KR101534883B1 - 마스크 트리밍 - Google Patents

마스크 트리밍 Download PDF

Info

Publication number
KR101534883B1
KR101534883B1 KR1020107004894A KR20107004894A KR101534883B1 KR 101534883 B1 KR101534883 B1 KR 101534883B1 KR 1020107004894 A KR1020107004894 A KR 1020107004894A KR 20107004894 A KR20107004894 A KR 20107004894A KR 101534883 B1 KR101534883 B1 KR 101534883B1
Authority
KR
South Korea
Prior art keywords
mask
deposition
etching
gas
layer
Prior art date
Application number
KR1020107004894A
Other languages
English (en)
Other versions
KR20100059843A (ko
Inventor
수프리야 고얄
동호 허
지수 김
에스 엠 레자 사드자디
Original Assignee
램 리써치 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 램 리써치 코포레이션 filed Critical 램 리써치 코포레이션
Publication of KR20100059843A publication Critical patent/KR20100059843A/ko
Application granted granted Critical
Publication of KR101534883B1 publication Critical patent/KR101534883B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

유전체층을 에칭하는 방법이 제공된다. 마스크 피처를 갖는 패터닝된 마스크가 유전체층상에 형성된다. 마스크는 마스크 피처의 분리된 영역 및 밀집 영역을 갖는다. 마스크는 복수의 사이클에 의해 트리밍되고, 여기서, 각 사이클은 증착층을 증착하고, 증착층과 패터닝된 마스크를 선택적으로 에칭하는 것을 포함한다. 선택적 에칭은 마스크의 밀집 영역에 대해 마스크의 분리된 영역을 선택적으로 트리밍한다. 유전체층은 이렇게 트리밍된 마스크를 사용하여 에칭된다. 마스크가 제거된다.

