WO2023286423A1 - 集電体および電池 - Google Patents

集電体および電池 Download PDF

Info

Publication number
WO2023286423A1
WO2023286423A1 PCT/JP2022/019224 JP2022019224W WO2023286423A1 WO 2023286423 A1 WO2023286423 A1 WO 2023286423A1 JP 2022019224 W JP2022019224 W JP 2022019224W WO 2023286423 A1 WO2023286423 A1 WO 2023286423A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
current collector
metal layer
battery
Prior art date
Application number
PCT/JP2022/019224
Other languages
English (en)
French (fr)
Inventor
明生 金山
浩一 平野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023535148A priority Critical patent/JPWO2023286423A1/ja
Priority to CN202280045808.4A priority patent/CN117581402A/zh
Publication of WO2023286423A1 publication Critical patent/WO2023286423A1/ja
Priority to US18/540,976 priority patent/US20240113307A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to current collectors and batteries using the same.
  • a battery using a current collector includes, for example, a lithium secondary battery using a positive electrode plate in which a positive electrode layer containing a lithium compound is formed on such a metal foil.
  • Patent Document 1 discloses a current collector in which a metal layer and a non-metal conductor layer are formed on an aluminum foil in order to improve corrosion resistance.
  • Patent Document 2 discloses a current collector that uses a plurality of conductive layers to improve capacitor characteristics.
  • Patent Document 3 discloses a structure in which a plurality of metal layers are laminated for the purpose of improving adhesion to the positive electrode mixture.
  • Patent Document 4 discloses a current collector provided with a lithium barrier layer to improve safety.
  • JP 2010-262866 A WO2012/115050 JP-A-2009-4363 JP 2017-10782 A
  • the present disclosure provides a current collector and a battery capable of improving the energy density of the battery and suppressing deterioration of battery characteristics.
  • a current collector includes a first metal layer containing a first metal, a conductor layer containing a conductive carbon material, a second metal layer containing a second metal, the first metal and and a third metal layer containing a third metal different from the second metal are laminated in this order, and the third metal is nickel or copper.
  • a battery according to an aspect of the present disclosure includes the current collector, a positive electrode layer, a negative electrode layer facing the positive electrode layer, and a solid electrolyte layer positioned between the positive electrode layer and the negative electrode layer. and at least one power generating element having , facing the positive electrode layer of the first power generating element without interposing the solid electrolyte layer of the first power generating element and the conductor layer of the current collector.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a current collector according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view showing a schematic configuration of a battery according to Embodiment 2.
  • FIG. FIG. 3 is a cross-sectional view showing a schematic configuration of another battery according to Embodiment 2.
  • a battery containing a solid electrolyte such as an all-solid battery, generally includes a power generating element having a positive electrode layer, a solid electrolyte layer and a negative electrode layer.
  • a battery contains at least one power generation element, it can function as a battery.
  • the voltage of the battery can be increased.
  • the current collectors such as metal foils provided in the positive electrode layer and the negative electrode layer of each power generation element are interposed.
  • the contact resistance between the current collector provided on the positive electrode layer and the current collector provided on the negative electrode layer increases, which may cause degradation of battery characteristics.
  • the contact resistance can be improved by increasing the confining pressure on the battery during charging and discharging, the jig for increasing the confining pressure generally becomes large, resulting in a decrease in the energy density of the entire battery.
  • the current collector provided in the positive electrode layer and the current collector provided in the negative electrode layer are stacked between the power generation elements, the thickness of the battery increases and the energy density of the battery increases. decreases.
  • either the current collector provided in the positive electrode layer or the current collector provided in the negative electrode layer is shared by adjacent power generation elements, that is, one current collector is provided between adjacent power generation elements.
  • the current collector material becomes brittle due to lithium alloying of the current collector at the operating potential of either the positive electrode layer or the negative electrode layer, and Or, it may be degraded by being eluted into either the positive electrode layer or the negative electrode layer, resulting in deterioration of battery characteristics.
  • aluminum tends to deteriorate when used in the current collector for the negative electrode layer
  • nickel and copper tend to deteriorate when used in the current collector for the positive electrode layer.
  • a metal or alloy that is difficult to form a lithium alloy and is difficult to dissolve at the operating potential of both the positive electrode layer and the negative electrode layer tends to have a high electrical resistance. Decrease in properties.
  • the present disclosure has been made based on such knowledge, and it is possible to reduce the thickness of the battery while suppressing the deterioration of the battery characteristics by suppressing the increase in the resistance between the power generation elements and the deterioration of the current collector.
  • the current collector achieves both an improvement in battery energy density and suppression of deterioration in battery characteristics.
  • a current collector includes a first metal layer containing a first metal, a conductor layer containing a conductive carbon material, a second metal layer containing a second metal, the first metal and and a third metal layer containing a third metal different from the second metal, and a structure in which the third metal is laminated in this order, and the third metal is nickel or copper.
  • the current collector according to this aspect is used to electrically connect the power generation elements in series by bonding the positive electrode layer to the first metal layer and the negative electrode layer to the third metal layer, Degradation of the current collector is less likely to occur.
  • the first metal layer contains the first metal different from the third metal, which is nickel or copper, deterioration such as lithium alloying hardly occurs even if it is joined to the positive electrode layer.
  • the third metal layer contains the third metal, which is nickel or copper, even if it is joined to the negative electrode layer, deterioration such as lithium alloying is unlikely to occur.
  • the second metal layer and the third metal layer containing metals different from each other are laminated, by appropriately selecting the second metal and the third metal, the suitability of bonding to the negative electrode layer and the mechanical properties can be improved. It can be compatible with the strength of Furthermore, since the conductor layer is positioned between the first metal layer and the second metal layer, the adhesion between the first metal layer and the second metal layer is improved, and the battery characteristics are less likely to deteriorate. Moreover, since the power generating elements can be electrically connected without arranging two current collectors between the power generating elements, the energy density of the battery can be increased. Therefore, the current collector according to this aspect can both improve the energy density of the battery and suppress deterioration of the battery characteristics.
  • the first metal may be aluminum or iron.
  • the second metal may be titanium or chromium.
  • the second metal layer may be harder than the third metal layer.
  • the negative electrode layer bonded to the third metal layer it is possible to prevent the negative electrode layer bonded to the third metal layer from coming into contact with the first metal layer due to pressurization or the like during manufacture of the battery. Further, since the third metal layer 104 that is bonded to the negative electrode layer is softer, the contact resistance between the negative electrode layer and the third metal layer 104 is less likely to increase.
  • the sum of the thickness of the second metal layer and the thickness of the third metal layer may be smaller than the thickness of the first metal layer.
  • the energy density of the battery using the current collector can be improved.
  • the thickness of the third metal layer may be greater than the thickness of the second metal layer.
  • the thickness of the third metal layer containing copper or nickel is increased, so that the electrical resistance of the current collector is less likely to increase, and deterioration of the battery characteristics of a battery using the current collector can be suppressed.
  • the thickness of the first metal layer may be 3 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the second metal layer may be 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the thickness of the third metal layer may be 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the thickness of the conductor layer may be 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • a battery includes the current collector, a positive electrode layer, a negative electrode layer arranged to face the positive electrode layer, and a solid layer positioned between the positive electrode layer and the negative electrode layer. and at least one power generating element having an electrolyte layer, the at least one power generating element including a first power generating element stacked adjacent to the current collector, and the first metal of the current collector.
  • the layer faces the positive electrode layer of the first power generating element without interposing the solid electrolyte layer of the first power generating element and the conductor layer of the current collector.
  • the first metal layer of the current collector and the positive electrode layer of the first power generation element are electrically connected.
  • the first metal layer is laminated on the positive electrode layer without any other layer interposed therebetween, but since it contains the first metal different from the third metal such as nickel or copper, deterioration or the like is less likely to occur. Therefore, deterioration of battery characteristics of a battery using a current collector can be suppressed.
  • the third metal layer on the opposite side of the current collector to the first metal layer contains the third metal, which is nickel or copper, deterioration is less likely to occur even if it is joined to the negative electrode layer.
  • the battery according to this aspect is connected to the negative electrode layer of a power generation element different from the first power generation element without another current collector interposed therebetween, and is electrically connected in series with the other power generation element. Also, the battery characteristics are less likely to deteriorate. Therefore, the energy density can be increased by reducing the number of current collectors used.
  • the at least one power generation element further includes a second power generation element laminated so as to be adjacent to the first power generation element via the current collector, and the third metal layer of the current collector may face the negative electrode layer of the second power generating element without interposing the solid electrolyte layer of the second power generating element and the second metal layer of the current collector.
  • the third metal layer of the current collector and the negative electrode layer of the second power generation element are electrically connected, and the first power generation element and the second power generation element are electrically connected using one current collector.
  • a high voltage battery connected in series can be realized. Therefore, the energy density of the battery can be increased.
  • the third metal layer is laminated on the negative electrode layer without any other layer interposed therebetween, deterioration and the like are unlikely to occur because the third metal layer contains the third metal, which is nickel or copper. Therefore, deterioration of the battery characteristics of the battery can be suppressed.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, scales and the like do not necessarily match in each drawing. Moreover, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified.
  • the x-axis, y-axis and z-axis indicate three axes of a three-dimensional orthogonal coordinate system.
  • the z-axis coincides with the stacking direction of each layer of the current collector and battery.
  • the "stacking direction” corresponds to the direction normal to the main surface of each layer of the current collector and the battery.
  • planar view means when viewed from a direction perpendicular to the main surface of the battery or current collector.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition, but are based on the stacking order in the stacking structure. It is used as a term defined by a relative positional relationship. Also, the terms “above” and “below” are used only when two components are spaced apart from each other and there is another component between them, as well as when two components are spaced apart from each other. It also applies when two components are in contact with each other and are placed in close contact with each other. In the following description, the negative side of the z-axis is called “lower” or “lower”, and the positive side of the z-axis is called “upper” or “upper”.
  • % indicating the ratio of materials, etc. is weight % unless otherwise specified.
  • Embodiment 1 describes a current collector having a laminated structure.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a current collector 100 according to this embodiment.
  • the current collector 100 includes a first metal layer 101, a conductor layer 102, a second metal layer 103, and a third metal layer 104 arranged in this order from above in the z-axis direction. It has a structure laminated along the
  • the current collector 100 is a laminated current collector in which a plurality of layers are laminated.
  • the current collector 100 is, for example, a current collector for laminating a positive electrode layer directly on the first metal layer 101 . More specifically, when the current collector 100 is used in a battery, for example, the first metal layer 101 is bonded to the positive electrode layer and the third metal layer 104 is bonded to the negative electrode layer.
  • the current collector 100 is used, for example, to connect stacked power generation elements in series.
  • the current collector 100 is, for example, in the form of a sheet whose thickness direction is the z-axis direction.
  • the planar shape of the current collector 100 is, for example, rectangular, but is not particularly limited.
