja) * 2019-08-08 2023-04-17 株式会社半導体エネルギー研究所 リチウムイオン蓄電池
JP6793794B2 (ja) * 2019-08-08 2020-12-02 株式会社半導体エネルギー研究所 リチウムイオン蓄電池
JP7128579B2 (ja) * 2019-11-18 2022-08-31 三洋化成工業株式会社 リチウムイオン組電池
CA3197048A1 (en) * 2020-10-02 2022-04-07 Nextech Batteries, Inc. Battery cells including lithium-ion conducting solid electrolytes and methods of making thereof
WO2023286424A1 (ja) * 2021-07-12 2023-01-19 パナソニックIpマネジメント株式会社 集電体および電池
WO2023286423A1 (ja) * 2021-07-12 2023-01-19 パナソニックIpマネジメント株式会社 集電体および電池
WO2023053322A1 (ja) * 2021-09-30 2023-04-06 Tdk株式会社 集電体、蓄電デバイス用電極およびリチウムイオン二次電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126654A1 (en) * 2002-12-27 2004-07-01 Anthony Sudano Electrochemical cell laminate for alkali metal polymer batteries and method for making same
JP2011060560A (ja) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd リチウムイオン二次電池用集電体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2216825C2 (ru) * 2001-12-13 2003-11-20 Государственное образовательное учреждение Уральский государственный университет им. А.М. Горького Твердый электролит и электродно-активная мембрана с его использованием
JP5098150B2 (ja) 2004-12-07 2012-12-12 日産自動車株式会社 バイポーラ電池およびその製造方法
JP5092196B2 (ja) * 2004-12-28 2012-12-05 日産自動車株式会社 バイポーラ電池
JP5217596B2 (ja) * 2007-05-24 2013-06-19 日産自動車株式会社 非水溶媒二次電池用集電体並びにこれを用いた電極および電池
JP5343500B2 (ja) * 2008-10-06 2013-11-13 日産自動車株式会社 双極型電極及びこれを用いた双極型二次電池
JP5381078B2 (ja) * 2008-12-19 2014-01-08 日産自動車株式会社 電極およびその製造方法
JP5417867B2 (ja) * 2009-01-28 2014-02-19 日産自動車株式会社 双極型二次電池
TW201106524A (en) 2009-06-29 2011-02-16 Applied Materials Inc Passivation film for solid electrolyte interface of three dimensional copper containing electrode in energy storage device
CN101997144A (zh) 2009-08-11 2011-03-30 翁文桂 一种串联电池组制备方法
MX2012004859A (es) * 2009-11-20 2012-05-22 Nissan Motor Colector de corriente para bateria secundaria bipolar.
KR101322584B1 (ko) * 2010-01-29 2013-10-28 닛산 지도우샤 가부시키가이샤 쌍극형 리튬 이온 2차 전지용 집전체
JP5569229B2 (ja) * 2010-08-03 2014-08-13 日産自動車株式会社 リチウムイオン二次電池のニッケル含有正極用集電体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126654A1 (en) * 2002-12-27 2004-07-01 Anthony Sudano Electrochemical cell laminate for alkali metal polymer batteries and method for making same
JP2011060560A (ja) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd リチウムイオン二次電池用集電体

Also Published As

Publication number Publication date
TW201306356A (zh) 2013-02-01
JP2013026192A (ja) 2013-02-04
CN103703595B (zh) 2016-05-11
EP2738852A1 (en) 2014-06-04
US20140147746A1 (en) 2014-05-29
WO2013015159A1 (ja) 2013-01-31
RU2566741C2 (ru) 2015-10-27
EP2738852B1 (en) 2017-10-11
RU2014106998A (ru) 2015-09-20
TWI475738B (zh) 2015-03-01
MX2014000774A (es) 2014-05-01
CN103703595A (zh) 2014-04-02
BR112014001611A2 (pt) 2017-06-13
EP2738852A4 (en) 2014-12-31
JP5770553B2 (ja) 2015-08-26
US9537152B2 (en) 2017-01-03
KR20140024464A (ko) 2014-02-28

Similar Documents

Publication Publication Date Title
KR101560509B1 (ko) 쌍극형 리튬 이온 이차 전지용 집전체
KR101408389B1 (ko) 쌍극형 2차 전지용 집전체
EP2530769B1 (en) Collector for bipolar lithium ion secondary battery
KR101340133B1 (ko) 쌍극형 2차 전지
KR101647910B1 (ko) 쌍극형 전극 및 이를 사용한 쌍극형 리튬 이온 이차 전지
KR101611017B1 (ko) 2차 전지용 집전체 및 이를 사용한 2차 전지
JP5458605B2 (ja) 双極型二次電池
WO2010100979A1 (ja) 双極型二次電池及びその製造方法
JP5417867B2 (ja) 双極型二次電池
JP5593984B2 (ja) 二次電池用集電体
JP5569229B2 (ja) リチウムイオン二次電池のニッケル含有正極用集電体

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180918

Year of fee payment: 4