Description

마스크 트리밍{MASK TRIMMING}
본 발명은 반도체 디바이스의 형성에 관한 것이다. 더욱 구체적으로는, 본 발명은 유전체층에 대한 에칭 프로세스에 관한 것이다.
반도체 웨이퍼 프로세싱 동안, 반도체 디바이스의 피처들은 널리 공지된 패터닝 및 에칭 프로세스를 사용하여 웨이퍼에서 정의된다. 이들 프로세스 (포토리소그래피) 에서, 포토레지스트 (PR) 재료가 웨이퍼상에 증착되고, 그 후, 레티클에 의해 필터링된 광에 노광된다. 레티클은 일반적으로, 광이 레티클을 통해 전파하는 것을 차단하는 예시적인 피처 지오메트리로 패터닝된 유리판이다.
레티클을 통과한 이후에, 광은 포토레지스트 재료의 표면과 접촉한다. 광은 현상액이 포토레지스트 재료의 일부를 제거할 수 있도록 포토레지스트 재료의 화학적 조성을 변화시킨다. 포지티브 포토레지스트 재료의 경우에서, 노광된 영역이 제거되며, 네거티브 포토레지스트 재료의 경우에서는, 노광되지 않은 영역이 제거된다. 그 후, 웨이퍼는 포토레지스트 재료에 의해 더 이상 보호되지 않는 영역들로부터 기반 재료를 제거하도록 에칭되어서, 웨이퍼에 원하는 피처를 정의한다.
193 nm 의 파장을 갖는 불화-아르곤 (ArF) 엑시머 레이저 (ArF 리소그래피 기술) 가, 0.04 ㎛ 아래의 디바이스의 제조를 위해 사용되었다. 이러한 침지 리소그래피 기술은 110 nm 노드 아래의 프로세스를 가능하게 한다. 가장 고도로 집적된 회로에서의 이러한 작은 피처는 패터닝 이미지의 초점 심도 (depth-of-field) 제한으로 인해 더 높은 분해능 및 이에 따른 더 얇은 포토레지스트를 요구한다. 예를 들어, Bitline 과 같은 특정한 DRAM 프로세스에 대한 ArF 리소그래피는, 100 nm 보다 작은 두께를 갖는 매우 얇은 포토레지스트를 사용한다. 포토레지스트 재료는 또한 더 소프트하고 약하며, 이러한 얇은 포토레지스트는 포토레지스트의 패터닝 이후에, 바닥 반사방지 코팅 (BARC) 및 실리콘 산질화물 (SiON) 층과 같은 하나 이상의 반사방지 코팅 (ARC) 층에 대한 플라즈마 에칭 프로세스 동안 쉽게 에칭되는 결점을 갖는다. 따라서, 목표 임계 치수 (CD) 를 달성하면서, "에칭 버짓 (etch budget)" 을 관리하고 포토레지스트의 표면 열화를 방지하는 것이 단파장 리소그래피에서 주요 과제 중 하나이었다. 여기서, "에칭 버짓" 은 통상적으로, 노광된 구조 (이러한 경우에서는 포토레지스트) 가 과도한 손상없이 에천트에 영향을 받을 수 있는 시간량이다.
또한, 이상적인 에칭 프로세스는 마스크상의 패턴을 에칭될 기반층으로 정확하게 전사해야 한다. 그러나, 에칭 프로세스가 목표 재료를 화학적으로 또한 물리적으로 제거하기 때문에, 에칭 프로세스는 다양한 환경적 파라미터에 매우 민감하다. 종래의 에칭 제어에서의 이러한 팩터 중 하나가, 에칭의 특징들이 패턴 (피처) 의 사이즈와 밀도의 변동, 즉, 에칭될 층 (에칭 층) 의 "로딩" 의 변동하에서 서로 다른 마이크로-로딩 효과 (micro-loading effect) 이다.
전술한 바를 달성하기 위해 그리고 본 발명의 목적에 따르면, 유전체층을 에칭하는 방법이 제공된다. 마스크 피처를 갖는 패터닝된 마스크가 유전체층상에 형성된다. 마스크는 마스크 피처의 분리된 영역 및 밀집 영역을 갖는다. 마스크는 복수의 사이클 만큼 트리밍되며, 여기서, 각 사이클은 증착층을 증착하는 단계 및 증착층 및 패터닝된 마스크를 선택적으로 에칭하는 단계를 포함한다. 선택적 에칭은 마스크의 밀집 영역에 대해 마스크의 분리된 영역을 선택적으로 트리밍한다. 유전체층은 그렇게 트리밍된 마스크를 사용하여 에칭된다.
본 발명의 다른 표현에서, 마스크 피처를 갖는 패터닝된 마스크 아래에 형성된 유전체층을 에칭하는 장치가 제공된다. 마스크는 마스크 피처의 분리된 영역 및 밀집 영역을 갖는다. 이 장치에는, 플라즈마 프로세싱 챔버 인클로저를 형성하는 챔버 벽, 플라즈마 프로세싱 챔버 인클로저내에서 기판을 지지하는 기판 지지부, 플라즈마 프로세싱 챔버 인클로저에서 압력을 조절하는 압력 조절기, 플라즈마 프로세싱 챔버 인클로저에 전력을 제공하며, 플라즈마를 유지하기 위한 적어도 하나의 전극, 가스를 플라즈마 프로세싱 챔버 인클로저에 제공하는 가스 인렛, 및 플라즈마 프로세싱 챔버 인클로저로부터 가스를 배기하는 가스 아웃렛을 포함하는 플라즈마 프로세싱 챔버가 제공된다. 가스 소스는 가스 인렛과 유체 접속하며, 여기서, 가스 소스는 마스크-트리밍 증착 가스 소스, 마스크-트리밍 에칭 가스 소스, 및 유전체층 (에칭층) 에칭 가스 소스를 포함한다. 제어기는, 가스 소스 및 적어도 하나의 전극에 제어가능하게 접속된다. 제어기는 적어도 하나의 프로세서 및 컴퓨터 판독가능 매체를 포함한다. 컴퓨터 판독가능 매체는 복수의 사이클을 포함하는 마스크를 트리밍하는 컴퓨터 판독가능 코드를 포함하며, 여기서, 각 사이클에 대한 컴퓨터 판독가능 코드는, 마스크-트리밍 증착 가스 소스로부터 증착 가스를 제공하는 컴퓨터 판독가능 코드, 증착 가스로부터 플라즈마를 생성하는 컴퓨터 판독가능 코드, 마스크-트리밍 증착 가스 소스로부터 증착 가스를 중지시키는 컴퓨터 판독가능 코드, 마스크-트리밍 에칭 가스 소스로부터 에칭 가스를 제공하는 컴퓨터 판독가능 코드, 마스크-트리밍 에칭 가스로부터 플라즈마를 생성하는 컴퓨터 판독가능 코드, 및 마스크-트리밍 에칭 가스 소스로부터 마스크-트리밍 에칭 가스를 중지시키는 컴퓨터 판독가능 코드를 포함한다. 컴퓨터 판독가능 매체는, 유전체층을 에칭하는 컴퓨터 판독가능 코드 및 마스크 (및 임의의 반사방지층) 를 제거하는 컴퓨터 판독가능 코드를 더 포함한다.
본 발명의 이들 및 다른 특징들은 다음의 도면과 함께 본 발명의 상세한 설명에서 더욱 상세히 후술될 것이다.
본 발명은, 동일한 참조 부호가 유사한 엘리먼트를 지칭하는 첨부한 도면의 도면에서 제한이 아닌 예로서 예시된다.
도 1 은, 본 발명의 일 실시형태에서 사용될 수도 있는 프로세스의 하이 레벨 플로우차트이다.
도 2a-d 는, 본 발명의 일 실시형태에 따라 프로세싱된 스택의 개략 단면도이다.
도 3 은, 본 발명의 일 실시형태에 따라 마스크를 트리밍하는 단계의 더욱 상세한 플로우차트이다.
도 4a-c 는, 본 발명의 일 예에 따라 프로세싱된 분리된 영역에서의 마스크 피처 (대형 마스크 피처) 의 개략 단면도이다.
도 5a-c 는, 도 4a-c 에 대응하는 본 발명의 예에 따라 프로세싱된 밀집 영역에서의 마스크 피처 (소형 마스크 피처) 의 개략 단면도이다.