  • the thickness of each layer is exaggerated in order to make the layer structure of the current collector 100 and the like easier to understand. Therefore, in each drawing, the ratio of the thickness of each layer may not match the actual one.
  • the first metal layer 101 is a metal collector layer that is bonded to the positive electrode layer.
  • the first metal layer 101 is, for example, metal foil.
  • the first metal layer 101 contains a first metal.
  • the first metal layer 101 contains, for example, a first metal as a main component.
  • a certain layer contains something as a main component
  • the proportion of the "something” in the materials contained in the constituent elements is 50% or more. 70% or more, 90% or more, or 95% or more.
  • the first metal layer 101 is made of, for example, a first metal or an alloy containing the first metal.
  • the alloy containing the first metal may contain an element other than the metal element such as carbon.
  • the content of elements other than metal elements in the alloy containing the first metal is, for example, 5% or less.
  • the first metal layer 101 may contain a material other than the first metal and an alloy containing the first metal.
  • the ratio of the material other than the first metal and the alloy containing the first metal in the first metal layer 101 is, for example, 5% or less.
  • the first metal layer 101 does not contain, for example, a second metal and a third metal, which will be described later.
  • the first metal is, for example, aluminum or iron.
  • the first metal layer 101 is less likely to be alloyed with lithium and eluted into the positive electrode layer, thereby suppressing deterioration of battery characteristics.
  • the first metal is iron
  • examples of alloys containing the first metal include stainless steel.
  • the thickness of the first metal layer 101 is, for example, 3 ⁇ m or more, and may be 5 ⁇ m or more. When the first metal layer 101 has a thickness of 3 ⁇ m or more, the mechanical strength is increased, and defects such as breakage are less likely to occur in the manufacturing process, etc., and the current collecting function is likely to be improved. Also, the thickness of the first metal layer 101 is, for example, 50 ⁇ m or less, and may be 20 ⁇ m or less. When the thickness of the first metal layer 101 is 50 ⁇ m or less, the energy density of the battery using the current collector 100 can be increased.
  • the conductor layer 102 is arranged to face the first metal layer 101 .
  • Conductive layer 102 is located between first metal layer 101 and second metal layer 103 .
  • the conductor layer 102 is, for example, in contact with each of the first metal layer 101 and the second metal layer 103 . Due to the influence of the wettability of the surface of the first metal layer 101, the contact between the first metal layer 101 and the second metal layer 103 deteriorates and the binding property tends to decrease when the conductor layer 102 does not exist. However, the presence of the conductor layer 102 improves the adhesion between the first metal layer 101 and the second metal layer 103 . As a result, the electric resistance of the current collector 100 can be lowered, so that the battery characteristics can be improved.
  • the conductor layer 102 contains a conductive carbon material.
  • the conductor layer 102 contains, for example, a conductive carbon material as a main component.
  • the conductive carbon material is not particularly limited as long as it is a carbon material having conductivity.
  • Examples of conductive carbon materials include carbon blacks such as acetylene black, Ketjenblack (registered trademark), thermal black and furnace black, carbon fibers such as carbon nanotubes and carbon nanofibers, activated carbon, graphite, and graphene. mentioned.
  • the conductor layer 102 may contain only one type of these conductive carbon materials, or may contain two or more types of materials. Also, the conductor layer 102 may be a non-metallic conductor layer that does not contain a metallic material.
  • the thickness of the conductor layer 102 is, for example, 0.1 ⁇ m or more and 2.0 ⁇ m or less. By setting the thickness of the conductor layer 102 to 0.1 ⁇ m or more, the adhesion between the first metal layer 101 and the second metal layer 103 can be enhanced, and the electrical resistance can be effectively reduced. Moreover, since the thickness of the conductor layer 102 is 2.0 ⁇ m or less, the energy density of the battery using the current collector 100 can be increased.
  • the conductor layer 102 may further contain a resin.
  • resins include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly hexyl acrylate, polymethacrylic acid, polymethylmethacrylate, polyethylmethacrylate, polyhexylmethacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber and Carboxymethyl cellulose etc.
  • the resin is selected from tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and hexadiene. Copolymers of two or more materials described above may be used.
  • a curable resin that is cured by heat or light such as epoxy resin or silicone resin, may be used.
  • the conductor layer 102 may contain only one type of material among these resins, or may contain two or more types of materials. When the conductor layer 102 contains a conductive carbon material and a resin, the ratio of the conductive carbon material in the conductor layer 102 is, for example, 50% or more and 95% or less.
  • the method of forming the conductor layer 102 is not particularly limited, but for example, a method of applying a paste containing a conductive carbon material and a resin onto the first metal layer 101 can be used.
  • the paste coating method is not particularly limited, and general coating methods can be used.
  • the applied paste may be dried if necessary.
  • the conductor layer 102 may be formed by forming a film of the conductive carbon material on the first metal layer 101 by spin coating or the like using a dispersion liquid in which the conductive carbon material is dispersed.
  • the conductor layer 102 may be formed by carbonizing a resin material such as polyimide formed on the first metal layer 101 .
  • the second metal layer 103 is, for example, a metal thin film formed by vapor deposition or the like.
  • the second metal layer 103 is arranged to face the first metal layer 101 with the conductor layer 102 interposed therebetween.
  • the second metal layer 103 is located between the conductor layer 102 and the third metal layer 104 .
  • the second metal layer 103 is in contact with each of the conductor layer 102 and the third metal layer 104, for example.
  • the second metal layer 103 contains a second metal.
  • the second metal layer 103 contains, for example, a second metal as a main component.
  • the second metal layer 103 does not contain, for example, the first metal and the third metal described later.
  • the second metal is, for example, a metal different from the first metal.
  • the second metal is, for example, chromium or titanium. This makes it easy to form the second metal layer 103 with high hardness.
  • the second metal layer 103 is made of, for example, the second metal, but may be made of an alloy containing the second metal.
  • the second metal layer 103 may contain materials other than the second metal and the alloy containing the second metal.
  • the ratio of the material other than the second metal and the alloy containing the second metal in the second metal layer 103 is, for example, 5% or less.
  • the thickness of the second metal layer 103 is, for example, 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the thickness of the second metal layer 103 is 0.1 ⁇ m or more, the negative electrode layer and the first metal layer 101 are less likely to come into contact with each other even when pressure is applied when forming the battery. deterioration can be suppressed.
  • the second metal layer 103 is 0.5 ⁇ m or less, the second metal layer 103 is less likely to peel off.
  • the second metal layer 103 is suppressed from being formed in a scaly shape, making it easy to form the second metal layer 103 with a uniform thickness.
  • the second metal layer 103 is formed by forming a film on the conductor layer 102 by, for example, a vapor deposition method such as a vacuum vapor deposition method. At this time, the presence of the conductor layer 102 makes it possible to obtain a good film in forming the second metal layer 103 . Specifically, when a metal film is formed on the surface of the first metal layer 101, the metal tends to be unevenly distributed due to the influence of wettability. The existence of the layer 102 enables the formation of the second metal layer 103 with a predetermined uniform thickness on the conductor layer 102 .
  • the second metal layer 103 is harder than the first metal layer 101 .
  • the Young's modulus of the second metal layer 103 is higher than that of the first metal layer 101 .
  • the third metal layer 104 is, for example, a metal thin film formed by vapor deposition or the like.
  • the third metal layer 104 is arranged to face the conductor layer 102 with the second metal layer 103 interposed therebetween.
  • the third metal layer 104 is in contact with the second metal layer 103, for example.
  • the third metal layer 104 contains a third metal.
  • the third metal layer 104 contains, for example, a third metal as a main component.
  • the third metal layer 104 does not contain, for example, the first metal and the second metal.
  • the third metal is a metal different from the first metal and the second metal.
  • the third metal is nickel or copper, for example.
  • the third metal layer 104 is less likely to be alloyed with lithium and is less likely to be eluted into the negative electrode layer, thereby suppressing deterioration in battery characteristics.
  • nickel and copper have low electric resistance among metals, and battery characteristics can be improved by lowering the electric resistance of the current collector 100 .
  • the third metal layer 104 is made of, for example, the third metal, but may be made of an alloy containing the third metal.
  • the third metal layer 104 may contain materials other than the third metal and the alloy containing the third metal.
  • the ratio of the material other than the third metal and the alloy containing the third metal in the third metal layer 104 is, for example, 5% or less.
  • the current collector 100 has a structure in which the second metal layer 103 and the third metal layer 104 made of different metals are laminated. Accordingly, by appropriately selecting the second metal and the third metal, it is possible to realize the current collector 100 that achieves both suitability for bonding to the negative electrode layer and mechanical strength. Further, when the metal layer is formed by vapor deposition or the like, by forming the second metal layer 103 and the third metal layer 104, the metal layer having the total thickness of the second metal layer 103 and the third metal layer 104 can be obtained. can be formed with a uniform thickness rather than forming as a single metal layer.
  • the thickness of the third metal layer 104 is, for example, 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the thickness of the third metal layer 104 is 0.5 ⁇ m or more, contact between the negative electrode layer and the first metal layer 101 becomes difficult, and deterioration of the first metal layer 101 can be suppressed.
  • the thickness of the third metal layer 104 is 1.5 ⁇ m or less, the third metal layer 104 is less likely to peel off.
  • the formation of the third metal layer 104 in a scaly shape is suppressed, and the third metal layer 104 can be easily formed with a uniform thickness. As a result, problems in bonding between the third metal layer 104 and the negative electrode layer are less likely to occur.
  • the thickness of the third metal layer 104 is, for example, greater than the thickness of the second metal layer 103 .
  • the thickness of the third metal layer 104 containing copper or nickel is increased, so that the electrical resistance of the current collector 100 is less likely to increase, and deterioration of battery characteristics can be suppressed.
  • the sum of the thickness of the second metal layer 103 and the thickness of the third metal layer 104 may be smaller than the thickness of the first metal layer 101 .
  • the energy density of the battery using the current collector 100 can be increased.
  • the sum of the thickness of the conductor layer 102, the thickness of the second metal layer 103, and the thickness of the third metal layer 104 may be smaller than the thickness of the first metal layer 101. good.
  • the third metal layer 104 is formed by forming a film on the second metal layer 103 by, for example, a vapor deposition method such as a vacuum vapor deposition method. At this time, if the second metal layer 103 is a metal thin film formed by vapor deposition or the like, the wettability of the surface of the second metal layer 103 is stable. It is difficult to express the phenomenon of
  • the second metal layer 103 is harder than the third metal layer 104 .
  • the Young's modulus of the second metal layer 103 is higher than that of the third metal layer 104 .
  • the second metal layer 103 is harder, the second metal layer 103 is less likely to break when each layer of the battery is compressed during battery formation, and the negative electrode layer is less likely to come into contact with the first metal layer 101. . Therefore, the deterioration of the battery characteristics due to the deterioration of the first metal layer 101 can be suppressed, and the compression pressure during the formation of the battery can be increased, so that the energy density of the battery can be improved.
  • the third metal layer 104 that is bonded to the negative electrode layer is softer, the contact resistance between the negative electrode layer and the third metal layer 104 is less likely to increase.
  • a soft metal tends to have a low electrical resistance of itself, and can reduce the electrical resistance of the current collector 100 itself.
  • the current collector 100 has been described as being used for serially connecting stacked power generation elements, when used for parallel connection of stacked power generation elements, the current collector is the first metal A structure in which a conductor layer 102, a second metal layer 103 and a third metal layer 104 are laminated on each of the main surfaces on both sides of the layer 101 may be provided.
  • the current collector 100 is manufactured, for example, as follows. Note that the method for manufacturing the current collector 100 is not limited to the following example.
  • a metal foil made of a first metal or an alloy containing the first metal is prepared as the first metal layer 101.
  • a metal foil made of a first metal or an alloy containing the first metal is prepared.
  • aluminum foil or stainless steel foil is prepared as the metal foil.
  • one surface of the prepared metal foil is coated with a paste containing a conductive carbon material and a resin as a material for the conductor layer 102, thereby forming the conductor layer 102 on the first metal layer 101. do.
  • a second metal layer 103 is formed on the surface of the conductor layer 102 formed on the first metal layer 101 opposite to the first metal layer 101 side by a vacuum evaporation method. to form Since the conductive carbon material has good wettability with metal, by vapor-depositing the second metal layer 103 on the conductor layer 102, the second metal can be formed with a uniform thickness.