도 6 은, 트리밍 단계의 복수의 사이클 이후의 분리된 영역에서의 마스크 피처 (대형 마스크 피처) 의 개략 단면도이다.
도 7a-b 는, 브레드-로프형 (bread-loafed) 프로파일 및 패싯형 (faceted) 프로파일을 각각 갖는 마스크 피처의 개략 단면도이다.
도 8 은, 본 발명을 실시하는데 사용될 수도 있는 플라즈마 프로세싱 챔버의 개략도이다.
도 9a-b 는, 본 발명의 실시형태들에서 사용된 제어기를 구현하는데 적합한 컴퓨터 시스템을 예시한다.
이제, 첨부한 도면에 예시된 바와 같은 본 발명의 몇몇 바람직한 실시형태들을 참조하여 본 발명을 상세히 설명할 것이다. 아래의 설명에서, 다수의 특정한 상세가 본 발명의 전체적인 이해를 제공하기 위해 설명된다. 그러나, 본 발명이 이들 특정한 상세의 일부 또는 전부없이 실시될 수도 있다는 것이 당업자에게 명백할 것이다. 다른 경우에서, 널리 공지된 프로세스 단계 및/또는 구조는 본 발명을 불필요하게 모호하게 하지 않기 위해 상세히 설명하지 않는다.
이해를 용이하게 하기 위해, 도 1 은 본 발명의 일 실시형태에서 사용될 수도 있는 프로세스의 하이 레벨 플로우차트이다. 패터닝된 마스크가 패터닝될 유전체층상에 제공된다 (단계 104). 예를 들어, 유전체층은 질화 산화물층일 수도 있으며, 마스크는 포토레지스트 마스크일 수도 있다. 도 2a 는, 기판 (204) 상에 형성되는 에칭될 유전체층 (208), 유전체층 (208) 상에 형성된 반사 방지층 (ARL; 210), 및 ARL (210) 상에 형성되는 피처 (214) 를 갖는 패터닝된 포토레지스트 마스크 (212) 의 개략 단면도이고, 이들은 스택 (200) 을 형성한다. ARL (210) 은 바닥 반사방지 코팅 (BARC) 층 및 유전체 반사방지 코팅 (DARC) 층을 포함할 수도 있다.
마스크 층 (212) 은 마스크 피처 측벽 (215a, 215b) 을 갖는 마스크 피처 (214; 214a, 214b) 를 형성하도록 패터닝된다. 도 2a 에 도시된 바와 같이, 패터닝된 마스크 (212) 는 마스크 피처의 분리된 영역 (216) 및 밀집 영역 (218) 을 포함한다. 분리된 영역 (216) 은 통상적으로, 소수의 대형 마스크 피처를 포함하며, 밀집 영역 (218) 은 통상적으로, 다수의 소형 마스크 피처를 포함한다. 예를 들어, 밀집 영역 (128) 에서의 마스크 피처와 분리된 영역 (126) 에서의 마스크 피처의 CD 의 비율은 1:2 내지 1:10 일 수도 있다. 즉, 분리된 영역 (216) 은 또한 큰 피처 (214a) 를 갖는 영역으로서 특징화되며 밀집 영역 (218) 은 작은 피처 (214b) 를 갖는 영역으로서 특징화된다.
분리된 영역 (216) 에서, 유전체층 (208) 의 에칭은 늦추어지는 경향이 있고, 그 결과, 층 (208) 의 트렌치와 같은 피처의 최종 CD (220) 는 마스크 피처 (214a) 의 원래의 CD (222) 보다 작다. 따라서, 본 발명의 일 실시형태에 따르면, 마스크 층 (212) 은 측벽 (228) 이 트리밍되도록 (도 1 의 단계 108) 사전처리되어서, 밀집 영역 (218) 에서의 마스크 피처 및 분리된 영역 (216) 과 밀집 영역 (218) 모두에서의 마스크 층 (212) 의 두께가 도 2a 및 2b 에 도시된 바와 같이 실질적으로 보존되면서, 마스크 피처의 CD (226) 가 분리된 영역 (216) 에서 확대된다. 트리밍된 피처 (236a) 를 사용하여, (도 2b 에서의) 유전체층 (208) 의 최종 CD (224) 는 (도 2a 에서의) 원래의 마스크 피처 (124a) 의 원래의 CD (222) 와 실질적으로 동일하다.
도 3 은, 마스크를 트리밍하는 (도 1 의 단계 108) 멀티-사이클 프로세스의 더욱 상세한 프로세스 플로우차트이다. 이러한 예에서, 마스크의 트리밍은 복수의 2-페이즈 사이클에서 수행된다. 각 사이클의 제 1 페이즈는 측벽상에 증착층의 증착 (단계 304) 이고, 제 2 페이즈는 증착층과 패터닝된 마스크의 선택적 에칭이다. 이러한 선택적 에칭에서, 마스크의 분리된 영역 (216) 은 밀집 영역 (218) 에 대해 선택적으로 에칭된다. 추가의 페이즈가 각 사이클에 추가될 수도 있다. 바람직하게는, 이러한 단계는 적어도 3개 사이클 수행된다. 더욱 바람직하게는, 이러한 단계는 4개 내지 5개 사이클 이상 수행된다.
본 발명의 일 실시형태에 따르면, 마스크는 포토레지스트 (PR) 이며, 증착 페이즈 (단계 304) 는 탄화수소 성분을 포함하는 증착 가스를 사용한다. 바람직하게는, 증착 가스는 C2H4 를 포함한다. 더욱 바람직하게는, 증착 가스는 N2 와 같은 캐리어 가스를 더 포함한다. 선택적 에칭 페이즈 (단계 308) 는 O2 를 포함하는 에칭 가스를 사용한다.
도 4a-4c 는, 트리밍 단계의 각 사이클에서 분리된 영역 (216) 에서의 마스크 피처 (214a) 의 단면도를 개략적으로 예시한다. 유사하게, 도 5a-5c 는, 트리밍 단계의 각 사이클에서 밀집 영역 (218) 에서의 마스크 피처 (214b) 의 단면도를 개략적으로 예시한다. 도 4a 및 5a 에 도시된 바와 같이, 패터닝된 마스크 (212) 가 유전체층 (208) 상에 형성된다. 통상적으로, ARL (210) 은 유전체층 (208) 의 상부 (즉, 마스크 (212) 와 마스크 피처 (214) 의 바닥) 상에 제공된다. 증착층 (230) 이 도 4b 및 5b 에 도시된 바와 같이, 마스크 피처 (214a, 214b) 의 측벽 (215a 및 215b) 뿐만 아니라 마스크 피처 (214a, 214b) 의 바닥 (232a 및 232b) 을 커버하는 마스크 (212) 상에 증착된다. 증착층은 폴리머일 수도 있다.
각 증착 페이즈에서, 일반적으로, 마스크의 상부상에 증착된 증착층 (230) 의 두께 및 마스크 피처의 바닥상에 증착된 증착층 (230) 의 두께는, 마스크 피처의 측벽상에 증착된 증착층의 두께 보다 크다. 일반적으로, 분리된 영역 (216) 에서의 증착층은 밀집 영역 (218) 에서의 증착층 보다 두꺼우며, 증착 가스는 밀집 영역 (218) 에서의 마스크 피처의 측벽 (214b) 보다 분리된 영역 (216) 에서의 마스크 피처의 측벽 (215a) 상에 더 많은 증착 재료를 증착한다. 즉, 분리된 영역 (216) 에서의 마스크 (212) 의 측벽 (215a) 상에 증착된 증착층 (230) 의 두께가 밀집 영역 (218) 에서의 증착된 증착층의 두께 보다 크다.