  • a third metal layer 104 is formed by a vacuum vapor deposition method. Form. Since the wettability of the surface of the second metal layer 103, which is a deposited film, is stable, the third metal is less likely to be unevenly distributed even when the third metal is deposited. In order to prevent the negative electrode layer from coming into contact with the first metal layer 101 when forming the battery, when forming the metal layer on the conductor layer 102 with a predetermined thickness, the second metal layer 103 and the third metal layer 103 are formed. By forming the two layers of the layer 104, a structure in which peeling or the like is less likely to occur even with the same thickness can be obtained as compared with the case of forming a single layer.
  • the current collector 100 is obtained.
  • the current collector 100 that can suppress deterioration even when used as a single current collector for connecting power generation elements in series can be obtained by using the metal that constitutes the metal layer. It can be manufactured so that uneven distribution or the like does not occur. Therefore, deterioration of battery characteristics can be further suppressed.
  • Embodiment 2 Next, Embodiment 2 will be described. Specifically, in Embodiment 2, a battery using the current collector 100 according to Embodiment 1 will be described.
  • a battery according to the present embodiment is a battery that includes one or more power generation elements.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of battery 300 according to the present embodiment.
  • the battery 300 includes a current collector 100 , a power generating element 200 having a positive electrode layer 201 , a solid electrolyte layer 202 and a negative electrode layer 203 , and a current collector 110 .
  • Battery 300 is, for example, an all-solid battery.
  • Battery 300 has a structure in which current collector 100, positive electrode layer 201, solid electrolyte layer 202, negative electrode layer 203, and current collector 110 are stacked in this order from the bottom along the z-axis direction.
  • the current collector 100, the positive electrode layer 201, the solid electrolyte layer 202, the negative electrode layer 203, and the current collector 110 have, for example, the same shape and the same outline when viewed from above.
  • the area of the main surface of the battery 300 is, for example, 1 cm 2 or more and 100 cm 2 or less as a battery for portable electronic devices such as smartphones or digital cameras.
  • the area of the main surface of the battery 300 may be 100 cm 2 or more and 1000 cm 2 or less as a battery for a power source of a large mobile device such as an electric vehicle.
  • the shape of the battery 300 is, for example, a flat rectangular parallelepiped with the shortest length in the stacking direction.
  • the shape of the battery 300 is not particularly limited, and may be other shapes such as a cubic shape, a columnar shape, a truncated square pyramid shape, a truncated cone shape, or a polygonal columnar shape.
  • the plan view shape of the battery 300 is, for example, a rectangle.
  • the planar shape of the battery 300 may be a square, a parallelogram, a rhombus, or any other quadrangle, a hexagon, an octagon, or any other polygon, or a circle or an ellipse. good.
  • the power generation element 200 is an example of a first power generation element that is positioned on the current collector 100 and laminated so as to be adjacent to the current collector 100 .
  • the power generation element 200 is positioned between the current collector 100 and the current collector 110 .
  • the battery 300 may include at least one power generation element 200 and may include a plurality of power generation elements 200 .
  • a battery including a plurality of power generation elements 200 will be described later.
  • the positive electrode layer 201 is arranged to face the negative electrode layer 203 . Also, the positive electrode layer 201 is positioned between the current collector 100 and the solid electrolyte layer 202 . The positive electrode layer 201 faces the first metal layer 101 of the current collector 100 without the solid electrolyte layer 202 and the conductor layer 102 interposed therebetween. The positive electrode layer 201 is in contact with each of the first metal layer 101 and the solid electrolyte layer 202, for example. The positive electrode layer 201 is bonded to the first metal layer 101 of the current collector 100 . Note that the positive electrode layer 201 may be bonded to the first metal layer 101 via a conductive connection layer or the like containing a conductive carbon material.
  • the positive electrode layer 201 contains at least a positive electrode active material.
  • the positive electrode layer 201 may be a positive electrode mixture layer containing a positive electrode active material and another material such as a solid electrolyte.
  • the positive electrode active material contained in the positive electrode layer 201 is, for example, a material that occludes and releases metal ions.
  • the positive electrode active material may be, for example, a material that absorbs and releases lithium ions.
  • Examples of the positive electrode active material contained in the positive electrode layer 201 include lithium-containing transition metal oxides, transition metal fluorides, polyanions, fluorinated polyanion materials, transition metal sulfides, transition metal oxyfluorides, transition metal oxysulfides, or transition metals. Oxynitrides and the like may be used.
  • a lithium-containing transition metal oxide is used as the positive electrode active material, the manufacturing cost can be reduced and the average discharge voltage can be increased.
  • a solid electrolyte used for the positive electrode layer 201 will be described later.
  • the thickness of the positive electrode layer 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode layer 201 is 10 ⁇ m or more, it is easy to secure a sufficient energy density of the battery. When the thickness of the positive electrode layer 201 is 500 ⁇ m or less, the operation at high output tends to be facilitated.
  • the negative electrode layer 203 is arranged to face the positive electrode layer 201 . Also, the negative electrode layer 203 is positioned between the current collector 110 and the solid electrolyte layer 202 . The negative electrode layer 203 is, for example, in contact with each of the current collector 110 and the solid electrolyte layer 202 . The negative electrode layer 203 is bonded to the current collector 110, for example. Note that the negative electrode layer 203 may be joined to the current collector 110 via a conductive connection layer or the like containing a conductive carbon material.
  • the negative electrode layer 203 contains at least a negative electrode active material.
  • the negative electrode layer 203 may be a negative electrode mixture layer containing a negative electrode active material and another material such as a solid electrolyte.
  • the negative electrode active material contained in the negative electrode layer 203 is, for example, a material that occludes and releases metal ions.
  • the negative electrode active material may be, for example, a material that absorbs and releases lithium ions.
  • lithium metal a metal or alloy exhibiting an alloying reaction with lithium
  • a carbon material a transition metal oxide, or a transition metal sulfide
  • the carbon material for example, graphite or a non-graphitic carbon material such as hard carbon or coke can be used.
  • CuO or NiO can be used as the transition metal oxide.
  • the transition metal sulfide for example, copper sulfide represented by CuS can be used.
  • Examples of metals or alloys that exhibit an alloying reaction with lithium include silicon compounds, tin compounds, and alloys of aluminum compounds and lithium. When a carbon material is used, the manufacturing cost can be reduced and the average discharge voltage can be increased. A solid electrolyte used for the negative electrode layer 203 will be described later.
  • the thickness of the negative electrode layer 203 may be 10 ⁇ m or more and 500 ⁇ m or less. In addition, when the thickness of the negative electrode layer 203 is 10 ⁇ m or more, it is easy to secure a sufficient energy density of the battery. When the thickness of the negative electrode layer 203 is 500 ⁇ m or less, the operation at high output tends to be facilitated.
  • At least one of the positive electrode layer 201 and the negative electrode layer 203 may contain a conductive aid for the purpose of increasing electronic conductivity.
  • the conductive aid include graphite of natural graphite or artificial graphite, carbon black such as acetylene black or Ketjen black, conductive fiber such as carbon fiber or metal fiber, metal powder such as carbon fluoride or aluminum, and zinc oxide.
  • a conductive whisker such as potassium titanate, a conductive metal oxide such as titanium oxide, or a conductive polymer compound such as polyaniline, polypyrrole or polythiophene can be used. Cost reduction can be achieved in the case of using a conductive aid made of a carbon material.
  • the solid electrolyte layer 202 is located between the positive electrode layer 201 and the negative electrode layer 203 . Solid electrolyte layer 202 is in contact with each of positive electrode layer 201 and negative electrode layer 203 .
  • the solid electrolyte layer 202 contains at least a solid electrolyte.
  • a solid electrolyte used for the solid electrolyte layer 202 will be described later.
  • the thickness of the solid electrolyte layer 202 may be 1 ⁇ m or more and 200 ⁇ m or less. In addition, since the thickness of the solid electrolyte layer 202 is 1 ⁇ m or more, a short circuit between the positive electrode layer 201 and the negative electrode layer 203 can be suppressed. When the thickness of the solid electrolyte layer 202 is 200 ⁇ m or less, the operation at high output tends to be facilitated.
  • solid electrolyte contained in the positive electrode layer 201, the negative electrode layer 203, and the solid electrolyte layer 202 for example, a sulfide solid electrolyte, an oxide solid electrolyte, a halide solid electrolyte, a polymer solid electrolyte, a complex hydride solid electrolyte, or the like is used.
  • a sulfide solid electrolyte for example, an oxide solid electrolyte, a halide solid electrolyte, a polymer solid electrolyte, a complex hydride solid electrolyte, or the like is used.
  • the solid electrolyte has, for example, lithium ion conductivity.
  • Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S4 , Li10GeP2S12 , etc. may be used.
  • LiX (X is any one of F, Cl, Br and I), Li 2 O, MO p , Li q MO r (M is P, Si, Ge, B, Al, Ga, In, Fe and Zn, and p, q and r are natural numbers), etc. may be added.
  • oxide solid electrolytes include NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof, (LaLi)TiO 3 -based perovskite solid electrolytes, Li 14 ZnGe 4 O 16 , Li LISICON solid electrolytes typified by 4 SiO 4 , LiGeO 4 and elemental substitutions thereof, garnet type solid electrolytes typified by Li 7 La 3 Zr 2 O 12 and elemental substitutions thereof, Li 3 N and its H substitutions , Li 3 PO 4 and its N-substituted products, LiBO 2 , Li 3 BO 3 and other Li-B-O compounds as a base, and Li 2 SO 4 , Li 2 CO 3 and the like are added to glass or glass ceramics. can be used.
  • the halide solid electrolyte is represented, for example, by the composition formula Li ⁇ M ⁇ X ⁇ , where ⁇ , ⁇ , and ⁇ are values greater than 0, and M is a metal element other than Li and a metalloid element.
  • X is one or more elements selected from the group consisting of Cl, Br, I and F.
  • metalloid elements are B, Si, Ge, As, Sb and Te.
  • Metallic elements are all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and all Groups 13 to 16 except for the metalloid elements mentioned above and C, N, P, O, S, and Se. It is an element included in the group.
  • halide solid electrolytes include Li3YX6 , Li2MgX4 , Li2FeX4 , Li ( Al, Ga, In )X4, Li3 ( Al, Ga, In ) X6 , etc.
  • X is Any of F, Cl, Br and I) can be used.
  • LiBH 4 —LiI or LiBH 4 —P 2 S 5 can be used as the complex hydride solid electrolyte.
  • a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure. Since the polymer compound has an ethylene oxide structure, a large amount of lithium salt can be contained, and the ionic conductivity can be further increased.
  • lithium salts include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiSO 3 CF 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 CF 3 ) ( SO2C4F9 ) and LiC ( SO2CF3 ) 3 .
  • the lithium salt one lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used as the lithium salt.
  • At least one of the positive electrode layer 201, the solid electrolyte layer 202, and the negative electrode layer 203 may contain a binder for the purpose of improving adhesion between particles.
  • a binder is used to improve the binding properties of the material that constitutes the electrode.
  • Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly hexyl acrylate, polymethacrylic acid, polymethylmethacrylate, polyethylmethacrylate, polyhexylmethacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber and Carboxymethyl cellulose etc. are mentioned.
  • Binders include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid and hexadiene. Copolymers of two or more selected materials may be used. Also, two or more selected from these may be mixed and used as a binder.
  • the current collector 100 is laminated on the positive electrode layer 201 side of the power generation element 200 so as to be adjacent to the power generation element 200 .
  • the first metal layer 101 of the current collector 100 faces the positive electrode layer 201 of the power generation element 200 without the solid electrolyte layer 202 of the power generation element 200 and the conductor layer 102 of the current collector 100 interposed therebetween.
  • the first metal layer 101 is in contact with, for example, the positive electrode layer 201 .
  • the first metal layer 101 faces the negative electrode layer 203 of the power generating element 200 via the positive electrode layer 201 and the solid electrolyte layer 202 and does not contact the negative electrode layer 203 .
  • the first metal layer 101 contains the first metal different from the third metal, which is nickel or copper, so that even if it is joined to the positive electrode layer 201, it is less likely to deteriorate. Therefore, deterioration of the battery characteristics of the battery 300 using the current collector 100 can be suppressed.
  • the third metal layer 104 of the current collector 100 is exposed at the bottom of the battery 300 and bonded to other power generating elements. It is possible.
  • the third metal layer 104 contains the third metal, which is nickel or copper, deterioration does not easily occur even if it is bonded to the negative electrode layer. Therefore, even if the battery 300 is connected to the negative electrode layer without another current collector interposed therebetween and is electrically connected in series with other power generation elements, the battery characteristics are unlikely to deteriorate. Therefore, when the battery 300 and other power generation elements are electrically connected in series, the number of current collectors used can be reduced to increase the energy density.