각 선택적 에칭 페이즈에서, 일반적으로, 선택적 에칭 가스는 밀집 영역 (218) 에서 보다 분리된 영역 (216) 에서 증착층을 더 많이 에칭 (등방성 화학적 에칭) 한다. 에칭 프로세스에서의 이러한 마이크로-로딩 효과가 증착 프로세스에서 보다 더 우세하기 때문에, 분리된 영역 (216) 에서의 마스크 피처의 측벽상의 더 두꺼운 증착층이 밀집 영역 (218) 에서의 측벽상의 더 얇은 증착층 보다 더 빠르게 제거될 수 있다. 분리된 영역 (216) 내에서, 증착층이 마스크의 상부 및 마스크 피처의 바닥상에서 보다 측벽상에서 더 얇기 때문에, 측벽 증착은 마스크 피처의 측벽으로 오버 에칭된다. 따라서, 트리밍 단계에서 2개의 페이즈를 제어함으로써, 분리된 영역 (216) 에서의 마스크 피처의 측벽은 밀집 영역 (218) 에 대해 선택적으로 트리밍된다. 마스크의 상부 및 마스크 피처의 바닥에 대해, 선택적 에칭 페이즈는 이전의 증착 페이즈에서 증착된 (균일하게 형성한) 증착층만을 제거하며, 마스크 (212) 또는 ARL (210) 을 에칭하지 않는다.
도 4c 는, 선택적 에칭 페이즈의 종단, 즉, 트리밍 단계의 일 사이클의 종단에서 분리된 영역 (216) 에서의 마스크 피처 (214a) (대형 마스크 피처) 의 단면도를 개략적으로 예시한다. 선택적 에칭 페이즈에서, 분리된 영역 (216) 에서의 마스크 (212) 의 측벽 (215a) 은, 그 위의 증착층 (230) 이 제거된 후에 에칭 백된다. 그러나, 마스크 피처 (214a) 의 바닥 (232a) 상의 증착층 (230) 은 그 아래의 유전체층 (또는 ARL) 을 에칭하지 않고 제거된다. 마스크 (212) 의 상부 (234a) 상의 증착층 (230) 은 또한 선택적 에칭 페이즈에서 실질적으로 제거된다. 그 결과, 분리된 영역에서의 마스크 피처 (214a) 의 측벽 (215a) 은 그것의 CD 를 확대하기 위해 하향 트리밍되지만, 마스크 (212) 의 두께는 각 사이클에서 실질적으로 보존된다.
한편, 밀집 영역 (218) 에서, 선택적 에칭 페이즈는 도 5c 에 도시된 바와 같이, 마스크 (212) 의 측벽 (215) 을 에칭 백하지 않고 측벽 (215b) 상의 증착층 (230) 을 실질적으로 제거한다. 또한, 마스크 피처 (214b) 의 바닥 (232b) 및 마스크 (212) 의 상부 (234b) 상의 증착층 (230) 은 또한, 밀집 영역 (218) 에서 각각의 기반층 (유전체층 (또는 ARL), 또는 마스크 (212)) 을 에칭하지 않고 제거된다. 그 결과, 밀집 영역 (218) 에서, 마스크 (212) 의 원래의 두께 및 마스크 피처 (214b) 의 원래의 프로파일은 각 사이클에서 실질적으로 보존된다.
도 6 은, 트리밍 단계의 복수의 사이클 이후의 분리된 영역 (216) 에서의 마스크 피처 (214a) 의 단면도를 개략적으로 예시한다. 증착 페이즈 및 선택적 에칭 페이즈를 반복함으로써, 분리된 영역에서의 마스크 피처의 측벽은 원하는 프로파일로 조금씩 하향 트리밍된다. 각 사이클에서 얇은 증착층을 증착하고 소량의 측벽을 트리밍함으로써 복수의 사이클 (멀티-사이클 프로세스) 을 반복하는 것은, 동시에 두꺼운 증착층을 증착하고 대량의 측벽을 트리밍하는 것 이상의 여러 이점을 갖는다. 먼저, 멀티-사이클 프로세스는 더 양호한 프로파일 튜닝을 제공한다. 더 두꺼운 폴리머 층을 증착하기 위한 단일의 긴 증착 단계는 (도 7a 에 도시된 바와 같은) 소위 "브레드-로프 (bread-loaf)" 프로파일을 생성하는 경향이 있으며, 극단적인 경우에, 피처는 심지어 핀치 오프될 수도 있다. 한편, 단일의 긴 에칭 단계는 (도 7b 에 도시된 바와 같은) 패싯형 프로파일을 생성한다. 증착 단계와 에칭 단계를 교호하는 복수의 사이클은 최소의 브레드-로핑 또는 브레드-로핑 없음 그리고 더욱 일직선의 측벽을 제공한다. 또한, 폴리머 층은 밀도가 높게 되어서, 박리 (delamination), 줄무늬 (striation), 또는 부풀음 (blistering) (필링-오프) 을 최소화한다. 예를 들어, 1000 Å 보다 큰 두꺼운 증착층은 특히 마스크 피처의 에지에서 마스크로부터 필 오프하는 경향이 있다. 또한, 설계 규칙의 요건으로 인해 원래의 마스크의 CD 를 변경하는 것은 바람직하지 못하고 실용적이지 못하다.
도 1 로 돌아가서, 마스크의 트리밍 이후에, 피처는 트리밍된 마스크를 통해 유전체층 (208) 으로 에칭된다 (단계 112). 도 2c 는 유전체층 (208) 으로 에칭된 피처 (240; 240a, 240b) 를 도시한다.
도 1 로 돌아가서, 그 후, 마스크 (212) 및 ARL (210) 은 스트립핑된다 (단계 116). 도 2d 는, 마스크 (212) 및 ARL (210) 이 제거된 이후의 스택 (200) 을 도시한다. 추가의 형성 단계가 수행될 수도 있다 (단계 124). 예를 들어, 그 후, 컨택트 (242) 가 피처에 형성될 수도 있다. 컨택트가 형성된 이후에 추가의 프로세스가 수행될 수도 있다.
도 8 은, 증착층을 증착하고 증착층과 마스크를 선택적으로 에칭하는 것을 포함하는, 마스크를 선택적으로 트리밍하기 위해 사용될 수도 있는 프로세싱 챔버 (400) 의 개략도이다. 플라즈마 프로세싱 챔버 (400) 는 컨파인먼트 링 (402), 상부 전극 (404), 하부 전극 (408), 가스 인렛을 통해 접속된 가스 소스 (410), 및 가스 아웃렛에 접속된 배기 펌프 (420) 를 포함한다. 가스 소스 (410) 는 마스크-트리밍 증착 가스 소스 (412) 및 마스크-트리밍 에칭 가스 소스 (416) 를 포함한다. 가스 소스 (410) 는 또한, 마스크-트리밍 증착 프로세스에서의 균일성을 제어하는 증착 튜닝 가스 소스 (454), 및 선택적으로, 마스크-트리밍 에칭 프로세스에서의 균일성을 제어하는 에칭 튜닝 가스 소스 (456) 을 포함할 수도 있다. 바람직하게는, 프로세싱 챔버 (400) 는 유전체층을 에칭할 수 있다. 더욱 바람직하게는, 프로세싱 챔버 (400) 는 또한, 마스크-트리밍, 유전체 에칭, 및 마스크-스트립핑이 인 시츄로 행해지도록 마스크 (및 ARL) 를 스트립할 수 있다. 따라서, 가스 소스 (410) 는 유전체층에 대한 에칭 가스 소스 (418), 및 마스크 스트립핑용 가스 소스 (미도시) 와 같은 추가의 가스 소스를 포함할 수도 있다.
플라즈마 프로세싱 챔버 (400) 내에서, 기판 (204) 은 하부 전극 (408) 상에 위치된다. 하부 전극 (408) 은 기판 (204) 을 홀딩하는 적절한 기판 척킹 메카니즘 (예를 들어, 정전기, 기계적 클램핑 등) 을 통합한다. 리액터 상부 (428) 는 하부 전극 (408) 에 직접적으로 대향하여 배치된 상부 전극 (404) 을 통합한다. 상부 전극 (404), 하부 전극 (408), 및 컨파인먼트 링 (402) 은 한정된 플라즈마 볼륨을 정의한다. 가스가 가스 소스 (410) 에 의해 한정된 플라즈마 볼륨으로 공급되고, 배기 펌프 (420) 에 의해 컨파인먼트 링 (402) 및 배기 포트를 통해 한정된 플라즈마 볼륨으로부터 배기된다. 제 1 RF 소스 (444) 가 상부 전극 (404) 에 전기적으로 접속된다. 제 2 RF 소스 (448) 가 하부 전극 (408) 에 전기적으로 접속된다. 챔버 벽 (452) 은 컨파인먼트 링 (402), 상부 전극 (404), 및 하부 전극 (408) 을 둘러싼다. 제 1 RF 소스 (444) 및 제 2 RF 소스 (448) 모두는, 27 MHz 전원, 2 MHz 전원, 및 60 MHz 전원을 포함할 수도 있다. 전극에 RF 전력을 접속시키는 다른 조합이 가능하다. 본 발명의 바람직한 실시형태에서 사용될 수도 있는, 캘리포니아주 프레몬트의 LAM Research Corporation™ 에 의해 제조된, Exelan® Series 와 같은 Lam Research Corporation 의 유전체 에칭 시스템의 경우에, 27 MHz, 2 MHz, 및 60 MHz 전원은 하부 전극에 접속된 제 2 RF 전원 (448) 을 구성하고, 상부 전극은 접지된다. 제어기 (435) 가 RF 소스 (444, 448), 배기 펌프 (420), 및 가스 소스 (410) 에 제어가능하게 접속된다. DFC 시스템은, 에칭될 층 (208) 이 실리콘 산화물 또는 유기 실리케이트 유리와 같은 유전체층일 때 사용된다. 제어기 (435) 는 RF 소스 (444, 448), 배기 펌프 (420), 마스크-트리밍 증착 가스 소스 (412), 마스크-트리밍 에칭 가스 소스 (416), 및 증착 튜닝 가스 소스 (454) 를 제어하여서, 복수의 사이클의 각 사이클의 2개의 페이즈로서 마스크-트리밍 증착 및 마스크-트리밍 에칭을 교대로 수행한다.
도 9a 및 9b 는, 본 발명의 실시형태들에서 사용된 제어기 (435) 를 구현하는데 적합한 컴퓨터 시스템 (1300) 을 예시한다. 도 9a 는, 컴퓨터 시스템의 하나의 가능한 물리적 형태를 도시한다. 물론, 컴퓨터 시스템은 집적 회로, 인쇄 회로 보드, 및 소형 핸드헬드 디바이스로부터 대형 수퍼 컴퓨터까지의 다수의 물리적 형태를 가질 수도 있다. 컴퓨터 시스템 (1300) 은 모니터 (1302), 디스플레이 (1304), 하우징 (1306), 디스크 드라이브 (1308), 키보드 (1310), 및 마우스 (1312) 를 포함한다. 디스크 (1314) 는 컴퓨터 시스템 (1300) 으로 및 컴퓨터 시스템으로부터 데이터를 전달하기 위해 사용된 컴퓨터 판독가능 매체이다.
도 9b 는, 컴퓨터 시스템 (1300) 에 대한 블록도의 예이다. 시스템 버스 (1320) 에 광범위한 서브시스템이 부착된다. 프로세서(들) (1322) (또한 중앙 처리 유닛, 또는 CPU 라 칭함) 가 메모리 (1324) 를 포함하는 저장 디바이스에 커플링된다. 메모리 (1324) 는 랜덤 액세스 메모리 (RAM) 및 판독-전용 메모리 (ROM) 를 포함한다. 당업계에 널리 공지되어 있는 바와 같이, ROM 은 데이터 및 명령을 CPU 로 단방향으로 전달하도록 작용하고, RAM 은 통상적으로 양방향 방식으로 데이터 및 명령을 전달하기 위해 사용된다. 이들 타입의 메모리 모두는 후술하는 임의의 적합한 컴퓨터 판독가능 매체를 포함할 수도 있다. 고정 디스크 (1326) 가 또한 CPU (1322) 에 양방향으로 커플링되고, 이것은 추가의 데이터 저장 용량을 제공하며, 후술하는 임의의 컴퓨터 판독가능 매체를 또한 포함할 수도 있다. 고정 디스크 (1326) 는 프로그램, 데이터 등을 저장하기 위해 사용될 수도 있으며, 통상적으로 주 저장 매체 보다 느린 (하드 디스크와 같은) 부 저장 매체이다. 고정 디스크 (1326) 내에 유지된 정보가, 적절한 경우에, 메모리 (1324) 에서의 가상 메모리와 같은 표준 방식으로 통합될 수도 있다는 것을 이해할 것이다. 이동식 디스크 (1314) 는 후술하는 임의의 컴퓨터 판독가능 매체의 형태를 취할 수도 있다.
CPU (1322) 는 또한, 디스플레이 (1304), 키보드 (1310), 마우스 (1312), 및 스피커 (1330) 와 같은 다양한 입/출력 디바이스에 커플링된다. 일반적으로, 입/출력 디바이스는 비디오 디스플레이, 트랙 볼, 마우스, 키보드, 마이크로폰, 터치-감지형 디스플레이, 트랜스듀서 카드 판독기, 자기 또는 페이퍼 테이프 판독기, 태블릿, 스타일러스, 음성 또는 핸드라이팅 인식기, 생체인식 판독기, 또는 다른 컴퓨터 중 어느 하나일 수도 있다. CPU (1322) 는 선택적으로, 네트워크 인터페이스 (1340) 를 사용하여 다른 컴퓨터 또는 전기통신 네트워크에 커플링될 수도 있다. 이러한 네트워크 인터페이스를 이용하여, CPU 가 상술한 방법 단계들을 수행하는 과정에서, 네트워크로부터 정보를 수신할 수도 있거나 네트워크에 정보를 출력할 수도 있다는 것이 예상된다. 또한, 본 발명의 방법 실시형태들은 CPU (1322) 상에 단독으로 실행할 수도 있거나 프로세싱의 일부를 공유하는 원격 CPU 와 공동으로 인터넷과 같은 네트워크를 통해 실행할 수도 있다.
또한, 본 발명의 실시형태들은 또한, 다양한 컴퓨터-구현 동작을 수행하는 컴퓨터 코드를 갖는 컴퓨터 판독가능 매체를 갖는 컴퓨터 저장 제품에 관한 것이다. 매체 및 컴퓨터 코드는 본 발명의 목적을 위해 특수하게 설계되고 구성된 것일 수도 있거나, 이들은 컴퓨터 소프트웨어 업계의 당업자에게 널리 공지되어 있고 그들에게 이용가능한 종류일 수도 있다. 컴퓨터 판독가능 매체의 예들은, 하드 디스크, 플로피 디스크, 및 자기 테이프와 같은 자기 매체, CD-ROM 및 홀로그래픽 디바이스와 같은 광학 매체, 플롭티컬 디스크와 같은 자기-광학 매체, 및 응용 주문형 집적 회로 (ASIC), 프로그래머블 로직 디바이스 (PLD), 및 ROM 및 RAM 디바이스와 같은 프로그램 코드를 저장 및 실행하기 위해 특수하게 구성된 하드웨어 디바이스를 포함하지만, 이에 제한되지 않는다. 컴퓨터 코드의 예들은, 컴파일러에 의해 생성된 것과 같은 머신 코드, 및 인터프리터를 사용하여 컴퓨터에 의해 실행되는 상위 레벨 코드를 포함하는 파일을 포함한다. 컴퓨터 판독가능 매체는 또한, 프로세서에 의해 실행가능한 명령의 시퀀스를 나타내고, 반송파에 수록된 컴퓨터 데이터 신호에 의해 송신된 컴퓨터 코드일 수도 있다.