  • the current collector 110 is laminated on the negative electrode layer 203 side of the power generation element 200 so as to be adjacent to the power generation element 200 . Specifically, current collector 110 faces negative electrode layer 203 of power generating element 200 without interposing solid electrolyte layer 202 of power generating element 200 . The current collector 110 is in contact with the negative electrode layer 203, for example. In this embodiment, the current collector 110 is a negative electrode current collector that exchanges electrons with the negative electrode layer 203 .
  • the current collector 110 As a material for the current collector 110, a known negative electrode current collector material can be used.
  • Current collector 110 is, for example, a metal foil made of copper, nickel, iron, or an alloy containing at least one of copper, nickel, and iron. Unlike the current collector 100, the current collector 110 is, for example, a current collector that does not have a laminated structure and is composed of a sheet of metal foil.
  • the thickness of the current collector 110 is, for example, 3 ⁇ m or more and 50 ⁇ m or less.
  • the battery 300 may include the current collector 100 instead of the current collector 110 .
  • the power generation element 200 may be positioned between the two current collectors 100 .
  • the power generation element 200 and the current collector 100 are laminated such that the third metal layer 104 of the current collector 100 is bonded to the negative electrode layer 203 .
  • the battery 300 may be housed in an exterior body for protection of the power generating element 200 and the like.
  • the exterior body may be a resin-laminated metal foil having a resin film on one side or both sides of the metal foil.
  • the exterior body there is a structure in which a resin film for imparting mechanical strength is laminated on one side of a metal foil, and a resin film having heat-sealing properties is laminated on the opposite side.
  • a resin-laminated metal foil is exemplified.
  • the metal foil in the resin-laminated metal foil may be, for example, a foil made of aluminum or an aluminum alloy.
  • the resin film for maintaining mechanical strength may be, for example, a film made of polyester, nylon, or the like.
  • the heat-sealable resin film may be, for example, a film made of polyolefin or the like, and specifically, a film made of polyethylene, polypropylene, or the like.
  • the laminate film that constitutes the exterior body may be embossed on one side or both sides.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of battery 400 according to the present embodiment.
  • the battery 400 differences from the battery 300 will be mainly described, and descriptions of common points will be omitted or simplified.
  • the battery 400 includes a plurality of current collectors 100, a plurality of power generation elements 200, and a current collector 110.
  • the battery 400 has a configuration in which the current collector 100 and the power generation element 200 are further laminated on the battery 300 .
  • the plurality of power generation elements 200 included in the battery 400 may be distinguished from the power generation element 200a, the power generation element 200b, and the power generation element 200c in order from the top.
  • the plurality of current collectors 100 included in the battery 400 may be distinguished from the current collector 100a, the current collector 100b, and the current collector 100c in order from the top.
  • the power generation element 200a is an example of a first power generation element
  • the power generation element 200b is an example of a second power generation element laminated so as to be adjacent to the first power generation element via the current collector 100a.
  • a current collector 100 is arranged between adjacent power generation elements 200 .
  • the current collectors 100a and the current collectors 100b are positioned between adjacent power generation elements 200, respectively.
  • the current collector 100a is positioned between the adjacent power generation elements 200a and 200b
  • the current collector 100b is positioned between the adjacent power generation elements 200b and 200c.
  • the current collector 100c is positioned below the lowest power generating element 200c among the plurality of power generating elements 200. As shown in FIG.
  • the current collectors positioned at the top and bottom of the battery 400 may be the current collector 100 having a laminated structure, or a current collector made of a metal foil or the like that does not have a laminated structure.
  • the current collector 100 instead of the current collector 110 located at the top, the current collector 100 may be arranged, and instead of the current collector 100c located at the bottom, a current collector made of a metal foil such as an aluminum foil. may be placed.
  • the plurality of power generating elements 200 are stacked in the same stacking order from the upper side. Therefore, each of the plurality of power generation elements 200 is electrically connected in series by being connected to each other by the current collector 100 . Thereby, the voltage of the battery 400 can be increased.
  • the common current collector 100 is arranged between adjacent power generation elements 200, the number of current collectors used in the battery 400 can be reduced. As a result, it is possible to improve the energy density by reducing the number of current collectors that do not contribute to power generation, and to suppress deterioration in battery characteristics by eliminating the need to connect the current collectors.
  • the number of power generation elements 200 is three, but is not particularly limited, and may be two or four or more. As the number of power generation elements 200 increases, the voltage of the battery can be increased. An arbitrary number can be set in consideration of the ease of handling when manufacturing the battery, the loading space of the device using the battery, the control voltage of the device using the battery, and the like. For example, 2 or more and 500 or less power generation elements 200 may be electrically connected in series.
  • the positional relationship between current collector 100a and power generation element 200a, current collector 100b and power generation element 200b, and current collector 100c and power generation element 200c is the position of current collector 100 and power generation element 200 in battery 300 described above. Same as relationship.
  • the third metal layer 104 of the current collector 100a faces the negative electrode layer 203 of the power generation element 200b without interposing the solid electrolyte layer 202 of the power generation element 200b and the second metal layer 103 of the current collector 100a.
  • the third metal layer 104 of the current collector 100a is, for example, in contact with the negative electrode layer 203 of the power generating element 200b.
  • the negative electrode layer 203 of the power generation element 200b is bonded to, for example, the third metal layer 104 of the current collector 100a.
  • the negative electrode layer 203 of the power generation element 200b may be bonded to the third metal layer 104 of the current collector 100a via a conductive connection layer or the like containing a conductive carbon material.
  • the third metal layer 104 contains the third metal, which is nickel or copper, even if it is joined to the negative electrode layer 203, it is less likely to deteriorate. Therefore, deterioration of the battery characteristics of the battery 400 using the current collector 100 can be suppressed. The same applies to the current collector 100b and the power generating element 200c.
  • the adjacent power generation elements 200a and 200b are stacked with the current collector 100a interposed therebetween.
  • the positive electrode layer 201 of the power generating element 200a and the first metal layer 101 of the current collector 100a are arranged adjacent to each other, and the negative electrode layer 203 of the power generating element 200b and the third metal layer 104 of the current collector 100a are adjacent to each other. arranged to fit.
  • the power generation element 200a and the power generation element 200b are electrically connected in series. In this way, since the power generation element 200a and the power generation element 200b are stacked with one current collector 100a interposed therebetween, the number of current collectors used can be reduced to realize a battery with high energy density.
  • the first metal layer 101 of the current collector 100a is laminated with the positive electrode layer 201 of the power generation element 200a without any other layer interposed therebetween, but contains a first metal different from the third metal, which is nickel or copper. Therefore, deterioration and the like are unlikely to occur.
  • the third metal layer 104 of the current collector 100a is laminated on the negative electrode layer 203 of the power generation element 200b without interposing another layer, deterioration or the like occurs because it contains the third metal, which is nickel or copper. Hateful. Therefore, deterioration of battery characteristics of the battery 400 using the current collector 100a can be suppressed.
  • Battery 300 and battery 400 are manufactured, for example, as follows.
  • the manufacturing method of the battery 300 and the battery 400 is not limited to the following examples.
  • the positive electrode layer 201 is formed on the current collector 100 .
  • a slurry is prepared by mixing a positive electrode active material, a solvent, and optionally at least one of a solid electrolyte, a binder, and a conductive aid. Then, the prepared slurry is die-coated on the surface of the first metal layer 101 of the current collector 100 opposite to the conductive layer 102 side.
  • a coating method is not particularly limited, and a general coating method can be used. After that, the slurry is dried to obtain the positive electrode layer 201 with a predetermined thickness and shape. Further, if necessary, the positive electrode layer 201 may be pressurized after drying.
  • a solid electrolyte layer 202 is formed on the positive electrode layer 201 formed above.
  • a slurry is prepared by mixing a solid electrolyte, a solvent, and, if necessary, a binder. Then, the prepared slurry is die-coated on the surface of the positive electrode layer 201 formed as described above, which is opposite to the current collector 100 side.
  • the coating method in this case is also not limited, and a general coating method can be used. After that, the slurry is dried to obtain a solid electrolyte layer 202 with a predetermined thickness. Further, if necessary, the solid electrolyte layer 202 may be pressurized after drying.
  • a negative electrode layer 203 is formed on the solid electrolyte layer 202 formed above.
  • a slurry is prepared by mixing a negative electrode active material, a solvent, and optionally at least one of a solid electrolyte, a binder, and a conductive aid. Then, the prepared slurry is die-coated on the surface of the solid electrolyte layer 202 formed above on the side opposite to the positive electrode layer 201 side.
  • the coating method in this case is also not limited, and a general coating method can be used. After that, the slurry is dried to obtain the negative electrode layer 203 with a predetermined thickness. If necessary, the negative electrode layer 203 may be pressed after drying.
  • a laminated plate in which the power generation element 200 is laminated on the current collector 100 is obtained.
  • the obtained laminate may be cut into a predetermined size as required.
  • the cutting method is not particularly limited, and a general cutting method such as shearing using a knife can be used.
  • the number of laminated plates is produced according to the number of power generation elements 200 to be connected. Although the number of laminated plates to be produced is not particularly limited, for example, the battery 300 is one and the battery 400 is three.
  • the necessary number of laminated plates are laminated so as to electrically connect the power generation elements 200 in series. That is, a plurality of laminates are laminated such that the third metal layer 104 of one current collector 100 and the negative electrode layer 203 of the other power generation element 200 of the adjacent laminates face each other. Then, the battery 400 is obtained by arranging the current collector 110 on the uppermost negative electrode layer 203 . At this time, the obtained battery 400 may be pressurized as necessary. Moreover, if necessary, terminals for taking out electricity from the upper surface and the lower surface of the battery 400 may be connected, and the obtained battery 400 may be housed in an exterior body. There are no particular restrictions on the shape of the take-out terminal and the exterior body. Battery 300 is manufactured by disposing current collector 110 on negative electrode layer 203 of one laminated plate without laminating laminated plates in the above method.
  • the current collector 100 is composed of the first metal layer 101, the conductor layer 102, the second metal layer 103 and the third metal layer 104, but it is not limited to this.
  • the current collector 100 may comprise layers other than the first metal layer 101 , the conductor layer 102 , the second metal layer 103 and the third metal layer 104 .
  • there may be another metal layer or a conductor layer. .
  • the first metal layer 101 of the current collector 100 is connected to the power generation element without the solid electrolyte layer 202 of the power generation element 200 and the conductor layer 102 of the current collector 100 interposed therebetween.
  • 200 facing the positive electrode layer 201 the present invention is not limited to this.
  • the third metal layer 104 of the current collector 100 may face the negative electrode layer 203 of the power generation element 200 without the solid electrolyte layer 202 of the power generation element 200 and the second metal layer 103 of the current collector 100 interposed therebetween.
  • the current collector 100 and the power generating element 200 may be laminated such that the third metal layer 104 is in contact with the negative electrode layer 203 .
  • the third metal layer 104 containing nickel or copper is bonded to the negative electrode layer 203, deterioration of the current collector 100 is suppressed.
  • the first metal layer 101 of the current collector 100 is joined to the positive electrode layer of another power generation element without interposing another current collector, the battery characteristics of the battery 300 are unlikely to deteriorate.
  • the battery 400 all the power generation elements 200 are electrically connected in series, but the present invention is not limited to this.
  • the batteries 400 may be stacked in the opposite stacking order, and the series-connected power generating elements 200 may be further connected in parallel.
  • the current collector and battery according to the present disclosure can be used in various batteries such as all-solid lithium secondary batteries, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本開示の一態様に係る集電体は、第1金属を含む第1金属層と、導電性炭素材料を含む導電体層と、第2金属を含む第2金属層と、前記第1金属および前記第2金属とは異なる第3金属を含む第3金属層と、がこの順で積層された構造を有し、前記第3金属は、ニッケルまたは銅である。

Description

集電体および電池
 本開示は、集電体およびそれを用いた電池に関する。
 近年、携帯機器、ハイブリッド自動車、電気自動車および家庭用蓄電池用途等に、全固体電池等の固体電解質を含む二次電池の研究開発が盛んに行われている。このような電池では、さらなる高エネルギー密度化が求められている。また、このような電池の中にはアルミニウムからなる金属箔を基材とした集電体を用いた電池がある。集電体を用いた電池としては、例えば、リチウム化合物を含む正極層をこのような金属箔上に形成した正極板を用いたリチウム二次電池が挙げられる。
 特許文献1には、耐蝕性の向上のために、アルミニウム箔に金属層および非金属導電体層を形成した集電体が開示されている。
 特許文献2には、コンデンサ特性向上のために複数の導電層を用いる集電体が開示されている。
 特許文献3には、正極合剤との密着性を向上させることを目的とした複数の金属層が積層された構造が開示されている。
 特許文献4には、安全性の向上のために、リチウムバリア層を設ける集電体が開示されている。
特開2010-262866号公報 国際公開第2012/115050号 特開2009-4363号公報 特開2017-10782号公報
 従来技術では、電池特性の低下を抑制しつつ、高いエネルギー密度を有する電池が求められている。本開示では、電池のエネルギー密度向上と電池特性の低下抑制とを両立できる集電体および電池を提供する。
 本開示の一態様に係る集電体は、第1金属を含む第1金属層と、導電性炭素材料を含む導電体層と、第2金属を含む第2金属層と、前記第1金属および前記第2金属とは異なる第3金属を含む第3金属層と、がこの順で積層された構造を有し、前記第3金属は、ニッケルまたは銅である。
 本開示の一態様に係る電池は、上記集電体と、正極層、前記正極層に対向して配置される負極層、および、前記正極層と前記負極層との間に位置する固体電解質層を有する少なくとも1つの発電要素、とを備え、前記少なくとも1つの発電要素は、前記集電体と隣り合うように積層される第1発電要素を含み、前記集電体の前記第1金属層は、前記第1発電要素の前記固体電解質層および前記集電体の前記導電体層を介さずに前記第1発電要素の前記正極層と対向している。
 本開示によれば、電池のエネルギー密度向上と電池特性の低下抑制とを両立できる。
図1は、実施の形態1に係る集電体の概略構成を示す断面図である。 図2は、実施の形態2に係る電池の概略構成を示す断面図である。 図3は、実施の形態2に係る別の電池の概略構成を示す断面図である。
 (本開示の一態様を得るに至った知見)
 全固体電池等の固体電解質を含む電池は、一般的に、正極層、固体電解質層および負極層を有する発電要素を備える。電池が少なくとも1つの発電要素を含むことで、電池として機能可能であるが、複数の発電要素を電気的に直列に接続するように積層することで、電池の電圧を高めることができる。一方で、複数の発電要素を積層する場合、電池が単一の発電要素を備える場合と比較し、各発電要素の正極層および負極層それぞれに設けられた金属箔等の集電体を介して発電要素が電気的に接続されるため、正極層に設けられた集電体と負極層に設けられた集電体との接触抵抗の増加によって、電池特性の低下が生じうる。また、電池に対する充放電時の拘束圧力を高めることで接触抵抗の改善は可能であるが、一般的に拘束圧力を高めるための治具は大きくなり、結果として電池全体のエネルギー密度は低下する。また、発電要素の間に正極層に設けられた集電体および負極層に設けられた集電体の2枚の集電体が積層されるため、電池の厚みが増加し、電池のエネルギー密度が低下する。
 また、正極層に設けられた集電体または負極層に設けられた集電体のいずれか一方を隣り合う発電要素で共有する、つまり、隣り合う発電要素の間に1枚の集電体を配置することで、接触抵抗を無くし、さらに、エネルギー密度を向上できるものの、集電体材料が、正極層および負極層のいずれかの動作電位で集電体がリチウム合金化して脆化する、ならびに/または、正極層および負極層のいずれかに溶出する等によって劣化し、電池特性の低下が生じうる。例えば、アルミニウムは、負極層用の集電体に用いられると劣化しやすく、ニッケルおよび銅は、正極層用の集電体に用いられると劣化しやすい。また、正極層および負極層の両方の動作電位でリチウム合金化しにくく、溶出しにくい金属または合金は、電気抵抗が高くなりやすく、このような金属または合金を集電体に用いた場合にも電池特性が低下する。
 本開示は、このような知見に基づいてなされたものであり、発電要素間の抵抗の増加および集電体の劣化を抑制することで電池特性の低下を抑制しつつ、薄層化が可能な集電体によって、電池のエネルギー密度の向上と電池特性の低下抑制とを両立する。
 本開示の一態様の概要は以下の通りである。
 本開示の一態様に係る集電体は、第1金属を含む第1金属層と、導電性炭素材料を含む導電体層と、第2金属を含む第2金属層と、前記第1金属および前記第2金属とは異なる第3金属を含む第3金属層と、がこの順に積層された構造を有し、前記第3金属は、ニッケルまたは銅である。
 これにより、本態様に係る集電体を用いて、第1金属層に正極層を接合し、第3金属層に負極層を接合することで発電要素を電気的に直列に接続しても、集電体の劣化が生じにくい。具体的には、第1金属層はニッケルまたは銅である第3金属と異なる第1金属を含むため、正極層に接合されてもリチウム合金化等の劣化が生じにくい。また、第3金属層はニッケルまたは銅である第3金属を含むため、負極層に接合されてもリチウム合金化等の劣化が生じにくい。また、互いに異なる金属を含む第2金属層と第3金属層とが積層されるため、第2金属と第3金属とを適切に選択することで、負極層への接合の適合性と、機械的強度とを両立できる。さらに、第1金属層と第2金属層との間に導電体層が位置することで、第1金属層と第2金属層との結着性が向上し、電池特性が低下しにくい。また、発電要素の間に2枚の集電体を配置することなく発電要素を電気的に接続できるため、電池のエネルギー密度を高めることができる。よって、本態様に係る集電体により、電池のエネルギー密度の向上と電池特性の低下抑制とを両立できる。
 また、例えば、前記第1金属は、アルミニウムまたは鉄であってもよい。
 これにより、第1金属層が正極層に接合される場合に、第1金属層における、リチウムとの合金化、および、正極層への溶出がより生じにくくなり、電池特性の低下を抑制できる。
 また、例えば、前記第2金属は、チタンまたはクロムであってもよい。
 これにより、硬度の高い第2金属層を形成しやすく、電池の製造時の加圧等によって、第3金属層に接合される負極層が第1金属層に接触することを抑制できる。
 また、例えば、前記第2金属層は、前記第3金属層よりも硬くてもよい。
 これにより、電池の製造時の加圧等によって、第3金属層に接合される負極層が第1金属層に接触することを抑制できる。また、負極層と接合される第3金属層104の方が柔らかいことで、負極層と第3金属層104との接触抵抗が高くなりにくい。
 また、例えば、前記第2金属層の厚さと前記第3金属層の厚さとの合計は、前記第1金属層の厚さよりも小さくてもよい。
 これにより、集電体を用いた電池のエネルギー密度を向上できる。
 また、例えば、前記第3金属層の厚さは、前記第2金属層の厚さよりも大きくてもよい。
 これにより、銅またはニッケルを含む第3金属層が厚くなるため、集電体の電気抵抗が高くなりにくく、集電体を用いた電池の電池特性の低下を抑制できる。
 また、例えば、前記第1金属層の厚さは、3μm以上50μm以下であってもよい。
 これにより、集電体の機械的強度の向上と集電体を用いた電池のエネルギー密度の向上とを両立できる。
 また、例えば、前記第2金属層の厚さは、0.1μm以上0.5μm以下であってもよい。
 これにより、第2金属層が剥離しにくくなる。また、電池の製造時の加圧等によって、第3金属層に接合される負極層が第1金属層に接触することを抑制できる。
 また、例えば、前記第3金属層の厚さは、0.5μm以上1.5μm以下であってもよい。
 これにより、第3金属層が剥離しにくくなる。また、電池の製造時の加圧等によって、第3金属層に接合される負極層が第1金属層に接触することを抑制できる。
 また、例えば、前記導電体層の厚さは、0.1μm以上2.0μm以下であってもよい。
 これにより、第1金属層と第2金属層との結着性向上と、集電体を用いた電池のエネルギー密度の向上とを両立できる。
 また、本開示の一態様に係る電池は、上記集電体と、正極層、前記正極層に対向して配置される負極層、および、前記正極層と前記負極層との間に位置する固体電解質層を有する少なくとも1つの発電要素、とを備え、前記少なくとも1つの発電要素は、前記集電体と隣り合うように積層される第1発電要素を含み、前記集電体の前記第1金属層は、前記第1発電要素の前記固体電解質層および前記集電体の前記導電体層を介さずに前記第1発電要素の前記正極層と対向している。
 これにより、集電体の第1金属層と第1発電要素の正極層とが電気的に接続された電池を実現できる。また、第1金属層は、他の層を介さずに正極層と積層されるが、ニッケルまたは銅である第3金属とは異なる第1金属を含むため、劣化等が生じにくい。よって、集電体を用いた電池の電池特性の低下を抑制できる。また、集電体において第1金属層とは反対側の第3金属層は、ニッケルまたは銅である第3金属を含むため、負極層と接合されても劣化が生じにくい。そのため、本態様に係る電池は、別の集電体を間に挟むことなく第1発電要素とは別の発電要素の負極層と接合して、他の発電要素と電気的に直列接続しても、電池特性が低下しにくい。よって、用いられる集電体の数を減らしてエネルギー密度を高めることができる。
 また、例えば、前記少なくとも1つの発電要素は、前記集電体を介して前記第1発電要素と隣り合うように積層される第2発電要素をさらに含み、前記集電体の前記第3金属層は、前記第2発電要素の前記固体電解質層および前記集電体の前記第2金属層を介さずに前記第2発電要素の前記負極層と対向していてもよい。
 これにより、集電体の第3金属層と第2発電要素の負極層とが電気的に接続され、1枚の集電体を用いて、第1発電要素と第2発電要素とが電気的に直列に接続された高電圧の電池を実現できる。よって、電池のエネルギー密度を高めることができる。また、第3金属層は、他の層を介さずに負極層と積層されるが、ニッケルまたは銅である第3金属を含むため、劣化等が生じにくい。よって、電池の電池特性の低下を抑制できる。
 以下、本開示の実施の形態が、図面を参照しながら、説明される。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、工程、工程の順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略または簡略化する。
 また、本明細書および図面において、x軸、y軸およびz軸は、三次元直交座標系の三軸を示している。z軸は、集電体および電池の各層の積層方向に一致する。
 また、本明細書において、「積層方向」は、集電体および電池の各層の主面法線方向に一致する。また、本明細書において、「平面視」とは、単独で使用される場合など特に断りのない限り、電池または集電体の主面に対して垂直な方向から見たときのことをいう。
 また、本明細書において、「上方」および「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)および下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」および「下方」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。以下の説明では、z軸の負側を「下方」または「下側」とし、z軸の正側を「上方」または「上側」とする。
 また、本明細書において、材料の割合等を示す%は、特に断りのない限り重量%である。
 (実施の形態1)
 実施の形態1では、積層構造を有する集電体について説明する。
 [集電体の構成]
 図1は、本実施の形態に係る集電体100の概略構成を示す断面図である。
 図1に示されるように、集電体100は、第1金属層101と、導電体層102と、第2金属層103と、第3金属層104と、が上側からこの順でz軸方向に沿って積層された構造を有する。集電体100は、複数の層が積層された積層集電体である。詳細は後述するが、集電体100は、例えば、第1金属層101の直上に正極層を積層するための集電体である。より具体的には、集電体100を電池に用いる場合、例えば、第1金属層101は、正極層に接合され、第3金属層104は負極層に接合される。集電体100は、例えば、積層される発電要素を直列接続するために用いられる。
 集電体100は、例えば、z軸方向が厚み方向となるシート状である。集電体100の平面視形状は例えば矩形であるが、特に制限されない。なお、本明細書において、図1などの断面図では、集電体100等の層構造をわかりやすくするため、各層の厚みを誇張して図示している。そのため、各図では、各層の厚みの比率等も実際とは一致しない場合がある。
 次に、集電体100の各層の詳細について説明する。
 [1.第1金属層]
 第1金属層101は、正極層と接合される金属集電層である。第1金属層101は、例えば、金属箔である。第1金属層101は、第1金属を含む。第1金属層101は、例えば、第1金属を主成分として含む。本明細書において、「第1金属層101は第1金属を主成分として含む」のように、「ある層は何かを主成分として含む」とは、当該「ある層」等の構成要素に含まれる材料のうち、当該「何か」の割合が最も多いことを意味する。また、本明細書において「ある層は何かを主成分として含む」場合の、当該「ある層」等の構成要素に含まれる材料のうち、当該「何か」の割合は、50%以上であってもよく、70%以上であってもよく、90%以上であってもよく、95%以上であってもよい。
 また、第1金属層101は、例えば、第1金属または第1金属を含む合金で構成される。第1金属を含む合金は、炭素等の金属元素以外の元素を含んでいてもよい。第1金属を含む合金における金属元素以外の元素の含有率は、例えば、5%以下である。
 第1金属層101は、第1金属および第1金属を含む合金以外の材料を含んでいてもよい。第1金属層101における第1金属および第1金属を含む合金以外の材料の割合は、例えば、5%以下である。
 また、第1金属層101は、例えば、後述する第2金属および第3金属を含まない。
 第1金属は、例えば、アルミニウムまたは鉄である。これにより、第1金属層101が正極層に接合される場合に、第1金属層101における、リチウムとの合金化、および、正極層への溶出がより生じにくくなり、電池特性の低下を抑制できる。第1金属が鉄である場合、第1金属を含む合金としては、例えば、ステンレス鋼が挙げられる。
 第1金属層101の厚さは、例えば、3μm以上であり、5μm以上であってもよい。第1金属層101が3μm以上であることにより、機械的な強度が高くなり、製造工程等で破断などの不具合が生じにくく、集電機能も高くなりやすい。また、第1金属層101の厚さは、例えば、50μm以下であり、20μm以下であってもよい。第1金属層101の厚さが50μm以下であることにより、集電体100を用いた電池のエネルギー密度を高めることができる。
 [2.導電体層]
 導電体層102は、第1金属層101に対向して配置される。導電体層102は、第1金属層101と第2金属層103との間に位置する。導電体層102は、例えば、第1金属層101と第2金属層103との各々に接する。第1金属層101の表面の濡れ性の影響で、導電体層102が存在しない場合には、第1金属層101と第2金属層103との接触性が悪くなり結着性が低下しやすいが、導電体層102が存在することにより、第1金属層101と第2金属層103との結着性が向上する。その結果、集電体100の電気抵抗を下げることができるため、電池特性を高めることができる。
 導電体層102は、導電性炭素材料を含む。導電体層102は、例えば、導電性炭素材料を主成分として含む。導電性炭素材料は、導電性を有する炭素材料であれば特に限定されない。導電性炭素材料としては、例えば、アセチレンブラック、ケッチェンブラック(登録商標)、サーマルブラックおよびファーネスブラックなどのカーボンブラック、カーボンナノチューブおよびカーボンナノファイバーなどの炭素繊維、活性炭、グラファイト、ならびに、グラフェン等が挙げられる。導電体層102は、これらの導電性炭素材料のうちの1種類の材料のみ含んでいてもよく、2種類以上の材料を含んでいてもよい。また、導電体層102は、金属材料を含まない非金属導電体層であってもよい。
 導電体層102の厚さは、例えば、0.1μ以上2.0μm以下である。導電体層102の厚さが0.1μm以上であることにより、第1金属層101と第2金属層103との結着性を高め、電気抵抗を効果的に下げることができる。また、導電体層102の厚さが2.0μm以下であることにより、集電体100を用いた電池のエネルギー密度を高めることができる。