분리된 영역 (대형 마스크 피처) 에서의 마스크 피처의 측벽이 밀집 영역 (소형 마스크 피처) 에 대해 선택적으로 트리밍되는 마스크를 트리밍하기 위해 (도 1 에서의 단계 108) 다중의 사이클 2개 페이즈 프로세스가 사용된다. 본 발명의 일 실시형태에 따르면, 마스크가 포토레지스트인 경우에, 증착 페이즈는 탄화수소, 바람직하게는 C2H4 를 함유하는 증착 가스를 제공한다. 증착 페이즈 (단계 304) 에서의 증착의 일 예는, 100-500 sccm C2H4, 100-500 sccm N2, 및 10-200 sccm Ar 튜닝 가스의 흐름을 제공한다. Ar 튜닝 가스는, 증착 페이즈가 일반적으로 중심 보다는 웨이퍼의 에지에서 더 많이 증착할 때 증착 프로세스의 균일성을 제어하기 위해 웨이퍼의 에지부에 선택적으로 제공된다. 압력은 350-750 mTorr 로 설정된다. 기판은 0-60 ℃ 의 온도, 예를 들어, 약 20 ℃ 에서 유지된다. 제 2 RF 소스 (448) 는 60 MHz 의 주파수에서 200-400 와트를 제공한다. 다른 실시형태들에서, 제 2 RF 소스 (448) 는, 웨이퍼 및 애플리케이션에 의존하여, 2 MHz 의 주파수에서 100-500 와트, 또는 27 MHz 의 주파수에서 100-500 와트를 제공할 수도 있다. 하나의 바람직한 실시형태에 따르면, 증착 페이즈는, 60 MHz 의 주파수에서 200 와트의 전력 및 740 mTorr 의 압력으로, 500 sccm C2H4, 150 sccm N2, 및 150 sccm Ar 튜닝 가스의 흐름을 챔버에 제공한다. 다른 바람직한 실시형태에 따르면, 증착 페이즈는, 60 MHz 의 주파수에서 400 와트의 전력 및 740 mTorr 의 압력으로, 500 sccm C2H4, 150 sccm N2, 및 150 sccm Ar 튜닝 가스의 흐름을 제공한다.
다른 방법으로는, 탄화수소 함유 가스는 CH4 를 포함할 수도 있다. 각 증착 페이즈에서, 탄화수소 함유 증착 가스가 챔버에 도입된 이후에, 증착 플라즈마가 상술한 바와 같이, 증착층을 증착하기 위해 거기로부터 형성된다. 증착 가스의 흐름은, 증착층이 원하는 두께를 갖도록 중지된다. 증착층의 두께는 가스 흐름 레이트, 압력, 및 RF 전력과 같은 파라미터의 소정의 세트에 대한 증착 페이즈의 시간 주기에 의해 제어될 수도 있다.
선택적 에칭 페이즈 (단계 308) 의 일 예는, 100-1000 sccm O2 와 같은 O2 함유 가스를 제공한다. 이러한 예에서, O2 는 튜닝 가스없이 선택적 에칭 페이즈 동안 제공된 단독 가스이다. 본 발명은 튜닝 가스의 특정한 사용에 제한되지 않는다. 일반적으로, 튜닝 가스는 에칭 또는 증착 화학성분을 희석하기 위해 사용된다. 예를 들어, 에칭 프로세스가 중심부에서 더욱 우세하면, 튜닝 가스는 그 중심부에 제공되며, 에칭 프로세스가 에지부에서 더욱 우세하면, 튜닝 가스는 그 에지부에 제공된다. Ar 튜닝 가스가 증착 프로세스를 위해 사용될 수도 있으며, O2 튜닝 가스가 에칭 프로세스를 위해 사용될 수도 있다. 튜닝 가스 모두가 프로세스 및 화학적성분에 의존하여 에지부 또는 중심부에 제공될 수 있다. 350-750 mTorr 의 압력이 챔버에 제공된다. 제 2 RF 소스 (448) 는 60 MHz 의 주파수에서 200-400 와트를 제공한다. 다른 실시형태에서, 제 2 RF 소스 (448) 는 웨이퍼 및 애플리케이션에 의존하여, 2 MHz 의 주파수에서 100-500 와트를 제공할 수도 있거나, 27 MHz 의 주파수에서 100-500 와트를 제공할 수도 있다. 예를 들어, 하나의 바람직한 실시형태에 따르면, 선택적 에칭 페이즈는 750 sccm O2 의 흐름, 740 mTorr 의 압력, 및 60 MHz 의 주파수에서 200 와트의 전력을 챔버에 제공한다. 다른 바람직한 실시형태에 따르면, 선택적 에칭 페이즈는 750 sccm O2 의 흐름, 740 mTorr 의 압력, 및 60 MHz 의 주파수에서 400 와트의 전력을 챔버에 제공한다. 또 다른 바람직한 실시형태에 따르면, 선택적 에칭 페이즈는 200 sccm O2 의 흐름, 380 mTorr 의 압력, 및 60 MHz 의 주파수에서 200 와트의 전력을 챔버에 제공한다.
다른 실시형태들에서, 각 사이클은 추가의 증착 및/또는 프로파일 정형 페이즈를 더 포함할 수도 있다. 각 선택적 에칭 페이즈에서, O2 함유 에칭 가스가 챔버에 도입된 이후에, 플라즈마가 상술한 바와 같이 증착층 및 마스크를 선택적으로 에칭함으로써 마스크를 선택적으로 트리밍하기 위해 거기로부터 형성된다. O2 함유 에칭 가스의 흐름은, 증착층이 제거되고 마스크 피처가 사이클 동안 원하는 트림을 갖도록 중지된다. 트림의 양은 가스 흐름 레이트, 압력, 및 RF 전력과 같은 파라미터의 소정의 세트에 대한 선택적 에칭 페이즈의 시간 주기에 의해 제어될 수도 있다. 일반적으로, 증착 페이즈가 길수록, 선택적 에칭 페이즈가 길다.
에칭될 유전체층 (208) 의 예는, SiN, SiC, 산화물, 또는 저-k 유전체와 같은 종래의 에칭층일 수도 있다. 종래의 에칭 레시피가 에칭될 층을 에칭하기 위해 사용될 수도 있다.
마스크 및 ARL 을 스트립핑하기 위해 (단계 116), 산소 애싱이 사용될 수도 있다.
증착 페이즈 및 선택적 에칭 페이즈를 결합함으로써 마스크를 선택적으로 트리밍하는 것은, 유전체층의 후속 에칭에서 분리된 영역 (대형 피처) 과 밀집 영역 (소형 피처) 사이에서 CD 바이어스의 제어를 가능하게 한다. 증착=선택적 에칭 사이클은 마스크의 이상적인 트림을 획득하기 위해 원하는 만큼 다수 횟수 반복될 수 있어서, 유전체층의 목표 CD 를 실현한다.
여러 바람직한 실시형태에 관하여 본 발명을 설명하였지만, 본 발명의 범위내에 있는 변경물, 변형물, 치환물, 및 다양한 대체 등가물이 존재한다. 또한, 본 발명의 방법 및 장치를 구현하는 다수의 대안의 방식이 존재한다. 따라서, 아래의 첨부한 청구범위는 본 발명의 진정한 사상 및 범위내에 있는 것으로 모든 이러한 변경물, 변형물, 치환물, 및 다양한 대체 등가물을 포함하는 것으로서 해석되는 것으로 의도된다.

Claims (34)

  1. 유전체층을 에칭하는 방법으로서,
    유전체층상에 마스크 피처들을 갖는 패터닝된 마스크를 형성하는 단계로서, 상기 마스크는 상기 마스크 피처들의 분리된 영역들 및 밀집 영역들을 갖는, 상기 패터닝된 마스크를 형성하는 단계;
    복수의 사이클을 포함하는 상기 마스크를 트리밍하는 단계로서, 각 사이클은,
    증착층을 증착하는 단계, 및
    상기 증착층 및 상기 패터닝된 마스크를 선택적으로 에칭하는 단계를 포함하며, 상기 선택적으로 에칭하는 단계는, 상기 마스크의 상기 밀집 영역들에 대해 상기 마스크의 상기 분리된 영역들을 선택적으로 트리밍하는, 상기 마스크를 트리밍하는 단계; 및
    상기 트리밍된 마스크를 사용하여 상기 유전체층을 에칭하는 단계를 포함하는, 유전체층을 에칭하는 방법.
  2. 제 1 항에 있어서,
    각 증착하는 단계에서, 상기 마스크의 상부상에 증착된 상기 증착층의 두께 및 상기 마스크 피처들의 바닥상에 증착된 상기 증착층의 두께는, 상기 마스크의 측벽상에 증착된 상기 증착층의 두께 보다 큰, 유전체층을 에칭하는 방법.
  3. 제 2 항에 있어서,
    각 증착하는 단계에서, 상기 분리된 영역들에서의 상기 마스크의 측벽상에 증착된 상기 증착층의 두께는, 밀집 영역에서 증착된 상기 증착층의 두께 보다 큰, 유전체층을 에칭하는 방법.
  4. 제 1 항에 있어서,
    각 선택적으로 에칭하는 단계에서, 상기 분리된 영역들에서의 상기 마스크의 측벽은, 그 상부에 증착된 상기 증착층이 제거된 이후에 에칭 백되는, 유전체층을 에칭하는 방법.
  5. 제 4 항에 있어서,
    각 선택적으로 에칭하는 단계에서, 상기 증착층 아래에 있는 상기 유전체층을 에칭하지 않고, 상기 마스크 피처들의 바닥상의 상기 증착층이 제거되는, 유전체층을 에칭하는 방법.
  6. 제 1 항에 있어서,
    각 선택적으로 에칭하는 단계에서, 상기 밀집 영역들에서 상기 증착층 아래에 있는 상기 유전체층 또는 상기 마스크를 에칭하지 않고, 상기 마스크 피처들의 바닥 및 상기 마스크의 측벽상에 증착된 상기 증착층이 제거되는, 유전체층을 에칭하는 방법.
  7. 제 1 항에 있어서,
    상기 패터닝된 마스크와 상기 유전체층 사이에 반사방지층 (ARL) 이 제공되며, 각 선택적으로 에칭하는 단계에서, 상기 증착층 아래에 있는 ARL 을 에칭하지 않고, 상기 마스크 피처들의 바닥상의 상기 증착층이 제거되는, 유전체층을 에칭하는 방법.
  8. 제 7 항에 있어서,
    각 선택적으로 에칭하는 단계에서, 상기 밀집 영역들에서 상기 마스크 피처의 측벽을 에칭하지 않으며 상기 마스크 피처의 상기 바닥상의 ARL 을 에칭하지 않고, 상기 마스크 피처들의 상기 바닥 및 상기 마스크의 측벽상의 상기 증착층이 제거되는, 유전체층을 에칭하는 방법.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 패터닝된 마스크는 포토레지스트 마스크인, 유전체층을 에칭하는 방법.
  10. 제 9 항에 있어서,
    각 증착하는 단계에서,
    탄화수소 성분을 포함하는 증착 가스를 제공하는 단계,
    상기 증착 가스로부터 플라즈마를 형성하는 단계, 및
    상기 증착 가스의 흐름을 중지시키는 단계를 포함하는, 유전체층을 에칭하는 방법.
  11. 제 10 항에 있어서,
    상기 증착 가스는 C2H4 를 포함하는, 유전체층을 에칭하는 방법.
  12. 제 11 항에 있어서,
    각 증착하는 단계는, Ar 을 포함하는 튜닝 가스를 제공하는 단계를 더 포함하는, 유전체층을 에칭하는 방법.
  13. 제 9 항에 있어서,
    각 선택적으로 에칭하는 단계는,
    O2 를 포함하는 에칭 가스를 제공하는 단계,
    상기 에칭 가스로부터 플라즈마를 형성하는 단계, 및
    상기 에칭 가스의 흐름을 중지시키는 단계를 포함하는, 유전체층을 에칭하는 방법.
  14. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 트리밍하는 단계는, 적어도 3개의 사이클을 포함하는, 유전체층을 에칭하는 방법.
  15. 제 14 항에 있어서,
    상기 트리밍하는 단계는, 4 내지 5개 사이클을 포함하는, 유전체층을 에칭하는 방법.
  16. 마스크 피처들을 갖는 패터닝된 마스크 아래에 형성된 유전체층을 에칭하는 장치로서,
    상기 마스크는 상기 마스크 피처들의 분리된 영역들 및 밀집 영역들을 가지며,
    상기 장치는,
    플라즈마 프로세싱 챔버 인클로저를 형성하는 챔버 벽,
    상기 플라즈마 프로세싱 챔버 인클로저내에서 기판을 지지하는 기판 지지부,
    상기 플라즈마 프로세싱 챔버 인클로저에서의 압력을 조절하는 압력 조절기,
    상기 플라즈마 프로세싱 챔버 인클로저에 전력을 제공하며, 플라즈마를 유지하기 위한 적어도 하나의 전극,
    상기 플라즈마 프로세싱 챔버 인클로저에 가스를 제공하는 가스 인렛, 및
    상기 플라즈마 프로세싱 챔버 인클로저로부터 가스를 배기하는 가스 아웃렛을 포함하는,
    플라즈마 프로세싱 챔버;
    마스크-트리밍 증착 가스 소스,
    마스크-트리밍 에칭 가스 소스, 및
    유전체층 에칭 가스 소스를 포함하는,
    상기 가스 인렛과 유체 접속하는 가스 소스; 및
    적어도 하나의 프로세서, 및
    컴퓨터 판독가능 매체를 포함하는,
    상기 가스 소스 및 상기 적어도 하나의 전극에 제어가능하게 접속된 제어기를 포함하며,
    상기 컴퓨터 판독가능 매체는,
    복수의 사이클을 포함하는 상기 마스크를 트리밍하는 컴퓨터 판독가능 코드로서, 각 사이클에 대한 컴퓨터 판독가능 코드는,
    상기 마스크-트리밍 증착 가스 소스로부터 증착 가스를 제공하여 증착층을 형성하는 컴퓨터 판독가능 코드,
    상기 증착 가스로부터 증착 플라즈마를 생성하는 컴퓨터 판독가능 코드,
    상기 마스크-트리밍 증착 가스 소스로부터 상기 증착 가스를 중지시키는 컴퓨터 판독가능 코드,
    상기 마스크-트리밍 에칭 가스 소스로부터 마스크-트리밍 에칭 가스를 제공하는 컴퓨터 판독가능 코드,
    상기 마스크-트리밍 에칭 가스 소스로부터 에칭 플라즈마를 생성하는 컴퓨터 판독가능 코드로서, 상기 에칭 플라즈마는 상기 증착층 및 상기 패터닝된 마스크를 선택적으로 에칭하고, 상기 선택적 에칭은 상기 밀집 영역들에 대해 상기 분리된 영역들을 선택적으로 트리밍하는, 상기 에칭 플라즈마를 생성하는 컴퓨터 판독가능 코드, 및
    상기 마스크-트리밍 에칭 가스 소스로부터 상기 마스크-트리밍 에칭 가스를 중지시키는 컴퓨터 판독가능 코드를 포함하는,
    상기 마스크를 트리밍하는 컴퓨터 판독가능 코드,
    상기 트리밍된 마스크를 사용하여 상기 유전체층을 에칭하는 컴퓨터 판독가능 코드, 및
    상기 마스크를 제거하는 컴퓨터 판독가능 코드를 포함하는, 유전체층을 에칭하는 장치.
  17. 마스크 피처들을 갖는 패터닝된 마스크 아래에 형성된 유전체층을 에칭하는 장치로서,
    상기 마스크는 상기 마스크 피처들의 분리된 영역들 및 밀집 영역들을 가지며,
    상기 장치는,
    증착층을 증착하는 수단,
    상기 증착층 및 상기 패터닝된 마스크를 선택적으로 에칭하는 수단으로서, 상기 마스크의 상기 밀집 영역들에 대해 상기 마스크의 상기 분리된 영역들을 선택적으로 트리밍하는, 상기 선택적으로 에칭하는 수단, 및
    상기 증착하는 수단 및 상기 선택적으로 에칭하는 수단을 교대로 동작시키는 수단을 포함하는,
    상기 마스크를 트리밍하는 수단; 및
    상기 트리밍된 마스크를 사용하여 상기 유전체층을 에칭하는 수단을 포함하는, 유전체층을 에칭하는 장치.
  18. 제 17 항에 있어서,
    상기 증착하는 수단은, 상기 마스크의 상부상의 상기 증착층의 두께 및 상기 마스크 피처들의 바닥상의 상기 증착층의 두께가 상기 마스크의 측벽상의 상기 증착층의 두께 보다 크도록 상기 증착층을 증착하는, 유전체층을 에칭하는 장치.
  19. 제 18 항에 있어서,
    상기 증착하는 수단은, 상기 분리된 영역들에서 상기 마스크의 측벽상에 증착된 상기 증착층의 두께가 밀집 영역에서의 상기 증착층의 두께 보다 크도록 상기 증착층을 증착하는, 유전체층을 에칭하는 장치.
  20. 제 19 항에 있어서,
    상기 선택적으로 에칭하는 수단은, 상기 분리된 영역들에서 상기 증착하는 수단에 의해 증착된 상기 측벽상의 상기 증착층을 제거한 이후에 상기 마스크의 상기 측벽을 에칭 백하며, 상기 밀집 영역들에서 상기 증착층 아래의 상기 유전체층 또는 상기 마스크를 에칭하지 않고, 상기 마스크 피처들의 바닥 및 상기 마스크의 상기 측벽상에 증착된 상기 증착층을 제거하는, 유전체층을 에칭하는 장치.
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
KR1020107004894A 2007-08-20 2008-08-19 마스크 트리밍 KR101534883B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/841,189 US7838426B2 (en) 2007-08-20 2007-08-20 Mask trimming
US11/841,189 2007-08-20
PCT/US2008/073602 WO2009026298A1 (en) 2007-08-20 2008-08-19 Mask trimming

Publications (2)

Publication Number Publication Date
KR20100059843A KR20100059843A (ko) 2010-06-04
KR101534883B1 true KR101534883B1 (ko) 2015-07-07

Family

ID=40378591

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107004894A KR101534883B1 (ko) 2007-08-20 2008-08-19 마스크 트리밍

Country Status (5)

Country Link
US (2) US7838426B2 (ko)
KR (1) KR101534883B1 (ko)
CN (1) CN101779276B (ko)
TW (1) TWI388008B (ko)
WO (1) WO2009026298A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283255B2 (en) * 2007-05-24 2012-10-09 Lam Research Corporation In-situ photoresist strip during plasma etching of active hard mask
US8277670B2 (en) * 2008-05-13 2012-10-02 Lam Research Corporation Plasma process with photoresist mask pretreatment
US8394723B2 (en) * 2010-01-07 2013-03-12 Lam Research Corporation Aspect ratio adjustment of mask pattern using trimming to alter geometry of photoresist features
US9117767B2 (en) * 2011-07-21 2015-08-25 Lam Research Corporation Negative ion control for dielectric etch
US9595440B2 (en) * 2010-11-01 2017-03-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method of using a vaporizing spray system to perform a trimming process
US8304262B2 (en) * 2011-02-17 2012-11-06 Lam Research Corporation Wiggling control for pseudo-hardmask
US8431461B1 (en) 2011-12-16 2013-04-30 Lam Research Corporation Silicon nitride dry trim without top pulldown
JP5912637B2 (ja) * 2012-02-17 2016-04-27 東京エレクトロン株式会社 半導体装置の製造方法
KR20140140418A (ko) * 2013-05-29 2014-12-09 삼성디스플레이 주식회사 유기층 에칭 장치 및 유기층 에칭 방법
JP6289996B2 (ja) * 2014-05-14 2018-03-07 東京エレクトロン株式会社 被エッチング層をエッチングする方法
JP6600480B2 (ja) * 2015-04-20 2019-10-30 東京エレクトロン株式会社 被処理体を処理する方法
US10037890B2 (en) * 2016-10-11 2018-07-31 Lam Research Corporation Method for selectively etching with reduced aspect ratio dependence
US10020183B1 (en) * 2017-06-29 2018-07-10 Lam Research Corporation Edge roughness reduction
US10359699B2 (en) * 2017-08-24 2019-07-23 Taiwan Semiconductor Manufacturing Company, Ltd. Self-adaptive halogen treatment to improve photoresist pattern and magnetoresistive random access memory (MRAM) device uniformity
US10269574B1 (en) * 2017-10-03 2019-04-23 Mattson Technology, Inc. Surface treatment of carbon containing films using organic radicals
US10566194B2 (en) * 2018-05-07 2020-02-18 Lam Research Corporation Selective deposition of etch-stop layer for enhanced patterning
JP7229750B2 (ja) * 2018-12-14 2023-02-28 東京エレクトロン株式会社 プラズマ処理方法およびプラズマ処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040099292A (ko) * 2002-03-01 2004-11-26 어플라이드 머티어리얼스, 인코포레이티드 제조 장비에서 포스트 에칭 cd를 반복하기 위한 방법
KR20050028781A (ko) * 2003-09-19 2005-03-23 어플라이드 머티어리얼스, 인코포레이티드 선택적 측벽 폴리머 증착에 의해 포토레지스트 트리밍공정의 임계크기 미세로딩을 제어하는 방법
JP2005129893A (ja) * 2003-09-29 2005-05-19 Tokyo Electron Ltd エッチング方法
KR20070032967A (ko) * 2004-06-03 2007-03-23 램 리써치 코포레이션 가스 화학물 및 탄화 수소 첨가의 주기적 변조를 이용하는플라즈마 스트리핑 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707218A (en) 1986-10-28 1987-11-17 International Business Machines Corporation Lithographic image size reduction
JP3400918B2 (ja) 1996-11-14 2003-04-28 東京エレクトロン株式会社 半導体装置の製造方法
US6150678A (en) 1999-02-11 2000-11-21 Vanguard International Semiconductor Corporation Method and pattern for avoiding micro-loading effect in an etching process
KR100414611B1 (ko) 1999-03-09 2004-01-07 동경 엘렉트론 주식회사 반도체 장치의 제조 방법
US6632741B1 (en) 2000-07-19 2003-10-14 International Business Machines Corporation Self-trimming method on looped patterns
US6599437B2 (en) * 2001-03-20 2003-07-29 Applied Materials Inc. Method of etching organic antireflection coating (ARC) layers
JP2003168640A (ja) 2001-12-03 2003-06-13 Hitachi Ltd 半導体装置の製造方法
US7014956B2 (en) 2002-01-04 2006-03-21 Intel Corporation Active secondary exposure mask to manufacture integrated circuits
US7081407B2 (en) 2003-12-16 2006-07-25 Lam Research Corporation Method of preventing damage to porous low-k materials during resist stripping
US7682516B2 (en) 2005-10-05 2010-03-23 Lam Research Corporation Vertical profile fixing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040099292A (ko) * 2002-03-01 2004-11-26 어플라이드 머티어리얼스, 인코포레이티드 제조 장비에서 포스트 에칭 cd를 반복하기 위한 방법
KR20050028781A (ko) * 2003-09-19 2005-03-23 어플라이드 머티어리얼스, 인코포레이티드 선택적 측벽 폴리머 증착에 의해 포토레지스트 트리밍공정의 임계크기 미세로딩을 제어하는 방법
JP2005129893A (ja) * 2003-09-29 2005-05-19 Tokyo Electron Ltd エッチング方法
KR20070032967A (ko) * 2004-06-03 2007-03-23 램 리써치 코포레이션 가스 화학물 및 탄화 수소 첨가의 주기적 변조를 이용하는플라즈마 스트리핑 방법

Also Published As

Publication number Publication date
WO2009026298A1 (en) 2009-02-26
CN101779276A (zh) 2010-07-14
US20110030895A1 (en) 2011-02-10
KR20100059843A (ko) 2010-06-04
US7838426B2 (en) 2010-11-23
TWI388008B (zh) 2013-03-01
TW200929362A (en) 2009-07-01
CN101779276B (zh) 2011-12-14
US8864931B2 (en) 2014-10-21
US20090050271A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
KR101534883B1 (ko) 마스크 트리밍
KR101516455B1 (ko) Arl 에칭을 이용한 마스크 트리밍
KR101353239B1 (ko) 피치 감소
KR101555397B1 (ko) 포토레지스트 마스크 전처리를 갖는 플라즈마 프로세스
KR101274308B1 (ko) 임계 치수 감소 및 거칠기 제어
KR101184956B1 (ko) 다수의 마스킹 단계를 이용하여 임계 치수를 감소시키는 방법
JP4886513B2 (ja) フィーチャ微小寸法の低減
KR101274382B1 (ko) 에칭 프로세스를 위한 안정화된 포토레지스트 구조
KR101442269B1 (ko) 무한 선택적 포토레지스트 마스크 식각
KR101711669B1 (ko) 측벽 형성 공정
JP2008524851A (ja) エッチマスクの特徴部の限界寸法の低減
KR20100106347A (ko) 산화물 스페이서를 이용한 피치 감소
KR20100110358A (ko) 이중 마스크 자기정렬 이중 패터닝 기술 (sadpt) 프로세스
TWI405265B (zh) 均勻控制的蝕刻
KR20070046095A (ko) 유전층 에칭 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180626

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 5