 また、導電体層102は、樹脂をさらに含んでいてもよい。樹脂としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴムおよびカルボキシメチルセルロース等が挙げられる。また、樹脂としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンより選択された2種以上の材料の共重合体が用いられうる。また、樹脂としては、エポキシ樹脂またはシリコーン樹脂等の熱または光によって硬化する硬化性樹脂が用いられてもよい。また、導電体層102は、これらの樹脂のうちの1種類の材料のみを含んでいてもよく、2種類以上の材料を含んでいてもよい。導電体層102が、導電性炭素材料と樹脂とを含む場合、導電体層102における導電性炭素材料の割合は、例えば、50%以上95%以下である。
 導電体層102の形成方法は特に限定されないが、例えば、導電性炭素材料および樹脂を含有するペーストを第1金属層101上に塗工する方法が挙げられる。ペーストの塗工方法は特に限定されず、一般的な塗工方法が挙げられる。また塗工したペーストを必要に応じて乾燥してもよい。また、樹脂が硬化性樹脂である場合には、塗工後に硬化処理を行う。また、導電性炭素材料を分散させた分散液を用いて、スピンコート法等によって第1金属層101上に導電性炭素材料を成膜することで導電体層102を形成してもよい。また、第1金属層101上に形成したポリイミド等の樹脂材料を炭化させることで導電体層102を形成してもよい。
 [3.第2金属層]
 第2金属層103は、例えば、蒸着等によって形成された金属薄膜である。第2金属層103は、導電体層102を挟んで第1金属層101に対向して配置される。第2金属層103は、導電体層102と第3金属層104との間に位置する。第2金属層103は、例えば、導電体層102と第3金属層104との各々と接する。
 第2金属層103は、第2金属を含む。第2金属層103は、例えば、第2金属を主成分として含む。
 また、第2金属層103は、例えば、第1金属および後述する第3金属を含まない。
 第2金属は、例えば、第1金属とは異なる金属である。具体的には、第2金属は、例えば、クロムまたはチタンである。これにより、硬度の高い第2金属層103を形成しやすい。
 また、第2金属層103は、例えば、第2金属で構成されるが、第2金属を含む合金で構成されていてもよい。第2金属層103は、第2金属および第2金属を含む合金以外の材料を含んでいてもよい。第2金属層103における第2金属および第2金属を含む合金以外の材料の割合は、例えば、5%以下である。
 第2金属層103の厚さは、例えば、0.1μm以上0.5μm以下である。第2金属層103の厚さが0.1μm以上であることにより、電池を形成する際に加圧した場合でも、負極層と第1金属層101とが接触しにくくなり、第1金属層101の劣化を抑制できる。また、第2金属層103が0.5μm以下であることにより、第2金属層103が剥離しにくくなる。また、第2金属層103が鱗状に形成されることが抑制され、第2金属層103を均一な厚みで形成しやすい。
 第2金属層103は、例えば、真空蒸着法などの蒸着法などにより導電体層102上に成膜することで形成される。このときに、導電体層102が存在することにより、第2金属層103の形成において良好な膜を得ることができる。具体的には、第1金属層101の表面に金属膜を形成する場合には濡れ性の影響で金属が偏在しやすいが、第2金属層103と第1金属層101との間に導電体層102が存在することで、導電体層102上に所定の均一な膜厚の第2金属層103を形成できる。
 また、例えば、第1金属層101と第2金属層103との硬度を比較すると、第2金属層103は、第1金属層101よりも硬い。例えば、第2金属層103のヤング率は、第1金属層101のヤング率よりも高い。
 [4.第3金属層]
 第3金属層104は、例えば、蒸着等によって形成された金属薄膜である。第3金属層104は、第2金属層103を挟んで導電体層102に対向して配置される。第3金属層104は、例えば、第2金属層103と接する。
 第3金属層104は、第3金属を含む。第3金属層104は、例えば、第3金属を主成分として含む。
 また、第3金属層104は、例えば、第1金属および第2金属を含まない。
 第3金属は、第1金属および第2金属とは異なる金属である。具体的には、第3金属は、例えば、ニッケルまたは銅である。これにより、第3金属層104が負極層に接合される場合に、第3金属層104における、リチウムとの合金化、および、負極層への溶出が生じにくく、電池特性の低下を抑制できる。また、ニッケルおよび銅は、金属の中でも電気抵抗が低く、集電体100の電気抵抗を下げることで電池特性を向上できる。
 また、第3金属層104は、例えば、第3金属で構成されるが、第3金属を含む合金で構成されていてもよい。第3金属層104は、第3金属および第3金属を含む合金以外の材料を含んでいてもよい。第3金属層104における第3金属および第3金属を含む合金以外の材料の割合は、例えば、5%以下である。
 このように、集電体100は、互いに異なる金属で構成される第2金属層103と第3金属層104とが積層された構成を有する。これにより、第2金属と第3金属とを適切に選択することで、負極層への接合の適合性と、機械的強度とを両立した集電体100を実現できる。また、蒸着等によって金属層を形成する場合、第2金属層103と第3金属層104とを形成することで、第2金属層103と第3金属層104との合計の厚さの金属層を1層の金属層として形成するよりも均一な厚みで形成できる。
 第3金属層104の厚さは、例えば、0.5μm以上1.5μm以下である。第3金属層104の厚さが0.5μm以上であることにより、負極層と第1金属層101とが接触しにくくなり、第1金属層101の劣化を抑制できる。また、第3金属層104の厚さが1.5μm以下であることにより、第3金属層104が剥離しにくくなる。また、第3金属層104が鱗状に形成されることが抑制され、第3金属層104を均一な厚みで形成しやすい。その結果、第3金属層104と負極層との接合の不具合が生じにくくなる。
 また、第3金属層104の厚さは、例えば、第2金属層103の厚さよりも大きい。これにより、銅またはニッケルを含む第3金属層104が厚くなるため、集電体100の電気抵抗が高くなりにくく、電池特性の低下を抑制できる。
 また、第2金属層103の厚さと第3金属層104の厚さとの合計は、第1金属層101の厚さよりも小さくてもよい。これにより、集電体100を用いた電池のエネルギー密度を高めることができる。さらに電池のエネルギー密度を高める観点からは、導電体層102の厚さと第2金属層103の厚さと第3金属層104の厚さとの合計は、第1金属層101の厚さよりも小さくてもよい。
 第3金属層104は、例えば、真空蒸着法などの蒸着法などにより第2金属層103上に成膜することで形成される。この際、第2金属層103が蒸着等により形成された金属薄膜である場合、第2金属層103の表面の濡れ性が安定しているため、第3金属層104の蒸着においては金属が偏在化する現象は発現しにくい。
 また、例えば、第2金属層103と第3金属層104との硬度を比較すると、第2金属層103は、第3金属層104よりも硬い。例えば、第2金属層103のヤング率は、第3金属層104のヤング率よりも高い。このように、第2金属層103の方が硬いことで、電池の形成時に電池の各層を圧縮する際に第2金属層103が破損しにくく、負極層が第1金属層101と接触しにくい。そのため、第1金属層101の劣化による電池特性の低下を抑制し、さらに、電池の形成時の圧縮の圧力を高めることできるため、電池のエネルギー密度を向上できる。また、負極層と接合される第3金属層104の方が柔らかいことで、負極層と第3金属層104との接触抵抗が高くなりにくい。また、柔らかい金属は、それ自体の電気抵抗が低い傾向があり、集電体100自体の電気抵抗を下げることができる。
 なお、集電体100は、積層される発電要素を直列接続するために使用されるとして説明したが、積層される発電要素を並列接続するために使用する場合、集電体は、第1金属層101の両側の主面のそれぞれに導電体層102、第2金属層103および第3金属層104が積層された構造を有していてもよい。
 [集電体の製造方法]
 次に、集電体100の製造方法について説明する。集電体100は、例えば、以下のようにして製造される。なお、集電体100の製造方法は、以下の例に限定されない。
 まず、第1金属層101として、第1金属または第1金属を含む合金で構成される金属箔を準備する。例えば、金属箔として、アルミニウム箔またはステンレス箔を準備する。そして、準備した金属箔の一方の面に、導電体層102の材料として、導電性炭素材料および樹脂を含有するペーストを塗工することで、第1金属層101上に導電体層102を形成する。
 次に、第1金属層101上に形成した導電体層102の第1金属層101側とは反対側の面に、真空蒸着法により、第2金属を成膜することで第2金属層103を形成する。導電性炭素材料は金属の濡れ性が良いため、第2金属層103を導電体層102上に蒸着することで、均一な厚みで第2金属を成膜できる。
 次に、導電体層102上に形成した第2金属層103の導電体層102側とは反対側の面に、真空蒸着法により、第3金属を成膜することで第3金属層104を形成する。蒸着膜である第2金属層103の表面は濡れ性が安定しているため、第3金属を蒸着する場合でも、第3金属が偏在化しにくい。また、電池の形成時に第1金属層101に負極層が接触しにくくなるように、所定の厚さで導電体層102上に金属層を成膜する際、第2金属層103および第3金属層104の2層を成膜することで、1層で成膜する場合と比べて、同じ厚さでも剥離等が生じにくい構造が得られる。
 以上の工程により、集電体100が得られる。このような方法で集電体100を製造することで、1枚の集電体として発電要素を直列接続するために用いても劣化を抑制できる集電体100を、金属層を構成する金属の偏在等が生じないように製造できる。よって、より電池特性の低下を抑制できる。
 (実施の形態2)
 次に、実施の形態2について説明する。具体的には、実施の形態2では、上述の実施の形態1に係る集電体100を用いた電池について説明する。本実施の形態に係る電池は、1つまたは複数の発電要素を備える電池である。
 [電池の構成]
 まず、1つの発電要素を備える電池について説明する。図2は、本実施の形態に係る電池300の概略構成を示す断面図である。
 図2に示されるように、電池300は、集電体100と、正極層201、固体電解質層202および負極層203を有する発電要素200と、集電体110と、を備える。電池300は、例えば、全固体電池である。電池300では、集電体100、正極層201、固体電解質層202、負極層203および集電体110が下側からこの順でz軸方向に沿って積層された構造を有する。集電体100、正極層201、固体電解質層202、負極層203および集電体110は、例えば、平面視において、同じ形状であり、輪郭が一致している。
 電池300の主面の面積は、例えば、スマートフォンまたはデジタルカメラなどの携帯電子機器用の電池としては、1cm以上100cm以下である。また、電池300の主面の面積は、電気自動車などの大型移動機器の電源用の電池としては、100cm以上1000cm以下であってもよい。
 電池300の形状は、例えば、積層方向の長さが最も短い扁平な直方体状である。電池300の形状は、特に制限されず、立方体状、円柱状、四角錘台状、円錐台状または多角形柱状等の他の形状であってもよい。電池300の平面視形状は、例えば、矩形である。電池300の平面視形状は、正方形、平行四辺形またはひし形などの他の四角形であってもよく、六角形または八角形などの他の多角形であってもよく、円または楕円であってもよい。
 発電要素200は、集電体100上に位置し、集電体100と隣り合うように積層される第1発電要素の一例である。発電要素200は、集電体100と集電体110との間に位置する。なお、電池300は、少なくとも1つの発電要素200を備えていればよく、複数の発電要素200を備えていてもよい。複数の発電要素200を備える電池については後述する。
 正極層201は、負極層203に対向して配置される。また、正極層201は、集電体100と固体電解質層202との間に位置する。正極層201は、固体電解質層202および導電体層102を介さずに集電体100の第1金属層101と対向している。正極層201は、例えば、第1金属層101と固体電解質層202との各々に接している。正極層201は、集電体100の第1金属層101に接合されている。なお、正極層201は、導電性炭素材料を含む導電性の接続層等を介して第1金属層101に接合されていてもよい。
 正極層201は、少なくとも正極活物質を含む。正極層201は、正極活物質と固体電解質等の他の材料とを含む正極合剤層であってもよい。
 正極層201に含まれる正極活物質は、例えば、金属イオンを吸蔵および放出する材料である。正極活物質は、例えば、リチウムイオンを吸蔵および放出する材料であってもよい。正極層201に含まれる正極活物質として、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシフッ化物、遷移金属オキシ硫化物または遷移金属オキシ窒化物などが用いられうる。特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、製造コストを安くでき、平均放電電圧を高めることができる。正極層201に用いられる固体電解質については後述する。
 正極層201の厚さは、10μm以上500μm以下であってもよい。正極層201の厚さが10μm以上であることにより、十分な電池のエネルギー密度を確保しやすい。正極層201の厚さが500μm以下であることにより、高出力での動作が容易になりやすい。
 負極層203は、正極層201に対向して配置される。また、負極層203は、集電体110と固体電解質層202との間に位置する。負極層203は、例えば、集電体110と固体電解質層202との各々に接している。負極層203は、例えば、集電体110に接合されている。なお、負極層203は、導電性炭素材料を含む導電性の接続層等を介して集電体110に接合されていてもよい。
 負極層203は、少なくとも負極活物質を含む。負極層203は、負極活物質と固体電解質等の他の材料とを含む負極合剤層であってもよい。
 負極層203に含まれる負極活物質は、例えば、金属イオンを吸蔵および放出する材料である。負極活物質は、例えば、リチウムイオンを吸蔵および放出する材料であってもよい。負極層203に含まれる負極活物質としては、例えば、リチウム金属、リチウムと合金化反応を示す金属もしくは合金、炭素材料、遷移金属酸化物または遷移金属硫化物などが用いられうる。炭素材料としては、例えば、黒鉛、または、ハードカーボンもしくはコークスなどの非黒鉛系炭素材料が用いられうる。遷移金属酸化物としては、例えば、CuOまたはNiOなどが用いられうる。遷移金属硫化物としては、例えば、CuSで表される硫化銅などが用いられうる。リチウムと合金化反応を示す金属もしくは合金としては、例えば、ケイ素化合物、錫化合物またはアルミニウム化合物とリチウムの合金などが用いられうる。炭素材料を用いた場合は、製造コストを安くでき、かつ、平均放電電圧を高めることができる。負極層203に用いられる固体電解質については後述する。
 負極層203の厚さは、10μm以上500μm以下であってもよい。なお、負極層203の厚さが10μm以上であることにより、十分な電池のエネルギー密度を確保しやすい。負極層203の厚さが500μm以下であることにより、高出力での動作が容易になりやすい。
 正極層201と負極層203とのうち少なくとも1つは、電子導電性を高める目的で、導電助剤を含んでもよい。導電助剤としては、例えば、天然黒鉛もしくは人造黒鉛のグラファイト、アセチレンブラックもしくはケッチェンブラックなどのカーボンブラック、炭素繊維もしくは金属繊維などの導電性繊維、フッ化カーボンもしくはアルミニウムなどの金属粉末、酸化亜鉛もしくはチタン酸カリウムなどの導電性ウィスカー、酸化チタンなどの導電性金属酸化物、または、ポリアニリン、ポリピロールもしくはポリチオフェンなどの導電性高分子化合物などが用いられうる。炭素材料の導電助剤を用いた場合、低コスト化を図ることができる。
 固体電解質層202は、正極層201と負極層203との間に位置する。固体電解質層202は、正極層201と負極層203との各々に接する。
 固体電解質層202は、少なくとも固体電解質を含む。固体電解質層202に用いられる固体電解質については後述する。
 固体電解質層202の厚さは、1μm以上200μm以下であってもよい。なお、固体電解質層202の厚さが1μm以上であることにより、正極層201と負極層203との短絡を抑制できる。固体電解質層202の厚さが200μm以下であることにより、高出力での動作が容易になりやすい。
 正極層201、負極層203および固体電解質層202に含まれる固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、ハロゲン化物固体電解質、高分子固体電解質または錯体水素化物固体電解質などが用いられうる。固体電解質は、例えば、リチウムイオン伝導性を有する。
 硫化物固体電解質としては、例えば、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、Li10GeP12などが用いられうる。また、これらに、LiX(XはF、Cl、BrおよびIのいずれか)、LiO、MO、LiMO(MはP、Si、Ge、B、Al、Ga、In、FeおよびZnのいずれかであり、p、qおよびrはそれぞれ自然数)などが、添加されてもよい。
 酸化物固体電解質としては、例えば、LiTi(POおよびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO系のペロブスカイト型固体電解質、Li14ZnGe16、LiSiO、LiGeOおよびその元素置換体を代表とするLISICON型固体電解質、LiLaZr12およびその元素置換体を代表とするガーネット型固体電解質、LiNおよびそのH置換体、LiPOおよびそのN置換体、LiBO、LiBOなどのLi-B-O化合物をベースとして、LiSO、LiCOなどが添加されたガラスまたはガラスセラミックスなどが用いられうる。
 ハロゲン化物固体電解質としては、例えば、組成式Liαβγにより表され、αとβとγとは、0より大きい値であり、かつ、Mは、Li以外の金属元素と半金属元素とのうちの少なくとも1つを含み、かつ、Xは、Cl、Br、IおよびFからなる群より選ばれる1種または2種以上の元素である材料が用いられうる。ここで、半金属元素は、B、Si、Ge、As、SbおよびTeである。金属元素とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、上記の半金属元素およびC、N、P、O、S、Seを除く全ての13族から16族中に含まれる元素である。すなわち、ハロゲン化合物と無機化合物を形成した際に、カチオンとなりうる元素群である。ハロゲン化物固体電解質として、例えば、LiYX、LiMgX、LiFeX、Li(Al、Ga、In)X、Li(Al、Ga、In)X、など(XはF、Cl、BrおよびIのいずれか)が用いられうる。
 錯体水素化物固体電解質としては、例えば、LiBH-LiIまたはLiBH-Pなどが用いられうる。
 高分子固体電解質としては、例えば、高分子化合物とリチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。高分子化合物がエチレンオキシド構造を有することで、リチウム塩を多く含有することができ、イオン導電率をより高めることができる。リチウム塩としては、例えば、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)およびLiC(SOCFなどが挙げられる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が使用されうる。
 正極層201と固体電解質層202と負極層203とのうち少なくとも1つは、粒子同士の密着性を向上する目的で、結着剤を含んでもよい。結着剤は、電極を構成する材料の結着性を向上するために、用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴムおよびカルボキシメチルセルロースなどが挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸およびヘキサジエンより選択された2種以上の材料の共重合体が用いられうる。また、これらのうちから選択された2種以上が混合されて、結着剤として用いられてもよい。
 集電体100は、発電要素200の正極層201側に、発電要素200と隣り合うように積層される。具体的には、集電体100の第1金属層101は、発電要素200の固体電解質層202および集電体100の導電体層102を介さずに発電要素200の正極層201に対向している。第1金属層101は、例えば、正極層201に接している。第1金属層101は、正極層201および固体電解質層202を介して発電要素200の負極層203に対向し、負極層203には接していない。第1金属層101は、上述のように、ニッケルまたは銅である第3金属とは異なる第1金属を含むため、正極層201と接合されても劣化等が生じにくい。よって、集電体100を用いた電池300の電池特性の低下を抑制できる。
 また、集電体100の第1金属層101が正極層201に接合されるため、集電体100の第3金属層104は、電池300の最下部で露出して、他の発電要素と接合可能である。また、第3金属層104は、ニッケルまたは銅である第3金属を含むため、負極層と接合されても劣化が生じにくい。そのため、電池300は、別の集電体を間に挟むことなく負極層と接合して、他の発電要素と電気的に直列接続しても、電池特性が低下しにくい。よって、電池300と他の発電要素とを電気的に直列接続する場合に、用いられる集電体の数を減らしてエネルギー密度を高めることができる。
 集電体110は、発電要素200の負極層203側に、発電要素200と隣り合うように積層される。具体的には、集電体110は、発電要素200の固体電解質層202を介さずに発電要素200の負極層203に対向している。集電体110は、例えば、負極層203に接している。本実施の形態において、集電体110は、負極層203と電子の授受を行う負極集電体である。
 集電体110の材料としては、公知の負極集電体用の材料が用いられうる。集電体110は、例えば、銅、ニッケルもしくは鉄、または、銅、ニッケルおよび鉄のうちの少なくとも1つを含む合金で構成される金属箔である。集電体110は、例えば、集電体100とは異なり、積層構造を有さず、1枚の金属箔からなる集電体である。
 集電体110の厚さは、例えば、3μm以上50μm以下である。
 なお、電池300は、集電体110の代わりに、集電体100を備えていてもよい。つまり、発電要素200は、2つの集電体100の間に位置していてもよい。この場合、集電体100の第3金属層104が負極層203に接合されるように、発電要素200と集電体100とが積層される。
 電池300は、発電要素200の保護等のために、外装体に収容されてもよい。外装体は、金属箔の片面または両面に樹脂フィルムを有する樹脂ラミネート金属箔であってよい。外装体の具体例としては、金属箔の片方の面に機械的強度を付与するための樹脂フィルムを積層し、且つ、反対側の面にヒートシール性を有する樹脂フィルムを積層して成る構成の樹脂ラミネート金属箔が例示される。
 樹脂ラミネート金属箔における金属箔は、例えば、アルミニウムまたはアルミニウム合金等から成る箔であってよい。機械的強度を維持するための樹脂フィルムは、例えば、ポリエステルまたはナイロン等から成るフィルムであってよい。ヒートシール性を有する樹脂フィルムは、例えば、ポリオレフィン等から成るフィルムであってよく、具体的には例えば、ポリエチレンまたはポリプロピレン等から成るフィルムであってよい。
 外装体を構成するラミネートフィルムは、片面または両面がエンボス加工を施されたものであってもよい。
 次に、複数の発電要素を備える電池について説明する。図3は、本実施の形態に係る電池400の概略構成を示す断面図である。以下の電池400の説明では、電池300との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図3に示されるように、電池400は、複数の集電体100と、複数の発電要素200と、集電体110とを備える。電池400は、電池300に対して集電体100と発電要素200とをさらに積層した構成である。なお、以下の説明では、電池400が備える複数の発電要素200を、上側から並ぶ順で発電要素200a、発電要素200bおよび発電要素200cと区別して表現する場合がある。また、電池400が備える複数の集電体100を、上側から並ぶ順で集電体100a、集電体100bおよび集電体100cと区別して表現する場合がある。発電要素200aは第1発電要素の一例であり、発電要素200bは集電体100aを介して第1発電要素と隣り合うように積層される第2発電要素の一例である。
 隣り合う発電要素200の間には、集電体100が配置される。電池400においては、複数の集電体100のうち、集電体100aおよび集電体100bは、それぞれ、隣り合う発電要素200の間に位置する。具体的には、集電体100aは、隣り合う発電要素200aと発電要素200bとの間に位置し、集電体100bは、隣り合う発電要素200bと発電要素200cとの間に位置する。また、集電体100cは、複数の発電要素200のうちの最も下側に位置する発電要素200cの下側に位置する。
 なお、電池400の最上部および最下部それぞれに位置する集電体は、積層構造を有する集電体100が用いられてもよく、積層構造を有さない金属箔等からなる集電体が用いられてもよい。例えば、最上部に位置する集電体110の代わりに、集電体100が配置されてもよく、最下部に位置する集電体100cの代わりに、アルミニウム箔等の金属箔からなる集電体が配置されていてもよい。
 複数の発電要素200は、それぞれの上側からの積層順が同じになるように積層されている。そのため、複数の発電要素200のそれぞれは、集電体100によって互いに接続されることで、電気的に直列接続される。これにより、電池400の電圧を高めることができる。また、隣り合う発電要素200の間に共通の集電体100が配置されるため、電池400に用いられる集電体の数を減らすことができる。その結果、発電に寄与しない集電体の数が減ることによるエネルギー密度の向上、および、集電体同士の接続が不要になることによる電池特性の低下の抑制が実現できる。
 電池400において、複数の発電要素200の数は、3個であるが、特に制限されず、2個であってもよく、4個以上であってもよい。複数の発電要素200の数が増加するほど、電池の電圧を高めることができる。電池を製造する際の取り扱いの容易さ、電池を使用する機器の積載スペースおよび電池を使用する機器の制御電圧などを勘案し、任意の数が設定されうる。例えば、2個以上500個以下の発電要素200が電気的に直列接続されてもよい。
 集電体100aおよび発電要素200a、集電体100bおよび発電要素200b、ならびに、集電体100cおよび発電要素200cのそれぞれの位置関係は、上述した電池300における集電体100および発電要素200の位置関係と同じである。
 集電体100aの第3金属層104は、発電要素200bの固体電解質層202および集電体100aの第2金属層103を介さずに発電要素200bの負極層203と対向している。集電体100aの第3金属層104は、例えば、発電要素200bの負極層203に接している。発電要素200bの負極層203は、例えば、集電体100aの第3金属層104に接合されている。なお、発電要素200bの負極層203は、導電性炭素材料を含む導電性の接続層等を介して集電体100aの第3金属層104に接合されていてもよい。
 上述のように、第3金属層104は、ニッケルまたは銅である第3金属を含むため、負極層203と接合されても劣化等が生じにくい。よって、集電体100を用いた電池400の電池特性の低下を抑制できる。なお、集電体100bと発電要素200cとについても、上記と同じことが言える。
 以上のように、電池400では、隣り合う発電要素200aと発電要素200bとが集電体100aを介して積層される。また、発電要素200aの正極層201と集電体100aの第1金属層101とが隣り合うように配置され、発電要素200bの負極層203と集電体100aの第3金属層104とが隣り合うように配置される。これにより、発電要素200aと発電要素200bとが電気的に直列に接続される。このように、発電要素200aと発電要素200bとが1枚の集電体100aを介して積層されるため、用いられる集電体の数を減らしてエネルギー密度の高い電池を実現できる。また、集電体100aの第1金属層101は、他の層を介さずに発電要素200aの正極層201と積層されるが、ニッケルまたは銅である第3金属とは異なる第1金属を含むため、劣化等が生じにくい。また、集電体100aの第3金属層104は、他の層を介さずに発電要素200bの負極層203と積層されるが、ニッケルまたは銅である第3金属を含むため、劣化等が生じにくい。よって、集電体100aを用いた電池400の電池特性の低下を抑制できる。
 [電池の製造方法]
 次に、電池300および電池400の製造方法について説明する。電池300および電池400は、例えば、以下のようにして製造される。なお、電池300および電池400の製造方法は、以下の例に限定されない。
 まず、集電体100上に正極層201を形成する。具体的には、正極活物質と、溶剤と、必要に応じて固体電解質、結着剤および導電助剤のうちの少なくとも1つとを混合したスラリーを作製する。そして、集電体100の第1金属層101における導電体層102側とは反対側の面に、作製したスラリーをダイコート塗工する。塗工方法は特に限定されるものでなく、一般的な塗工方法が用いられうる。その後、スラリーを乾燥することで、所定の厚さおよび形状の正極層201が得られる。また、必要に応じて乾燥後に正極層201を加圧してもよい。
 次に、上記で形成された正極層201上に固体電解質層202を形成する。具体的には、固体電解質と、溶剤と、必要に応じて結着剤とを混合したスラリーを作製する。そして、上記で形成された正極層201における集電体100側とは反対側の面に、作製したスラリーをダイコート塗工する。この場合の塗工方法も限定されるものでなく、一般的な塗工方法が用いられうる。その後、スラリーを乾燥することで、所定の厚さの固体電解質層202が得られる。また、必要に応じて乾燥後に固体電解質層202を加圧してもよい。
 次に、上記で形成された固体電解質層202上に負極層203を形成する。具体的には、負極活物質と、溶剤と、必要に応じて固体電解質、結着剤および導電助剤のうちの少なくとも1つとを混合したスラリーを作製する。そして、上記で形成された固体電解質層202における正極層201側とは反対側の面に、作製したスラリーをダイコート塗工する。この場合の塗工方法も限定されるものでなく、一般的な塗工方法が用いられうる。その後、スラリーを乾燥することで、所定の厚さの負極層203が得られる。必要に応じて乾燥後に負極層203を加圧してもよい。
 以上の工程により、集電体100に発電要素200が積層された積層板が得られる。得られた積層板は、必要に応じて所定の寸法に裁断してもよい。裁断方法は特に限定されるものではなく、刃物を用いたせん断加工等の一般的な裁断方法が用いられうる。
 積層板は、接続したい発電要素200の数に応じた数が作製される。作製する積層板の数は、特に制限されないが、例えば、電池300の場合は1つであり、電池400の場合は3つである。
 次に、電池400を製造する場合には、発電要素200を電気的に直列に接続するように、作製した積層板を必要数積層する。つまり、隣り合う積層板の、一方の集電体100の第3金属層104と他方の発電要素200の負極層203とが対面するように、複数の積層板を積層する。そして、最上部の負極層203上に集電体110を配置することで電池400が得られる。このとき、必要に応じて得られた電池400を加圧してもよい。また、必要に応じて、電池400の上面および下面からの電気の取り出し端子を接続してもよく、得られた電池400を外装体に収容してもよい。取り出し端子および外装体の形状などは、特に制限されるものではない。電池300は、上記方法において、積層板を積層せずに、1つの積層板の負極層203上に集電体110を配置することで製造される。
 (他の実施の形態)
 以上、本開示に係る電池について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 例えば、上記実施の形態では、集電体100は、第1金属層101、導電体層102、第2金属層103および第3金属層104で構成されていたが、これに限らない。集電体100は、第1金属層101、導電体層102、第2金属層103および第3金属層104以外の層を備えていてもよい。例えば、第1金属層101、導電体層102、第2金属層103および第3金属層104のいずれか2つの隣り合う層の間に、別の金属層または導電体層が存在してもよい。
 また、例えば、上記実施の形態では、電池300では、集電体100の第1金属層101は、発電要素200の固体電解質層202および集電体100の導電体層102を介さずに発電要素200の正極層201に対向していたがこれに限らない。集電体100の第3金属層104が、発電要素200の固体電解質層202および集電体100の第2金属層103を介さずに発電要素200の負極層203に対向していてもよい。例えば、第3金属層104が、負極層203に接するように、集電体100と発電要素200とが積層されていてもよい。この場合でも、負極層203にニッケルまたは銅を含む第3金属層104が接合されるため、集電体100の劣化が抑制される。また、電池300は、別の集電体を間に挟むことなく集電体100の第1金属層101を他の発電要素の正極層と接合しても電池特性が低下しにくい。
 また、例えば、上記実施の形態では、電池400では、全ての発電要素200が電気的に直列に接続されていたが、これに限らない。例えば、電池400を互いに積層順が反対になるように積層して、直列接続された発電要素200をさらに並列接続してもよい。
 また、上記の実施の形態および変形例は、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示に係る集電体および電池は、例えば、全固体リチウム二次電池などの様々な電池に利用されうる。
 100、100a、100b、100c、110 集電体
 101 第1金属層
 102 導電体層
 103 第2金属層
 104 第3金属層
 200、200a、200b、200c 発電要素
 201 正極層
 202 固体電解質層
 203 負極層
 300、400 電池

Claims (12)

  1.  第1金属を含む第1金属層と、
     導電性炭素材料を含む導電体層と、
     第2金属を含む第2金属層と、
     前記第1金属および前記第2金属とは異なる第3金属を含む第3金属層と、
    がこの順で積層された構造を有し、
     前記第3金属は、ニッケルまたは銅である、
     集電体。
  2.  前記第1金属は、アルミニウムまたは鉄である、
     請求項1に記載の集電体。
  3.  前記第2金属は、チタンまたはクロムである、
     請求項1または2に記載の集電体。
  4.  前記第2金属層は、前記第3金属層よりも硬い、
     請求項1から3のいずれか1項に記載の集電体。
  5.  前記第2金属層の厚さと前記第3金属層の厚さとの合計は、前記第1金属層の厚さよりも小さい、
     請求項1から4のいずれか1項に記載の集電体。
  6.  前記第3金属層の厚さは、前記第2金属層の厚さよりも大きい、
     請求項1から5のいずれか1項に記載の集電体。
  7.  前記第1金属層の厚さは、3μm以上50μm以下である、
     請求項1から6のいずれか1項に記載の集電体。
  8.  前記第2金属層の厚さは、0.1μm以上0.5μm以下である、
     請求項1から7のいずれか1項に記載の集電体。
  9.  前記第3金属層の厚さは、0.5μm以上1.5μm以下である、
     請求項1から8のいずれか1項に記載の集電体。
  10.  前記導電体層の厚さは、0.1μm以上2.0μm以下である、
     請求項1から9のいずれか1項に記載の集電体。
  11.  請求項1から10のいずれか1項に記載の集電体と、
     正極層、前記正極層に対向して配置される負極層、および、前記正極層と前記負極層との間に位置する固体電解質層を有する少なくとも1つの発電要素、とを備え、
     前記少なくとも1つの発電要素は、前記集電体と隣り合うように積層される第1発電要素を含み、
     前記集電体の前記第1金属層は、前記第1発電要素の前記固体電解質層および前記集電体の前記導電体層を介さずに前記第1発電要素の前記正極層と対向している、
     電池。
  12.  前記少なくとも1つの発電要素は、前記集電体を介して前記第1発電要素と隣り合うように積層される第2発電要素をさらに含み、
     前記集電体の前記第3金属層は、前記第2発電要素の前記固体電解質層および前記集電体の前記第2金属層を介さずに前記第2発電要素の前記負極層と対向している、
     請求項11に記載の電池。
PCT/JP2022/019224 2021-07-12 2022-04-28 集電体および電池 WO2023286423A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023535148A JPWO2023286423A1 (ja) 2021-07-12 2022-04-28
CN202280045808.4A CN117581402A (zh) 2021-07-12 2022-04-28 集电体和电池
US18/540,976 US20240113307A1 (en) 2021-07-12 2023-12-15 Current collector and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021114869 2021-07-12
JP2021-114869 2021-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/540,976 Continuation US20240113307A1 (en) 2021-07-12 2023-12-15 Current collector and battery

Publications (1)

Publication Number Publication Date
WO2023286423A1 true WO2023286423A1 (ja) 2023-01-19

Family

ID=84919282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019224 WO2023286423A1 (ja) 2021-07-12 2022-04-28 集電体および電池

Country Status (4)

Country Link
US (1) US20240113307A1 (ja)
JP (1) JPWO2023286423A1 (ja)
CN (1) CN117581402A (ja)
WO (1) WO2023286423A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004363A (ja) * 2007-05-24 2009-01-08 Nissan Motor Co Ltd 非水溶媒二次電池用集電体並びにこれを用いた電極および電池
JP2010092664A (ja) * 2008-10-06 2010-04-22 Nissan Motor Co Ltd 双極型二次電池
JP2013026192A (ja) * 2011-07-26 2013-02-04 Nissan Motor Co Ltd 双極型リチウムイオン二次電池用集電体
CN108390068A (zh) * 2018-02-09 2018-08-10 合肥国轩高科动力能源有限公司 一种双极性集流体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004363A (ja) * 2007-05-24 2009-01-08 Nissan Motor Co Ltd 非水溶媒二次電池用集電体並びにこれを用いた電極および電池
JP2010092664A (ja) * 2008-10-06 2010-04-22 Nissan Motor Co Ltd 双極型二次電池
JP2013026192A (ja) * 2011-07-26 2013-02-04 Nissan Motor Co Ltd 双極型リチウムイオン二次電池用集電体
CN108390068A (zh) * 2018-02-09 2018-08-10 合肥国轩高科动力能源有限公司 一种双极性集流体及其制备方法

Also Published As

Publication number Publication date
JPWO2023286423A1 (ja) 2023-01-19
US20240113307A1 (en) 2024-04-04
CN117581402A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
US10991947B2 (en) Battery
US10985402B2 (en) Battery
US20160308243A1 (en) Electrochemical cell with solid and liquid electrolytes
US10985405B2 (en) Battery
US11990581B2 (en) Battery including member having end region with Young's modulus smaller than Young's modulus of central region
US10236535B2 (en) Battery
US20230090463A1 (en) Battery
US20220263205A1 (en) Battery
WO2023286423A1 (ja) 集電体および電池
WO2023286424A1 (ja) 集電体および電池
JP2019216071A (ja) 固体電池用線条正極、固体電池、固体電池用線条正極の製造方法、および固体電池の製造方法
JP7312969B2 (ja) 電池
JP2020095852A (ja) 全固体電池
WO2023282156A1 (ja) 電池
US20240154105A1 (en) Battery and method for producing the same
WO2023074845A1 (ja) リチウム二次電池
US20230028245A1 (en) Solid state battery
KR20240070450A (ko) 전고체 이차 전지
KR20160024088A (ko) 이차전지용 전극조립체
JP2023004616A (ja) 全固体二次電池、積層全固体二次電池
JP2023037042A (ja) 非水電解質二次電池及びその製造方法
CN117795726A (zh) 全固体电池
JP2020098696A (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535148

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280045808.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE